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Abstract—In real-time systems, schedulability tests are uti-
lized to provide timing guarantees. However, for self-suspending
task sets, current suspension-aware schedulability tests are lim-
ited to Task-Level Fixed-Priority (TFP) scheduling or Earliest-
Deadline-First (EDF) with constrained-deadline task systems.
In this work we provide a unifying schedulability test for the
uniprocessor version of Global EDF-Like (GEL) schedulers and
arbitrary-deadline task sets. A large body of existing schedul-
ing algorithms can be considered as EDF-Like, such as EDF,
First-In-First-Out (FIFO), Earliest-Quasi-Deadline-First (EQDF)
and Suspension-Aware EDF (SAEDF). Therefore, the unifying
schedulability test is applicable to those algorithms. Moreover,
the schedulability test can be applied to TFP scheduling as well.

Our analysis is the first suspension-aware schedulability test
applicable to arbitrary-deadline sporadic real-time task systems
under Job-Level Fixed-Priority (JFP) scheduling, such as EDF.
Moreover, it is the first unifying suspension-aware schedulability
test framework that covers a wide range of scheduling algorithms.
Through numerical simulations, we show that the schedulability
test outperforms the state of the art for EDF under constrained-
deadline scenarios. Moreover, we demonstrate the performance
of different configurations under EQDF and SAEDF.

I. INTRODUCTION

In real-time systems, jobs (task instances) are released
recurrently by a real-time task, which has to satisfy its timing
constraints. More specifically, each job has to finish no later
than its absolute deadline, which is its relative deadline plus
its release time. To derive a schedule from the jobs released
by tasks, a scheduling algorithm is utilized. To ensure timing
correctness, schedulability tests for scheduling algorithms have
to be provided which guarantee that all deadlines are met. For
self-suspending task sets, a job may release its occupation of
the processor before being completed, and may wait, for in-
stance due to computation offloading or hardware acceleration,
until the requested service is completed. When considering
self-suspension, providing timing guarantees becomes more
complex. The main reason is that the classical worst-case
response time and schedulability analyses, such as the critical
instant theorem [33], Time-Demand Analysis (TDA) [24],
[27], or the demand bound function [4], are typically based
on an assumption that a job, after it is released, is either
executed or waiting to be executed in the ready queue until it
finishes. Extending such classical analyses to self-suspending
task systems is non-trivial, and has been demonstrated to be
prone to flaw. In the literature, a large number of results

analyzing self-suspending behavior has recently been reported
to be flawed, c.f., [13], [18], [19].

In the literature, there are two self-suspension models that
are most studied, namely the segmented self-suspension model
[6], [9], [11], [21], [22], [26], [35], [36] and the dynamic
self-suspension model [2], [12], [14], [20], [23], [32]. In the
segmented self-suspension model, the sequence of execution
and suspension behavior of all jobs is predefined for each task.
More specifically, for each segment a suspension or execution
upper bound is given and the number of segments is fixed. In
the dynamic self-suspension model, the segmented structure
is not predefined. The jobs of one task may suspend as often
and as long as the maximum suspension time is not exceeded.
Detailed discussions of these two models can be found in the
survey paper by Chen et al. [13]. A hybrid self-suspension
model was proposed by von der Brüggen et al. [37], which
can improve the modelling accuracy of the dynamic self-
suspension model and increase the flexibility of the segmented
self-suspension model. In this work, we focus on dynamic self-
suspending tasks on a single processor, whereas the scheduling
algorithm and (sufficient) schedulability test can be used for
segmented self-suspension model as well.

In Task-Level Fixed-Priority (TFP) scheduling algorithms,
the priority is assigned to tasks, i.e., if one task has a higher
priority than another task, then all of its jobs are favored
to be executed. In [2], [12], [23], [25] and [34, Page 162]
the problem of finding schedulability tests for dynamic self-
suspending tasks under preemptive task-level fixed-priority
scheduling has been examined. Specifically, in [12] a dom-
inating schedulability test for this scenario has been derived.
We note that the classical critical instant theorem does not
hold anymore when tasks may suspend and the earlier results
in [2], [25] have been disproved, c.f., [13].

In task-level dynamic-priority scheduling algorithms, the
priority of the jobs of one task may differ at different
time instants. The study of suspension-aware schedulability
tests for task-level dynamic-priority scheduling algorithms
has been limited to the Earliest-Deadline-First (EDF) algo-
rithm, in which the priority of a job is specified by its
absolute deadline. Devi [14] provided a schedulability test
for EDF without a proof and has been recently disproved
by Günzel and Chen [18]. Liu and Anderson [31] and
Dong and Liu [15] studied global EDF on multiprocessor
systems and provided schedulability tests, which are applicable
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for uniprocessor systems by setting the number of processors
to one. The only dedicated analysis for EDF on unipro-
cessor systems was provided by Günzel et al. [20]. They
provided a schedulability test which significantly improves
the previous schedulability tests for uniprocessor systems
in [31] and [15]. Furthermore, Chen [10] proved that TFP,
EDF, Least-Laxity-First (LLF), and Earliest-Deadline-Zero-
Laxity (EDZL) scheduling algorithms do not have constant
speedup factors when the suspension cannot be sped up.

The category of window-constrained schedulers, where at
each time job priorities are assigned according to a pri-
ority point (PP), has been proposed in the literature [29]
originally for multiprocessor scheduling to provide general
tardiness bounds. Recent results [17] consider Global EDF-
Like (GEL) scheduling algorithms, where the priority point
of the window-constrained scheduler is induced by the job
release and a task specific relative priority point. The popular
task-level dynamic-priority algorithms, such as EDF, First-In-
First-Out (FIFO) and EQDF [3] fall into this category. In [30]
a schedulability test for GEL scheduling is provided. However,
suspension-aware schedulability tests have been limited to
TFP scheduling and EDF scheduling for constrained-deadline
sporadic real-time tasks as detailed in [13]. In this work, we
provide the first unifying suspension-aware schedulability test
for uniprocessor EDF-Like (EL) scheduling that can be applied
to a set of widely used scheduling algorithms and arbitrary-
deadline task systems.
Contributions:
• In Section III, we demonstrate how EDF-Like (EL)

scheduling algorithms can be configured to behave as
EDF, FIFO, EQDF, suspension-aware EDF (SAEDF) and
TFP scheduling algorithms.

• In Section IV, we introduce a unifying schedulability
test for uniprocessor EL scheduling algorithms, that is
applicable to arbitrary-deadline task systems. To the best
of our knowledge, this is the first result that can han-
dle arbitrary-deadline task sets under Job-Level Fixed-
Priority (JFP) scheduling and cover a wide range of
scheduling algorithms in one analysis framework for self-
suspending task systems.

• We present the procedure to implement EL scheduling in
RTEMS [1] and LITMUSRT [7] in Section V, followed
by numerical evaluations in Section VI. Our evaluation
results show that our schedulability test outperforms the
state of the art for EDF and is slightly worse than the
schedulability test by Chen et al. [12] for Deadline-
Monotonic (DM) scheduling under constrained-deadline
scenarios. Moreover, we demonstrate the performance of
different configurations under EQDF and SAEDF.

II. SYSTEM MODEL

In this work, we consider a set T = {τ1, . . . , τn} of
n independent self-suspending sporadic real-time tasks, in a
uniprocessor system. Each task τi, i ∈ {1, . . . , n} is described
by a 4-tuple τi = (Ci, Si, Di, Ti), composed of worst-case
execution time (WCET) Ci ∈ [0, Di], maximum suspension

time Si ≥ 0, relative deadline Di ≥ 0 and minimum inter-
arrival time Ti > 0. The task τi releases infinitely many jobs,
denoted by τi,j , j ∈ N, at time ri,j , j ∈ N. Job releases are
separated by at least Ti time units, i.e., ri,j+1 ≥ ri,j + Ti.
Each job τi,j has to be executed for a certain amount of time
ci,j ∈ [0, Ci] until its absolute deadline di,j = ri,j + Di.
In addition, each job suspends itself dynamically, i.e., it
may suspend itself as often as desired without exceeding the
maximum suspension time Si. We denote by Ui := Ci

Ti
the

utilization of τi and by U :=
∑n
i=1 Ui the total utilization

of T. A task set T is a constrained-deadline task system if
Di ≤ Ti is ensured for every τi ∈ T. Otherwise, it is an
arbitrary-deadline task system. We assume a model where
time is continuous. However, our results can be applied for
discretized time as well.

A scheduling algorithm A specifies the execution behavior
of jobs on the processor. More specifically, they determine at
each time, which of the jobs in the ready queue is scheduled by
the processor. In a certain schedule we denote for each job τi,j
start si,j and finish fi,j of its execution. We say that a job τi,j
is finished by time t, if fi,j ≤ t. The length of the time interval
from release to finish of a job τi,j is called the response time
Ri,j = fi,j−ri,j . Of special interest is the worst-case response
time Ri = supj Ri,j of a task τi. A schedule is feasible, if all
jobs finish before or at their absolute deadline, i.e., fi,j ≤ di,j
for all τi,j or Ri ≤ Di for all τi. A task set is schedulable
by a scheduling algorithm A if for each job sequence released
by T, A creates a feasible schedule. In this work, we only
consider preemptive, work-conserving scheduling, where job
execution may be preempted to execute another job, and the
processor executes a job whenever there is one in the ready
queue. In the following, we denote by N, N0, and R the sets
of natural numbers, non-negative integers, and real numbers.

In EDF-Like (EL) scheduling, the priority of each job
τi,j is based on a job-specific priority point (PP) πi,j ∈ R.
More specifically, a job τi,j has higher priority than τi′,j′ if
πi,j < πi′,j′ . The priority point is induced by the release of
the job and a task specific paramater Πi denoted by relative
priority point, i.e., πi,j = ri,j + Πi. As a result, smaller Πi

in comparison to the other relative priority points favor the
jobs of τi to be scheduled first. The left hand side of Figure 1
depicts the notation used throughout this work.

Definition 1 (Priority assignment in EL scheduling). Let τi,j
and τi′,j′ be two different jobs obtained by tasks τi and τi′

in T. Furthermore, let Πi and Πi′ be the relative priority points
of τi and τi′ . The job τi,j has higher priority than τi′,j′ if

πi,j < πi′,j′ (1)

for the priority points πi,j = ri,j+Πi and πi′,j′ = ri′,j′ +Πi′ .
If the priority points coincide, i.e., πi,j = πi′,j′ , then the tie
is broken arbitrarily.

Under an assignment of relative priority points
(Π1, . . . ,Πn), when a job is added to the ready queue,
the new highest-priority job is determined and executed.
Whenever a job finishes or suspends itself, it is removed
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τi,j

ri,j fi,j πi,j di,j

Πi

Di

τ1

τ2

0 2 4 6 8 10 12 14 16

Fig. 1: Left: Presentation of our Notation. Right: Jobs of two
tasks scheduled by EL scheduling. The schedule is feasible
and the job priority is given by π1,1 < π1,2 < π2,1 < π1,3.

from the ready queue and a new highest-priority job has to
be determined and is executed.

Example 2. The right hand side of Figure 1 shows an example
schedule obtained by the task set T = {τ1, τ2}, with τ1 =
(C1 = 2, S1 = 0, D1 = 5, T1 = 5) and τ2 = (C2 = 7, S2 =
3, D2 = 16, T2 = 16), when using EL scheduling with relative
priority points (Π1 = 4,Π2 = 10).

We consider that the jobs of a task τi must be executed
one after another in a FIFO manner. If a job τi,j of task τi
does not finish execution before the next job τi,j+1 of τi is
released, job τi,j+1 cannot be executed even if the processor
idles. That is, the EL scheduling algorithm has to handle this
situation as follows: 1) It sets the priority of the job τi,j+1 to
ri,j+1 + Πi when it arrives at ri,j+1, but 2) this job is only
eligible for execution (i.e., ready to be executed) after all jobs
of τi released prior to τi,j+1 finish execution.

III. CAPABILITIES AND LIMITATIONS OF EL SCHEDULING

EDF-Like (EL) scheduling algorithms are Job-Level Fixed-
Priority (JFP) scheduling algorithms, i.e., if one job has higher
priority than another job, then it has higher priority at all times.
This is due to the priority definition by comparison of priority
points. Since the priority point of a job does not change once
it is assigned, the priorities of jobs are fixed after they are
released. However, EL scheduling covers many of those JFP
scheduling algorithms. These are for example:
• Earliest-Deadline-First (EDF) [33] (Πi = Di)
• Earliest-Quasi-Deadline-First (EQDF) [3]

(Πi = Di + λCi for some predefined λ ∈ R)
• Suspension-aware variations of EDF (SAEDF)

(Πi = Di + λSi for some predefined λ ∈ R)
• First-In-First-Out (FIFO) (Πi = 0)

As a result, the schedulability test that we present in Section IV
is applicable to all these scheduling algorithms by configuring
the relative priority points Πi accordingly.

Moreover, Task-Level Fixed-Priority (TFP) algorithms can
be treated as EL scheduling algorithms as well. For this pur-
pose, we assume that the tasks are ordered by their priorities,
i.e., τk has higher priority than τk′ if and only if k < k′,
and τ1 has the highest priority. Furthermore, we assume that
a worst-case response time upper bound Kj for each task
either for the schedule under EL scheduling or under TFP
scheduling is given. If we set the relative priority point of
each task τi to Πi =

∑i
j=1Kj , then EL and TFP coincide.

Please note that the response time of tasks may be unbounded
and that for such cases a TFP algorithm cannot be treated as
EL scheduling algorithm. However, these cases do not apply
in practical scenarios since in real-time systems it is required
that the jobs of all tasks finish until their deadline.

Proposition 3 (TFP as EL.). Let K1, . . . ,Kn ∈ R≥0 and
Πi :=

∑i
j=1Kj for i = 1, . . . , n. If for all j = 1, . . . , n the

value Kj is an upper bound on the worst-case response time
of τj in EL or in TFP, then the schedule of T under EL and
the schedule of T under TFP coincide.

Proof. For an indirect proof we assume that the schedule of T
under EL and TFP does not coincide. Let τk,` be the job with
the highest priority in the EL schedule, such that the schedule
of τk,` does not coincide under EL and TFP. We define the
interval

I := [rk,`, rk,` +Kk). (2)

Let JTFP and JEL be the set of jobs with higher priority than
τk,` under TFP and under EL that are executed during I . We
will reach a contradiction by showing that JTFP = JEL and
that further the schedule of the jobs in JTFP = JTFP coincides
under TFP and under EL scheduling. For that purpose we par-
tition the job sets into three subsets JTFP =

∐
i∈{+,−,0} JiTFP

and JEL =
∐
i∈{+,−,0} JiEL, where each of them denotes the

subset of jobs released by tasks of T+ = {τk+1, . . . , τn},
T− = {τ1, . . . , τk−1} or T0 = {τk}. In the following we
show that JiTFP = JiEL for all i ∈ {+,−, 0}.

a) J+
TFP = J+

EL: Under TFP, there are no jobs of T+

with higher priority than τk,`, i.e., J+
TFP = ∅. Under EL, we

choose any job τi,j , with τi ∈ T+, that has higher priority
than τk,`, i.e., πi,j = ri,j + Πi ≤ πk,` = rk,` + Πk holds. By
subtracting Πk we obtain

ri,j +Ki ≤ ri,j + (Πi −Πk) ≤ rk,`. (3)

Since τi,j has higher priority than τk,`, by assumption the
schedule of τi,j coincides under EL and TFP, and we have
fi,j ≤ ri,j + Ki. With Equation (3) we conclude fi,j ≤ rk,`.
In particular, the job τi,j is not executed during I . Since τi,j
was chosen arbitrarily, this means that J+

EL = ∅ as well.
b) J−TFP = J−EL: Under TFP and under EL, jobs of the

tasks in T− can only be executed during I if they are released
before rk,`+Kk, i.e., let J̃− be the set of jobs released before
rk,` +Kk by tasks of T− then J−TFP, J

−
EL ⊆ J̃−. Under TFP,

all jobs in J̃− have higher priority than τk,` since they are
released by the tasks of T−. Under EL, we show the same:
Let τi,j ∈ J̃−, i.e., ri,j < rk,` +Kk. It directly follows that

πi,j = ri,j + Πi < rk,` +Kk + Πi ≤ rk,` + Πk = πk,`. (4)

In particular, τi,j has higher priority than τk,`. We have shown
that all jobs in J̃− have higher priority than τk,` under EL and
under TFP scheduling. By assumption the schedule of the jobs
in J̃− coincides under TFP and EL. Therefore the same jobs
of J̃− executed during I under TFP and EL, i.e., J−TFP = J−EL.
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TFP ⊆ EL ⊆ JFP ⊆ TDP

Fig. 2: Expressiveness of the scheduling policies Task-
Level Fixed-Priority (TFP), EDF-Like (EL), Job-Level Fixed-
Priority (JFP), and Task-Level Dynamic-Priority (TDP).

c) J0
TFP = J0

EL: Under TFP and under EL, J̃0 :=
{τk,1, . . . , τk,`−1} are the jobs of τk that have higher priority
than τk,`, i.e., J0

TFP, J0
EL ⊆ J̃0. By assumption, the schedule

of the jobs in J̃0 coincides. Therefore the same jobs of J̃0 are
executed during I , i.e., we have J0

TFP = J0
EL.

We have shown that JTFP = JEL by the above discussion.
Since the schedule of the jobs JTFP = JEL coincides during
I , τk,` is preempted/blocked during the same time intervals
under TFP and EL scheduling during I . Hence, the schedule
of τk,` during I coincides. Furthermore, since by assumption
Kk is an upper bound on the response time under EL or TFP
scheduling, the job τk,` finishes during I . This proves that the
whole schedule of τk,` coincides.

Even without knowledge about the worst-case response
times, we can use a schedulability test based on EL scheduling
for TFP scheduling by setting the relative priority points to
Πi =

∑i
j=1Dj . If the schedulability test assures that all jobs

meet their deadline, then Dj is an upper bound on the worst-
case response time. In this case, the schedule obtained by EL
scheduling coincides with the TFP schedule and is feasible.

Corollary 4. If the task set T is schedulable under EL with
Πi :=

∑i
j=1Dj , i = 1, . . . , n, then T is schedulable under

TFP as well.

Proof. If T is schedulable under EL with the given relative
priority points Πi, then Dj is an upper bound on the worst-
case response time of τj for all τj ∈ T under EL scheduling.
In this case, by Proposition 3 the schedule under TFP and EL
coincide. Therefore, Dj is also an upper bound on the worst-
case response time of τj for all τj ∈ T under TFP scheduling.
Hence, T is schedulable under TFP as well.

By our discussion in this section, the expressiveness
of EDF-Like (EL) scheduling algorithms is between Task-
Level Fixed-Priority (TFP) and Job-Level Fixed-Priority (JFP)
scheduling. The inclusions are presented in Figure 2. For the
sake of completeness, we include the category of Task-Level
Dynamic-Priority (TDP) scheduling algorithms.

The assignment of relative priority points allows to mix
different scheduling algorithms, as presented in the follow-
ing example, or hierarchical scheduling algorithms. Hence, a
schedulability test for EL scheduling is able to handle such
cases as well.
Example 5. We consider a task set T = {τ1, . . . , τ4} of 4
tasks. In the following we demonstrate how to assign priorities
such that τ1 and τ2 are on one priority-level, and τ3 and τ4
are on another priority-level, and on each priority-level EDF
is utilized. We assign the relative priority points Π1 = D1,
Π2 = D2, Π3 = D1 +D2 +D3 and Π4 = D1 +D2 +D4. If

Examination of Processor States

Corollary 17 Bounds for:
Bk,j → Lemma 19 (B1)
Bi

k,` → Lemma 22 (B2)

Fixed analysis window
Theorem 23

Variable analysis window
Theorem 26

c ≥ rk,` c arbitrary

Fig. 3: Roadmap of the proof in Section IV.

T is schedulable under EL scheduling with the given relative
priority points, then EL produces the same schedule as the
desired scheduling policy: Since Πi−Πj ≥ Di for all i = 3, 4
and j = 1, 2, a job J of τ1 or τ2 can only have higher priority
than a job J ′ of τ3 or τ4 if J ′ is already finished by the
release time of J . τ1 and τ2 are scheduled according to EDF,
since their relative priority points are set to the deadline. The
tasks τ3 and τ4 are also scheduled according to EDF, since the
difference between the global priorities π3,j and π4,j′ of each
two jobs τ3,j and τ4,j′ is the same as the difference between
the absolute deadlines r3,j +D3 and r4,j′ +D4.

IV. SCHEDULABILITY TEST FOR EL SCHEDULING
ALGORITHMS

In this section, we derive a sufficient schedulability test,
i.e., for an arbitrary-deadline task set T = {τ1, . . . , τn} and
an assignment of relative priority points (Π1, . . . ,Πn) the test
returns True if T is schedulable by the corresponding EL
scheduling algorithm.

We generate response time bounds by bounding the interfer-
ence from higher-priority jobs in a certain analysis interval. In
this regard, we start with an examination of different processor
states in Section IV-A and derive a response time upper bound
in Corollary 17. In Section IV-B, we transfer the response
time bound to the case with EL scheduling by approximating
two main terms Bk,j and Bik,`. We derive two schedulability
tests in Theorem 23 and Theorem 26 considering two different
approaches to define the analysis window. Algorithm 1 and
Algorithm 2 depict an implementation of the schedulability
test using a simple search algorithm. The roadmap of our
analysis is depicted in Figure 3.

Definition 6 (Active and Current Job). For a certain schedule,
a job τk,` of a task τk is active at time t, if it is released but
not already finished by time t, i.e., t ∈ [rk,`, fk,`). When there
are active jobs of task τk at a time instant t, then we call the
active job of τk with the earliest release the current job of τk
at time t. We call the task τk active at t, if there exists an
active job of τk at t.

Moreover, the following definitions are used to describe the
states of the processor for our analysis.

Definition 7 (Work, Suspend and Wait).
• The processor is working on a job τi,j at time t, if τi,j is

executed on the processor at t. It is suspended by τi,j at

4



Is there an active
job of τk?

Is the processor working
on a job with higher priority
than the current job of τk?

PS 1

PS 2 PS 3

yesno

no yes

Fig. 4: Decision tree to determine the current processor state
(PS) from the perspective of τk.

time t, if τi,j is suspending itself at t, i.e., the remaining
suspension time of τi,j is reduced.

• We say that the processor is working at time t if it is
working on any job at t. It is suspended at t, if it is
suspended for at least one job but not working on any
job at t. It is waiting at t, if it is neither working nor
suspended at t. The processor is idle at t, if it is not
working at t, i.e., if it is suspended or waiting.

For unambiguous partition of the processor to the different
states, we use half-opened intervals, e.g., if the processor is
working on a job τi,j from time t1 to time t2, then we say
that the processor is working on τi,j during [t1, t2).

A. Examination of Processor States

We consider a schedule obtained by the EL scheduling
algorithm with relative priority points (Π1, . . . ,Πn) for the
task set T = {τ1, . . . , τn}. Let τk ∈ T be a task. Based
on the terminology for different processor states outlined
in Section II, we distinguish all Processor States (PS) as
depicted in Figure 4.
• PS 1: There is no active job of τk.
• PS 2: There is an active job of τk and the processor is

not working on a job with higher priority than the current
job of task τk.

• PS 3: There is an active job of τk and the processor is
working on a job with higher priority than the current job
of task τk.

In particular, if the processor is in state PS 2, then it is either
working on or suspended by the current job of τk since the
underlying scheduling algorithm is work-conserving.

Lemma 8. At each time, the processor is in exactly one of
the above three states.

Proof. This directly follows from the correctness of the deci-
sion tree in Figure 4. At each time, the decision tree determines
exactly one processor state.

We describe the amount of time that the processor spends
in the above states using the following notation.

Definition 9. Let [c, d) be any half opened interval with c < d.

• B̃k(c, d) denotes the amount of time during [c, d) where
the processor is in state PS 1.

• Bk(c, d) is the amount of time during [c, d) in PS 2.

Term Amount of time where processor is ...
B̃k ... in PS 1.
Bk ... in PS 2.

Bk,`
... working on/suspended by τk,`
and not working on higher priority jobs.

Bi
k ... in PS 3 working on a job of τi.

Bi
k,` ... working on a job of τi with higher priorty than τk,`.

TABLE I: Notions for time in different states as described in
Definition 9 and Definition 11.

• For i 6= k, Bik(c, d) is the amount of time during [c, d)
where the processor is in PS 3 working on τi. More
specifically,

∑
i 6=k B

i
k(c, d) is the total time during [c, d)

in PS 3.
If c ≥ d, we set all of them, B̃k(c, d), Bk(c, d), Bik(c, d), to 0.

The definitions are collected in Table I. In the following
Lemma, the result from Lemma 8 is formalized using the
previous notation. The time in PS 1, PS 2 and PS 3 during
some interval [c, d) adds up to the whole interval length.

Lemma 10. For any half opened interval [c, d) with c < d
we have

B̃k(c, d) +Bk(c, d) +
∑
i 6=k

Bik(c, d) = (d− c). (5)

Proof. This follows from Lemma 8.

For analysis of the worst-case response time, the terms
Bk(c, d) and Bik(c, d) are inconvenient because at each time,
the current job of τk has to be determined to calculate those
values. In the following, we prove that they can be expressed
by the more convenient terms Bik,`(c, d) and Bk,`(c, d) which
take a specific job τk,` as current job into consideration.

Definition 11. Let [c, d) with c < d be any half opened
interval.
• Bik,`(c, d) is the amount of time during [c, d) that the

processor is working on jobs of τi with higher priority
than τk,`.

• Bk,`(c, d) is the amount of time during [c, d) that the
processor is working on or suspended by τk,` while it is
not working on a higher-priority job.

If c ≥ d, we set all of them to 0 for simplicity.

Again, the definition is summarized in Table I. In Lemma 12
and 13 we will prove the relations between the terms from
Definition 11 and Definition 9 as summarized in Figure 5.

Intuitively, the following lemma states that we can compute
the total time in PS 2, by adding up the time in PS 2 for all
possible current jobs τk,j .

Lemma 12. For any half opened interval [c, d) we have

Bk(c, d) =
∑
j∈N

Bk,j(c, d). (6)

Proof. The lemma follows from the equivalence between:
1) the processor is in PS 2 and 2) the processor is working
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(d− c)

B̃k(c, d)

PS 1

Bk(c, d)

PS 2

Bi
k(c, d)

PS 3

Bk,j(c, d)

Bi
k,`(c, d)

∑
∑

i 6=k

∑
j∈N

=

if τk,` is current
during [c, d)

≤
if τk,` is current
during [d− ε, d)

Fig. 5: Relations proven in Lemma 10, 12 and 13.

on or suspended by some job of τk while it is not working on
higher-priority jobs.

Since the processor is work-conserving, we obtain an
equivalence between 1) and the processor is working on or
suspended by the current job of τk while it is not working on
a higher-priority job. By the definition of the current job, if
the processor is working on or suspended by a job, then this
is the current job by default. This concludes the equivalence
between 1) and 2).

By definition, the time of 1) during [c, d) is Bk(c, d), and
the time of 2) during [c, d) is

∑
j∈NBk,j(c, d).

In the subsequent lemma, we approximate the time in PS 3
by determining the current job of τk at the end of the analysis
window [c, d). More specifically, we use that if a job of τi
has higher priority than the current job of τk in the analysis
window, then it has higher priority than the last current job in
the analysis window as well.

Lemma 13. Consider any half opened interval [c, d). If τk,`
is the current job of τk during the whole interval [c, d), then

Bik(c, d) = Bik,`(c, d). (7)

If τk,` is the current job of τk during [d−ε, d) for some ε > 0,
then

Bik(c, d) ≤ Bik,`(c, d). (8)

Proof. By definition, Bik(c, d) is the amount of time during
[c, d) that the processor is working on a job of τi with higher
priority than the current job of τk. If τk,` is the current job
of τk during the whole interval, then Bik(c, d) = Bik,`(c, d). If
τk,` is current during [d − ε, d), then any job of τk which is
current at some time during [c, d) has a priority higher than
or equal to the priority of τk,`. If the processor is working on
a job of τi with higher priority than the current job of τk at
that time, then that job of τi has also higher priority than τk,`.
As a result, Bik(c, d) ≤ Bik,`(c, d).

By definition, Bik, Bk, B̃k, Bik,` and Bk,` are non-negative
and additive, in the sense that B(c, d) ≥ 0 and B(c, d) +
B(d, e) = B(c, e) for all B ∈ {Bik, Bk, B̃k, Bik,`, Bk,`} and
c ≤ d ≤ e. The following two lemmas build a bridge between

the processor state formulation and the ability of a job τk,` to
be finished by the end of the analysis window [c, d).

Lemma 14. If Bk,`(c, d) ≥ Ck + Sk, then the job τk,` is
finished by time d.

Proof. Since Bk,`(c, d) ≥ Ck + Sk, the processor is working
on the job τk,` for at least Ck time units during [c, d). As a
result, the job finishes no later than at time d.

Lemma 15. Consider some interval [c, d) with c ≤ d. If τk,`
is not finished by time d and the task τk is active during (the
whole interval) [c, d), then

(Ck + Sk) +
∑
i 6=k

Bik,`(c, d) +
∑
j<`

Bk,j(c, d) > (d− c). (9)

Proof. Since τk is active during [c, d), we have B̃k(c, d) = 0.
Using this together with Lemma 10 and Lemma 12 leads to∑
i6=k B

i
k(c, d) +

∑
j∈NBk,j(c, d) = (d − c). We prove the

lemma by showing that
1)
∑
j∈NBk,j(c, d) < Ck + Sk +

∑
j<`Bk,j(c, d) and

2) Bik(c, d) ≤ Bik,`(c, d) for all i 6= k.
First, we prove 1). Since τk,` is not finished by time d,

we know that all τk,j with j > ` are not current before d.
Hence, Bk,j(c, d) = 0 for all j > ` and

∑
j∈NBk,j(c, d) =∑

j≤`Bk,j(c, d). Moreover, due to Lemma 14, we have
Bk,`(c, d) < Ck + Sk. This proves 1).

Second, we prove 2). Since τk is active during [c, d), by
definition, at any time instant t ∈ [c, d), there is always a job
of τk, which is current. Let the last job of τk that is current
in this interval be τk,`′ . That is, there exists some ε > 0 such
that τk,`′ is current during [d− ε, d). By Lemma 13, we have
Bik(c, d) ≤ Bik,`′(c, d) for all i 6= k.

According to the handling mechanism to deal with multiple
active jobs of τk (for arbitrary-deadline task systems) at the
end of Section II, the jobs of τk are executed one after another.
Since τk,`′ is current in [d − ε, d), the job τk,` can not have
higher priority than τk,`′ , i.e., `′ ≤ ` holds. Otherwise, τk,` has
to be finished by time d−ε. Therefore, Bik,`′(c, d) ≤ Bik,`(c, d)
for all i 6= k. We conclude that 2) holds.

The negation of this lemma leads to a response-time upper
bound of τk,` introduced by Proposition 16 and Corollary 17.

Proposition 16. Let c ≤ d ∈ R such that either 1) τk,` is
released before c, i.e., c ≥ rk,`, or 2) c < rk,` and task τk is
active during [c, rk,`). If

(Ck + Sk) +
∑
i6=k

Bik,`(c, d) +
∑
j<`

Bk,j(c, d) ≤ (d− c), (10)

then τk,` is finished by time d, i.e., d ≥ fk,`.

Proof. We use an indirect proof strategy and assume that
τk,` is not finished by time d. In this case, τk,` is active
during [rk,`, d). Since rk,` ≤ c or τk is active during [c, rk,`),
we conclude that τk is also active during [c, d). Lemma 15
states that Equation (10) does not hold. This contradicts our
assumption.
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In Section IV-B we obtain the upper bounds for Bik,`(c, d)
and Bk,j(c, d) by enlarging the window of interest to [c, dk,`).
To apply these upper bounds we formulate the response-
time upper bound using Bik,`(c, dk,`) and Bk,j(c, dk,`) in the
following corollary.

Corollary 17 (Analysis Backbone). Let c ≤ dk,` ∈ R such
that either 1) τk,` is released before c, i.e., c ≥ rk,` or 2) c <
rk,` and task τk is active during [c, rk,`). If

R̃k,` :=(Ck+Sk)+
∑
i 6=k

Bik,`(c, dk,`)+
∑
j<`

Bk,j(c, dk,`)+c−rk,`,

(11)
is at most Dk, then R̃k,` is an upper bound on the response
time of τk,`.

Proof. This corollary follows from Proposition 16 by setting
d := rk,`+R̃k,`. The case c > d does not occur since otherwise
R̃k,` ≥ c− rk,` > R̃k,` would hold by definition of R̃k,` and
d. We only consider c ≤ d.

Since R̃k,` ≤ Dk by assumption, we have d ≤ dk,`. Hence,
Bik,`(c, d) ≤ Bik,`(c, dk,`) and Bk,j(c, d) ≤ Bk,j(c, dk,`) for
all i and all j. As a result, the left hand side of Equation (10)
is less than or equal to (Ck + Sk) +

∑
i6=k B

i
k,`(c, dk,`) +∑

j<`Bk,j(c, dk,`), which is the same as R̃k,`+rk,`−c = d−c
by definition.

Since all assumptions from Proposition 16 hold, the job τk,`
is finished by time d = R̃k,` + rk,`. Hence, R̃k,` is an upper
bound on the response time of τk,`.

To apply the response time upper bound from Equation (11)
we need to answer the following two questions:
• Question 1: What are the values of Bik,`(c, dk,`) and
Bk,j(c, dk,`)? Since computing the values directly has
high complexity, we use overapproximation to deal with
this issue. In Section IV-B we derive upper bounds for
Bik,`(c, dk,`) and Bk,j(c, dk,`) with i 6= k and j < `.

• Question 2: Which are good values for c? Trying out all
possible c for the estimation would lead to very high
complexity of our method. Therefore, we discuss two
strategies to choose c in Sections IV-C and IV-D. More
precisely, with the first procedure we restrict c to be in
the interval [rk`, dk,`), which has benefits on the runtime
of our analysis due to the fixed analysis windows. For the
second strategy, we examine active intervals for τk, and
gradually increase the analysis window. In Section IV-E
we discuss that both methods do not dominate each other.

B. Upper Bounds of Bik,`(c, dk,`) and Bk,j(c, dk,`)

In this section, we bound the interference of higher-priority
jobs during the interval [c, dk,`) to provide upper bounds
for
∑
j<`Bk,j(c, dk,`) in Lemma 19 and for Bik,`(c, dk,`) in

Lemma 22. We do this under the assumption that all jobs
with higher priority than τk,` meet their deadline, since this
is our induction hypothesis later used in Theorem 23 and
Lemma 25. As mentioned earlier, the decision of c will be
further discussed in Sections IV-C and IV-D. For each task
τi 6= τk let R̃i be an upper bound on the worst-case response

τi
R̃i Πi

τk

rk,` c

Πk

τi
Ci

R̃i

τk

rk,` c

Fig. 6: Intuition for Lemma 20 (left) and Lemma 21 (right).
The gray box depicts the interval to count job releases.

time (WCRT) of jobs of τi with higher priority than τk,`. If
there is no upper bound available yet, we set R̃i := Di, as all
jobs with higher priority than τk,` meet their deadline.

With arbitrary deadlines, there might be several active jobs
of one task at the same time, which makes the analysis
in general more complicated. Note that, according to the
mechanism introduced in the end of Section II, the jobs of τk
must be executed one after another, i.e., even if the processor
idles, a job of τk cannot start its execution unless all jobs of
τk released prior to it are finished.

Lemma 18. The number of jobs of τk with higher priority than
τk,` which can be executed during [c, dk,`) is upper bounded
by
⌈
dk,`−c
Tk

⌉
− 1.

Proof. The formula
⌈
dk,`−c
Tk

⌉
counts the maximal number of

deadlines of τk in (c, dk,`]. Since τk,` has deadline at the end
of the analysis window but it has no higher priority than itself,
we remove one job.

We use the previous lemma to conclude an upper bound for∑
j<`Bk,j(c, dk,`) as follows.

Lemma 19 (Bound B1). The total amount of time that the
processor is working on or suspended by higher-priority jobs
of τk while not working on higher priority jobs of other tasks
is upper bounded by∑

j<`

Bk,j(c, dk,`) ≤
(⌈

dk,` − c
Tk

⌉
− 1

)
· (Ck + Sk). (12)

Proof. This follows from Lemma 18 and the upper bounds Ck
for execution and Sk for suspension.

For Bik,`, we bound the interference by estimating the
number of job releases during a certain interval under analysis,
as depicted by the gray boxes in Figure 6.

Lemma 20. There are at most max
(⌈

Πk−Πi+R̃i+rk,`−c
Ti

⌉
, 0
)

jobs of τi, i 6= k with higher priority than τk,` that are
executed during the interval [c, dk,`).

Proof. A job of τi can only be executed during [c, dk,`), if it is
released after c−R̃i. Moreover, it can have higher priority than
τk,`, if it is released no later than rk,`+Πk−Πi. We count the
maximal number of releases of τi during (c− R̃i, rk,` + Πk−
Πi) by

⌈
rk,`+Πk−Πi−c+R̃i

Ti

⌉
if the interval has non-negative

length. Otherwise, the number of releases is 0.
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The processor is working on each job of τi for at most Ci
time units. Hence, we have an upper bound of Bik,`(c, dk,`) ≤
max

(⌈
Πk−Πi+R̃i+rk,`−c

Ti

⌉
, 0
)
·Ci. In the above proof we only

compare if the job can work after c. We do not check if the job
can work before dk,`. As a result, the estimation can become
very loose if Πk is very high compared to Πi, e.g., when
applying the schedulability test to TFP scheduling. Therefore,
we combine the estimation with a second approach.

Lemma 21. For i 6= k, Bik,`(c, dk,`) is upper bounded by

max
{⌈

Dk−Ci+rk,`−c+R̃i

Ti

⌉
Ci, 0

}
.

Intuitively, the maximal interference from task τi is obtained
when the last interfering job of τi is released at dk,` − Ci
and executed for Ci time units during [dk,` − Ci, dk,`). The
maximum interference is then calculated by the number of
releases during (c− R̃i, dk,` − Ci] multiplied with Ci. In the
following, we provide a formal proof as well.

Proof. If there is no job of τi executed during [c, dk,`), then
Bik,`(c, dk,`) = 0 and the lemma is proven.

Otherwise, let τi,j′ be the last job of τi being executed
during [c, dk,`). We isolate that job in the following way. Let
ri,j′ be the release time of τi,j′ and let C∗ be the amount of
time that the processor is working on τi,j′ during the interval
[c, dk,`). We have B(c, dk,`) ≤ B(c, ri,j′) + C∗.

If ri,j′−c < (C−C∗), then B(c, ri,j′)+C
∗ ≤ C. Moreover,⌈

Dk−Ci+rk,`−c+R̃i

Ti

⌉
Ci ≥

⌈
Dk+rk,`−c

Ti

⌉
Ci ≥ Ci since there

is a job being executed during [c, dk,`), i.e., c < Dk + rk,`. In
this case the lemma is proven.

If ri,j′ − c ≥ (C − C∗), then B(c, ri,j′) + C∗ ≤ B(c +
(Ci −C∗), ri,j′) +Ci, i.e., we over approximate be replacing
(Ci−C∗) time units at the beginning by execution time. Next
we compute B(c+ (Ci − C∗), ri,j′) by counting the number
of releases during the interval (c+ (Ci−C∗)− R̃i, ri,j′ −Ti].

It is
⌈
ri,j′−Ti−c−Ci+C∗+R̃i

Ti

⌉
≤
⌈
rk,`−Ti−c−Ci+Dk+R̃i

Ti

⌉
=⌈

rk,`−c−Ci+Dk+R̃i

Ti

⌉
−1 where we use that ri,j′ +C∗ ≤ rk,`+

Dk. In total, the value of B(c, dk,`) is then upper bounded by⌈
rk,`−c−Ci+Dk+R̃i

Ti

⌉
· Ci in this case.

We combine the above two lemmas, to obtain the following
bound for Bik,`(c, dk,`).

Lemma 22 (Bound B2). For i 6= k the value of Bik,`(c, dk,`)
is upper bounded by

Bik,`(c, dk,`) ≤ max

(⌈
Gik + R̃i + rk,` − c

Ti

⌉
, 0

)
Ci (13)

where Gik := min(Dk − Ci,Πk −Πi).

Proof. This is a combination of the results from Lemma 20
and Lemma 21.

Algorithm 1 Schedulability test with fixed analysis window.

Input: T = {τ1, . . . , τn}, (Π1, . . . ,Πn), η, depth
Output: True: schedulable, False: no decision

1: Order τ1, . . . , τn, s.th. D1 ≥ · · · ≥ Dn.
2: Set R̃i := Di for all i.
3: for i = 1, 2, . . . , depth do
4: solved := True
5: for k = 1, 2, . . . , n do
6: cand := [ ]; step := η ·Dk . Preparation.
7: for b = 0, step, 2 · step, · · · < Dk do . Compute.
8: cand.append(R̃k(b)) using Equation (14).
9: R̃k := min(cand) . Compare candidates.

10: if R̃k > Dk then . Check condition.
11: solved := False; R̃k := Dk; break
12: return solved

C. Fixed Analysis Window

In this section, we fix the analysis window, i.e., the pos-
sible range of c from the previous sections, to the interval
[rk,`, dk,`). First, we utilize the upper bounds on Bik,`(c, dk,`)
and Bk,j(c, dk,`) provided in the previous section, to obtain
the following schedulability test for this scenario with fixed
analysis interval.

Theorem 23 (Sufficient Schedulability Test). Let T =
{τ1, . . . .τn} be an arbitrary-deadline task set with relative
priority points (Π1, . . . ,Πn). If for all k = 1, . . . , n there
exists some bk ∈ [0, Dk) such that

R̃k(bk) ≤ Dk, (14)

where R̃k(bk) :=
⌈
Dk−bk
Tk

⌉
(Ck + Sk) + bk +∑

i6=k
max

(⌈
Gi

k+R̃i−bk
Ti

⌉
, 0
)
Ci and Gik = min(Dk−Ci,Πk−

Πi), then the task set is schedulable by EL scheduling with
the given relative priority points and the worst-case response
time of τk is upper bounded by R̃k := R̃k(bk).

Proof. Assume we have found bk, k = 1, . . . , n such that
Equation (14) holds. We consider some schedule obtained by
this task set and denote by Seq the sequence of all jobs in the
schedule ordered by their priority. Via induction, we prove that
the first ξ jobs in Seq have the required response time upper
bound, for all ξ ∈ N0. Consequently, R̃k is an upper bound
on the worst-case response time of τk for all k and the task
set is schedulable.

Initial case: ξ = 0. In this case, the set of the first ξ jobs
in Seq is {} the empty set. Trivially, all of them have the
required response time upper bound.

Induction step: ξ → ξ + 1. By assumption, the first ξ
jobs in Seq have the required response time upper bound.
We denote the (ξ + 1)-th job in Seq by τk,`. We aim to
use Corollary 17 to prove that the response time of τk,`
is upper bounded by R̃k. By definition, we have R̃k,` =
(Ck+Sk)+

∑
i6=k B

i
k,`(c, dk,`)+

∑
j<`Bk,j(c, dk,`)+c−rk,`.

Since all higher priority jobs have the required response time
upper bound, we can use the estimation from Section IV-B.
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Using Lemma 19 and Lemma 22, we obtain R̃k,` ≤ R̃k
when choosing c := bk + rk,`. Due to Equation (14), even
R̃k,` ≤ R̃k ≤ Dk. We use Corollary 17 to conclude that R̃k,`
is an upper bound on the response time of τk,` and therefore
R̃k is an upper bound on the response time of τk,` as well.

Although the test in Theorem 23 looks like a classical
mechanism extended from time demand analysis (TDA) [24],
[28], implementing an efficient schedulability test based on it
requires some efforts since the values of R̃k for every task
τk are dependent on each other. The critical part to apply this
schedulability is two folded:

1) Find good values for bk with low complexity. Without
an efficient mechanism, there are Dk options for bk,
provided that all input parameters are integers, and
infinitely many options in general.

2) Compute the dependent values of R̃k for every task τk
correctly and efficiently.

For bk, we discretize the search space into 1
η values with a step

size η · Dk, for a user-specified parameter η. For computing
R̃k, we go through the task set several times to compute
upper bounds for the values of R̃k. Improvement of the search
algorithm will be part of future work and is out of scope for
this paper.

The search algorithm is depicted in pseudocode in Algo-
rithm 1. It takes as input the task set T, the relative priority
points (Π1, . . . ,Πn), a step size parameter η ∈ (0, 1] and
depth to indicate the number improving runs of the search
algorithm. It returns True if the task set is schedulable by EL
scheduling with the given relative priority points. We start by
setting R̃k = Dk for all k = 1, . . . , n, and go depth-times
through the task set ordered by the relative deadline, as we
obtained the best results with this ordering. With a step size
of step = η ·Dk, i.e., a certain share of Dk like 1 percent, we
compute R̃k(bk) for bk = 0, step, 2 · step, 3 · step, . . . until
b ≥ Dk is reached. We then take the minimal value of all these
candidates and define it as the new R̃k. The time complexity
of Algorithm 1 is O

(
depth·n2

η

)
.

Please note that the computed values of R̃k are in fact only
upper bounds of R̃k from Theorem 23. A reduction of R̃i, i 6=
k in subsequent iterations reduces the actual value of R̃k as
well, since R̃k is monotonically increasing with respect to R̃i,
for all i 6= k.

D. Variable Analysis Window

In the following, we show a different approach based on
active intervals. More specifically, if all jobs finish until the
next job release is reached, i.e., Rk ≤ Tk, then no previous
jobs contribute interference to the job under analysis and
they can be safely removed from the computation of the
worst-case response-time upper bound. However, if Rk > Tk
then interference from previous jobs has to be considered
in the following way. We utilize that a job τk,`−a can only
interfere with τk,`, if τk is active during [rk,`−a, rk,`). For the
schedulability test with variable analysis window, we gradually

increase the length of the active interval, i.e., a = 0, 1, 2, . . .
and analyze the window [c, dk,`) with c ∈ [rk,`−a, dk,`).

With this approach, the pessimism of the interference esti-
mation from higher-priority jobs of the same task is reduced in
some cases. Please note that this approach only differs from the
case with fixed analysis window when considering arbitrary
deadline tasks. For constrained deadline task sets, the variable
analysis window approach coincides with the fixed analysis
window approach, as the algorithm stops at a = 0 without
enlarging the analysis window. We start be formally defining
active intervals.

Definition 24. Let a ∈ N0. A job τk,` is the (a+ 1)-th job in
an active interval of τk, if the following two conditions hold.
• τk is active during [rk,`−a, fk,`).
• At time rk,`−a there is no active job which is released

before rk,`−a.

If τk,` is the (a + 1)-th job in an active interval of
τk, then only τk,`−a, . . . , τk,` are current jobs of τk during
[rk,`−a, fk,`). More specifically, in this case the value of
Bk,j(c, dk,`) is 0 if c ≥ rk,`−a and j < ` − a. We formalize
this by the following lemma.

Lemma 25. Let τk,` be the (a+1)-th job in an active interval
of τk and let all higher-priority jobs meet their deadline. Let
R̃i, i 6= k be an upper bound on the response time of all
higher-priority jobs of τi. If there exists some c ∈ [rk,`−a, dk,`)
such that

min

(
a+ 1,

⌈
dk,` − c
Tk

⌉)
(Ck + Sk)

+
∑
i 6=k

max

(⌈
Gik + R̃i + rk,` − c

Ti

⌉
, 0

)
Ci + c− rk,`

(15)
is at most Dk, with Gik := min(Dk −Ci,Πk −Πi), then (15)
is an upper bound on the response time of τk,`.

Proof. For the proof, we apply Corollary 17. Since τk,` is
the (a + 1)-th job in an active interval, τk is active during
[rk,`−a, rk,`). Hence, the restriction on c in Corollary 17 are
fulfilled by default, when c is chosen from [rk,`−a, dk,`).
Moreover, since τk,` is the (a+1)-th job in an active interval,
the jobs τk,1, . . . , τk,`−a−1 are finished by time rk,`−a. We
obtain

∑
j<`−aBk,j(c, dk,`) ≤

∑
j<`−aBk,j(rk,`−a, dk,`) =

0. Hence,
∑
j<`Bk,j(c, dk,`) =

∑`−1
j=`−aBk,j(c, dk,`) ≤∑`−1

j=`−a(Ck + Sk) = a · (Ck + Sk). We combine this with
the results from Lemma 19 and Lemma 22, and obtain that
R̃k,` from Equation (11) is less than or equal to the value
in Equation (15). If (15) is at most Dk, then R̃k,` ≤ Dk.
Corollary 17 states that R̃k,` is an upper bound on the response
time of rk,` and therefore, also (15) is an upper bound on the
response time.

In the following theorem, we replace rk,` − c by aTk − x.

Theorem 26 (Sufficient Schedulability Test). Let T =
{τ1, . . . , τn} be an arbitrary-deadline task set with relative
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priority points (Π1, . . . ,Πn). We define the function R̃ak :
R≥0 → R≥0 by the assignment

x 7→min

(
a+ 1,

⌈
Dk − x+ aTk

Tk

⌉)
(Ck + Sk)

+
∑
i 6=k

max

(⌈
Gki + R̃i − x+ aTk

Ti

⌉
, 0

)
Ci + x− aTk.

(16)
If for all k = 1, . . . , n there exists ãk ∈ N0, such that for all
a = 0, . . . , ãk there exists bak ∈ [0, aTk +Dk), such that

R̃ak(bak) ≤ Dk, and furthermore R̃ãkk (bãkk ) ≤ Tk, (17)

then the task set is schedulable by EL scheduling with the
given relative priority points and R̃k := maxa=0,...,ã R̃

a
k(bak)

is an upper bound on the WCRT of τk for all k.

Proof. The proof is similar to the one of Theorem 23. Let Seq
be the sequence of all jobs in the schedule ordered by their
priority. By induction we show that the following response
time upper bound holds for the first ξ ∈ N0 jobs in Seq:

1) R̃k for all jobs of τk for each task τk.
2) Tk for all ãk-th jobs in an active interval of τk for each

task τk.
Initial case: ξ0. The initial case is again trivially fulfilled,

since there has nothing to be checked when there are no jobs.
Induction step: ξ → ξ+1. The first ξ jobs in Seq have the

required response time upper bounds 1) and 2) by induction.
We denote by τk,` the (ξ+1)-th job of Seq. Let a be the lowest
value in N0, such that τk,` is the (a + 1)-th job in an active
interval of τk. We first show that a ≤ ãk by contraposition.
If a > ã, then we consider the job τk,`−(a−ã). This is the
(ã+1)-th job in an active interval of τk. Moreover, this job is
one of the first ξ jobs in Seq and therefore has a response time
of at most Tk due to 2). Hence, τk,`−(a−ã) is finished by time
rk,`−(a−ã)+1. We conclude that τk,` is the (a− ãk)-th job in
an active interval of τk, which contradicts the minimality of
a. We now choose c := bak−a ·Tk+rk,`. Applying Lemma 25
with this c shows that R̃ak(bak) is a response time upper bound
of τk,` as required.

We apply a similar search strategy as for the case with fixed
analysis window. However, the values of R̃k are computed
through an additional loop over the values of a until R̃ak ≤ Tk.
Algorithm 2 depicts an implementation of the schedulability
test in pseudocode. As the value of R̃ak can be between Tk
and Dk for all iterations of a, the program may never return
a result. To make the schedulability test deterministic, we
introduce an additional parameter max_a which aborts the
loop when even a = max_a gives no result.

E. Dominance of Fixed and Variable Analysis Window

At first glance, the analysis derived in Section IV-D with
the variable analysis window seems to improve the analysis
from Section IV-C with fixed analysis window in all cases:
When setting x = bk+a ·Tk in Theorem 26, then the result is
lower bounded by R̃k(bk) from Theorem 23. However, both

Algorithm 2 Schedulability test with var. analysis window.

Input: T = {τ1, . . . , τn}, (Π1, . . . ,Πn), η, max_a, depth
Output: True: schedulable, False: no decision

1: Order τ1, . . . , τn, s.th. D1 ≥ · · · ≥ Dn.
2: Set R̃i := Di for all i.
3: for i = 1, 2, . . . , depth do
4: solved := True
5: for k = 1, 2, . . . , n do
6: for a = 0, 1, . . . ,max_a do . Different a.
7: cand := [ ]; step := η ·Dk . Preparation.
8: for b = 0, step, 2 · step, · · · < aTk +Dk do
9: . Compute candidate:

10: cand.append(R̃a
k(b)) from Equation (16)

11: R̃a
k := min(cand) . Compare candidates.

12: if R̃a
k ≤ Tk then . Check cond. 1.

13: . WCRT upper bound:
14: ã := a; R̃k := mina=0,...,ã R̃

a
k; break

15: if R̃a
k > Dk or a = max_a then . Check cond. 2.

16: solved := False; R̃k := Dk; break
17: return solved

methods do not dominate each other, as demonstrated in the
discussion of Figure 9 in Section VI, due to the following
reasons. First, the analysis with variable analysis window can
only analyze schedules where the length of active intervals is
bounded. More specifically, if the response-time upper bound
R̃ak is in the interval (Tk, Dk) for all a, then the schedulability
test with the variable analysis window never deems the task
schedulable. Second, by setting max_a this effect is even
intensified: The analysis with variable analysis window has
to find R̃ak ≤ Tk even for some a ≤ max_a. Third, the
discretization using η in Algorithm 1 and 2 ensures the same
number of points for each analysis interval. As a result, not
all points b+aTk with b from Algorithm 1 are checked during
Algorithm 2 as well.

V. REALIZATION OF EL SCHEDULING

To implement EDF-Like (EL) scheduling algorithms, we
can exploit the existing EDF scheduling mechanisms to inte-
grate the proposed relative priority points. Here we demon-
strate the integration on two well-known real-time operating
systems (RTOSes), i.e., RTEMS [1] and LITMUSRT [7], which
officially support EDF scheduling. In general, the workflow of
an EDF mechanism can be abstracted as follows:

1) At each job release, its priority should be identified with
its absolute deadline, and necessary priority mapping
operations should be performed.

2) The job context is placed into the ready queue according
to its priority, which is commonly realized by a dedi-
cated data structure, e.g., a red-black tree in RTEMS and
a binomial heap in LITMUSRT.

3) One highest priority job should be executed. In case
there are deadline ties, a regulation should be performed.
This step also takes place if a job finishes its execution.

Since EL scheduling only affects the job priority, the realiza-
tion can be achieved by performing the priority mapping with
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Fig. 7: Acceptance ratio of different schedulability tests. Our
EDF-Like (EL) schedulability test (EL DM and EL EDF, black
curve) performs similar to the state of the art.

the priority point instead of the absolute deadline. This implies
that any underlying data structure for EDF scheduling, which
sorts the jobs according to their absolute deadlines, can be
directly adapted. Suppose the relative priority point for each
task is given, we demonstrate the integration of these relative
priority points for RTEMS (version 5.1) and LITMUSRT:

a) RTEMS: In Thread_Configuration we add a
field rel_pp to hold the given relative priority point. Two
new fields rel_pp and release_time are added in
Thread_Control structure to keep the relevant modifica-
tion minimal. To avoid corrupting the dependency of origi-
nal priority mapping, we reuse the original mapping macro
SCHEDULER_PRIORITY_MAP() and replace the original
input deadline by the priority point.

b) LITMUSRT: We add a new field priority_point
in rt_job structure and a new field rel_pp in
rt_task structure. The calculation of priority_point
is performed at setup_release(). A new macro
higher_priority_point is used to compare
priority_point over jobs. To ensure that the light-
weight event tracing toolkit [8] still functions correctly, we
did not touch any relevant functions and macros for the
absolute deadline.

The functionality of both realizations are validated suc-
cessfully on real platforms. The corresponding patches will
be publicly available once the paper is accepted. Since the
realization on both RTOSes only requires slight modifications,
we conjecture that every RTOS supporting EDF scheduling
can also realize EL scheduling. Please note that the discussion
is to demonstrate the applicability, and we do not recommend
to replace TFP or FIFO with EL scheduling because of
unnecessary operation overhead.

VI. EVALUATION

In this section, we evaluate the performance of our schedula-
bility tests (EL) presented in Algorithm 1 for the fixed analysis
window and in Algorithm 2 for the variable analysis window.
More precisely we show that:

1) Our schedulability test performs similar to already ex-
isting schedulability tests for Deadline-Monotonic (DM)
and Earliest-Deadline-First (EDF) scheduling.
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Fig. 8: Acceptance ratio of variants of EDF using our EDF-
Like (EL) schedulability test. Choosing the best λ ∈ [−10, 10]
for each task set (black line) improves standard EDF (λ = 0).

2) Our schedulability test can be used to compare different
configurations of Earliest-Quasi-Deadline-First (EQDF)
and suspension-aware EDF (SAEDF), presented in Sec-
tion III.

3) Our schedulability test exploits the optimism introduced
when the deadline of tasks is extended over their mini-
mum inter-arrival time.

Please note that for 1) and 2) we do not distinguish between
fixed and variable analysis window, since both schedulability
tests coincide in the constrained deadline case, as explained
in Section IV-D. To apply our schedulability test we use the
configuration η = 0.01, depth = 5 and max_a = 10. In each
figure, we present the acceptance ratio which is the share of
task sets that are deemed schedulable by the schedulability
test under consideration.

For the experiments, we synthesize 500 task sets for each
utilization from 0% to 100% in steps of 5%. For each task set
we generate 50 tasks. We first generate 50 utilization values Ui
using the UUniFast [5] method with the given total utilization
goal, and then adopt the suggestion by Emberson et al. [16]
to pull the minimum inter-arrival time Ti according to a log-
uniform distribution from the interval [1, 100][ms]. The worst-
case execution time is computed by Ci = Ti · Ui and the
deadline is set to the minimum inter-arrival time Di = Ti.
For each task, we draw the maximum suspension time Si
uniformly at random from [0, 0.5(Ti − Ci)]. We assume that
the tasks of each task set are ordered by their deadline.

In Figure 7a we apply EL with relative priority points
Πi =

∑i
j=1Dj to obtain a schedulability test for DM schedul-

ing (EL DM). We compare with the methods Suspension as
Jitter (SuspJit) [13, Page 163] and Suspension as Blocking
(SuspBlock) [13, Page 165]. Moreover, we compare with the
Suspension-Oblivious Analysis (SuspObl) [13, Page 162] and
the Unifying Analysis Framework from Chen, Nelissen and
Huang (CNH16) [12] configured with three vectors according
to Eq. (27), Lemma 15 and Lemma 16 of their paper. As
depicted, our schedulability test performs similar to the state-
of-the-art methods.

In Figure 7b, we compare our schedulability test (EL EDF)
with state-of-the-art methods for EDF. We compare with the
method by Liu and Anderson (LA13) [31]. Moreover, we
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Fig. 9: Arbitrary deadline evaluation for Deadline-
Monotonic (DM) scheduling.
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Fig. 10: Arbitrary deadline evaluation for Earliest-Deadline-
First (EDF) scheduling.

present the schedulability test by Günzel, von der Brüggen and
Chen (GBC20) [20] and the Suspension-Oblivious Analysis
(SuspObl) [20, Section III.A]. The method from Dong and
Liu [15] is not presented as it is dominated by SuspObl, as
shown in [20]. EL EDF improves the state of the art.

In Figure 8 the performance of our schedulability test
is presented for different configurations for Earliest-Quasi-
Deadline-First (EQDF) (Πi = Di + λCi) and for suspension-
aware EDF (SAEDF) (Πi = Di+λSi). As depicted, choosing
λ to be the best integer in [−10, 10], improves acceptance
ratio compared to the standard EDF with λ = 0, especially
for EQDF.

In Figures 9 and 10, the performance of our schedulability
test for arbitrary deadlines is presented. More specifically, we
set the deadline to x = 1.0, 1.1, 1.2, 1.5 times the minimum
inter-arrival time (Dx) and apply our schedulability test. We
see that both the fixed and the variable analysis window lead
to better acceptance ratios in certain scenarios, depending on
the size of x and the scheduling algorithm under analysis. The
non-dominance discussion from Section IV-E can be observed
in Figure 9 for D1.2 and D1.5.

Furthermore, we study the impact of the number of tasks
on the runtime of our analysis. In this regard, we create
100 task sets for each utilization in 0% to 100% in steps
of 10% and measure the runtime that it takes to receive a
schedulability decision. As an example we show the results
for EDF scheduling (Πi = Di). For other relative priority
points, the runtime is comparable. To obtain the measurements,
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Fig. 11: Runtime (seconds) per task set of our schedulability
test (EL EDF).

we run an implementation with Python3 on a machine with
2x AMD EPYC 7742 running Linux, i.e., in total we have
256 threads with 2,25GHz and 256GB RAM. Each of the
measurements runs on one independent thread. The results
are presented in Figure 11. We observe that the runtime of
our method grows fast. However, even with 200 tasks per task
set, our schedulability test takes on average 12.87 seconds and
at most 17.77 seconds to return the result for one task set.

VII. CONCLUSION

In this work, we study EDF-Like (EL) scheduling algo-
rithms. Through an examination of different analysis intervals
we provide two versions of a suspension-aware schedulability
test, valid for all EL scheduling algorithms, even for arbitrary-
deadline tasks. We provide the first suspension-aware schedu-
lability test to handle EL scheduling for arbitrary-deadline
tasks. In particular, this is also the first suspension-aware
schedulability test for arbitrary-deadline tasks under First-
In-First-Out (FIFO) scheduling, Earliest-Quasi-Deadline-First
(EQDF) scheduling and Suspension-Aware EDF (SAEDF)
scheduling.
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