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Abstract 

Background  Freezing of gait (FOG) is an unpredictable gait arrest that hampers the lives of 40% of people with Par-
kinson’s disease. Because the symptom is heterogeneous in phenotypical presentation (it can present as trembling/
shuffling, or akinesia) and manifests during various circumstances (it can be triggered by e.g. turning, passing doors, 
and dual-tasking), it is particularly difficult to detect with motion sensors. The freezing index (FI) is one of the most 
frequently used accelerometer-based methods for FOG detection. However, it might not adequately distinguish FOG 
from voluntary stops, certainly for the akinetic type of FOG. Interestingly, a previous study showed that heart rate sig-
nals could distinguish FOG from stopping and turning movements. This study aimed to investigate for which pheno-
types and evoking circumstances the FI and heart rate might provide reliable signals for FOG detection.

Methods  Sixteen people with Parkinson’s disease and daily freezing completed a gait trajectory designed to pro-
voke FOG including turns, narrow passages, starting, and stopping, with and without a cognitive or motor dual-task. 
We compared the FI and heart rate of 378 FOG events to baseline levels, and to stopping and normal gait events 
(i.e. turns and narrow passages without FOG) using mixed-effects models. We specifically evaluated the influence of 
different types of FOG (trembling vs akinesia) and triggering situations (turning vs narrow passages; no dual-task vs 
cognitive dual-task vs motor dual-task) on both outcome measures.

Results  The FI increased significantly during trembling and akinetic FOG, but increased similarly during stopping and 
was therefore not significantly different from FOG. In contrast, heart rate change during FOG was for all types and dur-
ing all triggering situations statistically different from stopping, but not from normal gait events.

Conclusion  When the power in the locomotion band (0.5–3 Hz) decreases, the FI increases and is unable to specify 
whether a stop is voluntary or involuntary (i.e. trembling or akinetic FOG). In contrast, the heart rate can reveal 
whether there is the intention to move, thus distinguishing FOG from stopping. We suggest that the combination of a 
motion sensor and a heart rate monitor may be promising for future FOG detection.
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Introduction
Parkinson’s disease is the fastest growing neurologi-
cal disorder in the world, affecting over 6 million peo-
ple worldwide. One particularly disturbing symptom of 
Parkinson’s disease and other parkinsonian disorders is 
freezing of gait (FOG): a sudden, relatively brief episode 
of immobility, described by patients as “if the feet are 
glued to the floor” [1]. This sudden gait arrest affects the 
lives of at least 2 in 5 people with Parkinson’s disease [2, 
3] and it has consequences that reach beyond its effect 
on locomotion. Research shows an association of FOG 
severity not only with motor-related dimensions of qual-
ity of life like mobility, bodily discomfort, and reduction 
in activity of daily living, but also with non-motor-related 
dimensions including emotion, communication, and cog-
nition [4]. Furthermore, clear correlations with disease 
severity, falls, and hospital admissions result in a high 
impact on caregivers and the healthcare system [5–7].

There is a great need for methods to reliably measure 
FOG in the home situation. Given that FOG typically 
manifests less during hospital visits than at home, it is 
challenging for clinicians and researchers to track symp-
tom progression [8]. The current gold standard for FOG 
detection is based on video annotations of two independ-
ent trained raters. However, this process is time-con-
suming, work-intensive, and raises privacy issues when 
applied in the home setting—potentially holding back the 
evaluation and development of new treatments for FOG. 
Several researchers have attempted to detect or predict 
FOG with the help of motion sensors attached to the 
body [9–11]. If FOG can be reliably detected by motion 
sensors alone, this would remove the necessary human 
labeling element. However, the highly person-specific 
manifestations of FOG and the risk of overfitting because 
of small sample sizes are common concerns in these 
studies.

One of the most frequently applied detection methods 
is the freezing index (FI) developed by Moore et  al. [12, 
13]. This index is based on the characteristic tremor in 
the legs during trembling and the absence of frequency 
components of a normal walking pattern. Based on an 
accelerometer on the lower limb or trunk, a ratio is cal-
culated of the square of the power in the freezing band 
(3–8  Hz) over the square of the power in the locomo-
tion band (0.5–3  Hz). When a determined threshold 
is exceeded, the time window is flagged as a freezing 
episode.

Despite its simplicity, the performances of the FI 
varies considerably with a reported sensitivity ranging 
from 73 to 91% and specificity ranging from 76 to 96% 
[10]. The heterogeneity of FOG might be at play here 
[8, 11]. Firstly, FOG presents differently in each per-
son, and in general, three major phenotypes of freezing 

have been described: (1) trembling, characterized by a 
tremor of the legs at a frequency of 3–8  Hz; (2) shuf-
fling, characterized by small steps; and (3) akinesia, 
characterized by a total absence of limb movement 
(1). Because the FI is specifically designed to detect 
the trembling type of FOG, it might come up short for 
the other two types. Secondly, FOG can occur during 
various circumstances; it can happen during turning, 
approaching a doorway, initiation of gait, dual-task 
walking, being under time pressure, etc. [1], but it has 
never been elucidated whether the FI works equally 
well under these different circumstances. Therefore, the 
first aim of this study was to evaluate whether the FI 
increases significantly under all the different types and 
triggering situations of FOG.

Another concern of the FI is its vulnerability to falsely 
classify voluntary stops or ‘normal’ gait events (such as 
turns without FOG) as FOG [11]. On the one hand, when 
going from walking to standing, the power in the loco-
motion band decreases, hence increasing the ratio of the 
FI. On the other hand, normal gait events might increase 
the power in the freezing band, hence increasing the ratio 
of the FI. As a second research aim, we therefore evalu-
ated whether the FI during stopping and during normal 
gait events (i.e. turns and narrow passages that did not 
provoke FOG) were statistically different from FOG.

Interestingly, a previous study showed that measuring 
heart rate could also provide signals indicative of FOG 
that are different from voluntary stopping and turns. 
Namely, they observed an increase in heart rate before 
and during FOG, while the heart rate decreased during 
sudden stops and normal turns [14]. The authors pos-
tulated that the increased heart rate might be related 
to an activation of the autonomic nervous system and 
increased stress levels. However, only freezing episodes 
during turning were taken into consideration and the 
number of FOG episodes was small: about 100 episodes 
in a total of ten patients. If heart rate indeed increases 
before and during FOG independently of the type of 
FOG or its triggering situation, this observation might be 
promising for future FOG detection or even prediction. 
Consequently, we evaluated heart rate trends under the 
same conditions as we evaluated the FI.

Taken together, this study aimed to investigate under 
which conditions the FI and heart rate might provide 
reliable signals for FOG detection. In a first analysis, we 
determined whether the FI and heart rate increased sig-
nificantly before and during FOG compared to baseline 
levels. A second analysis tested whether the FI and heart 
rate during FOG was statistically different from stopping 
and normal gait events (i.e. turns and narrow passages 
that did not provoke FOG). For both analyses we specifi-
cally evaluated the influence of different types of freezing 
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(i.e., trembling, and akinesia) and evoking situations (i.e. 
turning, narrow passages; and dual-tasking).

Methods
Participants
We recruited 16 participants (11 male, 5 female) 
diagnosed with idiopathic Parkinson’s disease with 
self-reported daily freezing. Exclusion criteria were: 
comorbidities causing severe gait impairments, severe 
cognitive impairments, or the inability to walk 150  m 
unaided, possessing a pacemaker, or having a deep brain 
stimulator.

The severity of motor symptoms was assessed by the 
Movement Disorder Society’s Unified Parkinson’s Disease 
Rating Scale section III (UPDRS III) [15]. Furthermore, 
all participants completed the following questionnaire 
and cognitive tests: the New Freezing of Gait Question-
naire (NFOGQ) [16], the mini mental state examination 
(MMSE) [17], and the frontal assessment battery (FAB) 
[18].

All procedures were conducted according to the prin-
ciples of the 1964 Declaration of Helsinki and in accord-
ance with the Medical Research Involving Human 
Subjects Act (WMO). Ethical approval was given by 
the medical ethics committee Arnhem-Nijmegen 
(NL60942.091.17). All participants provided written 
informed consent prior to study inclusion.

Procedure
To increase the likelihood of FOG occurrence and there-
fore increasing the power of the study, participants were 
tested in the OFF medication state following an over-
night withdrawal (> 12  h after intake) of anti-Parkinson 
medication.

A series of gait tasks were designed to maximally trig-
ger FOG during the study visit and to resemble real-life 
situations. These consisted of 360 degree turns in alter-
nating directions and completion of the gait trajectory 
shown in Fig. 1, including maneuvering between chairs 

Fig. 1  Overview of the performed gait tasks. Each round started with 10 s of standing at the starting point followed by 360 degree turns in 
alternating directions with and without a cDT (30 s each, in pseudorandomized order). Next, the participants preceded with the gait trajectory as 
indicated by the orange arrows, passing between the chair and wall (47 cm wide); passing through the doorway (89 cm wide) into the narrow 
quarter where they completed a 180 and 360 degree turn in alternating directions; passing between the chairs (54 cm wide); walking straight, 
making a 180 degree turn and walking back between the chairs and the chair and the wall to the starting point where the gait trajectory was 
started over. The gait trajectory was performed with a cDT, a mDT or noDT for 90 s each, in a pseudorandomized order. In total, at least four of such 
rounds of approximately 6 min each were completed and in between each round participants could rest as long as needed. All gait tasks were 
recorded by three video cameras positioned at strategic locations of the lab. (cDT cognitive dual-task, mDT motor dual-task, noDT no dual-task)
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(i.e. a narrow passage), 180 and 360 degree turns in 
both directions, stopping, and starting.

The gait tasks were conducted under three different 
conditions in a pseudo-randomized order: with a cog-
nitive dual-task (cDT), with a motor dual-task (mDT), 
and without a dual-task (noDT). The cDT consisted of 
the Adjusted Auditory Stroop Task, which is specifi-
cally designed to increase cognitive workload in peo-
ple with Parkinson’s disease [19]. In short, participants 
are asked to start or continue walking when hearing a 
congruent command (i.e., a male voice saying ‘man’ or 
a female voice saying ‘woman’), and to stand still when 
hearing an incongruent command (i.e., a male voice 
saying ‘woman’ or a female voice saying ‘man’). Dur-
ing the mDT, participants carried a tray with an object 
on it, increasing the demand on the motor system and 
simultaneously removing vision from the lower limbs 
[20].

In total, the participants completed four to six rounds 
of the gait tasks (approximately 6 min each) with each 
round including the three different DT conditions in a 
pseudorandomized order. Each round started with 10 s 
of standing and between each round, the participants 
could rest as long as needed. During all gait tasks, the 
participants were not allowed to use a walking aid. 
They were accompanied by a researcher to prevent 
them from falling, however, they were required to walk 
unassisted.

Materials
A 32-channel portable system (Porti, Twente Medical 
Systems International B.V., sample frequency of 256 Hz) 
was used to collect 3-lead electrocardiogram (ECG) sig-
nals for heart rate monitoring and 3D accelerometer sig-
nals on the ankle and knees for motion activity.

All gait tasks were recorded by three video cameras 
positioned at different corners of the lab (see Fig.  1) 
thereby providing an overview of all the participant’s 
body movements. The videos were annotated for the 
occurrence of FOG by two independent trained raters 
in ELAN software (the Language Archive, Nijmegen, 
the Netherlands) following recent guidelines [21]. A 
FOG event was considered definite if the annotation of 
both raters overlapped. Otherwise, the event was in- or 
excluded after discussion with a third rater. In all cases, 
we chose the earliest and latest begin and end time from 
the two raters, respectively, to define the FOG event. 
This was to prevent the possibility that changes happen-
ing before the FOG event can be attributed to annota-
tion differences between the two raters. Furthermore, 
each time the participants turned, encountered a narrow 

passage, started, or stopped walking, this was annotated 
accordingly.

Data analysis
Raw data were analyzed with MATLAB (R2019a) (Math-
works, Natick, MA) and the open-source Fieldtrip 
toolbox developed at the Donders Institute for Brain, 
Cognition and Behaviour [22]. All anonymized data is 
available on the Donders repository (https://​doi.​org/​
10.​34973/​h1d5-​5j25) and analysis scripts are shared on 
https://​github.​com/​helen​acockx/​FI-​HR_​durin​gFOG. 
(Note to the editor and reviewers: the URL https://​data.​
donde​rs.​ru.​nl/​login/​revie​wer-​92548​469/​l5U0K​zu8hn​
PEyxv​fkIs6​xDlUp​WctA5​qGIie​5w3FW​MwY allows 
immediate anonymous access for review purposes. Fol-
lowing potential revisions and acceptance, the dataset 
will be published on the Donders Repository and a per-
sistent DOI will be assigned, which is to be included 
here).

Freezing index (FI)
Because measuring the vertical acceleration of the shin 
is considered as the most effective for FI calculation and 
provides the highest signal-to-noise, we only included 
vertical acceleration of the right shin for calculation of 
the FI [13, 23–25]. Analysis of the sensor data of the left 
shin showed similar results. First, the power spectrum 
for each sample was calculated by using 3-s time win-
dows with Hanning tapers (window centered at the sam-
pling point). The FI was then defined as the squared area 
under the curve (AUC) of the power in the freezing band 
(3.5–8  Hz) over the squared AUC of the power in the 
locomotion band (0.5–3 Hz) as indicated by the following 
formula [12].

These values were normalized by multiplying by 100 
and taking the natural logarithm as proposed by Moore 
et al. [12].

Heart rate
Prior to analysis, the ECG was examined for heart 
arrhythmias and the best quality lead was selected. R 
peaks were detected by the Pan Tompkins algorithm [26, 
27]. Singular ectopic beats were automatically identified 
and replaced by a beat falling exactly between its neigh-
boring beats. Remaining artifacts were selected visually 
and replaced with nan values. To get an indication of the 

FI =
AUC(power freezing band(3.5− 8Hz))2

AUC(power locomotion band(0.5− 3Hz))2

https://doi.org/10.34973/h1d5-5j25
https://doi.org/10.34973/h1d5-5j25
https://github.com/helenacockx/FI-HR_duringFOG
https://data.donders.ru.nl/login/reviewer-92548469/l5U0Kzu8hnPEyxvfkIs6xDlUpWctA5qGIie5w3FWMwY
https://data.donders.ru.nl/login/reviewer-92548469/l5U0Kzu8hnPEyxvfkIs6xDlUpWctA5qGIie5w3FWMwY
https://data.donders.ru.nl/login/reviewer-92548469/l5U0Kzu8hnPEyxvfkIs6xDlUpWctA5qGIie5w3FWMwY
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heart rate during rest, we calculated the heart rate and 
heart rate variability, defined as the coefficient of varia-
tion, during the 10 s standing period prior to each round 
of gait tasks, which was preceded by the optional break.

Statistics
The FI, and heart rate were averaged over 3-s time win-
dows during FOG (0 to + 3 s after FOG onset), during a 
preFOG period (− 3 to 0 s before FOG onset), and dur-
ing baseline (−  6 to −  3  s before FOG onset). Similarly, 
the same time windows ([− 6 to − 3]; [− 3 to 0]; and [0 
to 3] s) were considered for normal gait events and stop 
events. A normal gait event was defined as a turn or nar-
row passage without a FOG event within a 6-s margin. A 
stop event was defined as a voluntary halt, immediately 
following the command ‘stop’ at the end of each of the 
DT conditions within the rounds, or following an incon-
gruent command during the cDT condition. Stop events 
were labeled with the trigger ‘turn’ or ‘narrow passage’, 
based on its closest gait event. FOG events, stops, or nor-
mal gait events preceded by another FOG episode within 
6 s were excluded from the analysis.

Mean FI and heart rate values were exported to RStudio 
(RStudio 1.2.1335; RStudio, Inc., Boston, MA), and ana-
lyzed with linear mixed-effects models using the package 
lme4 [28]. A first model was fitted to compare the FI and 
the heart rate before and during FOG with baseline lev-
els. The model contained fixed effects for time (factors: 
baseline, preFOG and FOG; treatment contrast coded), 
FOG type (factors: trembling or akinesia; sum contrast 
coded), FOG trigger (factors: turning or narrow passage; 
sum contrast coded), DT condition (factors: cDT, mDT, 
or noDT; sum contrast coded), and interaction effects of 
the last four with time. To correct for individual differ-
ences in FI thresholds and average heart rate, a random 
intercept was included for participant. Additionally, a 
random intercept for trial was included to baseline cor-
rect heart rate levels. It makes no sense to baseline cor-
rect the FI because this parameter is usually evaluated 
based on absolute values rather than relative values, so 
no random intercept for trial was included for this model. 
This resulted in the following formulas:

A second model was fitted to compare FI and heart 
rate change during FOG to the control conditions ‘nor-
mal gait event’ and ‘stopping’. Heart rate change was 

(1a)
FI ∼ type ∗ time + trigger ∗ time + DT ∗ time + (1|participant)

(1b)

heart rate ∼ type ∗ time + trigger ∗ time

+ DT ∗ time + (1|participant)+ (1|trial)

calculated as the difference in heart rate between the [0 
to 3] and [-3 to 0] s time windows. No difference was 
taken for the FI because this parameter is usually evalu-
ated based on absolute values and not on relative values. 
The model included fixed effects for condition (factors: 
FOG, normal gait event, and stopping; treatment con-
trast coded), FOG type, FOG trigger, DT condition, and 
the interaction effects of the last four with condition. A 
random intercept was included for participant. The for-
mulas were as follows:

Assumptions of the models were checked. Fixed effects 
of all models were tested for statistical significance using 
Type III F tests with Kenward-Roger adjustment to the 
degrees of freedom via the car package [29]. Signifi-
cance level was set at 0.05. Post-hoc analysis for signifi-
cant main and interaction effects were computed via the 
emmeans package [30] with Kenward-Roger adjustments 
to the degrees of freedom and Dunnett’s correction for 
p-values (in case of significant interaction effects).

(2a)
FI ∼ type ∗ condition+ trigger ∗ condition

+ DT ∗ condition+ (1|participant)

(2b)
heart rate change ∼ type ∗ condition

+ trigger ∗ condition+ DT ∗ condition

+ (1|participant)

Table 1  Participant characteristics of the 14 included 
participants

MDS-UPDRS part III Movement Disorders Society Unified Parkinson Disease 
Rating scale part III, H&Y Hoehn and Yahr Staging Scale, MMSE mini-mental state 
examination (range 0–30), FAB Frontal Assessment Battery (range 0–18), NFOGQ 
New Freezing of Gait Questionnaire (range 0–28), HR rest heart rate during 
the first 10 s of standing preceding each round, HRV rest heart rate variability 
defined as the coefficient of variation during the first 10 s of standing preceding 
each round

Median Interquartile range

Age (years) 68.0 59.0–74.8

Sex (% male) 66.7

Disease duration (years) 11.0 9.0–13.8

Daily levodopa dosage (mg) 1150.0 1051.0–1350.0

MDS-UPDRS part III 22.0 19.0–24.0

H&Y 2 2–3

MMSE 27.0 26.0–28.5

FAB 16.0 14.3–17.0

NFOGQ 19.0 15.5–22.8

HR rest (bpm) 83.9 79.6–88.1

HRV rest (%) 1.6 1.0–2.3
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Results
Participant characteristics
One of the sixteen participants, participant 5, was 
excluded from analysis because of data loss due to a 
detached ECG sensor. Another participant, participant 8, 
although not yet known at the inclusion, eventually was 
re-diagnosed as having multiple system atrophy (MSA). 
MSA is a neurodegenerative disorder with similar symp-
toms as Parkinson’s disease, and people with MSA are 
often misdiagnosed as having Parkinson’s disease, yet it 
has a different pathophysiology [31, 32]. We, therefore, 
decided to analyze participant 8 separately. Table 1 sum-
marizes the participant characteristics of the remaining 
14 participants. Median age was 68.0 (interquartile range 
59.0–74.8) and median disease duration was 11.0  years 
(interquartile range 9.0–13.8). Median heart rate dur-
ing the resting periods was 83.9 bpm (interquartile range 
79.6–88.1  bpm); median heart rate variability during 
rest was 1.6% (interquartile range 1.0–2.3%). The MSA 
patient had a mean resting heart rate of 77.4  bpm and 
mean resting heart rate variability of 1.4%.

FOG annotations
In total, 4683 gait events and 633 freezing episodes were 
observed in the 14 participants with a high interrater 
agreement (kappa correlation coefficient 0.83; Spearman 

correlation for number and total duration of FOG of 0.80 
and 0.85 respectively). The median duration of the FOG 
events was 5.8 s (interquartile range 3.5–11.35 s). For the 
MSA patient, 37 freezing episodes were observed (kappa 
correlation coefficient 0.99) with a median duration of 
10.9 s.

Figure  2B–D shows the distribution of FOG episodes 
over the participants for each FOG type, triggering event, 
and DT condition. 85% of all freezing episodes  were 
annotated as trembling, but was often seen in combina-
tion with shuffling (7%), as reflected by a low interrater 
agreement for both types (in 84% of the shuffling events, 
the raters disagreed on the FOG type). Because both 
likely share a similar pathophysiological substrate that is 
different from akinesia [33, 34], we decided to compare 
the combination of trembling-shuffling with akinesia 
(accounting for 8% of the events). Turning was most pro-
vocative for FOG (73% of the events), followed by nar-
row passages (20%) and starting hesitation (5%). The first 
two, turning and narrow passages, were considered for 
further analysis. The number of FOG events was compa-
rable over the three DT conditions: 36% of the episodes 
occurred during noDT, 34% during cDT, and 29% dur-
ing mDT. After exclusion of trials that were close (< 6 s) 
to other FOG episodes, 378 FOG events, 351 stops, 
and 1391 normal gait events were included in the  final 

Fig. 2  Overview of the annotated FOG events for each participant, including the participant with Multiple System Atrophy (participant 8). A 
boxplots of the FOG durations (s) for each participant. The data is clipped at 75 s (3 events were longer than this upper limit). B–D Subdivision of the 
number of annotated FOG events per type (B), trigger (C), and DT condition (D) for each participant. (FOG Freezing of Gait; DT dual-task)
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analysis. For participant 8, 32 FOG events, 29 stops, 
and 72 normal gait events were retained. Note that this 
MSA patient mainly displayed FOG of the akinetic type 
(Fig. 2B)

Freezing index (FI)
Figure  3A shows the overall time course of the FI dur-
ing FOG, normal gait events, and stopping. Overall, 
the FI increased over time during FOG (orange), while 

it remained at the same level during normal gait events 
(green). However, the FI also increased during stopping 
(blue).

The first model (model 1.a), evaluating the increase of 
the FI during preFOG and FOG compared to baseline 
levels, showed that the FI increased significantly over 
time (main effect of time: FI(time): p < 0.001) (Table  2). 
Figure 4A–C shows the results of the post-hoc analyses 
of this model. We found a significant interaction effect 

Fig. 3  Overall time course of the FI (A), and heart rate (B) for FOG (orange), normal gait events (green), and, stopping (blue). The lines with the 
shaded areas represent the mean values with 95% confidence intervals over the 14 included participants (n = 14). The heart rate was z-transformed 
and baseline corrected (− 6 to − 3 s.) to account for individual variances in baseline heart rate and heart rate variability. No z-transformation was 
applied to the FI because these values are usually evaluated based on absolute values rather than relative values. The boxes indicate the time 
intervals over which the variables are averaged when exporting to Rstudio: baseline (− 6 to − 3 s), preFOG (− 3 to 0 s), and FOG (0 to 3 s). The 
figures were created with MATLAB (R2019a) and the Fieldtrip toolbox. (FI Freezing Index, FOG Freezing of Gait)
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for DT (FI(time*DT): p = 0.015), with a higher increase 
of the FI during noDT than during the cDT and even 
higher during the mDT, though in all cases significantly 
different from baseline (p < 0.001). The significant main 
effects for trigger (p = 0.015), and for DT (p < 0.001) 
indicate that the FI was different at baseline for these 
conditions. Overall, these results show that the FI per-
formed as expected (i.e., significant increase compared 
to baseline) in all tested circumstances and for all types 
of FOG, including akinesia.

Figure  5A–C shows the results of the second model 
(model 2.a) that compared the FI during FOG, normal 
gait events, and stops under all conditions. For the ideal 
FOG detector, the green (FOG—normal gait event), 
and blue (FOG—stopping) point ranges would appear 
above the zero threshold line. A significant main effect 
for condition (p < 0.001) (Table 2) signaled that FI per-
formed better to distinguish FOG from normal gait 
events (post hoc FI(FOG-normal gait event): p < 0.001) than to 
distinguish FOG from stopping (post hoc FI(FOG-stop): 
p = 0.592).

A significant interaction effect was found between con-
dition and trigger (FI(condition*trigger): p < 0.001, indicating 
that the relation of the FI between FOG and a normal 

gait event was different between turning and a narrow 
passage (Fig. 5B). In a narrow passage, the FI was higher 
during an event with FOG than without FOG (post-hoc 
FI(FOG-normal gait event): B = 2.84, p < 0.001); but for turning, 
the relationship became smaller (post-hoc FI(FOG-normal gait 

event): B = 1.04, p < 0.001).
Taken together, these results show that the FI per-

forms well to differentiate FOG from normal gait events 
(although these differences were smaller when compar-
ing FOG turns with normal turns), but not to differenti-
ate FOG from stopping.

Heart rate
Figure  3B shows that overall, heart rate increased dur-
ing FOG compared to baseline levels, while a clear drop 
in heart rate was seen during stopping. The heart rate 
increased also during normal gait events.

Indeed, the first model (model 1.b) showed a significant 
main effect of time (HR(time): p = 0.004), with post-hoc 
analysis revealing a significant increase in heart rate dur-
ing FOG compared to baseline (HR(FOG-baseline): B = 1.00, 
p < 0.001), but not during preFOG (HR(preFOG-baseline): 
B = 0.48, p = 0.146) (Table  2). The increase in heart rate 
was dependent on DT condition (HR(time*DT): p = 0.015), 

Table 2  Results of the type III F test (with Kenward-Roger adjustment for degrees of freedom) for the fixed effects of the mixed 
models

*p < 0.05; F F values, Df degrees of freedom, Df.res residual degrees of freedom, FI freezing index, DT dual-task

Model 1.a: FI ~ type*time + trigger*time + DT*time + (1|participant) Model 1.b: heart 
rate ~ type*time + trigger*time + DT*time + (1│participant) + (1|trial)

F Df Df.res p value F Df Df.res p value

(Intercept) 136.63 1 30  < 0.001* 1248.09 1 14  < 0.001*

Time 24.18 2 1106  < 0.001* 5.64 2 746 0.004*

Trigger 5.90 1 1112 0.015* 8.45 1 439 0.004*

Type 0.00 1 1114 0.992 3.12 1 430 0.078

DT 12.12 2 1106  < 0.001* 7.96 2 447  < 0.001*

Time*type 0.83 2 1106 0.435 1.40 2 746 0.246

Time*trigger 1.03 2 1106 0.356 1.42 2 746 0.241

Time*DT 3.09 4 1106 0.015* 3.11 4 746 0.015*

Model 2.a:  
FI ~ type*condition + trigger*condition + DT*condition  
+ (1│participant)

Model 2.b: heart rate  
change ~ type*condition + trigger*condition + DT*condition  
+ (1|participant)

F Df Df.res p value F Df Df.res p value

(Intercept) 347.30 1 28  < 0.001* 2.65 1 464 0.104

Condition 91.30 2 2095  < 0.001* 54.07 2 2091  < 0.001*

Trigger 0.60 1 2096 0.439 3.23 1 2096 0.073

DT 0.64 2 2094 0.528 5.74 2 2103 0.003*

Type 0.02 1 2097 0.888 2.20 1 2062 0.138

Condition* 
trigger

47.47 2 2094  < 0.001* 3.83 2 2101 0.022*

Condition*DT 2.06 4 2093 0.084 3.28 4 2101 0.011*

Condition*type 0.58 2 2095 0.558 2.28 2 2092 0.102
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but not on type (HR(time*type): p = 0.246), or on the trig-
gering event (HR(time*trigger): p = 0.241). Figure  4F shows 
indeed that the heart rate increased significantly dur-
ing FOG for the noDT and the cDT condition (post-hoc 
HR(FOG-baseline): B = 1.03, p = 0.002 and HR(FOG-baseline): 
B = 1.43, p < 0.001), but not for the mDT condition 
(HR(FOG-baseline): B = 0.54, p = 0.21).

Of less interest, a significant main effect of the first 
model was found for trigger (HR(trigger): p = 0.004) and DT 
(HR(DT): p < 0.001), meaning that the heart rate levels for 
these conditions differed at baseline (Table  2). Namely, 
heart rate was higher during baseline levels of narrow 
passages than during turning (post-hoc HR(narrow passage—

turn): B = 1.51, p = 0.005), and heart rate during baseline 
levels of mDT was higher than during cDT (HR(mDT-cDT): 
B = 1.94, p < 0.001).

Overall, these results confirm that heart rate increases 
during FOG and this was independent of the type 
of freezing. Besides, the heart rate during the mDT 

condition had significantly higher baseline levels and did 
not increase significantly during FOG.

The second model (model 2.b) investigated the differ-
ences in heart rate changes during FOG with stopping 
and normal gait events (Fig. 5D–F). A significant main 
effect of condition (p < 0.001) indicated that the heart 
rate change during FOG was different when compared 
to stopping than when compared to normal gait events. 
Namely, the heart rate change during FOG was signifi-
cantly different from stopping (post hoc HR(FOG-stop): 
B = 1.93, p < 0.001) while it was similar to normal 
gait events (post hoc HR(FOG-normal gait event): B = -0.26, 
p = 0.536).

A significant interaction effect between condition 
and trigger (p = 0.022) was observed with a slightly 
smaller difference in heart rate change between FOG 
and stopping during a narrow passage than during a 
turn (Fig. 5E). Moreover, a significant interaction effect 
was observed between condition and DT with a slightly 

Fig. 4  Results of the post-hoc analyses of the linear mixed-model analysis of the first model comparing the FI (A–C) (model 1.a), and heart rate 
(D–F) (model 1.b) for the differences between preFOG and baseline (light orange), and FOG and baseline (dark orange). The point ranges indicate 
the estimated differences with standard errors of the post-hoc analyses for each FOG type (first column), FOG trigger (second column), and DT 
condition (third column), but the symbols are only filled when significant interaction effects were found for this factor by time. This means that the 
panels with the hollow symbols followed the main effects of Table 2. Results of the post-hoc analysis that were significant after p-value correction 
are indicated with an asterisk (*, < 0.05; **, < 0.005). Figures were created with the ggplot2 package in Rstudio. (FI Freezing Index; FOG Freezing of 
Gait; noDT no dual-task; cDT cognitive dual-task; mDT motor dual-task)
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smaller difference in heart rate change between FOG 
and normal gait event for the noDT condition than 
the other two conditions (Fig.  5F). In addition, a sig-
nificant main effect of the second model was seen for 
DT (HR(DT): p = 0.003) indicating differences in heart 
rate change for these factors during the FOG condi-
tion (Table 2). More specifically, heart rate change was 
greater during cDT than noDT (post-hoc HR(cDT-noDT): 
B = 0.46, p = 0.001).

In conclusion, heart rate change was significantly dif-
ferent between FOG and stopping of any type and trig-
gering situation, but not between FOG and a normal 
gait event.

Participant with MSA
We present the overall time courses of the FI and heart 
rate for participant 8 separately (Additional file  1: 
Fig.  S1) as this person was re-diagnosed as having 

multiple system atrophy (MSA) instead of idiopathic 
Parkinson’s disease. Note that this participant mainly 
had FOG of the akinetic type (Fig. 2B). The FI slightly 
decreased during FOG, while it increased during stop-
ping. The heart rate neither increased nor decreased 
during FOG, while it decreased during voluntary 
stopping.

Discussion
We set out to characterize the FI and heart rate dur-
ing FOG in different situations to evaluate under which 
conditions these features might provide reliable signals 
for FOG detection. Overall, the FI worked well to dis-
tinguish FOG from normal walking (significant increase 
compared to baseline levels) or from normal gait events, 
but had difficulties to distinguish FOG from stopping 
or to detect FOG during turning. In contrast, the heart 
rate change could clearly differentiate between stopping 
and FOG of all types or during any triggering situation, 

Fig. 5  Results of the post-hoc analyses of the linear mixed-model analysis of the second model comparing the FI (A–C) (model 2.a), and heart 
rate change (D–F) (model 2.b) for the differences between FOG and a normal gait event (green), and FOG and stopping (blue). The point ranges 
indicate the estimated differences with standard errors of the post-hoc analyses for each FOG type (first column), FOG trigger (second column), and 
DT condition (third column), but the symbols are only filled when a significant interaction effect of this factor was found with condition (i.e. FOG—
normal gait event or FOG—stop). This means that the panel with the hollow symbols followed the main effects of Table 2. Results of the post-hoc 
analysis that were significant after p-value correction are indicated with an asterisk (*, < 0.05; **, < 0.005). Figures were created with the ggplot2 
package in Rstudio. (FI Freezing Index, FOG Freezing of Gait, noDT no dual-task, cDT cognitive dual-task, mDT motor dual-task)
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but did not show significant differences from normal gait 
events.

The freezing index (FI)
For this study, we specifically compared FOG to stopping 
and to FOG-provoking events without FOG (i.e. normal 
gait events). We see this approach as a major strength of 
our study, as previous work usually ignored these types 
of events, like voluntary stops or normal turns, neglect-
ing the specific investigations for potential false positive 
events [13, 35]; or only compared the overall FOG sever-
ity calculated by the algorithm to the FOG severity rated 
on video [36].

We found an increase in the FI for both trembling 
and akinetic FOG, however, both types were indiscern-
ible from voluntary stops as the FI also increased during 
this event. The increase in the FI during stopping can 
be explained as follows: when no movements are per-
formed, both the power in the freezing band and loco-
motion band take very small values and only contain 
remaining sensor noise [24]. These low values, certainly 
of the locomotion band, can give rise to unstable ratios, 
and results during stopping in an increase of the FI. This 
faulty increase of the FI durint stops might be even more 
problematic than previously reported by Moore and col-
leagues [12] who observed only a 20% false positive rate 
during volitional standing. A similar mechanism might 
be at play during akinetic FOG, for which we indeed 
observed a decrease in both the freezing and locomotion 
band, resulting in a net increase in the FI. For the par-
ticipant with MSA, who mainly displayed akinetic FOG, 
the decrease in both bands took slightly different propor-
tions, resulting in a net decrease in the FI. So the FOG 
episodes of this participant were not being flagged as a 
FOG at all. We overall conclude that the FI may result in 
unreliable ratios when the power in the locomotion band 
is low, e.g. during stopping or akinetic FOG.

Some researchers have proposed a solution to deal 
with the rising FI during normal stops, by introducing 
an extra threshold: only when the total power (0.5–8 Hz) 
exceeds a certain total power threshold, is the FI calcu-
lated [23, 24]. We argue, however, that the performance 
of this modified version of the FI (mFI) is unsatisfactory. 
Additional file  1: Fig.  S2 shows the overall time course 
of mFI during FOG, normal gait events, and stopping. 
Indeed, the mFI increased less during stops than the FI, 
but was still not significantly different from FOG. Moreo-
ver, the difference in the mFI between FOG and normal 
gait events became smaller. We, therefore, argue that the 
extra total power threshold marginally improved the dis-
tinction between FOG and stopping, but at the cost of 
differentiating between FOG and normal gait events.

Regarding the different triggering situations, the results 
of our mixed model analysis showed that the differ-
ence between turns with and without FOG was smaller 
compared to the other situations. Previous studies like-
wise reported a large number of false positive ratings 
(67 out of 202 accelerometer-detected FOG episodes) 
when using the FI to detect FOG during turning [35] or 
reported lower performances during turn-like behavior 
[37]. These results can be explained by a similar increase 
in the FI during turns with and without FOG. Indeed, we 
observed a higher increase in the freezing band than in 
the motor band during normal turning, resulting in a net 
increase in the FI, similarly like observed in one of our 
previous studies [38]. For this study, we particularly asked 
participants to turn on the spot with small steps instead 
of big steps or a pirouette, thereby probably increas-
ing the power in the 3.5–8  Hz band, hence explaining 
the increase in the FI. These instructions were given to 
increase the likelihood of triggering FOG, but represent, 
nevertheless, a turning behavior with high risks to pro-
voke FOG. This observation, therefore, underlines the 
importance of not only comparing FOG events to walk-
ing or standing, but also to its triggering events without 
FOG (e.g., normal turning). Likewise, researchers should 
specifically consider FOG events triggered by different 
conditions when developing FOG detection algorithms, 
to ensure detection performance in daily life.

Heart rate
Consistent with previous studies, we found a signifi-
cant increase in heart rate during FOG [14, 39, 40]. This 
increase in heart rate was present for all types and trig-
gering situations, except for the mDT condition. More 
importantly, the significant difference with the clear heart 
rate drop during stopping was clearly persistent for all the 
conditions, including the mDT condition (the blue point 
ranges in Fig. 5D–F are always far above zero). This can 
also be explained biologically: autonomic adjustments of 
the heart rate during exercise, which are both centrally 
and locally regulated, are dependent on a person’s per-
ceived effort, independently of whether the attempt to 
move is successful or not [41, 42]. For example, if stuck 
in deep snow, you make great efforts to escape, which 
increases your heart rate, but your efforts might be fruit-
less. This analogy also makes sense for akinesia, during 
which people’s feet almost literally are glued to the floor. 
Following on from this, it seems logical that heart rate 
decreases during voluntary stopping, while it increases 
during the efforts to move during FOG. Previous studies 
attribute the increase in heart rate during FOG to ele-
vated stress levels [14, 40]. Our findings do not contradict 
this hypothesis, but we note that not only stress may play 
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a role, but that the increased heart rate can also be a nor-
mal physiological response to exertion.

It remains unclear, however, why heart rate did not 
increase during FOG for the mDT condition. We specu-
late that saturation effects might have played a role. The 
mDT condition displayed higher heart rate levels dur-
ing baseline, which could be explained by the imposed 
increase in mental workload of carrying the tray [43]. 
Autonomic cardiovascular dysfunction is prevalent in 
Parkinson’s disease, resulting in lower heart rate vari-
ability, thereby possibly preventing a further increase of 
the already high baseline levels [44]. Because the cDT 
included an episodic type of DT, namely starting or stop-
ping based on episodic auditory stimuli, this condition 
had lower heart rate baseline levels and therefore a sig-
nificant heart rate increase during FOG. Nevertheless, 
although heart rate did not increase during the mDT, the 
difference in heart rate change with stopping was still 
significant.

The increase in heart rate during FOG was less clear for 
the patient with multiple system atrophy (MSA). FOG is 
estimated to be present in 40–75% of MSA patients [45, 
46], but the pathophysiology of FOG in MSA might be 
distinct from Parkinson’s disease [47]. Furthermore, 
autonomic dysfunction is prevalent in MSA [32], poten-
tially blunting cardiovascular reflexes. Nevertheless, 
more research is needed to investigate the differences 
in neural pathways and cardiovascular responses during 
FOG in MSA and other parkinsonian syndromes.

While the difference in heart rate change between 
FOG and stopping is strong, no clear differences in heart 
rate change between FOG and normal gait events are 
observed, for none of the conditions (green point ranges 
in Fig.  5D–F are close to zero). This is in contrast with 
findings by Maidan and colleagues [14] where heart rate 
decreased during a normal turn, but similar to findings 
by our research team [38]. This disagreement with the 
first study may be due to a difference in effort during 

turning, for example, because the participants in our 
study turned with shorter and faster steps. However, this 
does not explain the increased heart rate when encoun-
tering a narrow passage. Alternatively, we can explain 
this by a conditioning mechanism; as chances of freezing 
grow when turning or approaching a narrow passage, the 
perceived exertion or stress levels rise, causing heart rate 
to increase.

Recommendations
The main purpose of this study was to evaluate the use of 
motion sensors and heart rate monitors for future FOG 
detection algorithms. Although only looking at group 
effects in the data rather than trials separately, the FI 
seemed to perform reasonably well to distinguish FOG 
from walking or normal gait events. However, we also 
showed it might confuse stopping with FOG, both for 
trembling and akinetic types. Because FOG is particu-
larly variable in presentation, it is challenging to acquire 
a one-size-fits-all algorithm based on motion sensors. 
Of course, person-specific models can be trained, but in 
practice, this means that for each individual a new anno-
tated dataset needs to be generated [10].

Instead of trying to characterize all possible FOG pat-
terns using leg-mounted motion sensors, we can also 
focus on what FOG has in common (Fig. 6). During the 
2010 FOG workshop, freezing of gait was unified under 
the following definition: “a brief, episodic absence or 
marked reduction of forward progression of the feet 
despite the intention to walk” [48, 49]. It should be rel-
atively simple to measure a reduction in forward pro-
gression, for example with an inertial measurement unit 
(IMU), close to the center of gravity (e.g. a phone in the 
back pocket) [50], by measuring the speed of the wheels 
of a walker, by measuring variation in gait cadence [23], 
or by measuring the cross-correlation between the left 
and right foot angular velocity as proposed by a recently 
published study [36]. We hereby recommend the use of a 

Fig. 6  Graphical representation of how a hypothetical new FOG detection method would work by combining a motion sensor (IMU) and a heart 
rate monitor. If a motion sensor would first measure a reduction in forward progression (e.g. IMU close to the center of gravity like a phone in 
the back pocket or a sensor measuring the speed of the wheels of a walker), a heart rate monitor (e.g. smartwatch) could subsequently define 
whether this reduction in forward progression was voluntary (stop) when accompanied by a decrease in heart rate, or involuntary (FOG) when not 
accompanied by a decrease in heart rate. (IMU Inertial Measurement Unit; FOG freezing of gait)
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simple metric measuring forward progression instead of 
using the FI, which may result in unreliable ratios when 
the power in the locomotion band is low. The second part 
of the definition—‘despite the intention to walk’—is cru-
cial for differentiating FOG from voluntary stopping. As 
explained previously, the heart rate can reflect someone’s 
effort to move independent of its success, hence open-
ing the possibility to distinguish voluntary from involun-
tary stops. The results of this study clearly demonstrated 
that heart rate indeed can make this distinction for any 
type and situation of FOG. Therefore, we suggest that the 
combination of a motion sensor (measuring forward pro-
gression), and a heart rate monitor (measuring the inten-
tion to move), could improve FOG detection algorithms 
by better distinguishing FOG from stopping. However, 
future work using a multimodal approach, for example as 
proposed in one of our previous studies [38], should ver-
ify whether such a system would indeed lead to improved 
FOG detection metrics.

While heart rate is easy to measure and smartwatches 
that collect heart rate data are readily available, certain 
aspects should be taken into consideration. Firstly, heart 
rate monitors should be precise enough to pick up small 
differences. The difference in heart rate change between 
FOG and stopping counted only 1.78 bpm on average, so 
devices should be able to detect differences of approxi-
mately 1–2  bpm. Secondly, autonomic dysfunction is 
prevalent in Parkinson’s disease and some patients might 
take beta-adrenergic blocking agents for tremor reduc-
tion, thereby blunting possible cardiovascular responses 
[44]. As a consequence, variances in heart rate might 
become so small that even very precise monitors are not 
able to detect relevant changes. Thirdly, other changes in 
the physical, emotional, and cognitive state may modu-
late heart rate. Therefore, the effect of such states during 
standing should be investigated and compared to FOG 
events. Lastly, although this concept sounds promising 
for akinesia detection, more data is needed to confirm 
this hypothesis.

Limitations
We acknowledge a couple of limitations. Firstly, the goal of 
this study was to look at group-level average data in the FI 
and the heart rate to investigate future directions for FOG 
detection algorithms. Therefore, we cannot draw conclu-
sions on the performance of the FI and heart rate on a 
single trial level. Nevertheless, by analyzing the data with 
linear mixed models, single trials were taken into con-
sideration while being corrected for differences between 
participants. Secondly, the FI and heart rate were aver-
aged over 3-s time windows potentially not capturing the 
very short FOG episodes. However, over 80% of the FOG 
episodes were longer than 3  s and excluding the shorter 

trials did not influence the data substantially. Neverthe-
less, future research should conclude whether measuring 
heart rate would still be useful for detection of short FOG 
episodes. Thirdly, the gait trajectory included many tasks 
that succeeded each other rapidly. Although we excluded 
trials that were preceded by a FOG within 6 s, carry-over 
effects cannot entirely be eliminated. Lastly, the amount 
of data on akinetic FOG was limited. The results on aki-
nesia should therefore be interpreted with care. Neverthe-
less, the difference in heart rate change between akinesia 
and stopping was consistent. We, therefore, believe that 
the heart rate remains a promising feature for akinesia 
detection, certainly because it remains a challenge to dis-
tinguish it from voluntary stops with the use of motion 
sensors, or even by looking at videos.

Conclusion
We clearly showed that the FI can differentiate well 
between FOG and normal gait events, but has issues to 
distinguish FOG from stopping, and can produce false-
positives during other gait events like normal turns. 
Subsequently, we confirmed that heart rate increases 
during different types of FOG episodes. We suggest that 
the significant difference in heart rate change between 
any type or condition of FOG and stopping may help 
to improve FOG detection algorithms based on motion 
sensors measuring forward body progression. This con-
cept might be particularly promising for akinesia detec-
tion, although more data is required to confirm this 
finding.
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