
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. © 2021 Society for Industrial and Applied Mathematics
Vol. 81, No. 5, pp. 2265--2295

ROOTS, SYMMETRY, AND CONTOUR INTEGRALS IN
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Abstract. Many (discrete) stochastic systems are analyzed using the probability generating
function (pgf) technique, which often leads to expressions in terms of the (complex) roots of a certain
equation. In this paper, for a class of pgfs with a rational form, we show that it is not necessary
to compute the roots in order to evaluate these expressions. Instead, one can use contour integrals,
which is computationally a more reliable method than the classical root-finding approach. We also
give the necessary and sufficient condition for the mean of the corresponding random variable, e.g.,
queue length, to be an additive function of the roots. In this case, the mean is found using one contour
integral. Finally, we give the necessary and sufficient condition for the mean to be independent of
the roots.
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1. Introduction. In this paper, we consider a particular class of stochastic sys-
tems, where finding the probability generating function (pgf)X(z) of the queue length
(or another random variable of interest) leads to a rational form with several unknown
coefficients xj , j = 0, . . . , n, in the numerator:

(1.1) X(z) =

\sum n
j=0 xjfj(z)

D(z)
(z  - 1),

where fj(z) for j = 0, . . . , n and D(z) are known analytic functions, fj(1) \not = 0 for
some j, and D(z) has n+1 zeros in the closed unit disk, denoted by \^z0 = 1, \^z1, . . . , \^zn.
Equation (1.1) is well known in queuing theory, which motivated this research. An
example of such a system is the bulk-service queue; see [3]. For this example, X(z)
is the pgf of the queue length, n + 1 is the size of service bulk, xj is the probability
of having j customers in the queue, fj(z) = A(z)

\sum n
k=j z

k, and D(z) = zn+1  - A(z),
where A(z) is the pgf of the number of the arrivals during a time slot. This type of
pgf occurs in many other queuing systems, e.g., in traffic models (see [19], [18]), but
also in more general stochastic systems; see section 5 below.
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2266 OBLAKOVA, AL HANBALI, BOUCHERIE, VAN OMMEREN, ZIJM

The classical approach to finding the unknowns in the numerator is to consider
the analyticity of the pgf in the unit disk and compute the zeros \^z1, . . . , \^zn of D(z).
Due to the analyticity of the pgf, the zeros of the denominator are also zeros of the
numerator. This yields n linear equations for the unknowns:

(1.2)

n\sum 
j=0

xjfj(\^zk) = 0, k = 1, . . . , n.

One more equation follows from the normalization equation X(1) = 1 and L'H\^opital's
rule:

1 = X(1) = lim
z\rightarrow 1

\sum n
j=0 xjfj(z)(z  - 1)

D(z)
=

\sum n
j=0 xjfj(1)

D\prime (1)
,

which yields

(1.3)

n\sum 
j=0

xjfj(1) = D\prime (1).

In a similar way, the roots of a characteristic equation are used in the analysis of
many queuing systems of which the pgf not necessarily has the form (1.1). This often
occurs in discrete-time models such as the GD/GD/1 queue [21] and the multiserver
queue M/D/s [12], but also in continuous models; see, for example, [8], where the
authors consider general interarrival times and a Markovian service process, or [20],
where two interrelated queues are analyzed. This root-finding problem is not unique
to queuing systems, but also occurs in the analysis of some Markov chains; for an
example in risk theory, see [16]. In some special cases, there are formulas to compute
the roots; see, e.g., [12] for the case of Poisson and binomial arrivals at the bulk-
service queue. However, there is no explicit formula in general. Moreover, the derived
solution can be very sensitive to the precision of the roots, which, in turn, can be
poor even due to a small error in the coefficients; see, e.g., the study of the so-called
Wilkinson polynomial [23]. For an example in queuing theory, see [18], where the
authors consider the bulk-service queue and show that there are instances where the
classical root-finding approach leads to a negative expected queue length.

The system of (1.2) and (1.3) can be rewritten in matrix form:

(1.4) M(1, \^z1, . . . , \^zn)(x0, . . . , xn)
T = (D\prime (1), 0, . . . , 0)T ,

where

(1.5) M(z, z1, . . . , zn) =

\left(     
f0(z) f1(z) . . . fn(z)
f0(z1) f1(z1) . . . fn(z1)

...
...

. . .
...

f0(zn) f1(zn) . . . fn(zn)

\right)     .

Here and later, we use \^z1, . . . , \^zn for the zeros of the denominator and z1, . . . , zn for
complex variables. In this paper, we use the properties of the matrix M(z, z1, . . . , zn)
and of symmetric polynomials to find the pgf without computing the roots. We
represent the pgf using a determinant of a certain matrix, where each entry is a
symmetric function of the roots, which can be computed using contour integrals. The
same matrix can be used to find the coefficients x0, . . . , xn. The advantages of using
contour integrals are that the results are generally more reliable compared to the
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classical root-finding approach (see [18]) and can be used as an intermediate step for
further results (see, e.g., [13]). The entries of the matrix can also be computed using
the roots, when they are known or easy to find. This modified root-finding approach
avoids the numerical inaccuracies that arise when solving (1.4). In the numerical
results, we compare the classical root-finding method with our contour-integral and
modified root-finding approaches for the case of the classical bulk-service queue. We
show that our approaches give accurate results for the whole range of considered
service-batch sizes, while the classical system (1.4) becomes ill-conditioned for large n.

This paper extends the results of [18], which focuses on the special case that the
functions fj(z) form a geometric sequence with a certain common ratio. In that case,
the pgf has two properties. First, the pgf can be represented in a special product form,
where each term of the product depends on not more than one root. Second, the mean
of the corresponding random variable, e.g., the queue length, is an additive function
of the roots and, under additional conditions, can be found using one contour integral.
In this paper, we give a necessary and sufficient condition in terms of the functions
fj(z) for these properties to hold. The special product form of the pgf exists if and
only if the functions fj(z) form, after a linear transformation, a geometric sequence,
where the common ratio of the sequence may be more general than in [18]. We
provide an algorithm that, for a set of functions fj(z), checks the existence of such
a linear transformation. For the additive-mean property, we distinguish two cases.
In the first case, which we call the degenerate case, the mean is independent of the
roots and, therefore, is always an additive function of the roots. We give a simple
necessary and sufficient condition for the degenerate case in terms of values fj(1) and
f \prime 
j(1) for j = 0, . . . , n. For the nondegenerate case, the additive-mean property is
equivalent to the existence of the special product form of the pgf. The systems with
these properties include the bulk-service queue (see [3]); the multiserver M/D/s and
Geo/D/s queues, which are in some sense equivalent to the bulk-service queue with
Poisson and binomial arrivals (see [12] and [14]); and the fixed-cycle traffic-light queue
(see [18]). The traffic-light queue for a lane with detectors (see [19]) is an example
of a queuing system with a pgf of the form (1.1) without these properties. For this
queue, we can use the results for the systems with a general matrix M(z, z1, . . . , zn);
see section 3.

The paper is structured as follows. In section 2, we give the definitions and
required properties of symmetric polynomials and symmetric functions. In section 3,
we obtain the pgf and the unknowns in terms of symmetric functions for a general
numerator and give numerical results. Then we analyze a special subclass of pgfs in
section 4. In section 5, we apply the results of sections 3 and 4 to several stochastic
systems. Finally, we conclude the paper in section 6. The proofs of the intermediate
results are given in Appendix A, with the exception of some short proofs that are
included in the text.

2. Preliminaries. In this section, we give the required definitions and the pre-
liminary results. First, in subsection 2.1, we define symmetric, skew-symmetric, and
additive functions and alternant matrices. Then we relate linearly dependent func-
tions and singular matrices; see subsection 2.2. In subsection 2.3, we describe two
types of symmetric polynomials and their properties. In subsection 2.4, we analyze
the determinant of an alternant matrix, which will be used later in section 3 to obtain
the pgf and the unknowns as symmetric functions of the roots. Finally, in subsec-
tion 2.5, we obtain the values of symmetric functions at certain points in terms of
contour integrals.
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2268 OBLAKOVA, AL HANBALI, BOUCHERIE, VAN OMMEREN, ZIJM

2.1. Definitions. Consider a function f(z1, . . . , zn) of n complex variables. We
focus on two types of functions: symmetric and skew-symmetric.

Definition 2.1. A function f(z1, . . . , zn) is called symmetric if

f(z1, . . . , zn) = f(zs(1), . . . , zs(n))

for any permutation s \in Sn, where Sn is the set of all permutations of the set
\{ 1, . . . , n\} .

Definition 2.2. A function f(z1, . . . , zn) is called skew-symmetric if

f(z1, . . . , zn) = sgn(s)f(zs(1), . . . , zs(n))

for any permutation s \in Sn. Here, sgn(s) is the sign of the permutation s and is
equal to ( - 1)ms , where ms denotes the number of transpositions, i.e., permutations
that interchange two elements, needed to construct s. The sign is independent of the
representation of s as a product of transpositions.

In the analysis in the following sections, we also use a subtype of symmetric
functions, namely, additive functions.

Definition 2.3. A function f(z1, . . . , zn) is called additive if

f(z1, . . . , zn) =

n\sum 
k=1

g(zk)

for some function g(z).

In the analysis in sections 3 and 4, we mainly work with alternant matrices.

Definition 2.4. Consider the functions f1(z), . . . , fn(z) and points z1, . . . , zn.
The matrix

\Lambda (z1, . . . , zn) =

\left(   f1(z1) . . . fn(z1)
...

. . .
...

f1(zn) . . . fn(zn)

\right)   
is called an alternant matrix.

An example of an alternant matrix is a Vandermonde matrix, where fj(z) =
zj - 1. The determinant of the Vandermonde matrix is denoted by V (z1, . . . , zn) =\prod 

1\leqslant j<k\leqslant n(zk  - zj). Note that the determinant of an alternant matrix is a skew-
symmetric function of z1, . . . , zn. This follows immediately from the fact that if one
interchanges two rows (or columns) in a square matrix, such an operation changes the
sign of the determinant; see [22].

Remark 2.5 (equality of rational functions). In what follows, we will work with
rational functions of several variables, i.e., f(z1, . . . , zn)/g(z1, . . . , zn). Suppose that
both the numerator and the denominator are analytic functions and g(z1, . . . , zn)
is not identically equal to 0. For the case of one variable, i.e., n = 1, there are
not more than a finite number of points where this rational function is not defined,
namely, where g(z1) = 0. However, for n > 1 this is not true. For example, the
function 1/(z1+ z2) is not defined on the plane z1 =  - z2. Suppose that the functions
f(z1, . . . , zn) and g(z1, . . . , zn) are defined on the set \Delta n

1 = \{ (z1, . . . , zn) \in \BbbC n : | zk| <
1, k = 1, . . . , n\} . Then one can prove that the function f(z1, . . . , zn)/g(z1, . . . , zn) is
defined on a dense open subset of \Delta n

1 , because the set of the zeros of the function
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g(z1, . . . , zn) is closed and has an empty interior; see [10]. In what follows, when we
say that two rational functions are equal, we mean that they are equal on an open
dense subset of \Delta n

1 , where both of them are defined.

2.2. Singular matrices and linear independence. In this subsection, we
relate linear dependency between functions and singular matrices; see the following
properties. For the proofs of Properties 2.6 and 2.7, we refer the reader to [6] and
Appendix A.1, respectively.

Property 2.6. The analytic functions f1(z), . . . , fn(z) are linearly dependent if
and only if the Wronskian

(2.1) detW (z) = det

\left(   f1(z) . . . fn(z)
...

. . .
...

f
(n - 1)
1 (z) . . . f

(n - 1)
n (z)

\right)   
is identically equal to 0.

Property 2.7. Consider numbers aj \in \BbbC , j = 0, . . . , n. Suppose the matrix

\Lambda a =

\left(     
a0 . . . an

f0(z1) . . . fn(z1)
...

. . .
...

f0(zn) . . . fn(zn)

\right)     
is singular for all z1, . . . , zn. If aj \not = 0 for some j, then the functions f0(z), . . . , fn(z)
are linearly dependent.

From Property 2.7, it follows that if the matrix \Lambda a is singular for all z1, . . . , zn and
the functions f0(z), . . . , fn(z) are linearly independent, then aj = 0 for j = 0, . . . , n.

2.3. Symmetric polynomials and their properties. In this subsection, we
introduce two types of symmetric polynomials and their properties. The elementary
symmetric polynomials are given by

(2.2) \sigma m = \sigma m(z1, . . . , zn) =
\sum 

1\leqslant k1<\cdot \cdot \cdot <km\leqslant n

zk1
\cdot \cdot \cdot zkm

.

The above formula is used for m = 1, . . . , n. For convenience, \sigma 0 = 1, and \sigma m = 0
if either m > n or m < 0. The elementary symmetric polynomials naturally arise in
Vieta's formulas that relate the coefficients of a polynomial with its roots. Namely,
consider a polynomial

\sum n
j=0 ajz

j with roots \~z1, . . . , \~zn, then it can be written as

(2.3) an

n\prod 
k=1

(z  - \~zk) = an

n\sum 
j=0

( - 1)j\sigma j(\~z1, . . . , \~zn) z
n - j .

The proof of (2.3) requires the expansion of the left-hand side of (2.3); see [22].
In the analysis below, we mainly use the complete homogeneous symmetric poly-

nomials defined as

\zeta m = \zeta m(z1, . . . , zn) =
\sum 

1\leqslant k1\leqslant \cdot \cdot \cdot \leqslant km\leqslant n

zk1
\cdot \cdot \cdot zkm

.

D
ow

nl
oa

de
d 

11
/1

8/
21

 to
 1

30
.8

9.
15

.1
41

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2270 OBLAKOVA, AL HANBALI, BOUCHERIE, VAN OMMEREN, ZIJM

Note the difference in the definitions of the elementary and complete homogeneous
symmetric polynomials: the indexes kj and kj+1 for the latter case may coincide for
some or all j. This allows us to use the above formula for m > n. For m = 0, we define
\zeta 0 = 1, and, for m < 0, \zeta m = 0. The following property can be used to recursively find
all complete homogeneous polynomials from the elementary symmetric polynomials.
The proof is given in Appendix A.2.

Property 2.8. For m > 0, the following equality holds:

(2.4) \zeta m =

n\sum 
j=1

( - 1)j - 1\sigma j\zeta m - j .

The upper limit of summation in (2.4) can be changed to any number that is at
least min\{ n,m\} , since \zeta m - j = 0 for j > m and \sigma j = 0 for j > n.

When we are interested in the values of the complete homogeneous and elemen-
tary symmetric polynomials at point (\^z1, . . . , \^zn), where \^z1, . . . , \^zn are the roots of a
certain equation, these values can be found without actually knowing the roots; see
subsection 2.5. In subsection 2.4 below, for an analytic function of one variable, we
construct a symmetric function of n variables using the complete homogeneous sym-
metric polynomials. Such functions on \Delta n

1 are later used to rewrite the determinant
of an alternant matrix as a product of a skew-symmetric Vandermonde determinant
and a symmetric function.

2.4. Symmetric functions and alternant matrices. In this subsection, we
represent the determinant of the alternant matrix in terms of the Vandermonde de-
terminant and symmetric functions. We use such determinants in section 3 to give an
alternative representation of the considered type of pgf. First, we define a transfor-
mation rule of an analytic function in \Delta 1 = \{ z \in \BbbC : | z| < 1\} to a symmetric function
defined in \Delta m

1 \subset \BbbC m. Then we give several properties of this transformation. The
main result of this subsection is presented in Lemma 2.11.

Consider an analytic function f(z), with the Taylor expansion at 0 given by
f(z) =

\sum \infty 
l=0 \alpha lz

l. Let

(2.5) Fm
k = Fm

k (z1, . . . , zm) =

\infty \sum 
l=k

\alpha l\zeta l - k(z1, . . . , zm),

where m corresponds to the number of variables. We call Fm
k the (k,m)-transforma-

tion of the function f(z). The (k,m)-transformation of the function fj(z) is denoted
by Fm

j,k. Note that the function Fm
k (z1, . . . , zm) is a symmetric function of z1, . . . , zm.

In the analysis in section 4, we use the following properties.

Property 2.9. If m \leqslant n, then

Fn
k (z1, . . . , zm, 0, . . . , 0) = Fm

k (z1, . . . , zm).

Property 2.10. For k \geqslant 0, consider the function f(z) =
\sum \infty 

l=0 \alpha lz
l and its

(k + j, n)-transformations Fn
k+j for j = 0, . . . , n. Then

Fn
k +

n\sum 
j=1

( - 1)j\sigma jF
n
k+j = \alpha k.

Property 2.9 follows from the definition of complete homogeneous symmetric poly-
nomials and only requires the observation that \zeta l(z1, . . . , zm, 0, . . . , 0) = \zeta l(z1, . . . , zm).
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Property 2.10 follows from Property 2.8 and equality \zeta 0 = 1. In the following lemma,
we show that the determinant of an alternant matrix can be written as the product
of a Vandermonde determinant and a matrix composed from (k, n)-transformations
of the functions f1(z), . . . , fn(z) that are used in the alternant matrix. The proof is
given in Appendix A.3.

Lemma 2.11. Suppose that the functions f1(z), . . . , fn(z) are analytic in \Delta r =
\{ z \in \BbbC : | z| < r\} . Then, for zk \in \Delta r, k = 1, . . . n,

(2.6) det

\left(     
f1(z1) f2(z1) . . . fn(z1)
f1(z2) f2(z2) . . . fn(z2)

...
...

. . .
...

f1(zn) f2(zn) . . . fn(zn)

\right)     = V (z1, . . . , zn) det\Phi (z1, . . . , zn),

where V (z1, . . . , zn) is the Vandermonde determinant and

(2.7) \Phi (z1, . . . , zn) =

\left(     
Fn
1,0 Fn

2,0 . . . Fn
n,0

Fn
1,1 Fn

2,1 . . . Fn
n,1

...
...

. . .
...

Fn
1,n - 1 Fn

2,n - 1 . . . Fn
n,n - 1

\right)     .

Remark 2.12 (symmetry and singularity). Lemma 2.11 is an important result for
our analysis in sections 3 and 4. Note that the matrix \Phi (z1, . . . , zn) in (2.7) consists
of symmetric functions of z1, . . . , zn. It is, in general, nonsingular for zk = zj , which
will allow us in section 4 to give proofs using induction in the number of variables, n.
Moreover, det\Phi (z1, . . . , zn) is not identically equal to 0 even when z1 = \cdot \cdot \cdot = zn,
provided that the functions f1(z), . . . , fn(z) are analytic and linearly independent.
The reason for this is that the function det\Phi (z, . . . , z) is up to a nonzero constant
equal to the Wronskian (2.1) of the functions f1(z), . . . , fn(z) which is not identically
equal to 0; see Property 2.6. To relate det\Phi (z, . . . , z) with the Wronskian, it is
sufficient to note that

Fn
j,k(z, . . . , z) =

n - 1\sum 
l=k

(n - 1 - k)!

l!(l  - k)!(n - 1 - l)!
zl - kf

(l)
j (z)

for k = 0, . . . , n - 1. The last equation follows from

\zeta m(z, . . . , z\underbrace{}  \underbrace{}  
n

) =

\biggl( 
n+m - 1

m

\biggr) 
zm =

1

(n - 1)!

dn - 1

dzn - 1
zm+n - 1

=
1

(n - 1)!

dn - 1

dzn - 1
(zn - 1 - kzm+k) =

1

(n - 1)!

n - 1\sum 
l=k

\biggl( 
n - 1

l

\biggr) 
dn - 1 - l

dzn - 1 - l
zn - 1 - k dl

dzl
zm+k

=

n - 1\sum 
l=k

(n - 1 - k)!

l!(l  - k)!(n - 1 - l)!
zl - k dl

dzl
zm+k

for k = 0, . . . , n - 1.

2.5. Roots and contour integrals. In this subsection, we provide a way of
computing the values of symmetric polynomials at special points. Consider the ana-
lytic function D(z). Suppose 1, \^z1, . . . , \^zn are the only roots of the equation

(2.8) D(z) = 0
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in the closed unit disk \=\Delta 1 = \{ z \in \BbbC : | z| \leqslant 1\} . Then it is possible to compute
\zeta m(\^z1, . . . , \^zn) without finding the roots. The first step is to represent the complete
homogeneous symmetric polynomials in terms of the elementary symmetric polyno-
mials; see Property 2.8. Then we recursively use Newton's formula (see [17]),

(2.9) k\sigma k =

k\sum 
j=1

( - 1)j - 1\sigma k - j\eta j , k = 1, . . . , n,

to find the elementary symmetric polynomials in terms of the power sums \eta j =

\eta j(z1, . . . , zn) =
\sum n

k=1 z
j
k, j = 1, . . . , n. The power sums, in turn, are found using

Cauchy's residue theorem; see [15]. Namely,

(2.10) \eta j(\^z1, . . . , \^zn) + 1 =
1

2\pi i

\oint 
S1+\varepsilon 

D\prime (z)

D(z)
zjdz,

where \varepsilon > 0 is defined so that there are no roots of (2.8) with 1 < | z| \leqslant 1 + \varepsilon , and
Sr = \{ z \in \BbbC : | z| = r\} .

Remark 2.13 (zero at 1). If (2.8) has no zero at 1, one needs to change the
left-hand side of (2.10) to just \eta j(\^z1, . . . , \^zn). We explicitly consider the case that 1
is a root since the denominators of the pgfs analyzed in section 3 have a zero at 1.

Remark 2.14 (functions Fn
k and contour integrals). If the function f(z) is a poly-

nomial, then Fn
k (\^z1, . . . , \^zn) is a finite sum of the complete homogeneous symmetric

polynomials and can be found using (2.10), (2.9), and (2.4), hence, without explicitly
computing the roots. The application of the Cauchy residue theorem (see (2.10)) is
a crucial step from the root-finding approach to the contour-integral approach. If
the function f(z) is not a polynomial, one can truncate the infinite summation in
Fn
k (\^z1, . . . , \^zn) using the following bound:

(2.11)

\bigm| \bigm| \bigm| \bigm| \bigm| Fn
k (\^z1, . . . , \^zn) - 

M\sum 
l=0

\alpha l+k\zeta l(\^z1, . . . , \^zn)

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant Crk
\biggl( 
M + n

n - 1

\biggr) 
(qr)M+1

(1 - qr)n
,

where | \^zk| \leqslant q for k = 1, . . . , n, | \alpha l| \leqslant Crl for l = 0, 1, . . . , f(z) =
\sum \infty 

l=0 \alpha lz
l, and

qr < 1; see the proof in Appendix A.4. In this way, the determinant of the matrix
\Phi (z1, . . . , zn) in (2.7) can be found without computing the roots.

Remark 2.15 (functions Fn
k and minimal polynomials). For the sake of complete-

ness, we also give an alternative way of finding Fn
k at (\^z1, . . . , \^zn) without truncation

(2.11). Let Q(z) =
\prod n

k=1(z  - \^zk) be the minimal polynomial, i.e., the polynomial of
the lowest degree, with roots \^z1, . . . , \^zn. Due to (2.3),

Q(z) =

n\sum 
j=0

( - 1)j\sigma j(\^z1, . . . , \^zn)z
n - j ,

which means that this polynomial can be found without computing the roots; see
(2.9) and (2.10). Then (see [4])

\zeta m(\^z1, . . . , \^zn) =

n\sum 
k=1

\^zn+m - 1
k

Q\prime (\^zk)
.
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By applying the Cauchy residue theorem, we obtain

\zeta m(\^z1, . . . , \^zn) =
1

2\pi i

\oint 
S1

zn+m - 1

Q(z)
dz.

Hence, we find

Fn
k (\^z1, . . . , \^zn) =

1

2\pi i

\oint 
S1

f(z) - 
\sum k - 1

l=0 \alpha lz
l

Q(z)
zn - k - 1dz.

Using this formula for each entry of the matrix (2.7), i.e., n2 times, can be compu-
tationally demanding. Still, it can be useful in some special cases. For example, if
f1(z) = f0(z)z

k, then Fn
1,m = Fn

0,m+k, which reduces the number of required compu-
tations, when k is small; see such examples in section 5.

Remark 2.16 (additive functions and contour integrals). Suppose that the func-
tion f(z1, . . . , zn) is an additive function, i.e., f(z1, . . . , zn) =

\sum n
k=1 g(zk). If the

function g(z) is analytic in \Delta 1+\epsilon \setminus \{ 1\} , then the value of f(\^z1, . . . , \^zn) is given by one
contour integral:

f(\^z1, . . . , \^zn) =
1

2\pi i

\oint 
S1+\varepsilon 

D\prime (z)

D(z)
g(z)dz  - r1,

where \varepsilon < \epsilon is defined as in (2.10), and r1 is the residue of the functionD\prime (z)g(z)/D(z)
at 1.

3. General case. In this section, we consider pgfs of the form (1.1). Recall that
such a pgf has a rational form:

(1.1 revisited) X(z) =

\sum n
j=0 xjfj(z)

D(z)
(z  - 1),

where coefficients xj can be found using (1.4), fj(z) are analytic functions, and D(z)
is an analytic function with n + 1 zeros inside the unit disk including 1, which we
denote by \^z0 = 1, \^z1, . . . , \^zn. The goal of this section is twofold. First, we represent
the pgf X(z) as a symmetric function of the roots and provide an alternative way
to compute the unknowns x0, . . . , xn; see Theorems 3.6 and 3.7 below. These results
allow us to findX(z) and x0, . . . , xn without computing the roots. Second, we compare
the numerical solutions of the classical system (1.4) and of the system proposed in
Theorem 3.7.

Remark 3.1 (alternative representation). In the representation of the pgf, the
term (z  - 1) is usually included in the functions fj(z). One can also rewrite (1.1) as

X(z) =

\sum n
j=0 xjfj(z)

\~D(z)
,

where \~D(z) = D(z)/(z  - 1) is a function with n zeros, \^z1, . . . , \^zn, inside the unit
disk. Since z = 1 is a zero of D(z), if the function D(z) is analytic in the open disk
\Delta r = \{ z : | z| < r\} for some r > 1, then so is \~D(z).

Example 3.2 (general bulk-service queue). Examples of systems with a pgf of the
form (1.1) are the bulk-service queue (see [3]), the multiserver queue (see [12]), and
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certain traffic-light queues (see [19] and [18]). Each of these examples can be repre-
sented as a more general discrete-time bulk-service queue with arrivals that depend on
the queue length prior to service. This queuing system is defined as follows. Let n+1
be the server capacity, i.e., the maximum number of customers that can be served
simultaneously during a time slot. Suppose there are m customers in the queue at
the start of a time slot. Then, during this time slot, min(m,n + 1) customers are
served and there are Ym arrivals with pgf Ym(z), where Ym = Y is independent of m
for m \geqslant n + 1 and, otherwise, may depend on m. Let X(z) be the pgf of the queue
length at the start of a time slot in steady state, let xj be the probability of having
j customers in the queue at the start of a time slot, and let Y (z) be the pgf of Y . In
steady state, the pgf of the queue length at the start of the next time slot coincides
with X(z). Thus,

(3.1) X(z) =
X(z) - 

\sum n
j=0 xjz

j

zn+1
Y (z) +

n\sum 
j=0

xjYj(z),

which can be rewritten in a fractional form as (1.1) by isolating X(z):

(3.2) X(z) =

\sum n
j=0 xj(z

n+1Yj(z) - zjY (z))

zn+1  - Y (z)
,

where fj(z) = (zn+1Yj(z) - zjY (z))/(z  - 1) and D(z) = zn+1  - Y (z).

3.1. Pgf and unknowns as symmetric functions of roots. As we showed
in the introduction, the unknowns in the numerator can be found using the equation

(1.4 revisited) M(1, \^z1, . . . , \^zn)(x0, . . . , xn)
T = (D\prime (1), 0, . . . , 0)T ,

where

(1.5 revisited) M(z, z1, . . . , zn) =

\left(     
f0(z) f1(z) . . . fn(z)
f0(z1) f1(z1) . . . fn(z1)

...
...

. . .
...

f0(zn) f1(zn) . . . fn(zn)

\right)     .

Note that system (1.4) has the following properties. In M(z, z1, . . . , zn) only the first
row depends on z, and on the right-hand side of (1.4), only the first element of the
vector is nonzero. In the following lemma, we provide the solution of a system of
linear equations with these two properties. Application of this result to (1.4) gives a
representation of the numerator in (1.1) in terms of the matrix M(z, z1, . . . , zn). As a
by-product of this representation, we obtain the following interesting result: it is not
necessary to know xj , j = 0, . . . , n, to evaluate the numerator of (1.1).

Lemma 3.3. Suppose the matrix

K(z) =

\left(     
f0(z) f1(z) . . . fn(z)
\alpha 10 \alpha 11 . . . \alpha 1n

...
...

. . .
...

\alpha n0 \alpha n1 . . . \alpha nn

\right)     
is nonsingular at z = 1, and the vector (x0, . . . , xn) is a solution of the equation

(3.3) K(1)(x0, . . . , xn)
T = (a, 0, . . . , 0)T ;
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then

(3.4)

n\sum 
j=0

xjfj(z) = a
detK(z)

detK(1)

and

(3.5) xj = ( - 1)ja
detKj

detK(1)
,

where Kj is the matrix K(z) without the first row and the (j + 1)st column.

Proof. Since the matrix K(1) is nonsingular, (3.3) has a unique solution (3.5),
which is found by Cramer's rule. Using the Laplace expansion for the first row of
matrix K(z), we readily obtain that (3.5) gives (3.4), which concludes the proof.

Corollary 3.4. Suppose the matrix M(1, \^z1, . . . , \^zn) is nonsingular, and the vec-
tor (x0, . . . , xn) is a solution of (1.4); then

(3.6)

n\sum 
j=0

xjfj(z) = D\prime (1)
detM(z, \^z1, . . . , \^zn)

detM(1, \^z1, . . . , \^zn)
.

Remark 3.5 (on symmetry in (3.6)). The determinant detM(z, z1, . . . , zn) is a
skew-symmetric function of the roots. Hence, the right-hand side of (3.6), which is
equal to the numerator of (1.1), is a symmetric function. However, the form (3.6) does
not show how to find the value of the numerator without finding the roots \^z1, . . . , \^zn.
Therefore, we need an equivalent representation; see also Remark 2.5.

Consider the matrix

(3.7) \=M(z, z1, . . . , zn) =

\left(     
f0(z) f1(z) . . . fn(z)
Fn
0,0 Fn

1,0 . . . Fn
n,0

...
...

. . .
...

Fn
0,n - 1 Fn

1,n - 1 . . . Fn
n,n - 1

\right)     ,

where Fn
j,k is the (k, n)-transformation of the function fj(z), defined in (2.5). From

Lemma 2.11, we find that detM(z, z1, . . . , zn) = V (z1, . . . , zn)h(z, z1, . . . , zn), where
V (z1, . . . , zn) is the Vandermonde determinant and

(3.8) h(z, z1, . . . , zn) = det \=M(z, z1, . . . , zn).

In particular,
detM(z, z1, . . . , zn)

detM(1, z1, . . . , zn)
=

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

is a symmetric function of the roots. Therefore, from Corollary 3.4, we obtain the
following theorem.

Theorem 3.6. Suppose the matrix M(1, \^z1, . . . , \^zn) is nonsingular, and the vector
(x0, . . . , xn) is a solution of (1.4); then

n\sum 
j=0

xjfj(z) = D\prime (1)
h(z, \^z1, . . . , \^zn)

h(1, \^z1, . . . , \^zn)

and

(3.9) X(z) =
D\prime (1)h(z, \^z1, . . . , \^zn)

D(z)h(1, \^z1, . . . , \^zn)
(z  - 1).
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Using Remark 2.14, we can find h(z, \^z1, . . . , \^zn) without knowing the roots \^z1, . . . ,
\^zn by computing n contour integrals. Thus, Theorem 3.6 provides a way of calculating
the pgf X(z) at an arbitrary point z without computing roots and the unknowns
x0, . . . , xn. Moreover, the analytic form of the representation (3.9) may be used
directly to obtain further results. For example, the mean X \prime (1) of the corresponding
random variable can be found as follows:

X \prime (1) = D\prime (1)

\biggl( 
d

dz

z  - 1

D(z)

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=1

+D\prime (1)

\biggl( 
z  - 1

D(z)

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=1

h\prime (1, \^z1, . . . , \^zn)

h(1, \^z1, . . . , \^zn)

= D\prime (1)

\biggl( 
D(z) - (z  - 1)D\prime (z)

D2(z)

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=1

+
h\prime (1, \^z1, . . . , \^zn)

h(1, \^z1, . . . , \^zn)

=  - D\prime \prime (1)

2D\prime (1)
+

h\prime (1, \^z1, . . . , \^zn)

h(1, \^z1, . . . , \^zn)
,

where we applied L'H\^opital's rule to find the values at z = 1, and, for simplicity,
used h\prime (1, \^z1, . . . , \^zn) instead of (\partial /\partial z h(z, \^z1, . . . , \^zn))| z=1. In section 4, we consider
a special case, in which X \prime (1) may be found using a single contour integral.

To analyze the corresponding system, it can be important to compute the coeffi-
cients xj for j = 0, . . . , n. The following theorem shows how to find them using the
matrix \=M(1, \^z1, . . . , \^zn).

Theorem 3.7. Suppose the matrix M(1, \^z1, . . . , \^zn) is nonsingular, and the vector
(x0, . . . , xn) is a solution of the equation

(3.10) \=M(1, \^z1, . . . , \^zn)(x0, . . . , xn)
T = (D\prime (1), 0, . . . , 0)T ;

then the vector (x0, . . . , xn) is also the unique solution of (1.4).

This theorem follows by applying Lemma 2.11 to the solution (3.5) of the system
in (1.4) and Lemma 3.3 to (3.10).

Remark 3.8 (advantages of using matrix \=M(z, \^z1, . . . , \^zn)). Theorems 3.6 and 3.7
provide a reliable way to use the roots \^zj . In the classical approach, one needs to
solve (1.4), which involves matrix M(1, \^z1, . . . , \^zn). This matrix becomes singular if
two roots coincide. Thus, it is close to singular (in terms of a matrix norm) when the
distance between a pair of roots is small, which renders system (1.4) ill-conditioned
and may lead to serious numerical errors. This problem can occur when there are many
roots; see subsection 3.2 below. In contrast, the matrix \=M(z, \^z1, . . . , \^zn) is, in general,
nonsingular even if all roots coincide; see Remark 2.12. Therefore, using (3.10) yields
more reliable results than system (1.4); see subsection 3.2 for more details.

3.2. Numerical examples. In this subsection, we compare different numerical
approaches to finding the unknowns xj ; for the source code, see [1]. The classical
approach consists of two steps: finding the zeros of the denominator D(z) and solving
a system of linear equations; see (1.4). In general, there is no explicit formula for
the zeros. Thus, the existing zero-finding algorithms are often iterative, meaning
the precision of the found zeros depends on the number of iterations and the rate
of convergence. Numerical errors that arise in this first step affect the solution of
(1.4). When the matrix M(1, \^z1, . . . , zn) is close to singular (see Remark 3.8), even
a small error in the entries of the matrix may result in a huge error in the resulting
coefficients x0, . . . , xn. The other two approaches are based on (3.10) and differ in the
way the matrix \=M(1, \^z1, . . . , zn) is computed: using the roots or using the contour
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integrals. We refer to these methods as the modified root-finding approach and the
contour-integral approach, respectively.

We illustrate the numerical problems of the standard approach using the classical
bulk-service queue; see [3], as an example. This queuing system is a special case of
Example 3.2 for which Ym(z) = Y (z) for all m. As before, the size of the service
batches is fixed and equals n + 1. We consider binomial arrivals with pgf Y (z) =
(\lambda z+1 - \lambda )2(n+1), where \lambda < 1/2 to guarantee stability of the system. For such arrivals,
fj(z) = (Yj(z)z

n+1  - zjY (z))/(z  - 1) = (zj + \cdot \cdot \cdot + zn)Y (z) and the denominator is
equal to

(3.11) D(z) = zn+1  - (\lambda z + 1 - \lambda )2(n+1).

Therefore, the pgf X(z) of the queue length is given by

(3.12) X(z) =

\sum n
j=0 xj(z

j + \cdot \cdot \cdot + zn)

zn+1  - (\lambda z + 1 - \lambda )2(n+1)
(\lambda z + 1 - \lambda )2(n+1)(z  - 1).

In subsections 3.2.1 and 3.2.2, we consider both steps of the classical approach of
computing the unknowns x0, . . . , xn.

3.2.1. Finding the zeros. In this subsection, we explain two ways of finding
the zeros of the denominator (3.11). The first one is based on the expression for
the zeros obtained in [12] under special conditions, such as Y (z) to be zero-free in
a certain region. For binomial arrivals, these conditions hold, and, in our case, we
obtain

(3.13) \^zk =

\infty \sum 
l=1

1

l
\lambda l+1(1 - \lambda )l - 1

\biggl( 
2l

l  - 1

\biggr) 
wl

k,

where wk = e2\pi \bfi k/(n+1), k = 0, . . . , n. For numerical purposes, one needs to truncate
the series on the right-hand side of (3.13), resulting in an approximation:

(3.14) \^zk \approx \^zk,N =

N\sum 
l=1

1

l
\lambda l+1(1 - \lambda )l - 1

\biggl( 
2l

l  - 1

\biggr) 
wl

k.

We use N = N(\delta ) = min\{ M : | 1  - \^z0,M | < \delta \} . Observe that this choice guarantees
the precision of the roots, i.e., | \^zk  - \^zk,N(\delta )| \leqslant | \^z0  - \^z0,N(\delta )| < \delta for k = 0, . . . , n,

since the coefficients \lambda l+1(1  - \lambda )l - 1
\bigl( 

2l
l - 1

\bigr) 
/l are nonnegative. However, it may be

computationally expensive to compute N(\delta ) when the rate of convergence in (3.13)
is slow.

The second way provides an explicit formula for the zeros by exploiting the special
form of (3.11). To find the zeros of the denominator, we separate the equation

zn+1 = (\lambda z + 1 - \lambda )2(n+1)

into n+ 1 quadratic equations

z = wk(\lambda z + 1 - \lambda )2

for k = 0, . . . , n. Solving for z yields

(3.15) z =
1 - 2wk\lambda (1 - \lambda )\pm 

\sqrt{} 
1 - 4wk\lambda (1 - \lambda )

2wk\lambda 2
.

Using (3.15) for k = 0, . . . , n, we obtain 2(n+1) zeros of the denominator, from which
we pick those that are inside the unit disk.
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3.2.2. Solving the linear system. In this subsection, we compare the numeri-
cal solutions of (1.4) and (3.10). As a benchmark, we use the explicit solution of these
systems, derived below.

Note that the functions fj(z) in the numerator of X(z) have a common factor

Y (z). To simplify the computations, we will consider functions \~fj(z) = fj(z)/Y (z) =
zj+ \cdot \cdot \cdot +zn instead. Such a change corresponds to a pgf of the queue length just after
the start of the service, i.e., before the arrivals during the current time slot. Note
that this change does not affect the solutions of (1.4) and (3.10).

For the classical bulk-service queue, one can find the solution of (1.4) explicitly in
terms of the symmetrical functions of the zeros, which is the case for all pgfs that have
the factorization property; see section 4 for details. First, note that the numerator of
(3.12) is a polynomial of degree n and vanishes at z = \^zk for k = 1, . . . , n. Observe
also that \^zk \not = \^zj for k \not = j. Therefore, from (2.3), we obtain

n\sum 
l=0

xl(z
l + \cdot \cdot \cdot + zn) =

\biggl( n\sum 
l=0

xl

\biggr) n\sum 
j=0

( - 1)n - j\sigma n - j(\^z1, . . . , \^zn)z
j .

Comparing the coefficients at zj on both sides of the equation, we find

j\sum 
l=0

xl = ( - 1)n - j\sigma n - j(\^z1, . . . , \^zn)

\biggl( n\sum 
l=0

xl

\biggr) 
,

or, equivalently,

(3.16) xj = ( - 1)n - j(\sigma n - j(\^z1, . . . , \^zn) + \sigma n - j+1(\^z1, . . . , \^zn))

\biggl( n\sum 
l=0

xl

\biggr) 
for j = 0, . . . , n, where, by definition, \sigma n+1(\^z1, . . . , \^zn) = 0; see subsection 2.3. Second,
since

\sum n
j=0 xjfj(1) = D\prime (1) (see (1.3)), we obtain

n\sum 
j=0

xj(n - j + 1) =

\biggl( n\sum 
l=0

xl

\biggr) n\sum 
j=0

( - 1)n - j\sigma n - j(\^z1, . . . , \^zn) = (n+ 1)(1 - 2\lambda ),

which, together with (3.16), gives

(3.17) xj = (n+ 1)(1 - 2\lambda )
( - 1)n - j(\sigma n - j(\^z1, . . . , \^zn) + \sigma n - j+1(\^z1, . . . , \^zn))\sum n

l=0( - 1)n - l\sigma n - l(\^z1, . . . , \^zn)
.

We use (3.17) with the zeros computed by (3.15) as a benchmark for the numer-
ical solutions of (1.4) and (3.10). We consider the maximum of the absolute error,
i.e., maxj=0,...,n | xj  - \~xj | , where \~xj is computed using either the classical approach,
the modified root-finding approach, or the contour-integral approach. For \lambda = 0.3,
0.4, 0.45, we plot the results depending on the batch size n+1; see Figure 1. For the
classical and modified root-finding approaches we compute the zeros by (3.14) with
the truncation bound N = N(\delta ), \delta = 10 - 10. The contour integral is computed using
Python method scipy.integrate.quad. This method accepts an optional argument of
the desired absolute accuracy, for which we also use \delta = 10 - 10.

As can be seen from Figure 1, the classical approach of finding the probabilities
x0, . . . , xn leads to serious errors for large n. For example, for \lambda = 0.45 and n \geqslant 27,
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10 15 20 25 30 35 40

Batch size n+ 1

10−16

10−13

10−10

10−7
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(a), λ = 0.3

(b), λ = 0.3

(c), λ = 0.3

(a), λ = 0.4

(b), λ = 0.4

(c), λ = 0.4

(a), λ = 0.45

(b), λ = 0.45

(c), λ = 0.45

Fig. 1. The absolute error of the numerical solutions for (a) the classical approach, (b) the
modified root-finding approach, and (c) the contour-integral approach.

even though the roots are computed with an error of less than \delta , the error in the
probabilities is about 1011\delta . Using the matrix \=M(1, \^z1, . . . , \^zn) leads to errors of
order \delta or less. For small values of n, using contour integrals gives better results than
using roots in (3.10), but for large n the results are similar. Also both approaches
give better results for higher values of \lambda . We conclude that using (3.10) provides more
reliable results than the classical system (1.4).

4. Factorization of the pgf. In this section, we give necessary and sufficient
conditions for the pgf X(z) of the form (1.1) to have some special properties. The
first property is the factorization property, i.e., that the numerator of the pgf (1.1)
can be represented as a product, where each of the terms depends on not more than
one root:

(4.1) X(z) = D\prime (1)
g(z)

\prod n
k=1 g(z, \^zk)

D(z)
(z  - 1)

for some functions g(z) and g(z, w). This representation of the sum as a product is
analogous to Vieta's formulas; see (2.3). For an example of the numerator that cannot
be represented as such a product, consider three functions f0(z) = 1, f1(z) = z, and

f2(z) = z3. Then
\sum 2

j=0 xjfj(z) is a polynomial of degree 3 with roots z1 and z2.
Thus, for some w, it is equal, up to a constant, to (z  - z1)(z  - z2)(z  - w). As the
coefficient at z2 is zero, we have w =  - z1  - z2, which makes the product form (4.1)
impossible.

The second property is the additive-mean property ; i.e., X \prime (1), which represents
the mean of the corresponding random variable, is an additive function of the roots.
One can easily see that the factorization property implies the additive-mean property.
Indeed, from (4.1), L'H\^opital's rule gives us

(4.2) 1 = X(1) = g(1)

n\prod 
k=1

g(1, \^zk),
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and the mean of the corresponding random variable is given by a symmetric additive
function of the roots:

(4.3) X \prime (1) =  - D\prime \prime (1)

2D\prime (1)
+

g\prime (1)

g(1)
+

n\sum 
k=1

\partial 

\partial z

g(z, \^zk)

g(1, \^zk)

\bigm| \bigm| \bigm| \bigm| 
z=1

.

To find the above equation, take the derivative of (4.1) and use equality (4.2). An
additive form, as in (4.3), implies that under some conditions, the mean value can be
found using one contour integral; see Remark 2.16. Note that for certain functions
g(z, w), it is possible to represent the pgf as an exponent of a contour integral; see [7].

The following theorem gives the relation between factorization and additive-mean
properties in terms of the function h(z, z1, . . . , zn), and Corollary 4.3 summarizes the
necessary and sufficient conditions for these properties.

Theorem 4.1. Suppose the functions fj(z) are analytic in \Delta 1 = \{ z : | z| < 1\} , the
matrix M(z, z1, . . . , zn) is defined by (1.5), and the function h(z, z1, . . . , zn) is given
by (3.8). Consider the following conditions:

(a) There exist a nonsingular matrix

A =

\left(   a0,0 . . . a0,n
...

. . .
...

an,0 . . . an,n

\right)   ,

an analytic function B(z) in \Delta 1, and a nonconstant meromorphic function
C(z) in \Delta 1 such that fj(z) =

\sum n
k=0 aj,k

\~fk(z), where

(4.4) \~fk(z) = B(z)C(z)k.

(b) There exist meromorphic functions g(z) and g(z, w) such that

(4.5)
h(z, z1, . . . , zn)

h(1, z1, . . . , zn)
= g(z)

n\prod 
k=1

g(z, zk).

(c) There exist a constant c and a meromorphic function f(z) such that

(4.6)
\partial 

\partial z

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

\bigm| \bigm| \bigm| \bigm| 
z=1

= c+

n\sum 
k=1

f(zk).

If

(∗) the matrix M(1, \^z1, . . . , \^zn) is nonsingular for some \^z1, . . . , \^zn,

then conditions (a) and (b) are equivalent and (c) follows from them. If, moreover,

(∗∗) there exist 1 \leqslant j < k \leqslant n such that f \prime 
j(1)fk(1) \not = f \prime 

k(1)fj(1),

then all three conditions are equivalent. Also, if (∗∗) does not hold, then (c) is sat-
isfied for a constant function f(z). Furthermore, if conditions (a) and (∗) hold, then
conditions (b) and (c) hold for

g(z) =
B(z)

B(1)
, g(z, w) =

C(z) - C(w)

C(1) - C(w)
,(4.7)

c =
B\prime (1)

B(1)
, f(w) =

C \prime (1)

C(1) - C(w)
.(4.8)
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The proof of the theorem is given in the following subsections, where we prove
the implications (a) \Rightarrow (b) (under (∗)), (b) \Rightarrow (c), (c) \Rightarrow (a) (under conditions (∗)
and (∗∗)), and (b) \Rightarrow (a) (under (∗)). Afterwards, in subsection 4.5, we provide a
way to check condition (a) for an arbitrary set of functions f0(z), . . . , fn(z).

Remark 4.2 (condition (∗)). The nonsingularity condition (∗) means that equa-
tion (1.4) is well-defined at least for one choice of \^z1, . . . , \^zn, which is a natural re-
quirement for the analysis of (1.1). Since fj(1) \not = 0 for some j = 0, . . . , n, condition
(∗) is equivalent to linear independence between the functions f0(z), . . . , fn(z); see
Property 2.7 for \Lambda a = M(1, \^z1, . . . , \^zn).

Corollary 4.3. Suppose the functions fj(z) are analytic in \Delta 1 and linearly in-
dependent. Then

\blacktriangleright the pgf (1.1) has the factorization property if and only if the functions fj(z),
up to a linear transformation, form a geometric sequence (4.4);

\blacktriangleright the pgf (1.1) has the additive-mean property if and only if the functions fj(z)
either satisfy f \prime 

j(1)fk(1) = f \prime 
k(1)fj(1) for all j, k = 0, . . . , n, or, up to a linear

transformation, form a geometric sequence (4.4).

Remark 4.4 (comparison with [18]). Theorem 4.1 was partially proven for a spe-
cific function C(z) in [18]. There the focus was on proving (4.6) for certain systems
such as the bulk-service queue and the fixed-cycle traffic-light queue. This result al-
lows us to use contour integrals for finding the average queue length. Theorem 4.1
generalizes the result of [18] and describes all systems for which (4.6) applies. How-
ever, it does not imply that these are the only queuing systems for which the mean
value can be found using one contour integral. In this paper, we have considered a
special class of the pgf; see (1.1). If one is able to find the pgf in a factorized form,
e.g., as in (4.1), then the mean will be an additive function of the roots. For example,
this result can be applied to the GD/GD/1 queue considered in [21].

Remark 4.5 (degenerate case). Note that from definition (3.8) of the function
h(z, z1, . . . , zn), it follows that if condition (∗∗) does not hold, then (4.6) holds for
f(z) = 0 and c = f \prime 

0(1)/f0(1). In Example 4.6, we give an example of a queuing
system without condition (∗∗).

Example 4.6 (degenerate case). Consider a special bulk-service queue with vaca-
tions depending on the queue size. The arrivals are Poisson with rate 1. The size of
the batch is 3 and the service time is deterministic and equal to some d such that
2 < d < 3. If the server visits the queue and finds at least three customers, it immedi-
ately starts serving the first three customers. If upon a visit the server finds the queue
with j customers, j < 3, it serves them instantly and takes a vacation of deterministic
time vj with

v0 =  - 1 +
\sqrt{} 

d2  - 4d+ 7, v1 =  - 1 +
\sqrt{} 

d2  - 3d+ 3, v2 = d - 2.

Note that for d > 2, this time vj is positive for j = 0, 1, 2. It is possible to find the
pgf X(z) of the queue length at the times when the server visits the queue, i.e., after
a service or a vacation,

X(z) =

\sum 2
j=0 xj

\^fj(z)

z3  - ed(z - 1)
,

where xj is the probability of finding j customers in the queue upon a visit, and
\^fj(z) = (z  - 1)fj(z) = evj(z - 1)z3  - zjed(z - 1). One can check that f \prime 

j(1) =
\^f \prime \prime 
j (1)/2 =

2fj(1) = \^f \prime 
j(1) for all j = 0, 1, 2, which means that (∗∗) does not hold, and, therefore,
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that (c) holds for f(z) = 0. Thus, the mean queue length upon the server arrival is
independent of the roots of the characteristic equation z3 = ed(z - 1):

X \prime (1) =

\biggl( 
z  - 1

z3  - ed(z - 1)

\biggr) \prime 
\bigm| \bigm| \bigm| \bigm| \bigm| 
z=1

(3 - d) +

\sum 2
j=0 xjf

\prime 
j(1)\sum 2

j=0 xjfj(1)
=

d2  - 4d+ 6

6 - 2d
.

4.1. Proof of Theorem 4.1: (a) \Rightarrow (b). Consider the matrix M(z, z1, . . . , zn)
at some point (z, z1, . . . , zn) such that the matrix is nonsingular. Given (a), the matrix
M(z, z1, . . . , zn) is a linear transformation of an alternant matrix with the functions
\~fk(z) = B(z)C(z)k:

M(z, z1, . . . , zn)(A
T ) - 1 =

\left(   B(z) . . . B(z)C(z)n

...
. . .

...
B(zn) . . . B(zn)C(zn)

n

\right)   ,

which is similar to a Vandermonde matrix. Hence, its determinant is equal to

det(M(z, z1, . . . , zn)(A
T ) - 1) = B(z)

n\prod 
k=1

B(zk)VC(z, . . . , zn),

where VC(z, . . . , zn) = V (C(z), C(z1), . . . , C(zn)) is the Vandermonde determinant
for variables C(z), C(z1), . . . , C(zn). Therefore, given the fact that the matrices A
and M(1, z1, . . . , zn) are nonsingular, we obtain

(4.9)
h(z, z1, . . . , zn)

h(1, z1, . . . , zn)
=

det(M(z, z1, . . . , zn)(A
T ) - 1)

det(M(1, z1, . . . , zn)(AT ) - 1)
=

B(z)

B(1)

n\prod 
k=1

C(z) - C(zk)

C(1) - C(zk)
.

This is exactly (4.5) with the functions g(z) and g(z, w) defined as in (4.7). Note
that due to the continuity of the functions on the left-hand side and the right-hand
side of (4.9) in their support, the equality holds also at points where the matrix
M(1, z1, . . . , zn) is singular, but h(1, z1, . . . , zn) \not = 0; see also Remarks 2.5 and 2.12.

4.2. Proof of Theorem 4.1: (b) \Rightarrow (c). This implication does not require
(∗) or (∗∗). Note that from (4.5) it follows that g(1)

\prod n
k=1 g(1, zk) = 1. Hence,

\partial 

\partial z

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

\bigm| \bigm| \bigm| \bigm| 
z=1

=
\partial 

\partial z

\Biggl( 
g(z)

g(1)

n\prod 
k=1

g(z, zk)

g(1, zk)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
z=1

=
g\prime (1)

g(1)
+

n\sum 
k=1

\partial 

\partial z

g(z, zk)

g(1, zk)

\bigm| \bigm| \bigm| \bigm| 
z=1

.

Thus, one can choose c = g\prime (1)/g(1) and f(w) = \partial /\partial z g(z, w)/g(1, w)| z=1. If the
functions g(z) and g(z, w) are defined as in (4.7), then c and f(w) are defined as in
(4.8).

4.3. Proof of Theorem 4.1: (c) \Rightarrow (a). This is the most involved part of the
proof. Here, we use several results, given as lemmas, that are proved separately in
the appendix. First, we consider a linear transformation of the functions fj(z), given
by the following lemma; see proof in Appendix A.5.

Lemma 4.7. If the functions fj(z) are analytic in \Delta 1 and linearly independent,

then there exist a point z\ast \in \Delta 1 and functions \~fk(z) such that fj(z) =
\sum n

k=0 \~aj,k
\~fk(z)

and

(4.10) \~fk(z) = (z  - z\ast )k + o((z  - z\ast )k) as z \rightarrow z\ast .

Moreover, z\ast can be any point in \Delta 1 except a finite set of points, and the function
\~fn - 1(z) can be chosen such that \~fn - 1(1) \not = 0.
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In our case, we can apply Lemma 4.7, because the matrix M(1, \^z1, . . . , \^zn) is
nonsingular, and, therefore, the functions f0(z), . . . , fn(z) are linearly independent.
Since z\ast can be any point in the unit disk except a finite number of points, we can
assume, without loss of generality, that z\ast = 0, aj,k = \delta jk, and \~fn - 1(1) \not = 0, where
\delta jk is the Kronecker delta.

Now, suppose that (4.6) holds. We will focus on determining fk+1(z)/fk(z). For
this, we will consider the cases where zk+1 = \cdot \cdot \cdot = zn = 0 for k = 1, . . . , n. The
following lemma gives the value of h(z, z1, . . . , zn)/h(1, z1, . . . , zn) for each k. The
proof is given in Appendix A.6.

Lemma 4.8. For k > 0,

(4.11)
h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

det\Lambda k(z, z1, . . . , zk)

det\Lambda k(1, z1, . . . , zk)
,

where

\Lambda k(z, z1, . . . , zk) =

\left(     
fn - k(z) . . . fn(z)
fn - k(z1) . . . fn(z1)

...
. . .

...
fn - k(zk) . . . fn(zk)

\right)     .

To find the function f(z) in (4.6), we consider k = 1. Using Lemma 4.8, we find

(4.12)
h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)
=

fn(z1)fn - 1(z) - fn(z)fn - 1(z1)

fn(z1)fn - 1(1) - fn(1)fn - 1(z1)
.

Let C(z) = fn(z)/fn - 1(z). Note that the function C(z) is not a constant since the
functions fn(z) and fn - 1(z) are linearly independent. Using the function C(z), we
can rewrite (4.12) as

(4.13)
h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)
=

fn - 1(z)

fn - 1(1)

C(z) - C(z1)

C(1) - C(z1)
.

Note that C(1) and the right-hand side of (4.13) are well-defined since fn - 1(1) =
\~fn - 1(1) \not = 0; see the choice of z\ast . Taking the derivative gives us

\partial 

\partial z

h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)

\bigm| \bigm| \bigm| \bigm| 
z=1

=
f \prime 
n - 1(1)

fn - 1(1)
+

C \prime (1)

C(1) - C(z1)
.

Equation (4.6) defines the constant c and the function f(w) up to a constant, i.e., con-
stant c can be arbitrarily chosen. Therefore, we redefine f(w) as C \prime (1)/ (C(1) - C(w)).
This leads to c = f \prime 

n - 1(1)/fn - 1(1) - (n - 1)C \prime (1)/C(1) since f(0) = C \prime (1)/C(1). Here,
we used the fact that C(0) = limz\rightarrow 0 fn(z)/fn - 1(z) = limz\rightarrow 0 z

n/zn - 1 = 0.
Now, it is left to prove that condition (a) follows from the equation

(4.14)
\partial 

\partial z

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

\bigm| \bigm| \bigm| \bigm| 
z=1

=
f \prime 
n - 1(1)

fn - 1(1)
 - (n - 1)

C \prime (1)

C(1)
+

n\sum 
k=1

C \prime (1)

C(1) - C(zk)

with B(z) = fn(z)/C(z)n. Recursive application of the following lemma together
with a linear transformation of the functions fj(z) concludes the proof of implication
(c) \Rightarrow (a). The proof of Lemma 4.9 is given in Appendix A.7.
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Lemma 4.9. Consider k \geqslant 2. Suppose that (∗∗) is satisfied and (4.14) holds for
zk+1 = \cdot \cdot \cdot = zn = 0. Suppose also that fj+1(z)/fj(z) = C(z) for j = n  - k +
1, . . . , n - 1. Then there exist coefficients \beta j, j = 0, . . . , k, such that

(4.15) fn - k(z) = \beta 0fn - k+1(z)/C(z) +

k\sum 
j=1

\beta jfn - k+j(z).

Remark 4.10 (importance of linear transformation). It would be sufficient to
prove that fj+1(z) = C(z)fj(z) for j = 0, . . . , n  - 2. However, it may be not true.
For example, the functions 1 + z, z, and z2 satisfy conditions (a)--(c) and (4.10), but
z/(1 + z) \not = z = z2/z.

4.4. Proof of Theorem 4.1: (b) \Rightarrow (a). We prove (b) \Rightarrow (a) under (∗)
similarly to (c) \Rightarrow (a) under (∗) and (∗∗). We proceed from (4.13) and define g(z, w)
as in (4.7). Note that equality (4.13) does not require condition (∗∗), which we used
only in Lemma 4.9. Using (4.13) and the definition of g(z, w), we find that

g(z) =
fn - 1(z)(C(1))n - 1

fn - 1(1)(C(z))n - 1
.

Thus, from (4.5), we obtain

(4.16)
h(z, z1, . . . , zn)

h(1, z1, . . . , zn)
=

fn - 1(z)(C(1))n - 1

fn - 1(1)(C(z))n - 1

n\prod 
k=1

C(z) - C(zk)

C(1) - C(zk)
.

Similarly to the case (c) \Rightarrow (a), we conclude the proof by recursively applying the
following lemma together with a linear transformation of the functions fk(z). The
proof of Lemma 4.11 is similar to that of Lemma 4.9 and is given in Appendix A.8.

Lemma 4.11. Consider k \geqslant 2. Suppose that (4.16) holds for zk+1 = \cdot \cdot \cdot = zn = 0,
and that fj+1(z)/fj(z) = C(z) for j = n - k+1, . . . , n - 1. Then there exist coefficients
\beta j, j = 0, . . . , k, such that (4.15) holds.

4.5. Factorization property and linear transformations. In this subsec-
tion, we show how to check whether the pgf (1.1) has the factorization property
and, consequently, also the additive-mean property. Assuming condition (a) of The-
orem 4.1, we give an algorithm for finding the required matrix A and the functions
B(z) and C(z). Afterwards, one only needs to check that the equality (4.4) holds.

Consider linearly independent functions f0(z), . . . , fn(z). Without loss of gener-
ality, we can assume that their Wronskian detW (z), defined in (2.1), is not equal
to 0 at z = 0. Then, as shown in the proof of Lemma 4.7 in Appendix A.5, matrix
W (0) gives such a linear transformation of the functions fj(z), j = 0, . . . , n, that the

resulting functions \~fj(z) satisfy (4.10) for z\ast = 0; see (A.2). From the proof of the

implication (b) \Rightarrow (a) it follows that if the functions \~fj(z) satisfy condition (a) and

property (4.10) for z\ast = 0, then one can choose C(z) = \~fn(z)/ \~fn - 1(z), and there
exist such coefficients \beta j,k, j = 0, . . . , n - 2, k = j, . . . , n, that

(4.17) \~fj(z) = \beta j,j
z

C(z)

\~fj+1(z)

z
+ \beta j,j+1

\~fj+1(z) + \cdot \cdot \cdot + \beta j,n
\~fn(z);

see Lemma 4.11. Here the functions z/C(z) and \~fj+1(z)/z are both analytic in a
neighborhood of 0. To find coefficients \beta j,k, consider the Taylor expansion of both
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sides of (4.17) at z = 0. Since the functions \~fj(z) satisfy property (4.10) for z\ast = 0,
the first j terms in the expansions are equal to 0. The next n+1 - j terms give a linear
system of equations for \beta j,k, k = j, . . . , n, with a unitriangular matrix. Plugging the
solution of this system back in (4.17), one gets a functional equality for each j if and
only if condition (a) of Theorem 4.1 holds.

5. Applications. The results of this paper may be applied to many queuing
systems. Example 3.2 describes a generic system where the customers are served in
batches when the queue is long. Note that the batch size may be random, and only its
maximum size is fixed. In case the queue is short, the arrival and the service processes
can be arbitrary and can even depend on the queue length. Such a batching service
occurs in numerous applications. For example, in traffic models, an intersection can
serve a number of vehicles during a green period, but when there is no queue, the
vehicles may proceed without stopping with a higher speed than those that need to
wait. As a result, more vehicles may pass the intersection; see [19], [18]. For the
multiserver queues M/D/s and Geo/D/s, the queue length at times md, where d is
the deterministic length of service, m \in \BbbN , behaves as the classical bulk-service queue
length just after service with Poisson or binomial arrivals, respectively; see [12], [14].
In many manufacturing systems, production at each stage takes place in batches, due
to often large setup or changeover times to prepare for a particular product type. Also
the transportation between stages of production or facilities is done in batches to use
the transportation means economically. In these systems, the service only starts if at
least a minimum load or number of products is available; see [11]. In subsection 3.2,
we considered a special case of a classical bulk-service queue. This system has the
factorization property, which allowed us to give the explicit solution (3.17). However,
not every general bulk-service queue has this property; see subsection 5.1.

The roots of a characteristic equation may appear in other cases as well. For
example, it often happens if the distributions of the involved random variables have a
specific form. For a queuing example, we refer the reader to [21], where a GD/GD/1
queue is analyzed for the case when either interarrival or service times have a rational
pgf. In subsections 5.2 and 5.3, we give two nonqueuing examples.

5.1. A general bulk-service queue. Consider a general bulk-service queue
introduced in Example 3.2. Recall that fj(z) = (zn+1Yj(z) - zjY (z))/(z  - 1), where
Yj(z) (resp., Y (z)) is the pgf of the number of arrivals if there are j < n+1 (resp., at
least n+1) customers in the queue prior to service, and the service capacity is n+1.

First, we consider the case when Y (0) \not = 0. Then the functions fj(z)/Y (0) satisfy
property (4.10) for z\ast = 0. Therefore, the Wronskian (2.1) of the functions fj(z) is not
equal to zero at z = 0, which means that the functions fj(z) are linearly independent.

For this bulk-service queue, (4.17) can be rewritten as

(5.1) Yj(z)z
n+1 = zjY (z) + \beta j,j

Yn - 1(z)z
2  - Y (z)

Yn(z)z  - Y (z)
(Yj+1(z)z

n  - zjY (z))

+ \beta j,j+1(Yj+1(z)z
n+1  - zj+1Y (z)) + . . .+ \beta j,n(Yn(z)z

n+1  - znY (z)).

Note that the system for coefficients \beta j,k is independent of Yj(z). Thus, Yj(z) is
completely defined by the functions Yj+1(z), . . . , Yn(z) and Y (z). If (5.1) holds for
j = 0, . . . , n  - 2, we get that functions Y0(z), . . . , Yn - 2(z) are fully determined by
Yn - 1(z), Yn(z), and Y (z). Thus, a general bulk-service queue with the factorization
property can be defined by the value of n and three functions. Note, however, that not
all combinations of pgfs Yn - 1(z), Yn(z), and Y (z) result in feasible functions Yj(z),
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meaning there is no such bulk-service queue with the factorization property and such
pgfs Yj(z).

Now, suppose Y (0) = 0. In this case, z = 0 is a zero of the denominator and
of each function fj(z). Thus, the matrix (1.5) has at least one row of zeros, and
the solution of (1.4) is not well-defined. To resolve this problem, consider X(0) = x0,
which is the probability of having an empty queue at the start of a time slot. Plugging
z = 0 in (3.1), we obtain a balance equation x0(1  - Y0(0)) =

\sum n
j=1 xjYj(0), which

is nontrivial for x0 if Y0(0) \not = 1. Note that if Y0(0) = 1, the queue always stays
empty if it becomes empty once. Plugging the value of x0 into the numerator of
X(z) and dividing both the numerator and the denominator by z, we obtain another
representation of X(z) as (1.1) with only n functions. This procedure can be repeated
in case Y \prime (0) = \cdot \cdot \cdot = Y (k)(0) = 0 for some k \geqslant 1. Afterwards, one can use (4.17) to
check whether the pgf has the factorization property.

5.2. Item-degradation model. In condition-based maintenance, the mainte-
nance decisions are based on the system degradation, e.g., wear, fatigue, and cor-
rosion; see [2]. The degradation is monitored systematically using an appropriate
sensors technology that reveals the item condition. Consider an item that is subject
to discrete-value random degradation, which is independent of the current condition of
the item. The item is maintained according to the control limit policy (see [5]), as fol-
lows. There is a preventive degradation threshold, yp (in units of degradation), upon
which and beyond the item receives preventive maintenance. If the failure degradation
threshold, yc (\geqslant yp), is reached, the item has failed and must be repaired. Preventive
maintenance and failure repair take one unit of time and bring the item back to zero
degradation value (as-good-as-new state). The maintenance and the repair action
costs may depend on the degradation value at which these actions are taken.

The item's degradation evolution over time can be modeled as a discrete-time
Markov chain with infinite state space \{ 0\} \cup \BbbN , where state k corresponds to k units
of degradation. From the state k < yp, the Markov chain jumps to state k + j with
probability pj , j \geqslant 0. For the state k \geqslant yp, the only transition is to state 0 with
probability 1. Let xk be the steady-state probability for state k, and let X(z) be the
corresponding pgf. The pgf of the distribution of pj is denoted by F (z). Then the
balance equations are given by

x0 = p0x0 +

\infty \sum 
j=0

xyp+j ,

xk =

min\{ k,yp - 1\} \sum 
j=0

pk - jxj for k \geqslant 1.

This system can be written in terms of pgfs as follows:

(5.2) X(z) = X(z)F (z) +

\infty \sum 
j=0

xyp+j(1 - zyp+jF (z)).

Now suppose that the distribution of the degradation random variable has a
geometric tail starting at n+1 for some n \geqslant 0, i.e., for some \rho < 1, pn+j+1 = \rho jpn+1

for j \geqslant 0 and pn+1 \not = \rho pn. Then, from the balance equations, we obtain xyp+n+j =
\rho jxyp+n, j \geqslant 0, which means that the distribution of the item's degradation also has
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a geometric tail. Thus, (5.2) can be rewritten as

(5.3) X(z) =

\sum n - 1
j=0 xyp+j(1 - zyp+jF (z))(1 - \rho z) + xyp+n

\Bigl( 
1 - \rho z
1 - \rho  - zyp+nF (z)

\Bigr) 
(1 - F (z))(1 - \rho z)

.

There are n+ 1 unknowns in the numerator of the pgf, namely, xyp
, . . . , xyp+n. The

denominator D(z) = (1  - F (z))(1  - \rho z) = 1  - \rho z  - 
\sum n

j=0 pjz
j(1  - \rho z)  - pn+1z

n+1

is a polynomial of power n + 1 and, therefore, has n + 1 zeros, \^z0, . . . , \^zn, in the
complex plain, including \^z0 = 1. Note that D(1/\rho ) \not = 0, which means that \^zj \not = 1/\rho ,
j = 0, . . . , n. The form (5.3) suggests that xm = c\rho m+

\sum n
j=1 cj/\^z

m
j for large m. Since

xm+1 = \rho xm for large m, we get that cj = 0, which means that the numerator of
(5.3) is zero at \^zj , j = 1, . . . , n. Thus, we obtain a linear system of equations of type
(1.4).

Note that D(z)/(z - 1) gives, up to a constant coefficient, the minimal polynomial
for \^z1, . . . , \^zn, and, therefore, the values of the elementary symmetric polynomials \sigma m;
see (2.2) and (2.3). To simplify the computations, one can substitute F (z) by 1 in the
functions of the numerator, which results in the same values of fj(\^zk), but simplifies
(k, n)-transforms, given in (2.5), of the functions. In this case, fj(z), j = 0, . . . , n,
are given by a linear combination of the functions 1, z, and zyp , . . . , zyp+n. Note that
the (k, n)-transform of zyp+j coincides with (k + 1, n)-transform of zyp+1. Thus, the
number of required computations is linear in n.

5.3. Renewal risk model. Consider a discrete-time Sparre Andersen risk pro-
cess, defined as follows. Suppose there is an initial surplus u \in \{ 0\} \cup \BbbN with a constant
premium rate 1. The claims arrive according to a renewal process with interarrival
times Wi \in \BbbN with the pgf k(z) and claim sizes Xi \in \BbbN with the pgf p(z), i = 1, 2, . . . .
It is assumed that \BbbE (Xi) < \BbbE (Wi). Let N(n) = max\{ k : W1 +W2 + \cdot \cdot \cdot +Wk \leqslant n\} 
be the number of claims up to time n. Then the assets at time n are given by

U(n) = u+ n - 
N(n)\sum 
i=1

Xi, n = 1, 2, . . . ;

see [16]. Let T = min\{ n \in \BbbN : U(n) < 0\} be the time of ruin. Suppose there is a non-
negative penalty function w(x, y) for the surplus, x, just before ruin and the deficit, y,
at ruin, meaning U(T  - 1) = x, | U(T )| = y. Let v \in (0, 1) be the discount factor over
one time interval. Consider the expected discounted penalty (Gerber--Shiu) function:

\phi (u) = \BbbE (vT w(U(T  - 1), | U(T )| )1\{ T < \infty \} | U(0) = u),

where 1\{ A\} is the indicator function of the event A. Let \^\phi (z) =
\sum \infty 

u=0 z
u\phi (u) be the

generating function of \phi (u).
Suppose that the interarrival times Wi have a discrete Kn distribution, i.e.,

k(z) = k1(z)/k2(z), where k1(z) is a polynomial of power not more than n, k2(z) =\prod n
j=1(1  - qjz) for some 0 < qj < 1. This class of distributions includes (shifted)

geometric distribution, negative binomial distribution, and convolution of several geo-
metric distributions. In this case (see [16]), \^\phi (z) can be written in a fractional form:

\^\phi (z) =
\omega (z)k1(v/z)z

n +Qn - 1(z)

(1/k(v/z) - p(z))k1(v/z)zn
,

where \omega (z) =
\sum \infty 

y=1 z
y
\sum \infty 

x=y+1 w(y  - 1, x  - y)\BbbP (X1 = x), and Qn - 1(z) is an un-
known polynomial of power n  - 1. Note that k1(v/z)z

n is a polynomial of power at
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most n, and, therefore, \omega (z)k1(v/z)z
n is an analytic function. In [16], it is shown,

that 1/k(v/z)  - p(z) has n zeros \^z1, . . . , \^zn in the unit circle with 0 < | zk| < 1, and
that they also should be zeros of the numerator. This gives a linear system of equa-
tions of type (1.2), with f0(z) = \omega (z)k1(v/z)z

n, fj(z) = zj - 1 for j = 1, . . . , n, and
fixed x0 = 1. The only difference with the system (1.4), studied in this paper, is in
the normalization equation, i.e., x0 = 1 instead of (1.3). Thus, the solution will differ
from the solution of (1.4) by a constant multiplier, which can be found using (3.5) for
j = 0. In this way, we obtain

\^\phi (z) =
det \=M(z, \^z1, . . . , \^zn)

D(z) det \=M0(\^z1, . . . , \^zn)
,

where D(z) = (1/k(v/z)  - p(z))k1(v/z)z
n, and \=M0 is the matrix \=M(z, \^z1, . . . , \^zn),

defined in (3.7), without the first row and column. We note that the function \^\phi (z)
can be used, for example, to obtain the ruin probability; see [16] for the details.

6. Conclusions. In this paper, we have analyzed a class of pgfs that often occurs
in the analysis of queuing systems and other stochastic models. The pgf contains
several unknowns that can be found using the roots of the characteristic equation.
We have given an explicit matrix representation of the pgf in terms of the roots (see
Theorem 3.6), where the matrix entries are symmetric functions of the roots. The
same matrix can be used to obtain the unknowns; see Theorem 3.7. Our representation
allows one to use the roots even if they are close to each other or coincide without
encountering the corresponding numerical problems. Moreover, it is possible to find
the pgf and the unknowns using contour integrals instead of computing the roots,
which can further improve the accuracy.

We have studied the cases where the pgf has a special product form, and where
the mean value is an additive function of the roots. We have shown that these prop-
erties are equivalent under a nondegeneracy condition and have given a necessary and
sufficient condition for them; see Theorem 4.1. For systems with these properties,
both the pgf at a point and the mean may be found using one contour integral. If the
nondegeneracy condition does not hold, the mean is independent of the roots.

One of the directions for further research is to generalize our results to other
queuing systems that involve roots of a certain equation but do not have a rational
pgf such as the one studied in this paper. For example, this may happen when a
system is analyzed using Laplace--Stieltjes transforms (see, e.g., [9]) or matrices (see,
e.g., [8]). Since the roots are usually numbered in an arbitrary order (except for
z0 = 1), the dependency of the unknowns on these roots should be symmetric. For
this reason, we believe that the ideas of this paper can be used in the analysis of such
systems, and, therefore, the unknowns can be expressed in terms of contour integrals.
Another research direction would be to describe all symmetric functions that can be
represented as contour integrals. Also, it would be interesting to find such model
conditions that guarantee the special product form of the pgf studied in Theorem 4.1.
Finally, our closed-form integral results might be used to obtain structural results for
the considered models.

Appendix A. Proofs of the auxiliary results. In this appendix, we give
the proofs of the auxiliary results: Properties 2.7 and 2.8, Lemmas 2.11, 4.7--4.9, and
4.11, and bound (2.11).

A.1. Proof of Property 2.7. In this subsection, we prove Property 2.7. We use
induction by n. Consider n = 1. Suppose the matrix

\bigl( a0 a1

f0(z1) f1(z1)

\bigr) 
is singular for all
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z1. Then a0f1(z1) = a1f0(z1) for all z1. If either a0 or a1 is nonzero, the functions are
linearly dependent. Suppose we proved the statement for n - 1. Using the Laplace ex-
pansion for the second row of \Lambda a, we find 0 = det\Lambda a =

\sum n
j=0( - 1)j+1 det\Lambda a,jfj(z1),

where \Lambda a,j is the matrix \Lambda a without the second row and the (j + 1)st column. If
det\Lambda a,j , as a function of z2, . . . , zn, is not identically 0 for some j, then the functions
f0(z1), . . . , fn(z1) are linearly dependent. Now suppose that det\Lambda a,j is identically
0 for all j = 0, . . . , n. Without loss of generality, we can assume a1 \not = 0. Apply-
ing the induction hypothesis to the n \times n matrix \Lambda a,0, we find that the functions
f1(z), . . . , fn(z) are linearly dependent, and so are the functions f0(z), . . . , fn(z).

A.2. Proof of Property 2.8. In this subsection, we prove Property 2.8. Recall
that we need to prove that

\sum n
j=0( - 1)j\sigma j\zeta m - j = 0 for any m > 0. The proof will be

done using generating functions. First, we note that

\infty \sum 
m=0

\zeta mzm =

n\prod 
k=1

\infty \sum 
l=0

(zkz)
l =

n\prod 
k=1

1

1 - zkz
.

The above equality holds for sufficiently small z, i.e., for | z| < mink=1,...,n - 1 1/| zk| .
Second, from (2.3), we get

n\prod 
k=1

(1 - zkz) = zn
n\prod 

k=1

(z - 1  - zk) =

n\sum 
j=0

( - 1)j\sigma j z
j .

Hence,

1 =

n\prod 
k=1

1 - zkz

1 - zkz
=

\infty \sum 
m=0

\zeta mzm
n\sum 

j=0

( - 1)j\sigma j z
j .

Note that the last equation is an equality of two analytic functions. Thus, the co-
efficients at powers of z should coincide. Result (2.4) follows from considering the
coefficient at zm for m > 0.

A.3. Proof of Lemma 2.11. In this subsection, we prove Lemma 2.11. We use
the first Jacobi--Trudi formula (see [4]), which can be written as

(A.1) det

\left(   zm1
1 . . . zmn

1
...

. . .
...

zm1
n . . . zmn

n

\right)   = V (z1, . . . , zn) det

\left(   \zeta m1
. . . \zeta mn

...
. . .

...
\zeta m1 - n+1 . . . \zeta mn - n+1

\right)   .

It is used for the Schur polynomials, for which m1 > \cdot \cdot \cdot > mn. However, the result is
general. In particular, a permutation of rows gives the result for any m1, . . . ,mn such
that mk \not = mj for any k \not = j. Note also that if mk = mj for k \not = j, then both sides of
(A.1) are equal to 0. Lemma 2.11 follows from (A.1) by summing it for all possible
combinations (m1, . . . ,mn) with coefficients

\prod n
j=1 \alpha j,mj . Note also that (A.1) is a

special case of Lemma 2.11.

A.4. Proof of bound (2.11). In this subsection, we prove bound (2.11). Sup-
pose | \^zk| \leqslant q for k = 1, . . . , n, and | \alpha l| \leqslant Crl for l = 0, 1, . . . , where f(z) =

\sum \infty 
l=0 \alpha lz

k.
The latter condition holds if the function f(z) is analytic in a disk with radius greater
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than 1/r. Suppose also that qr < 1. Then we can give the following bound:\bigm| \bigm| \bigm| \bigm| \bigm| Fn
k (\^z1, . . . , \^zn) - 

M\sum 
l=0

\alpha k+l\zeta l(\^z1, . . . , \^zn)

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 

\infty \sum 
l=M+1

\alpha l+k\zeta l(\^z1, . . . , \^zn)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leqslant 

\infty \sum 
l=M+1

| \alpha l+k| | \zeta l(\^z1, . . . , \^zn)| \leqslant Crk
\infty \sum 

l=M+1

rl\zeta l(| \^z1| , . . . , | \^zn| )

\leqslant Crk
\infty \sum 

l=M+1

rl\zeta l(q, . . . , q) \leqslant Crk
\infty \sum 

l=M+1

\biggl( 
l + n - 1

l

\biggr) 
(qr)l

!
= Crk

\biggl( 
M + n

M

\biggr) \sum n
l=1( - 1)l+1

\bigl( 
n
l

\bigr) 
l

M+l (qr)
M+l

(1 - qr)n

= Crk
\biggl( 
M + n

M

\biggr) 
n
\sum n - 1

l=0 ( - 1)l
\bigl( 
n - 1
l

\bigr) 
1

M+l+1 (qr)
M+l+1

(1 - qr)n

= Crk
\biggl( 
M + n

n

\biggr) 
n
\int qr

0
xM (1 - x)n - 1dx

(1 - qr)n
\leqslant Crk

\biggl( 
M + n

n

\biggr) 
n
\int qr

0
xMdx

(1 - qr)n

= Crk
\biggl( 
M + n

n

\biggr) 
n(qr)M+1

(M + 1)(1 - qr)n
= Crk

\biggl( 
M + n

n - 1

\biggr) 
(qr)M+1

(1 - qr)n
.

Equality
!
= can be proven using induction by M as follows. Consider Sn,M =

Sn,M (x) =
\sum \infty 

l=M+1

\bigl( 
l+n - 1

l

\bigr) 
xl. Observe that

\bigl( 
l+n - 1

l

\bigr) 
is equal to the number of ways

to put l objects into n boxes. Therefore, for M = 0, we get

Sn,0 =

\biggl( \infty \sum 
j=0

xj

\biggr) n
 - 1 =

1

(1 - x)n
 - 1 =

\sum n
l=1( - 1)l+1

\bigl( 
n
l

\bigr) 
xl

(1 - x)n
.

Now suppose we have proved the statement for Sn,M - 1. Consider Sn,M :

Sn,M (1 - x)n =

\biggl( 
Sn,M - 1  - 

\biggl( 
M + n - 1

M

\biggr) 
xM

\biggr) 
(1 - x)n

=

\biggl( 
M + n - 1

M  - 1

\biggr) n\sum 
l=1

( - 1)l+1

\biggl( 
n

l

\biggr) 
l

M + l  - 1
xM+l - 1  - 

\biggl( 
M + n - 1

M

\biggr) 
xM (1 - x)n

=

\biggl( 
M + n - 1

M  - 1

\biggr) n - 1\sum 
l=0

( - 1)l
\biggl( 

n

l + 1

\biggr) 
l + 1

M + l
xM+l  - 

\biggl( 
M + n - 1

M

\biggr) n\sum 
l=0

( - 1)l
\biggl( 
n

l

\biggr) 
xM+l

=

n\sum 
l=0

( - 1)l
\biggl[ 

(M + n - 1)!(n - l)

(M  - 1)!l!(n - l)!(M + l)
 - (M + n - 1)!n

M !l!(n - l)!

\biggr] 
xM+l

=

n\sum 
l=0

( - 1)l
(M + n - 1)!

(M  - 1)!l!(n - l)!

\biggl( 
n - l

M + l
 - n

M

\biggr) 
xM+l

=

n\sum 
l=0

( - 1)l+1 (M + n)!

M !l!(n - l)!

l

M + l
xM+l =

\biggl( 
M + n

M

\biggr) n\sum 
l=1

( - 1)l+1

\biggl( 
n

l

\biggr) 
l

M + l
xM+l.

A.5. Proof of Lemma 4.7. In this subsection, we prove Lemma 4.7. Recall
that we need to prove that there exists a point z\ast \in \Delta 1 such that the functions
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fj(z) after a linear transformation give the functions \~fk(z) that are locally equal to
(z  - z\ast )k + o((z  - z\ast )k).

Functions fj(z), j = 0, . . . , n, are analytic and linearly independent. Therefore,
the Wronskian detW (z) of functions f0(z), . . . , fn(z) is not identically 0; see Prop-
erty 2.6. Note that detW (z) is an analytic function in \Delta 1 and, therefore, it has not
more than a finite number of zeros in \Delta 1. Let z\ast \in \Delta 1 be such that detW (z\ast ) \not = 0.
Define the functions \~f0(z), . . . , \~fn(z) by the following linear combination:

(A.2)
\bigl( 
\~f0(z)/0! \~f1(z)/1! . . . \~fn(z)/n!

\bigr) 
=
\bigl( 
f0(z) f1(z) . . . fn(z)

\bigr) 
(W (z\ast )) - 1.

Consider the matrix \~W (z) for the functions \~f0(z)/0!, . . . , \~fn(z)/n! defined as

\~W (z) =

\left(     
\~f0(z) \~f1(z) . . . \~fn(z)/n!
\~f \prime 
0(z)

\~f \prime 
1(z) . . . \~f \prime 

n(z)/n!
...

...
. . .

...
\~f
(n)
0 (z) \~f

(n)
1 (z) . . . \~f

(n)
n (z)/n!

\right)     .

At point z\ast , we get that \~W (z\ast ) = W (z\ast )(W (z\ast )) - 1 becomes the identity matrix.

Thus, \~f
(l)
k (z\ast ) = 0 for l < k and \~f

(k)
k (z\ast )/k! = 1, which means that the functions

\~f0(z), . . . , \~fn(z) satisfy (4.10).

Remark A.1 (nonzero value at 1). Given condition (∗) (see Theorem 4.1), one
can choose z\ast and the functions \~fk(z) such that for a particular index k, \~fk(1) \not = 0.
To see this, let us first consider the case k = n. Since fj(1) \not = 0 for at least one j,
we can consider a linear transformation of the functions fk(z) such that f0(1) \not = 0,
and fk(1) = 0 for all k \not = 0. Then \~fn(1) \not = 0 if and only if the coefficient of f0(z) in
the definition of \~fn(z) (see (A.2)) is nonzero. This coefficient, up to multiplication by
detW (z\ast ) and a sign, is equal to the Wronskian for the functions f1(z), . . . , fn(z) at
point z\ast , which is nonzero for all possible z\ast except a finite set. Note that if \~fn(1) \not = 0,
then either \~fk(1) \not = 0 or \~fk(1)+ \~fn(1) \not = 0. Therefore, the result for all k follows from
the fact that \~fk(z) + \~fn(z) satisfies (4.10) for i = k.

A.6. Proof of Lemma 4.8. In this subsection, we prove Lemma 4.8. We need
to prove (4.11), i.e.,

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

det\Lambda k(z, z1, . . . , zk)

det\Lambda k(1, z1, . . . , zk)
,

where \Lambda k(z, z1, . . . , zk) is an alternant matrix constructed using the functions fn - k(z),
. . . , fn(z) and the points z, z1, . . . , zk.

Recall that the function h(z, z1, . . . , zk, 0, . . . , 0) is the determinant of the ma-
trix \=M(z, z1, . . . , zk, 0, . . . , 0), whose entries are F

n
j,m(z1, . . . , zk, 0, . . . , 0). From Prop-

erty 2.9, we get Fn
j,m(z1, . . . , zk, 0, . . . , 0) = F k

j,m(z1, . . . , zk). Now, according to Prop-

erty 2.10, F k
j,m +

\sum k
l=1( - 1)l\sigma l(z1, . . . , zk)F

k
j,m+l = \alpha j,m, where fj(z) =

\sum \infty 
l=0 \alpha j,lz

l.

Thus, after a linear transformation, we get that the matrix \=M(z, z1, . . . , zk, 0, . . . , 0)
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changes to

(A.3)

\left(            

f0(z) . . . fn(z)
\alpha 0,0 . . . \alpha n,0

...
. . .

...
\alpha 0,n - k - 1 . . . \alpha n,n - k - 1

F k
0,n - k . . . F k

n,n - k
...

. . .
...

F k
0,n - 1 . . . F k

n,n - 1

\right)            
.

Here, we added the (m + l + 2)nd row multiplied by ( - 1)l\sigma l(z1, . . . , zk) to the
(m+ 2)nd row for l = 1, . . . , k and m = 0, . . . , n - k - 1. Now, note that \alpha j,k = 0 for
j > k and \alpha j,j = 1, which means that the matrix in (A.3) is equal to\left(          

f0(z) . . . fn - k - 1(z) fn - k(z) . . . fn(z)
1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
\alpha 0,n - k - 1 . . . 1 0 . . . 0
F k
0,n - k . . . F k

n - k - 1,n - k F k
n - k,n - k . . . F k

n,n - k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F k
0,n - 1 . . . F k

n - k - 1,n - 1 F k
n - k,n - 1 . . . F k

n,n - 1

\right)          
.

Hence, the determinant is equal to

(A.4) h(z, z1, . . . , zk, 0, . . . , 0) = ( - 1)n - k det

\left(     
fn - k(z) . . . fn(z)
F k
n - k,n - k . . . F k

n,n - k
...

. . .
...

F k
n - k,n - 1 . . . F k

n,n - 1

\right)     .

At this moment, we can use Lemma 2.11 to find that up to multiplication by the
Vandermonde determinant V (z1, . . . , zk), the determinant of the matrix on the right-
hand side of (A.4) is equal to the determinant of an almost alternant matrix

(A.5) V (z1, . . . , zk) det

\left(     
fn - k(z) . . . fn(z)
F k
n - k,n - k . . . F k

n,n - k
...

. . .
...

F k
n - k,n - 1 . . . F k

n,n - 1

\right)     = det

\left(       
fn - k(z) . . . fn(z)
fn - k(z1)

zn - k
1

. . . fn(z1)

zn - k
1

...
. . .

...
fn - k(zk)

zn - k
k

. . . fn(zk)

zn - k
k

\right)       ,

which is not identically equal to 0 due to the linear independence of the functions
fn - k(z), . . . , fn(z). Here, we used the fact that fj(z), j = n - k, . . . , n, satisfies (4.10)
and, therefore, has first n  - k  - 1 coefficients in the Taylor expansion equal to 0.
Hence, the (m, k)-transformation of the function fj(z)/z

n - k =
\sum \infty 

l=n - k \alpha j,lz
l - n+k

is equal to F k
j,n - k+m =

\sum \infty 
l=n - k+m \alpha j,l\zeta l - n+k - m. Combining (A.4) and (A.5) gives

(4.11), thereby concluding the proof.

A.7. Proof of Lemma 4.9. In this subsection, we prove Lemma 4.9. In this
lemma, we assume that (4.14) holds for zk+1 = \cdot \cdot \cdot = zn = 0, i.e.,

\partial 

\partial z

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)

\bigm| \bigm| \bigm| \bigm| 
z=1

=
f \prime 
n - 1(1)

fn - 1(1)
 - (k  - 1)

C \prime (1)

C(1)
+

k\sum 
j=1

C \prime (1)

C(1) - C(zj)
,
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and that fj+1(z) = C(z)fj(z) for j = n  - k + 1, . . . , n  - 1. We need to prove
that the function fn - k(z) is equal (up to a linear combination of the functions
fn - k+1(z), . . . , fn(z)) to \beta 0fn - k+1/C(z).

First, we apply Lemma 4.8 and get

(A.6)
h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

fn - k+1(z) detMG(z, z1, . . . , zk)

fn - k+1(1) detMG(1, z1, . . . , zk)
,

where

(A.7) MG(z, z1, . . . , zk) =

\left(      
1

G(z) 1 . . . C(z)k - 1

1
G(z1)

1 . . . C(z1)
k - 1

...
...

. . .
...

1
G(zk)

1 . . . C(zk)
k - 1

\right)      ,

and G(z) = fn - k+1(z)/fn - k(z).
Second, we find the derivative of (A.6) at 1:

(A.8)
\partial 

\partial z

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)

\bigm| \bigm| \bigm| \bigm| 
z=1

=
f \prime 
n - k+1(1)

fn - k+1(1)
+

\partial 

\partial z

detMG(z, z1, . . . , zk)

detMG(1, z1, . . . , zk)

\bigm| \bigm| \bigm| \bigm| 
z=1

.

Note that fn - 1(z) = fn - k+1(z)C(z)k - 2. Thus,

(A.9)
f \prime 
n - 1(1)

fn - 1(1)
=

f \prime 
n - k+1(1)

fn - k+1(1)
+ (k  - 2)

C \prime (1)

C(1)
.

Combining (4.14), (A.8), and (A.9), we get that

(A.10)
\partial 

\partial z

detMG(z, z1, . . . , zk)

detMG(1, z1, . . . , zk)

\bigm| \bigm| \bigm| \bigm| 
z=1

=  - C \prime (1)

C(1)
+

k\sum 
l=1

C \prime (1)

C(1) - C(zl)
.

Third, we prove that the functions C(z1)/G(z1), 1, . . . , C(z1)
k are linearly depen-

dent if C \prime (1) \not = 0, which we show later. Let \mu j(z) be the determinant of the matrix
MG(z, z1, . . . , zk) without the second row and (j + 1)st column, multiplied by ( - 1)j .
Note that \mu j(z) does not depend on z1. Fix any z2, . . . , zk such that \mu 0(1) \not = 0, which
is possible since the function C(z) is not constant. By multiplying both sides of (A.10)
by  - detMG(1, z1, . . . , zk), we get

(A.11)
1

G(z1)
\mu \prime 
0(1) +

k - 1\sum 
j=0

\mu \prime 
j+1(1)C(z1)

j =  - 1

G(z1)
\mu 0(1)

C \prime (1)

C(1)

+
1

G(z1)
\mu 0(1)

k\sum 
l=1

C \prime (1)

C(1) - C(zl)
+

k - 1\sum 
j=0

\mu j+1(1)C(z1)
j

\Biggl( 
 - C \prime (1)

C(1)
+

k\sum 
l=1

C \prime (1)

C(1) - C(zl)

\Biggr) 
.

Note that \mu 0(z) = V (C(z), C(z2), . . . , C(zk)). Hence, \mu \prime 
0(1) = \mu 0(1)

\sum k
l=2

C\prime (1)
C(1) - C(zl)

.

Therefore, we can rewrite (A.11) as

(A.12)
C(z1)

G(z1)
\mu 0(1)

C \prime (1)

C(1)(C(1) - C(z1))

=

k - 1\sum 
j=0

C(z1)
j

\Biggl( 
\mu \prime 
j+1(1) + \mu j+1(1)

C \prime (1)

C(1)
 - \mu j+1(1)

k\sum 
l=1

C \prime (1)

C(1) - C(zl)

\Biggr) 
.
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Note that multiplying both sides by C(1)  - C(z1) will give a linear dependency
between the functions C(z1)/G(z1), 1, . . . , C(z1)

k, in which the coefficient for
C(z1)/G(z1) is nonzero (if C \prime (1) \not = 0). To get (4.15), one needs to multiply both
sides of (A.12) by fn - k+1(z1)C(1) (C(1) - C(z1))/(C(z1)\mu 0(1)C

\prime (1)).
Finally, we prove that C \prime (1) \not = 0. Suppose C \prime (1) = 0. We will prove that this

contradicts (∗∗). Note that c = f \prime 
n - 1(1)/fn - 1(1) and, due to (4.14), h

\prime (1, z1, . . . , zn) =
c h(1, z1, . . . , zn). This means that the matrix\left(     

f \prime 
0(1) - c f0(1) . . . f \prime 

n(1) - c fn(1)
f0(z1) . . . fn(z1)

...
. . .

...
f0(zn) . . . fn(zn)

\right)     
is singular for all z1, . . . , zn. Since the functions f0(z), . . . , fn(z) are linearly indepen-
dent, we get that f \prime 

i(1) = cfi(1) for i = 0, . . . , n, which contradicts (∗∗).

A.8. Proof of Lemma 4.11. In this subsection, we prove Lemma 4.11 similarly
to Lemma 4.9. Suppose that (4.16) holds for zk+1 = \cdot \cdot \cdot = zn = 0, i.e.,

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

fn - 1(z)(C(1))k - 1

fn - 1(1)(C(z))k - 1

k\prod 
j=1

C(z) - C(zj)

C(1) - C(zj)
,

and that fj+1(z) = C(z)fj(z) for j = n  - k + 1, . . . , n  - 1. We need to prove
that the function fn - k(z) is equal (up to a linear combination of the functions
fn - k+1(z), . . . , fn(z)) to \beta 0fn - k+1/C(z).

Using (A.6) and fn - 1(z) = fn - k+1(z)C(z)k - 2, we obtain

(A.13)
detMG(z, z1, . . . , zk)

detMG(1, z1, . . . , zk)
=

C(1)

C(z)

k\prod 
j=1

C(z) - C(zj)

C(1) - C(zj)
,

where the matrix MG(z, z1, . . . , zk) is defined in (A.7).
From (A.13), we prove that the functions C(z)/G(z), 1, . . . , C(z)k are linearly

dependent. Let \mu j be the determinant of the matrix MG(z, z1, . . . , zk) without the
first row and (j + 1)st column, multiplied by ( - 1)j . Fix any z1, . . . , zk such that
\mu 0 \not = 0, which is possible since the function C(z) is not constant. By multiplying
both sides of (A.13) by detMG(1, z1, . . . , zk)C(z), we obtain

C(z)

G(z)
\mu 0 +

k\sum 
l=1

\mu lC(z)l = C(1)

\Biggl( 
C(1)

G(1)
\mu 0 +

k\sum 
l=1

\mu lC(1)l

\Biggr) 
k\prod 

j=1

C(z) - C(zj)

C(1) - C(zj)
.

Note that the product on the right-hand side can be rewritten as a linear combination
of the functions 1, . . . , C(z)k. This observation concludes the proof.

Remark A.2 (comparison to the proof of Lemma 4.9). In the proof in Appen-
dix A.7, we expand an alternant matrix over the row that depends on z1. In this case,
the result requires an additional condition C \prime (1) \not = 0, which follows from (∗∗). In this
subsection, we can expand a similar matrix over the first row that depends on z (in
the proof of Lemma 4.9 this is a constant row, and we cannot use such an expansion).
For this reason, we do not need the extra condition (∗∗).
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