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Abstract

We consider the multilinear polytope which arises naturally in binary polynomial opti-
mization. Del Pia and Di Gregorio introduced the class of odd β-cycle inequalities valid for
this polytope, showed that these generally have Chvátal rank 2 with respect to the standard
relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle
hypergraph instances. Moreover, they describe a separation algorithm in case the instance is
a cycle hypergraph. We introduce a weaker version, called simple odd β-cycle inequalities, for
which we establish a strongly polynomial-time separation algorithm for arbitrary instances.
These inequalities still have Chvátal rank 2 in general and still suffice to describe the multi-
linear polytope for cycle hypergraphs.

1 Introduction
In binary polynomial optimization our task is to find a binary vector that maximizes a given
multivariate polynomial function. In order to give a mathematical formulation, it is useful to use a
hypergraph G = (V,E), where the node set V represents the variables in the polynomial function,
and the edge set E represents the monomials with nonzero coefficients. In a binary polynomial
optimization problem, we are then given a hypergraph G = (V,E), a profit vector p ∈ RV ∪E , and
our goal is to solve the optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

pe
∏
v∈e

zv : z ∈ {0, 1}V
}
. (1)

Using Fortet’s linearization [12, 14], we introduce binary auxiliary variables ze, for e ∈ E, which
are linked to the variables zv, for v ∈ V , via the linear inequalities

zv − ze ≥ 0 ∀e ∈ E, ∀v ∈ e (2a)

(ze − 1) +
∑
v∈e

(1− zv) ≥ 0 ∀e ∈ E. (2b)

It is simple to see that{
z ∈ {0, 1}V ∪E : ze =

∏
v∈e

zv ∀e ∈ E

}
=
{
z ∈ {0, 1}V ∪E : (2)

}
.

Hence, we can reformulate (1) as the integer linear optimization problem

max

{∑
v∈V

pvzv +
∑
e∈E

peze : (2), z ∈ {0, 1}V ∪E
}
. (3)
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We define the multilinear polytope ML(G) [6], which is the convex hull of the feasible points of (3),
and its standard relaxation SR(G):

ML(G) := conv
{
z ∈ {0, 1}V ∪E : (2)

}
,

SR(G) :=
{
z ∈ [0, 1]V ∪E : (2)

}
.

Recently, several classes of inequalities valid for ML(G) have been introduced, including 2-
link inequalities [4], flower inequalities [7], running intersection inequalities [8], and odd β-cycle
inequalities [5]. On a theoretical level, these inequalities fully describe the multilinear polytope for
several hypergraph instances: flower inequalities for γ-acyclic hypergraphs, running intersection
inequalities for kite-free β-acyclic hypergraphs, and flower inequalities together with odd β-cycle
inequalities for cycle hypergraphs. Furthermore, these cutting planes greatly reduce the integrality
gap of (3) [8, 5] and their addition leads to a significant reduction of the runtime of the state-of-
the-art solver BARON [9]. Unfortunately, we are not able to separate efficiently over most of these
inequalities. In fact, while the simplest 2-link inequalities can be trivially separated in polynomial
time, there is no known polynomial-time algorithm to separate the other classes of cutting planes,
and it is known that separating flower inequalities is NP-hard [9].

Contribution. In this paper we introduce a novel class of cutting planes called simple odd β-
cycle inequalities. As the name suggests, these inequalities form a subclass of the odd β-cycle
inequalities introduced in [5]. The main result of this paper is that simple odd β-cycle inequalities
can be separated in strongly polynomial time. While our inequalities form a subclass of the
inequalities introduced in [5], they still inherit the two most interesting properties of the odd β-
cycle inequalities. First, simple odd β-cycle inequalities can have Chvátal rank 2. To the best
of our knowledge, our algorithm is the first known polynomial-time separation algorithm over
an exponential class of inequalities with Chvátal rank 2. Second, simple odd β-cycle inequalities,
together with standard linearization inequalities and flower inequalities with at most two neighbors,
provide a perfect formulation of the multilinear polytope for cycle hypergraphs. Finally, we believe
that our separation algorithm could lead to significant speedups in solving several applications that
can be formulated as (1) with a hypergraph that contains β-cycles. These applications include the
image restoration problem in computer vision [4, 5], and the low auto-correlation binary sequence
problem in theoretical physics [2, 15, 5, 18, 17].

Outline. We first introduce certain simple inequalities in Section 2 that are then combined to
form the simple odd β-cycle inequalities in Section 3. Section 4 is dedicated to the polynomial-
time separation algorithm. In Section 5 we briefly address the question of redundancy since our
inequalities are formally defined for a more general structure than a β-cycle. Finally, Section 6
relates the simple odd β-cycle inequalities to the general (non-simple) odd β-cycle inequalities
in [5].

2 Building block inequalities
We consider certain affine linear functions s : RV ∪E → R defined as follows.

zv − ze ∀e ∈ E, ∀v ∈ e (sinc
e,v)

2ze − 1 +
∑
u∈U

(1− zu) +
∑
w∈W

(1− zw) +
∑

v∈e\(U∪W )

(2− 2zv) ∀e ∈ E (sodd
e,U,W )

∀U,W : ∅ 6= U,W ⊆ e, U ∩W = ∅

2ze − 1 +
∑
u∈U

(1− zu) + (1− zf ) +
∑

v∈e\(U∪f)

(2− 2zv) ∀e, f ∈ E : e ∩ f 6= ∅ (sone
e,U,f )

∀U : ∅ 6= U ⊆ e, U ∩ f = ∅

2ze − 1 + (1− zf ) + (1− zg) +
∑

v∈e\(f∪g)

(2− 2zv) ∀e, f, g ∈ E : e ∩ f 6= ∅, (stwo
e,f,g)

e ∩ g 6= ∅, e ∩ f ∩ g = ∅

In this paper we often refer to sinc
e,v, sodd

e,U,W , sone
e,U,f , s

two
e,f,g as building blocks. Although in these

definitions U and W can be arbitrary subsets of an edge e, in the following U and W will always
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correspond to the intersection of e with another edge. In the next lemma we will show that
all building blocks are nonnegative on a relaxation of ML(G) obtained by adding some flower
inequalities [7] to SR(G), which we will define now. For ease of notation, in this paper, we denote
by [m] the set {1, . . . ,m}, for any nonnegative integer m.

Let f ∈ E and let ei, i ∈ [m], be a collection of distinct edges in E, adjacent to f , such that
f ∩ ei ∩ ej = ∅ for all i, j ∈ [m] with i 6= j. Then the flower inequality [7, 5] centered at f with
neighbors ei, i ∈ [m], is defined by

(zf − 1) +
∑
i∈[m]

(1− zei) +
∑

v∈f\∪i∈[m]ei

(1− zv) ≥ 0.

We denote by FR(G) the polytope obtained from SR(G) by adding all flower inequalities with at
most two neighbors. Clearly FR(G) is a relaxation of ML(G). Furthermore, FR(G) is defined by
a number of inequalities that is bounded by a polynomial in |V | and |E|.

Lemma 1. Let G = (V,E) be a hypergraph and let s be one of sinc
e,v, sodd

e,U,W , sone
e,U,f , s

two
e,f,g. Then

s(z) ≥ 0 is valid for FR(G). Furthermore, if z ∈ ML(G)∩ZV ∪E and s(z) = 0, then the implication
given in Table 1 holds.

Table 1: Implications of tight building block inequalities for integer solutions z.

Condition Implication
sinc
e,v(z) = 0 zv = ze

sodd
e,U,W (z) = 0

∏
u∈U zu +

∏
w∈W zw = 1

sone
e,U,f (z) = 0 zf +

∏
u∈U zu = 1

stwo
e,f,g(z) = 0 zf + zg = 1

Proof. First, sinc
e,v(z) ≥ 0 is part of the standard relaxation and the implication is obvious.

Second, sodd
e,U,W (z) ≥ 0 is the sum of the following inequalities from the standard relaxation:

ze ≥ 0, 1− zv ≥ 0 for all v ∈ e \ (U ∪W ), and (ze − 1) +
∑
v∈e(1− zv) ≥ 0. If z ∈ ML(G)∩ZV ∪E

and sodd
e,U,W (z) = 0, then each of these inequalities must be tight, thus ze = 0, zv = 1 for each

v ∈ e \ (U ∪W ). The last (tight) inequality yields −1 +
∑
v∈U∪W (1 − zv) = 0, i.e., precisely one

variable zv, for v ∈ U ∪W , is 0, while all others are 1, which yields the implication from Table 1.
Third, sone

e,U,f (z) ≥ 0 is the sum of the following inequalities: ze ≥ 0, 1 − zv ≥ 0 for all
v ∈ e \ (U ∪ f) and (ze − 1) + (1 − zf ) +

∑
v∈e\f (1 − zv) ≥ 0. The latter is the flower inequality

centered at e with neighbor f . If z ∈ ML(G) ∩ ZV ∪E and sone
e,U,f (z) = 0, then each of these

inequalities must be tight, thus ze = 0, zv = 1 for each v ∈ e \ (U ∪ f). The last (tight) inequality
yields −1 + (1− zf ) +

∑
u∈U (1− zu) = 0, i.e., either zf = 1 and zu = 0 for exactly one u ∈ U , or

zf = 0 and zu = 1 holds for all u ∈ U . Both cases yield the implication from Table 1.
Fourth, we consider stwo

e,f,g(z) ≥ 0. Note that due to e∩ f 6= ∅, e∩ g 6= ∅ and e∩ f ∩ g = ∅, the
three edges e, f, g must all be different. Thus, stwo

e,f,g(z) ≥ 0 is the sum of ze ≥ 0, 1− zv ≥ 0 for all
v ∈ e\ (f ∪g) and of (ze−1)+(1−zf )+(1−zg)+

∑
v∈e\(f∪g)(1−zv) ≥ 0. The latter is the flower

inequality centered at e with neighbors f and g. If z ∈ ML(G) ∩ ZV ∪E and stwo
e,f,g(z) = 0 holds,

then each of the involved inequalities must be tight, thus ze = 0 and zv = 1 for each v ∈ e\ (f ∪g).
The last (tight) inequality implies −1 + (1− zf ) + (1− zg) = 0, i.e., zf + zg = 1.

3 Simple odd β-cycle inequalities
We will consider signed edges by associating either a “+” or a “−” with each edge. We denote by
{±} the set {+,−} and by −p a sign change for p ∈ {±}. In order to introduce simple odd β-cycle
inequalities, we first present some more definitions.
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Definition 2. A closed walk in G of length k ≥ 3 is a sequence C = v1-e1-v2-e2-v3-· · · -vk−1-
ek−1-vk-ek-v1, where we have ei ∈ E as well as vi ∈ ei−1 ∩ ei and ei−1 ∩ ei ∩ ei+1 = ∅ for each
i ∈ [k], where we denote e0 := ek and ek+1 := e1 for convenience. A signature of C is a map
σ : [k] → {±}. A signed closed walk in G is a pair (C, σ) for a closed walk C and a signature
σ of C. Similarly, we denote v0 := vk, vk+1 := v1, σ(0) := σ(k) and σ(k + 1) := σ(1). We say
that (C, σ) is odd if there is an odd number of indices i ∈ [k] with σ(i) = −; otherwise we say
that (C, σ) is even. Finally, for any signed closed walk (C, σ) in G, its length function is the map
`(C,σ) : FR(G)→ R defined by

`(C,σ)(z) :=
∑

i∈I(+,+,+)

(
sinc
ei,vi(z) + sinc

ei,vi+1
(z)
)

+
∑

i∈I(−,−,−)

sodd
ei,ei∩ei−1,ei∩ei+1

(z) +
∑

i∈I(+,+,−)

sinc
ei,vi(z)

+
∑

i∈I(−,−,+)

sone
ei,ei∩ei−1,ei+1

(z) +
∑

i∈I(−,+,+)

sinc
ei,vi+1

(z) +
∑

i∈I(+,−,−)

sone
ei,ei∩ei+1,ei−1

(z) +
∑

i∈I(+,−,+)

stwo
ei,ei−1,ei+1

(z),

where I(a,b,c) is the set of edge indices i for which ei−1, ei and ei+1 have sign pattern (a, b, c) ∈ {±}3,
i.e., I(a,b,c) := {i ∈ [k] : σ(i− 1) = a, σ(i) = b, σ(i+ 1) = c}.

We remark that the definition of `(C,σ)(z) is independent of where the closed walk starts and
ends. Namely, if instead of C we consider C ′ = vi-ei -· · · -vk-ek-v1-e1-· · · -vi−1-ei−1-vi, and we
define σ′ accordingly, then we have `(C,σ)(z) = `(C′,σ′)(z). Moreover, if σ(i− 1) = − or σ(i) = −,
then `(C,σ)(z) is independent of the choice of vi ∈ ei−1 ∩ ei.

By Lemma 1, the length function of a signed closed walk is nonnegative. We will show that for
odd signed closed walks, the length function evaluated in each integer solution is at least 1. Hence,
we define the simple odd β-cycle inequality corresponding to the odd signed closed walk (C, σ) as

`(C,σ)(z) ≥ 1. (4)

We first establish that this inequality is indeed valid for ML(G).

Theorem 3. Simple odd β-cycle inequalities (4) are valid for ML(G).

Proof. Let z ∈ ML(G) ∩ {0, 1}V ∪E and assume, for the sake of contradiction, that z violates
inequality (4) for some odd signed closed walk (C, σ). Since the coefficients of `(C,σ) are integer,
we obtain `(C,σ) ≤ 0. From Lemma 1, we have that s(z) = 0 holds for all involved functions s(z).
Moreover, edge variables zei for all edges ei with σ(i) = +, node variables zvi for all nodes vi with
σ(i − 1) = σ(i) = +, and the expressions

∏
v∈ei−1∩ei zv for all nodes i with σ(i − 1) = σ(i) = −

are either equal or complementary (see Table 1), where the latter happens if and only if the
corresponding edge ei satisfies σ(i) = −1. Since the signed closed walk C is odd, this yields
a contradiction ze = 1 − ze for some edge e of C or zv = 1 − zv for some node v of C or∏
v∈e∩f zv = 1−

∏
v∈e∩f zv for a pair e, f of subsequent edges of C.

Next, we provide an example of a simple odd β-cycle inequality.

Example 4. We consider the closed walk of length 5 given by the sequence C = v1-e1-v2-e2-v3-
· · · -v5-e5-v1 with signature (σ(1), σ(2), . . . , σ(5)) = (−,+,+,−,−) depicted in Figure 1. We have
1 ∈ I(−,−,+), 2 ∈ I(−,+,+), 3 ∈ I(+,+,−), 4 ∈ I(+,−,−), 5 ∈ I(−,−,−). The corresponding simple odd
β-cycle inequality is `(C,σ)(z) ≥ 1. Using Definition 2, we write `(C,σ)(z) in terms of the building
blocks as

`(C,σ)(z) = sone
e1,e1∩e5,e2(z) + sinc

e2,v3(z) + sinc
e3,v3(z) + sone

e4,e4∩e5,e3(z) + sodd
e5,e5∩e4,e5∩e1(z).

Using the definition of the building blocks, we obtain

`(C,σ)(z) = + 2ze1 − 1 +
∑

u∈e1∩e5

(1− zu) + (1− ze2) +
∑

v∈e1\(e1∩e5∪e2)

(2− 2zv)

+ (zv3 − ze2) + (zv3 − ze3)

+ 2ze4 − 1 +
∑

u∈e4∩e5

(1− zu) + (1− ze3) +
∑

v∈e4\(e4∩e5∪e3)

(2− 2zv)

+ 2ze5 − 1 +
∑

u∈e5∩e4

(1− zu) +
∑

w∈e5∩e1

(1− zw) +
∑

v∈e5\(e5∩e4∪(e5∩e1))

(2− 2zv).
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e1

e2e3e4

e5

b
v1

b

b

b

b

v2

v3
v4

v5

b
u1

b u2

bu4

b
u3

Figure 1: Figure of the closed walk considered in Example 4. The solid edges have sign + and the
dashed edges have sign −.

We write the sums explicitly and obtain

`(C,σ)(z) = +2ze1 − 1 + (1− zv1) + (1− zu1) + (1− ze2)

+ (zv3 − ze2) + (zv3 − ze3)

+ 2ze4 − 1 + (1− zv5) + (1− ze3) + (2− 2zu4)

+ 2ze5 − 1 + (1− zv5) + (1− zv1) + (1− zu1)

= 2ze1 − 2ze2 − 2ze3 + 2ze4 + 2ze5 − 2zv1 − 2zu1 + 2zv3 − 2zu4 − 2zv5 + 7.

�

Example 4 suggests that, when the function is written explicitly, the coefficients in the function
`(C,σ)(z) exhibit a certain pattern. This different expression of `(C,σ)(z) is formalized in the next
lemma. The proof of the lemma can be obtained directly from the definition of `(C,σ)(z) by
summing up each variable that appears in more than one building block.

Lemma 5. Given a signed closed walk (C, σ) in G with k ≥ 3, we have

`(C,σ)(z) =
∑
i∈[k]
σ(i)=−

(2zei + 1)−
∑
i∈[k]
σ(i)=+

2zei +
∑
i∈[k]

σ(i−1)=σ(i)=+

2zvi +
∑
i∈[k]

σ(i−1)=σ(i)=−
v∈ei−1∩ei

2(1− zv) +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2(1− zv)

− 2|{i ∈ [k] : σ(i− 1) = σ(i) = −}|. (5)

Using Lemma 5, we obtain the following result.

Proposition 6. Simple odd β-cycle inequalities are Chvátal-Gomory inequalities for FR(G) and
can be written in the form∑

i∈[k]
σ(i)=−

zei −
∑
i∈[k]
σ(i)=+

zei +
∑
i∈[k]

σ(i−1)=σ(i)=+

zvi −
∑
i∈[k]

σ(i−1)=σ(i)=−
v∈ei−1∩ei

(zv − 1)−
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

(zv − 1)

≥ 1− |{i ∈ [k] : σ(i) = −}|
2

− |{i ∈ [k] : σ(i− 1) = σ(i) = −}|.

(6)

Proof. Let (C, σ) be an odd signed closed walk in a hypergraph G. From Lemma 1 we obtain that
`(C,σ)(z) ≥ 0 holds for each z ∈ FR(G). Lemma 5 reveals that in the inequality `(C,σ)(z) ≥ 0,
all variables’ coefficients are even integers, while the constant term is an odd integer. Hence, the
inequality divided by 2 has integral variable coefficients, and we can obtain the corresponding
Chvátal-Gomory inequality by rounding the constant term up. The resulting inequality is the
simple odd β-cycle inequality (4) scaled by 1/2 and has the form (6). This shows that simple odd
β-cycle inequalities are Chvátal-Gomory inequalities for FR(G).
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It follows from Proposition 6 that, under some conditions on (C, σ), simple odd β-cycle inequal-
ities are in fact {0, 1/2}-cuts (see [3]) with respect to FR(G). Some classes of such cutting planes
can be separated in polynomial time, in particular if the involved inequalities only have two odd
coefficients. In such a case, these inequalities are patched together such that odd coefficients cancel
out and eventually all coefficients are even. We want to emphasize that this generic separation
approach does not work in our case since our building block inequalities may have more than 2
odd-degree coefficients. Nevertheless, the separation algorithm presented in the next section is
closely related to the idea of cancellation of odd-degree coefficients.

4 Separation algorithm
The main goal of this section is to show that the separation problem over simple odd β-cycle
inequalities can be solved in strongly polynomial time (Theorem 10). This will be achieved by
means of an auxiliary undirected graph in which several shortest-path computations must be
carried out. The auxiliary graph is inspired by the one for the separation problem of odd-cycle
inequalities for the maximum cut problem [1]. However, to deal with our different problem and
the more general hypergraphs we will extend it significantly.

Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). Define T := {(e, f, g) ∈ E : e ∩ f 6=
∅, f ∩ g 6= ∅, e ∩ f ∩ g = ∅} to be the set of potential subsequent edge triples. We define the
auxiliary graph

Ḡ = (V̄ , Ē) = (V̄+ ∪ V̄− ∪ V̄E, Ē
−,−,− ∪ Ē+,−,+ ∪ Ē+,−,− ∪ Ē+,+,±)

and length function ¯̀ : Ē → R as follows.

V̄+ := V × {±}
V̄− := {e ∩ f : e, f ∈ E, e 6= f, e ∩ f 6= ∅} × {±}
V̄E := E × {±}

Ē−,−,− := {{(e ∩ f, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
¯̀{(U,p),(W,−p)} := min

e,f,g
{sodd
f,U,W (ẑ) : U = e ∩ f, W = f ∩ g for some (e, f, g) ∈ T }

Ē+,−,+ := {{(e, p), (g,−p)} : e, g ∈ E, e ∩ f 6= ∅ and f ∩ g 6= ∅ for some f ∈ E
with e ∩ f ∩ g = ∅, p ∈ {±}}

¯̀{(e,p),(g,−p)} := min
f
{stwo
e,f,g(ẑ) : f ∈ E, e ∩ f 6= ∅, f ∩ g 6= ∅, e ∩ f ∩ g = ∅}

Ē+,−,− := {{(e, p), (f ∩ g,−p)} : (e, f, g) ∈ T , p ∈ {±}}
¯̀{(e,p),(U,−p)} := min

f,g
{sone
f,U,e(ẑ) : (e, f, g) ∈ T , U = f ∩ g}

Ē+,+,± := {{(v, p), (e, p)} : v ∈ e ∈ E, p ∈ {±}}
¯̀{(v,p),(e,p)} := sinc

e,v(ẑ)

We point out that the graph Ḡ can have parallel edges, possibly with different lengths. We
immediately obtain the following corollary from Lemma 1.

Corollary 7. The edge lengths ¯̀ : Ē → R are nonnegative.

We say that two nodes ū, v̄ ∈ V̄ are twins if they only differ in the second component, i.e., the
sign. We call a walk W̄ in the graph Ḡ a twin walk if its end nodes are twin nodes. For a walk W̄
in Ḡ, we denote by ¯̀(W̄ ) the total length, i.e., the sum of the edge lengths ¯̀

e along the edges e in
W̄ . In the next two lemmas we study the relationship between odd signed closed walks in G and
twin walks in Ḡ.

Lemma 8. For each odd signed closed walk (C, σ) in G there exists a twin walk W̄ in Ḡ of length
¯̀(W̄ ) ≤ 1 + s, where s is the slack of the simple odd β-cycle inequality (4) induced by (C, σ) with
respect to ẑ. In particular, if the inequality is violated by ẑ, then we have ¯̀(W̄ ) < 1.

6



Proof. Let (C, σ) be an odd signed closed walk with C = v1-e1-v2-e2-v3-· · · -vk−1-vk−1-vk-ek-v1.
For i ∈ [k], let pi :=

∏i
j=1 σ(j) be the product of signs of all edges up to ei. Moreover, define

p0 := σ(0) = σ(k). For each i ∈ [k], we determine a walk W̄i in Ḡ of length at most 2, and construct
W̄ by going along all these walks in their respective order. The walk W̄i depends on σ(i− 1), σ(i)
and σ(i+ 1):

W̄i :=



(vi, pi−1)→ (ei, pi)→ (vi+1, pi) if i ∈ I+,+,+
(vi, pi−1)→ (ei, pi) if i ∈ I+,+,−
(ei, pi)→ (vi+1, pi) if i ∈ I−,+,+
(ei, pi) (length 0) if i ∈ I−,+,−
(ei−1, pi−1)→ (ei ∩ ei+1, pi) if i ∈ I+,−,−
(ei−1 ∩ ei, pi−1)→ (ei+1, pi) if i ∈ I−,−,+
(ei−1 ∩ ei, pi−1)→ (ei ∩ ei+1, pi) if i ∈ I−,−,−
(ei−1, pi−1)→ (ei+1, pi) if i ∈ I+,−,+.

The walks W̄i help to understand the meaning of the different node types: the walk W̄i starts
at a node from V̄+ if σ(i− 1) = σ(i) = +, it starts at a node from V̄− if σ(i− 1) = σ(i) = −, and
it starts at a node from V̄E if σ(i − 1) 6= σ(i) holds. Similarly, the walk W̄i ends at a node from
V̄+ if σ(i) = σ(i+ 1) = +, it ends at a node from V̄− if σ(i) = σ(i+ 1) = −, and it ends at a node
from V̄E if σ(i) 6= σ(i+ 1) holds.

Note that all edges traversed by each W̄i are indeed in Ē. It is easily verified that, for each
i ∈ [k− 1], the walk W̄i ends at the same node at which the walk W̄i+1 starts. Hence W̄ is indeed
a walk in Ḡ. Since vk+1 = v1 holds, C is closed and (C, σ) is odd, it can be checked that W̄ is a
twin walk. Finally, by construction, ¯̀(W̄ ) ≤ `(C,σ)(ẑ) holds, where the inequality comes from the
fact that the minima in the definition of ¯̀need not be attained by the edges from C. By definition
of s we have `(C,σ)(ẑ) = 1 + s, thus ¯̀(W̄ ) ≤ 1 + s.

Lemma 9. For each twin walk W̄ in Ḡ there exists an odd signed closed walk (C, σ) in G whose
induced simple odd β-cycle inequality (4) has slack ¯̀(W̄ ) − 1 with respect to ẑ. In particular, if
¯̀(W̄ ) < 1 holds, then the inequality is violated by ẑ.

Proof. Let W̄ be a twin walk in Ḡ. We first construct the signed closed walk (C, σ) by processing
the edges of W̄ in their order. Throughout the construction we maintain the index i of the next
edge to be constructed, which initially is i := 1. Since the construction depends on the type of the
current edge ē = {ū, v̄} ∈ W̄ (where W̄ visits ū first), we distinguish the relevant cases:

Case 1: ē ∈ Ē+,+,± and ū ∈ V̄E. Hence, ū = (e, p) and v̄ = (v, p) for some v ∈ e ∈ E and some
p ∈ {±}. We define vi := v and continue.

Case 2: ē ∈ Ē+,+,± and ū ∈ V̄+. Hence, ū = (v, p) and v̄ = (e, p) for some v ∈ e ∈ E and some
p ∈ {±} as well as `ē = sinc

e,v. We define ei := e and σ(i) := +. We then increase i by 1 and
continue.

Case 3: ē ∈ Ē+,−,− and ū ∈ VE. Hence, ū = (e, p) and v̄ = (f ∩ g,−p) for some (e, f, g) ∈ T as
well as `ē = sone

f,f∩g,e(ẑ). We define vi (resp. vi+1) to be any node in e∩ f (resp. f ∩ g), ei := f and
σ(i) := −. We then increase i by 1 and continue.

Case 4: ē ∈ Ē−,−,−. Hence, ū = (e ∩ f, p) and v̄ = (f ∩ g,−p) for some (e, f, g) ∈ T as well as
`ē = sodd

f,e∩f,f∩g(ẑ). We define ei := f , σ(i) := − and vi+1 to be any node in f ∩g. We then increase
i by 1 and continue.

Case 5: ē ∈ Ē+,−,− and ū ∈ V−. Hence, ū = (e ∩ f, p,−) and v̄ = (g,−p) for some (e, f, g) ∈ T
with `ē = sone

f,e∩f,g(ẑ). We define ei := f , σ(i) := − and vi+1 to be any node in f ∩ g. We then
increase i by 1 and continue.

Case 6: ē ∈ Ē+,−,+. Hence, ū = (e, p) and v̄ = (g,−p) for some (e, f, g) ∈ T as well as
`ē = stwo

f,e,g(ẑ). We define vi (resp. vi+1) to be any node in e ∩ f (resp. f ∩ g), ei := f , σ(i) := −,
ei+1 := g and σ(i+ 1) := +. We then increase i by 2 and continue.
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After processing all edges of W̄ , the last defined edge is ei−1 and thus we define k := i −
1 and C := v1-e1-v2-e2-v3-· · · -vk−1-vk−1-vk-ek-v1. By checking pairs of edges of W̄ that arise
consecutively, one verifies that for each i ∈ [k], we also have vi ∈ ei−1 ∩ ei.

To see that (C, σ) is odd, we use the fact that the endnodes of W̄ are twin nodes. When
traversing an edge ē from ū to v̄, the second entries of ū and v̄ differ if and only if we set a σ-entry
to −. Note that in Case 6 we set two such entries, but only one to −. We conclude that σ(i) = −
holds for an odd number of indices i ∈ [k].

By construction we have ¯̀(W̄ ) = `(C,σ)(ẑ). The slack of the simple odd β-cycle inequality
induced by (C, σ) with respect to ẑ is then `(C,σ)(ẑ)− 1 = ¯̀(W̄ )− 1.

Theorem 10. Let G = (V,E) be a hypergraph and let ẑ ∈ FR(G). The separation problem for
simple odd β-cycle inequalities (4) can be solved in time O(|E|5 + |V |2 · |E|).

Proof. Let n := |V | and m := |E| and assume m ≥ log(n) since otherwise we can merge nodes that
are incident to exactly the same edges. First note that, regarding the size of the auxiliary graph Ḡ,
we have |V̄ | = O(m2 +n) and |Ē| = O(mn+m3). For the construction of Ḡ and the computation
of ¯̀we need to inspect all triples (e, f, g) ∈ T of edges. This can be done in time O(m3n) since for
each of the m3 edge triples (e, f, g) we have to inspect at most n nodes to check the requirements
on the intersections of e, f and g.

According to Lemmas 8 and 9 we only need to check for the existence of a twin walk W̄ in Ḡ
with `(W̄ ) < 1. This can be accomplished with |V̄ |/2 = O(m2 +n) runs of Dijkstra’s algorithm [11]
on Ḡ, each of which takes

O(|Ē|+ |V̄ | · log(|V̄ |)) = O((mn+m3) + (m2 + n) · log(m2 + n))

time when implemented with Fibonacci heaps [13]. Ifm2 ≥ n, then the total running time simplifies
to O(m5), and otherwise we obtain O(n2m).

The main reason for this large running time bound is the fact that |V̄−| can be quadratic in
|E|.

Clearly, our separation algorithm requires that the edge lengths ¯̀ of the auxiliary graph Ḡ
are nonnegative. This in turn requires ẑ ∈ FR(G), i.e., that the flower inequalities with at most
two neighbors are satisfied. As we already mentioned, the number of these flower inequalities is
bounded by a polynomial in |V | and |E|. We like to point out that one can combine the separation
of these flower inequalities with the construction of Ḡ, i.e., one can determine violated inequalities
while constructing the auxiliary graph.

5 Redundancy
Denote by CR(G) the set of points in FR(G) that satisfy all simple odd β-cycle inequalities. It turns
out that many such inequalities are redundant for CR(G). However, the redundancy proofs do
not provide much insight and often require many case distinctions (on the involved sign patterns
and the way edges intersect). Hence, we restrict ourselves to providing an example of such a
redundancy result.

Since ML(G) is full-dimensional (provided that G has no loops or parallel edges) and contained
in CR(G), then also CR(G) is full-dimensional. As a consequence, an inequality is redundant for
CR(G) if and only if it is not facet-defining for CR(G) (see Chapter 8 of Schrijver’s book [19]).

Proposition 11. Let (C, σ) be an odd signed closed walk in G such that there exist distinct in-
dices i, j ∈ [k] such that ei = ej and σ(i) = σ(j) = +. Then the simple odd β-cycle inequality
corresponding to (C, σ) is redundant for CR(G).

Proof. Without loss of generality we can assume i = 1. Note that, from the definition of closed
walk, we have and 4 ≤ j ≤ k − 2. We define the following two closed walks in G: C1 := vj-e1-v2-
e2-· · · -vj−1-ej−1-vj , and C2 := v1-ej-vj+1-ej+1-. . . -vk-ek-v1. Since 4 ≤ j ≤ k − 2, both C1 and C2

consist of at least three edges. Let σ1 and σ2 be the signatures of C1 and C2, respectively, obtained
from σ. Since (C, σ) is odd, exactly one among (C1, σ1) and (C2, σ2) is odd, while the other is
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even. Without loss of generality we assume that (C1, σ1) is odd and (C2, σ2) is even. To prove that
the simple odd β-cycle inequality `(C,σ)(z) ≥ 1 corresponding to (C, σ) is redundant for CR(G), it
suffices to show that it is the sum of the simple odd β-cycle inequality `(C1,σ1)(z) ≥ 1 corresponding
to (C1, σ1) and of the inequality `(C2,σ2)(z) ≥ 0, which is valid for FR(G) by Lemma 1. To see
this, it suffices to consider the following cases, where each case not explicitly discussed below is
symmetric to one of the written ones:

Case 1: 1 ∈ I+,+,+ and j ∈ I+,+,+. In this case we have 1 ∈ I+,+,+ in C1 and j ∈ I+,+,+ in C2.
It follows that the contribution

(
sinc
e1,v1(z) + sinc

e1,v2(z)
)

+
(
sinc
ej ,vj (z) + sinc

ej ,vj+1

)
from C is equal to the

sum of the contribution
(
sinc
e1,vj (z)+sinc

e1,v2(z)
)
from C1 and the contribution

(
sinc
ej ,v1(z)+sinc

ej ,vj+1
(z)
)

from C2.

Case 2: 1 ∈ I+,+,+ and j ∈ I+,+,−. In this case we have 1 ∈ I+,+,+ in C1 and j ∈ I+,+,− in C2.
It follows that the contribution

(
sinc
e1,v1(z) + sinc

e1,v2(z)
)

+ sinc
ej ,vj (z) from C is equal to the sum of the

contribution
(
sinc
e1,vj (z) + sinc

e1,v2(z)
)
from C1 and the contribution sinc

ej ,v1(z) from C2.

Case 3: 1 ∈ I+,+,+ and j ∈ I−,+,−. In this case we have 1 ∈ I−,+,+ in C1 and j ∈ I+,+,− in C2. It
follows that the contribution

(
sinc
e1,v1(z) + sinc

e1,v2(z)
)
from C is equal to the sum of the contribution

sinc
e1,v2(z) from C1 and the contribution sinc

ej ,v1(z) from C2.

Case 4: 1 ∈ I+,+,− and j ∈ I+,+,−. In this case we have 1 ∈ I+,+,− in C1 and j ∈ I+,+,− in C2.
It follows that the contribution sinc

e1,v1(z) + sinc
ej ,vj (z) from C is equal to the sum of the contribution

sinc
e1,vj (z) from C1 and the contribution sinc

ej ,v1(z) from C2.

Case 5: 1 ∈ I+,+,− and j ∈ I−,+,+. In this case we have 1 ∈ I−,+,− in C1 and j ∈ I+,+,+ in C2. It
follows that the contribution sinc

e1,v1(z) + sinc
ej ,vj+1

(z) from C is equal to the sum of the contribution
0 from C1 and the contribution sinc

ej ,v1(z) + sinc
ej ,vj+1

(z) from C2.

Case 6: 1 ∈ I+,+,− and j ∈ I−,+,−. In this case we have 1 ∈ I−,+,− in C1 and j ∈ I+,+,− in C2.
It follows that the contribution sinc

e1,v1(z) from C is equal to the sum of the contribution 0 from C1

and the contribution sinc
ej ,v1(z) from C2.

Case 7: 1 ∈ I−,+,− and j ∈ I−,+,−. In this case we have 1 ∈ I−,+,− in C1 and j ∈ I−,+,− in C2.
It follows that the contribution 0 from C is equal to the sum of the contribution 0 from C1 and
the contribution 0 from C2.

Note that Proposition 11 is only stated for repetition of edges whose signs are both +. However,
we have evidence (based on computations for small instances) that also other types of closed walks
yield redundant inequalities. Examples are those with repetitions of edges of arbitrary sign, those
with two subsequent equal nodes, those in which two nodes are repeated and the four involved
edges all have the same sign. The strongest redundancy statement that we can think of is captured
in the following conjecture.

Conjecture 12. Let (C, σ) be an odd signed closed walk in G for which a proper subsequence C ′
of C is a β-cycle. Then the simple odd β-cycle inequality corresponding to (C, σ) is redundant for
CR(G).

We recall that a β-cycle of length k, for some k ≥ 3, is a sequence v1-e1-v2-e2-· · · -vk-ek-v1

such that v1, v2, . . . , vk are distinct nodes, e1, e2, . . . , ek are distinct edges, and vi belongs to
ei−1, ei and no other ej for all i = 1, . . . , k, where e0 := ek. Conjecture 12 justifies that although
inequalities (4) are defined for closed walks, we call them simple odd β-cycle inequalities. The
main reason for considering closed walks instead of β-cycles is the separation algorithm described
in Section 4.

6 Relation to non-simple odd β-cycle inequalities
In this section we relate our simple odd β-cycle inequalities to the odd β-cycle inequalities in [5].

A cycle hypergraph is a hypergraph G = (V,E), with E = {e1, . . . , em}, where m ≥ 3, and
every edge ei has nonempty intersection only with ei−1 and ei+1 for every i ∈ {1, . . . ,m}, where,
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for convenience, we define em+1 := e1 and e0 := em. If m = 3, it is also required that e1∩e2∩e3 =
∅. Given a closed walk C = v1-e1-v2-e2-· · · -vk-ek-v1 in a hypergraph G = (V,E), the support
hypergraph of C is the hypergraph G(C) = (V (C), E(C)), where E(C) := {e1, e2, . . . , ek} and
V (C) := e1 ∪ e2 ∪ · · · ∪ ek.

Lemma 13. Let (C, σ) be a signed closed walk in a hypergraph G and assume that the support
hypergraph of C is a cycle hypergraph. Let E− := {ei : i ∈ [k], σ(i) = −}, E+ := {ei : i ∈
[k], σ(i) = +}, S1 := (

⋃
e∈E− e) \

⋃
e∈E+ e, and S2 := {v1, . . . , vk} \

⋃
e∈E− e. Then

`(C,σ)(z) = −
∑
v∈S1

2zv +
∑
e∈E−

2ze +
∑
v∈S2

2zv −
∑
e∈E+

2ze + 2|S1| − 2|{i ∈ [k] : ei−1, ei ∈ E−}|+ |E−|.

In particular, the simple odd β-cycle inequality corresponding to (C, σ) coincides with the odd β-
cycle inequality corresponding to (C, σ). Furthermore, in a cycle hypergraph, every odd β-cycle
inequality is a simple odd β-cycle inequality.

Proof. It suffices to observe that∑
i∈[k]

σ(i−1)=σ(i)=+

2zvi =
∑
v∈S2

2zv,
∑
i∈[k]

σ(i−1)=σ(i)=−
v∈ei−1∩ei

2zv +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2zv =
∑
v∈S1

2zv,

∑
i∈[k]

σ(i−1)=σ(i)=−
v∈ei−1∩ei

2 +
∑

i∈[k]:σ(i)=−
v∈ei\(ei−1∪ei+1)

2 = 2|S1| and
∑
i∈[k]
σ(i)=−

1 = |E−|.

The statement for cycle hypergraphs G follows by inspecting the definition of the odd β-cycle
inequalities.

As a consequence, we can use the two following known results in order to gain insights about
simple odd β-cycle inequalities.

Proposition 14 (Example 2 in [5]). There exists a cycle hypergraph for which the Chvátal rank
of odd β-cycle inequalities can be equal to 2.

Proposition 15 (Implied by Theorem 1 in [5]). Flower inequalities are Chvátal-Gomory cuts for
SR(G).

Theorem 16. Simple odd β-cycle inequalities can have Chvátal rank 2 with respect to SR(G).

Proof. Combining Proposition 15 with Proposition 6 shows that simple odd β-cycle inequalities
have Chvátal rank at most 2. Lemma 13 and Proposition 14 show that the Chvátal rank of simple
odd β-cycle inequalities for cycle hypergraphs can be equal to 2.

For the second insight, we consider a strengthened form of Theorem 5 in [5].

Proposition 17 (Theorem 5 in [5], strengthened). Let G = (V,E) be a cycle hypergraph. Then
ML(G) is described by all odd β-cycle inequalities and all inequalities from FR(G).

The strengthening lies in the fact that in the original statement of Theorem 5 in [5] all flower
inequalities are used rather than only those with at most two neighbors. This strengthening of
the original statement can be seen by inspecting its proof in [5]. By applying Lemma 13 to
Proposition 17 we immediately obtain the following result.

Theorem 18. Let G = (V,E) be a cycle hypergraph. Then ML(G) = CR(G).
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Future research. We would like to conclude this paper with a couple of open questions that
could be investigated. An interesting research direction is a computational investigation of simple
odd β-cycle inequalities, especially in relation to the applications discussed in Section 1, i.e., the
image restoration problem in computer vision and the low auto-correlation binary sequence problem
in theoretical physics.

The next research direction has a more theoretical flavor. The LP relaxations defined by odd-
cycle inequalities [1] for the cut polytope and the affinely isomorphic correlation polytope (see [10])
have the following property: when maximizing a specific objective vector, then one can remove a
subset of the odd-cycle inequalities upfront without changing the optimum. More precisely, the
removal is based only on the sign pattern of the objective vector (see Theorem 2 in [16]). Since
the simple odd β-cycle inequalities can be seen as an extension of the odd cycle inequalities for
the cut polytope, the research question is whether a similar property can be proven for simple odd
β-cycle inequalities.
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