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Satellite rainfall products for landslide early warning prediction have been spotlighted by several researchers, in
the last couple of decades. This study investigates the use of TRMM and ERA-Interim data, for the determination
of rainfall thresholds and the prediction of precipitation, respectively, to be used for landslide early warning
purposes at the Bogowonto catchment, Central Java, Indonesia. A landslide inventory of 218 landslides for the
period of 2003-2016 was compiled, and rainfall data were retrieved for the landslide locations, as given by 6
ground stations, TRMM, and ERA-Interim data. First, rainfall data from the three different sources was compared
in terms of correlation and extreme precipitation indices. Second, a procedure for the calculation of rainfall
thresholds for landslide occurrence was followed consisting of four steps: i) the TRMM-based rainfall data was
reconstructed for selected dates and locations characterized by landslide occurrence and non-occurrence; ii) the
antecedent daily rainfall was calculated for 3, 5, 10, 15, 20 and 30 days for the selected dates and locations; iii)
two-parameter daily rainfall-antecedent rainfall thresholds were calculated for the aforementioned dates; after
analysis of the curves the optimum number of antecedent rainfall days was selected; and (iv) empirical rainfall
thresholds for landslide occurrence were determined. The procedure was repeated for the entire landslide da-
taset, differentiating between forested and built-up areas, and between landslide occurrence in four temporal
periods, in relation to the monsoon. The results indicated that TRMM performs well for the detection of very
heavy precipitation and can be used to indicate the extreme rainfall events that trigger landslides. On the
contrary, as ERA-Interim failed to detect those events, its applicability for LEWS remains limited. The 15-day
antecedent rainfall was indicated to mostly affect the landslide occurrence in the area. The rainfall thresholds
vary for forested and built-up areas, as well as for the beginning, middle and end of the rainy season.

1. Introduction

Rainfall-induced landslides are an important fraction of landslides
posing a threat to communities across the globe (Dowling and Santi,
2014; Hong et al., 2007a; Kirschbaum et al., 2009; Rossi et al., 2017;
Teja and Dikshit, 2019). There is evidence that higher levels of atmo-
spheric carbon dioxide-induced climate change is resulting in a higher
frequency of rainstorms that may trigger landslides (Crozier, 2010;
Dowling and Santi, 2014; Gariano and Guzzetti, 2016; Huggel et al.,
2011; IPCC, 2014). Coupled with land use changes, population growth
and uncontrolled urbanization of hazardous areas have resulted in in-
creasing landslide risk levels (Barla and Antolini, 2016; Brunetti et al.,
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2018; Gian et al., 2017). The determination of the exact location and
time of rainfall-triggered landslide failure is a challenge and measures
for reducing the landslide occurrence or for protecting settlements from
their destructive impacts can be unfeasibly expensive. In those cases,
risk management and the protection of the population can be based on
the implementation of early warning systems, that employ precipitation
thresholds to mark the potential for landslide occurrence. For this
purpose, the most commonly used precipitation indicators are the in-
tensity, duration, and antecedent rainfall (Aleotti, 2004; UNISDR, 2006;
BNPB, 2017).

The comprehensive understanding of the slope failure mechanisms
and the effect of triggers on it is of paramount significance for
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successful landslide forecasting and the development of Landslide Early
Warning Systems, LEWS (Uhlemann et al., 2016; Piciullo et al., 2018;
Segoni et al., 2018). Various hydrological mechanisms are responsible
for changes in the soil pore water conditions that may trigger land-
slides. These could be snow melting, long duration and low-intensity
rainfall, leading to increase of groundwater levels, or short duration and
high-intensity rainfall, leading to downwards migration of wetting
fronts and changes in pore water pressure (Bogaard and Greco, 2016).
Although the trigger is hydrological, most researchers focus on the
analysis of rainfall to come up with a probable relationships between
occurrence of landslides and rainfall duration and intensity that can be
utilized for early warning purposes (Aleotti, 2004; Guzzetti et al., 2008
and 2019; Melillo et al., 2015; Peruccacci et al., 2017; Rosi et al., 2019).
Physically-based and empirical models are the major approaches which
are used to determine rainfall thresholds for the initiation of slope
failures (Guzzetti et al., 2007; Wieczorek and Guzzetti, 2000). Physi-
cally or process-based models simulate dynamic processes which occur
in a slope before and during a slope failure event by combining hy-
drological models and slope stability models (Baum and Godt, 2013;
Mathew et al., 2014; Melchiorre and Frattini, 2012). They require de-
tailed data on surface and subsurface material properties which are
difficult to obtain on a watershed scale (Robbins, 2016), thus limiting
their usability to specific slopes or small areas (Rossi et al., 2017).
Empirical models, on the other hand, are based on a statistical analysis
of the relationship between landslide occurrences and rainfall para-
meters. They are highly dependent on the completeness of historical
landslide inventories, and the temporal and spatial characteristics of the
available precipitation data (Robbins, 2016; Tiranti and Rabuffetti,
2010).

Data restrictions are a common issue in developing countries, where
landslides often occur in ungauged areas or the number of available
rainfall stations is limited. A further issue is the temporal resolution of
the data, which is commonly available on a daily rather than hourly
basis. To overcome these impediments, satellite-based rainfall estima-
tions may provide an alternative due to their availability, consistency
and high temporal resolution (Marra et al., 2014; Robbins, 2016).
Currently, there are several products available for satellite-based rain-
fall measuring and forecast.

The Tropical Rainfall Measuring Mission (TRMM) satellite rainfall
product, a joint mission of the National Aeronautics and Space
Administration (NASA) and the Japan Aerospace Exploration Agency
(JAXA) has been providing rainfall measurements at various temporal
and spatial scales since November 1997 up to March 2015 (Kirschbaum
et al., 2016; NASA, 2016). The most used rainfall product of TRMM is a
daily rainfall estimate at a spatial resolution of 0.25° (~25km)
(Huffman et al., 2010). Since 2015, a more detailed satellite-rainfall
product is available in the form of the Global Precipitation Mission
(GPM), which was developed by NASA and JAXA. It provides pre-
cipitation estimates at a temporal resolution ranging from half hour to
monthly and a spatial resolution of 10 km? (Hou et al., 2014). Although
the GPM product has a higher temporal and spatial resolution, given its
short period of functioning up to date, only the TRMM data are suitable
for the development of landslide EWS, when landslides inventories
prior to the GPM launch are used. ERA-Interim is a global atmospheric
reanalysis produced by the European Centre for Medium-Range
Weather Forecasts — ECMWF (Berrisford et al., 2011).

The use of satellite rainfall products for LEWS has been spotlighted
by several researchers, in the last couple of decades. Early studies
conducted by Hong et al. (2006), Hong et al. (2007a,b), Kirschbaum
et al. (2009), (2012), Farahmand and Aghakouchak (2013) were
amongst the first to use satellite data from TRMM to derive global
landslide rainfall thresholds at a small scale of analysis. Liao et al.
(2010), worked at the Island of Java, Indonesia, with the NASA TRMM
precipitation system and the Weather Research and Forecasting (WRF)
rainfall prediction system, and coupled precipitation with physical
modeling to successfully back analyse important landslide events. They
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concluded that satellite data have a great potential for operational early
warning, highlighting at the same time spatial and temporal resolution
limitations for the study area, as well as the need for further validation
with a landslide database. Kirschbaum et al. (2015) demonstrated the
use of TRMM and GPM products for regional landslide hazard assess-
ment in Central America and the Caribbean Islands, highlighting the
usefulness of satellite-based soil moisture estimates to better quantify
the ground conditions prior to extreme rainfall events. However, re-
garding their use for the establishment of rainfall thresholds for land-
slide occurrence, there are several limitations, that might lead to an
increased rate of either false or missed alarms. An important one is the
underestimation of rainfall precipitation, especially for high-intensity
rainfalls (Kirschbaum et al., 2009). Another is their low efficiency for
measuring convective rainfall patterns (Kidd et al., 2013).

Robbins (2016) addressed the uncertainties in the relationship be-
tween rainfall and landslide occurrence, by using a modified Bayesian
technique, to produce thresholds of landslide probability associated
with rainfall events of specific magnitude and duration, in Papua New
Guinea. Rossi et al. (2017), compared the landslides rainfall thresholds
derived for the Umbria region, in Italy, either from rain gauges or sa-
tellite-derived to find that the latter is lower than the former. Nikolo-
poulos et al. (2017) based on 10-year rainfall measurements observed
large differences between event-based characteristics (described by
event duration and magnitude) derived from rain gauge and satellite-
based estimates, and for this, they suggested an adjustment of satellite-
based estimates for the assessment of the accumulation—-duration
thresholds. In agreement with that, Brunetti et al. (2018), after com-
paring the derivatives of four satellite products with ground rain gauges
data for developing landslide rainfall thresholds in Italy, they con-
cluded that radar-based rainfall is outmatched by ground data and
underestimates rainfall, especially when it is of high intensity.
Turkington et al. (2014) developed empirical thresholds for rainfall-
triggered debris flows and flash floods using atmospheric indicators for
the Ubaye Valley, France, to conclude that for their case study the at-
mospheric indicators performed better than the weather station
thresholds.

Limitations in satellite estimation of peak rainfall events influence
the detection of rainfall-triggered landslide events; hence the effec-
tiveness of the intensity-duration relationship is compromised
(Kirschbaum et al., 2009; Wu et al., 2012). The limited sampling fre-
quency of satellite data at sub-daily scales restricts their use for the
determination of thresholds at shorter intervals (Kirschbaum et al.,
2009). Despite their smaller contribution for areas with well-developed
and dense rainfall networks, still, they can be an important additional
data source in scarcely gauged regions. The satellite-based evalution of
rainfall triggered landslides showed the probability of detection ranging
from 8% to 60 %. The assessment quality depended on the evaluation
period, precipitation data used, and the size of the spatial coverage
(Kirschbaum and Stanley, 2018). As most of these studies indicate, to
promote the use of satellite derivatives in scarce data areas, analysis has
to be performed with different products and extensive landslide in-
ventories, in a variety of morpho-climatic settings, in order to bring into
light key aspects for data scaling and uncertainty treatment. This work
aims at contributing to this, with the analysis of rainfall thresholds for
landslide occurrence at a regional scale, in the Bogowonto catchment,
located in central Java, Indonesia.

In Indonesia, rainfall-induced landslides are a widespread and per-
sistent hazard due to ubiquitous landslide conditioning factors such as
steep slopes, susceptible soils and high levels of precipitation (Liao
et al., 2010). A national-scale landslide risk assessment for Indonesia
was carried out by Cepeda et al. (2010) using precipitation data from a
network of 149 rain gauges in entire Indonesia and classifying risk (in
terms of mortality) as a function of physical exposure, percent forest
cover, percent arable land, Human Development Index (HDI), Gender
Development Index (GDI), and Human Poverty Index (HPI). Java Island
demonstrated a high landslide risk. Indeed, it has experienced many
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catastrophic landslide events, moreover due to its high population
density in hazardous areas (Hirnawan, 2010; BNPB, 2017). Between the
years 1981-2007, an annual average of 49 landslide events with con-
siderable damages was reported for Java island (Liao et al., 2010).
Since then, awareness has been raised and has led into the prioritization
of the LEWS as the preferred risk reduction measure, since other options
such as relocation of exposed communities and engineering measures
are less viable (Ngadisih et al., 2017). Local LEWS have been installed
in many locations in Java. They mainly consist of monitoring ground
displacements or giving an alarm when critical predefined rainfall
thresholds are exceeded (Fathani et al., 2011; Karnawati et al., 2009).
These are often installed after the occurrence of a landslide event, in
order to provide useful warning embedded in local landslide emergency
programs supported by the Indonesian National Agency for Disaster
Management (BNPB).

Warning systems based on in-situ instrumentation are less effective
for large areas due to insufficient instruments to cover all susceptible
slopes (Fathani et al., 2008; Sumaryono et al., 2015). To this purpose,
and for regional scale analysis, satellite-based rainfall thresholds are
being explored in Indonesia. Liao et al. (2010) developed a prototype
experimental LEWS for Java island mainly using satellite rainfall esti-
mates. The prototype system which used a physically-based model to
predict landslide occurrence had a number of limitations which affected
its performance accuracy; one of them is related to the absence of
fundamental surface inputs like accurate soil information and field
measurements of rain infiltration. The local Administration agency
Balai Litbang Sabo (BLS) of the Ministry of Environment is currently
developing a LEWS. In this system, rainfall data will be combined with
landslide modeling results at the regional and local scale (BLS, 2017).
At a regional scale, landslide susceptibility maps will be overlain with
rainfall forecasts to identify hazardous areas. At a local scale, physical
models will be used to identify possible slope failure location. When
fully developed, this warning system will utilize precipitation data from
satellite products like TRMM and rainfall forecast ERA-Interim data
from the European Centre for Medium Range Weather Forecast ECMWF
(BLS, 2017). The work presented in this paper forms part of the on-
going studies for the development of this system.

In particular, the objective of this work is to develop satellite
(TRMM) based precipitation thresholds, that can be applied for regional
landslide EWS, at the Bogowonto catchment, which is a data-scarce
landslide-prone area. Local conditions such as land cover and geology
are taken into consideration. The effect of the antecedent rain is ana-
lysed as well as the temporal and spatial variability of the thresholds in
the study area. The applicability of the thresholds for a landslide early
warning using TRMM precipitation data is tested.

2. Study area and data

The Bogowonto catchment, with an area of approximately 600 Km?,
is located in Central Java, Indonesia (Fig. 1). The landscape is char-
acterized by volcanic mountains, with peaks up to 3300 m. The upper
part of the catchment is characterized by denudational hills.

Its central part consists of the flatter denudational slopes and
floodplains of the Bogowonto river and its main tributary, the Kodil
river (Pawestri et al., 2017). The lowest part is dominated by coastal
plains and floodplains characterized by flat areas with less than 2 %
slope. Geologically, the denudational hills are old volcanic formations
of andesite and breccia which have undergone extensive weathering
processes (Nugroho et al., 2014). They are mainly composed of re-
worked materials from the upper units including marls and limestone,
while the coastal area is mainly composed of alluvium formation of
gravel, sand, and silt.

The area has a tropical climate with a wet monsoon season from
October to May, characterized by high-intensity rainfall events and a
dry season from June to September (Ngadisih et al., 2017). The average
annual precipitation varies from about 3000mm in the upper
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catchment to 2500 mm in the lower catchment (Nugroho et al., 2014).

Landslides are frequent in the northern and eastern areas (Fig. 1),
with the highest relief, aggravated by strong weathering and fracturing
of the geological formations of the upper catchment (Fathani et al.,
2008). The central eastern part of the catchment is continuously af-
fected by landslides due to its geomorphic setting coupled with high
precipitation amount. Numerous rice fields, houses, and roads are ex-
posed to the landslide hazard. The area is mostly affected by small
shallow slides associated with cut slopes in the built up area and only
pose danger to few households. There also exist large landslides which
can affect small communities most of these are slow moving deep se-
ated landslides. however their (re)activation is not taken into account
for the rainfall thresholds which are calculated here.

2.1. Landslide inventory

For this work a landslide inventory was developed based on four
sources: i) the BNPB database which records all the reported landslide
events; ii), previous studies in the area that focused on specific land-
slides or events for specific periods (Rusdiyatmoko, 2013; Ulfa, 2017);
iii) mass media reports which mostly include events that caused deaths
or substantial damage to property, and iv) field mapping.

In total 218 landslides were registered from the sources listed, out of
which 167 landslides have a known date of occurrence; they were
triggered on 47 different dates. The compiled landslide inventory
covers a period of 13 years from 2003 to 2016. Further details such as
type of landslide, initiation area and volume are not provided. During
field mapping, ubiquitous high tropical trees impeded visual landslide
detection, thus it is considered that the inventory might not be com-
plete. Landslides occurring in built up areas are mostly associated with
steep cut slopes (Fig. 2).

2.2. Rainfall data retrieval

For the study area, three rainfall dataset sources were used for the
early warning system, which are: i) six ground-based rainfall stations
with direct rainfall measurements; ii) the Tropical Rainfall Measuring
Mission (TRMM) satellite rainfall product, which is an indirect method
for rainfall estimation; iii) the ECMWF ERA-Interim rainfall forecast
data.

The data from the six rainfall stations in the catchment (Fig. 1) were
used as a benchmark to evaluate the performance of TRMM satellite
rainfall estimates and modelled ECMWF rainfall forecasts. The rainfall
stations provided complete daily rainfall data from 2009 to 2016 and
further incomplete measurements for the period 2000-2008. The 3B42
v7 rainfall product of TRMM was used, which is a daily rainfall estimate
at a spatial resolution of 0.25° (~25km) (Huffman et al., 2010).
ECMWF data was produced for four periods at 00, 06, 12 and 18h
(UTC) and 2 forecasts per day initialized from analyses at 00 and 12
UTC. The study used ERA-Interim daily rainfall forecast data initialized
at 00:00 UTC with a horizontal grid resolution of 0.125°.

3. Rainfall data analysis

Satellite data were compared to ground data for assessing their
correlation and for analysing their performance in detecting precipita-
tion extremes.

3.1. Comparison of TRMM and ERA-interim rainfall datasets with ground-
based rainfall measurements

Satellite rainfall products have been reported to have limited pre-
cision due to random errors, the non-uniform field of view of the sen-
sors that are used and uncertainties in the algorithms for retrieving
precipitation measurements (Li et al., 2014). In this work, the reliability
of TRMM and ERA-Interim data was assessed by comparison with the
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Fig. 1. Map of Bogowonto Catchment. The insert shows the location within Java Island, Indonesia. Rainfall stations: Bener (Br), Banyuasin (Bn), Gentur (Gr),

Kedungputri (Ki), Maron (Mn) and Salaman (Sn).

conventional ground-based rainfall measurements using statistical in-
dices such as the correlation coefficient, and the root means square
error (RMSE), bias and relative bias values (Li et al., 2014; Wehbe et al.,
2017). The formulas for their calculation are given, respectively, by
Egs. (1-4). The correlation was done for the period 2008-2016, with
continuous data from the rainfall stations. Satellite rainfall pixels with
at least one ground rainfall station were considered in the analysis.

_ 3L G-0)s=35)
Vo, G- Gy T, (5, - 57 oS

Where: R: Correlation coefficient, G: gauge rainfall measurements and

S: satellite rainfall,

1 n
RSME = |— > (Si— G
n 1; 2)

Where: RMSE: Root Mean Square Error, G: gauge rainfall measurements
and S: satellite rainfall,

T, (Si— G

B= n ®)

Where: B: Bias, G: gauge rainfall measurements and S: satellite rainfall,

Fig. 2. Landslide on cut slopes in the built up area.
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Table 1
Results of correlation of daily TRMM satellite rainfall and ERA-Interim rainfall
estimates with observed rainfall.
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Table 3
Summary of results for extreme precipitation analysis for Station data, TRMM
and ERA-Interim rainfall data over the period 2003 to 2016.

Daily TRMM  Monthly Daily ERA- Monthly Era-

TRMM Interim Interim

Correlation 0.356 0.831 0.232 0.695

Coefficient

RMSE (mm/day) 23.084 149.619 19.353 135.653

Relative Bias (%) —28.068 —21.563 19.451 19.439

Bias —3.016 -56 —19.453 46.266

n
Yiey (8= G)
RB= 2= T v 100%
2= Gi @

Where: RB: Relative Bias, G: gauge rainfall measurements and S: sa-
tellite rainfall.

Table 1 shows the results of the correlation analysis between TRMM
rainfall with data from the ground stations, for daily and monthly
measurements. For daily rainfall in all stations, there is a low agreement
between ground measured rainfall and satellite rainfall estimates as
indicated by their low R values. The maximum R value is 0.356 for
TRMM. For monthly data, the correlation coefficient is higher and equal
to 0.831, which indicates a better correlation between ground and
TRMM data. In all cases, TRMM underestimates the rainfall amounts
with a relative bias of —28.068 % and —21.563 % for daily and
monthly precipitation, respectively. These biases are beyond the limits
of —10 % to 10 % for acceptable performance of satellite rainfall
products (Tan and Duan, 2017). For ERA-Interim data the correlation
with actually measured rainfall data is even weaker, as shown in
Table 1.

3.2. Analysis of extreme precipitation indices

Extreme precipitation events have a strong effect on landslide in-
itiation; hence their analysis is essential (Yazid and Humphries, 2015).
The quality of both TRMM data for back analysis of the landslide oc-
currences and ERA-Interim pixel data for landslide forecasting was
evaluated in terms of extreme daily precipitation event detection. The
satellite estimates and the forecast data were assessed against the
ground station data. Extreme rainfall was analysed by using the indices
described in Table 2, as provided by the World Meteorological Orga-
nisation (WMO) (Tank et al., 2009), and widely used in the literature
(e.g., Balling et al., 2016; Rahmani et al., 2016; Yazid and Humphries,
2015).

The calculation of extreme precipitation indices was done for the
period from the year 2000-2016, for TRMM and ERA-Interim data. A
larger period than for the correlation analysis was chosen to include a
higher number of extreme events. The results are summarised in

Table 2

Parameter Station Data TRMM ERA-Interim
RX1day 332mm 182.8 mm 191.3 mm
RX5day 358 mm 256.9 mm 328.5 mm
R10 mm 1194 days 1381 days 2124 days
R20mm 772 days 741 days 521 days
R50mm 223 days 138 days 47 days
SDII 21.9 mm/day 16 mm/day 12.8 mm/day
R95Ptot % 23 % 21 % 18.2 %
R99Ptot % 7% 6% 6.9 %
PRCTOT 44180 mm 40819 mm 43980 mm
Number of wet days (> 1 mm) 2022 2525 3414

Table 3. They indicate that the number of heavy rainfall days (rainfall
= 10 mm) is higher for ERA-Interim (2124 days) followed by TRMM
(1381 days) as compared to the actual measured ground station data
(1194 days) which can be ascribed to the overestimation of small
rainfall events by these products. This overestimation is also reflected in
the number of wet days (rainfall = 1 mm) which is high for ERA-In-
terim (3414 days) followed by TRMM (2525 days) as compared to the
station data (2022). On the other hand, the maximum daily rainfall and
5-day maximum rainfall is underestimated by TRMM (183 mm and
257 mm) and ERA-Interim (192 mm and 329 mm) as compared to the
measured data (332 mm and 358 mm respectively).

4. Procedure for the calculation of rainfall thresholds for
landslide occurrence

For the calculation of the rainfall thresholds curves at the
Bogowonto catchment, the following steps were considered: i) the
TRMM-based rainfall data was reconstructed for selected dates and
locations characterized by landslide occurrence and non-occurrence; ii)
the antecedent daily rainfall was calculated for 3, 5, 10, 15, 20 and 30
days with respect to the selected dates and locations; iii) two parameter
(daily and antecedent rainfall) threshold curves for landslide occur-
rence were calculated; after analysis of the curves the optimum number
of antecedent rainfall days was selected; and (iv) low and high level
warning rainfall thresholds for landslide occurrence were established.

The two parameter (daily rainfall and antecedent rainfall) threshold
model was selected, considering the lack of sub-daily rainfall data
permitting to exploit Intensity-Duration thresholds.

4.1. Reconstruction of rainfall data for landslide occurrence and non-
occurrence

The rainfall associated with each one of the landslide events of the
inventory was derived by overlaying the landslide location on the

Definition of indices used for the analysis of extreme precipitation and how they are calculated. Where RR is daily precipitation amount on a wet day w, W is total
number of wet days, k is 5 day interval and j is the length of the period under consideration (adapted from Tank et al., 2009; Yazid and Humphries, 2015).

Indices Name Definition Calculation

RX1day Daily maximum rainfall Highest precipitation amount in 1 day RX1day; = max (RRy)
RX5day 5 days maximum rainfall Highest precipitation amount in 5 days RX5day; = max (RRy)
R10mm Number of heavy rainfall days Count of days when rainfall = 10mm Count (RR;; = 10 mm)
R20mm Number of very heavy rainfall Count of days when rainfall = 20mm Count (RR;; = 20 mm)
R50mm Number of extremely heavy rainfall (defined for this Count of days when rainfall = 50mm Count (RR;; = 50 mm)

study)
SDII Simple daily intensity index Mean rainfall when precipitation = 1 mm SDIf; = sum (RRy;) / W

RIO5PTOT %  Precipitation due to very wet days

R99PTOT %  Precipitation due to extremely wet days

PRCTOT Wet-days (> 1 mm) precipitation total

Contribution to precipitation by very wet days

Contribution to precipitation by extremely wet
days
Total precipitation in wet days

R95Ptot %=Sum if {(RR,; > R95p)/PRCTOT}
*100

R99Ptot %=Sum if {(RR.; > R99p)/PRCTOT}
*100

PRCPTOT; = sum (RRy;)
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TRMM grid for the reference date and extracting the corresponding
daily rainfall. The same procedure was repeated for the daily rainfall
preceding the landslide event, for up to 30 days, to obtain the ante-
cedent rainfall. This maximum period was selected based on earlier
work in Java of antecedent rainfall and landslide initiation (Hadmoko
et al.,, 2017). Rainfall events of high intensity but with no reported
landslides were also extracted from the rainfall database to be used as
non-triggering precipitation values, in the determination of landslide
rainfall thresholds. To have a meaningful comparison of the triggering
and non-triggering rainfall events in the catchment, precipitation data
for non-triggering events were selected considering the grids where
landslides occurred month(s) after the non-triggering rainfall date. In
total, 167 landslides were used that occurred in 47 individual dates
between the years 2003 and 2016 and on the other hand 48 rainfall
events were selected with the highest rainfall amounts that did not
trigger landslides were purposely selected over the same period.

4.2. Incorporation of effective antecedent rainfall

To determine the landslide triggering rainfall thresholds for
Bogowonto catchment, we adopted the antecedent daily rainfall model
proposed by Glade et al. (2000). The effective antecedent rainfall
thresholds in this model are calculated by weighting the antecedent
rainfall using Eq. (5) (Glade et al., 2000; Zézere et al., 2005). The ad-
vantage of this approach is that the derived effective antecedent rainfall
thresholds can be regarded as a proxy index of soil moisture for the
respective days preceding the landslide occurrence day (Glade et al.,
2000).

AR, = KP, + K?P, + ..+K"P, (5)

Where AR, is the weighted effective antecedent rainfall for a day x, P; is
the daily rainfall for the day before day x, P,, is the daily rainfall for the
nth day before day x. K is an empirically derived calibration constant
which varies from 0.8 to 0.9 based on the recession of flood hydro-
graphs which is governed by local catchment hydrological character-
istics.

For this study, K was assumed to be 0.9 according to the work of
Adji and Misqi (2010) where amongst other things they studied the
distribution of flood hydrograph recession in Central Java region. This
approach roughly takes into account the amount of water that in-
filtrates into the ground and excludes loss due to overland flow and
evapotranspiration, by applying the calibration or decaying constant to
all rainfall preceding the landslide day (Ma et al., 2014).

4.3. Evaluation of rainfall thresholds

Several daily rainfall-antecedent rainfall threshold curves were
calculated, based on different assumptions, in order to select the most
realistic one. Rainfall thresholds were calculated: a) for the entire
Bogowonto catchment and all the afore-mentioned rainfall events; b)
distinguishing between events on forest and built-up areas; and c) dis-
tinguishing between events in four different periods of the rainy season,
which extends from October to May: October-November, December-
January, February-March, and April-May.

The distinction based on the different land uses was made con-
sidering that land cover affects the hydrology of slopes hence has an
effect on slope failure. The built-up areas are dominated by cut slopes as
a result of the construction of roads, buildings and the growing of crops.
The forested areas consist of forests and shrubs and they are generally
undisturbed. Of the 166 landslides 107 occurred in forested areas while
the remaining 59 in built-up areas.

It was observed that the number of landslides declines as the rainy
season advances. For this, the effect of different periods of the rainy
season on landslide occurrence and rainfall thresholds was investigated.
For the dataset used in this work, the majority of slope instabilities
takes place in the months of December to January (79), followed by
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October to November (42), then February to March (28), and lastly
April to May with 19 landslides.

The daily rainfall for landslide occurrence was plotted against 3, 5,
10, 15, 20 and 30-day cumulative antecedent rainfall, to assess the
optimal amount of days antecedent rainfall. Non-triggering rainfall
events with their respective antecedent rainfall conditions were drawn
too. A line was manually fitted to the daily rainfall- antecedent rainfall
scatters plot, on the criterion of maximum separation between trig-
gering and non-triggering rainfall events. The optimum number of
antecedent rainfall days to consider for the thresholds was selected for
the graph on which the fitted line achieved minimum mixing of trig-
gering and non-triggering rainfall values.

4.4. Determination of low and high level warning rainfall thresholds

Rainfall thresholds for two levels of warning, low and high, were
derived by adopting the method presented by Zhuang et al. (2014) and
Jian et al. (2015). This methodology although not based on rigorous
probabilistic analysis of the landslide occurrence data, can provide a
general estimate of the expected landslide occurrence, to provide
ranked hazard results for the risk management. A line is drawn in the
curve that connects the lowest daily rainfall with the lowest cumulative
antecedent rainfall that triggered landslides. This line is referred to as
the lower envelope of landslides occurrence. As no landslide occurrence
has been observed for rainfall lower than this threshold, it is considered
to mark a low warning level. A second line referred to as the upper
envelope is drawn above the lower envelope crossing the highest
rainfall that failed to trigger landslides; this line corresponds to a high
warning level.

5. Rainfall threshold results

Fig. 3 shows the rainfall thresholds for the entire Bogowonto
catchment, considering 3, 5, 10, 15, 20 and 30 days antecedent rainfall.
Minimum mixing of landslide triggering and non-triggering rainfall
events is observed from 15 days of antecedent rainfall at least. Thus it
implies that there is need for at least 15 days antecedent rainfall or
more for landslides to be triggered in the area.

The results suggest that landslides in the catchment are generally
initiated when, at least, the cumulative effective 15-day rainfall reaches
the lowest threshold of 50 mm and when the daily rainfall is at least
10 mm up to 95 mm. The respective threshold line is given by Eq. (6):

y = 0.33x + 80 (6)

Following the same criteria, the rainfall thresholds distinguishing
between forested and built-up areas were calculated and the critical
duration of the antecedent rainfall was selected, accordingly. Fig. 4
shows the respective rainfall thresholds. In the built-up areas the
minimum mixing of landslide triggering rainfall events and non-trig-
gering rainfall events is achieved for at least 15 days, while for the
forested areas this period is set to 10 days. The proposed rainfall
thresholds are given by Eq. (7) for built-up areas, considering 15-day
antecedent rainfall and by Eq. (8) for forested areas, considering 10-day
antecedent rainfall.

y =0.72x + 77 @)
y =0.83x + 77 ®)

Differences in the derived thresholds are potentially related to the
water conductivity differences for the two land uses. Under forested
areas groundwater may rise faster than in built up areas where soil
compaction and paved surfaces dominate, hence rainwater infiltrates at
a slower rate as compared to the forested areas.

The different thresholds for events, considering the afore-mentioned
four different time periods are shown in Fig. 5. They suggest that
landslide occurrence at the beginning of the rainy season (October-
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November) is mostly influenced by 7 days effective cumulative ante-
cedent rainfall of at least 60 mm, coupled with daily rainfall of at least
20 mm.

For the period December to January, which has the highest number
of landslides, the occurrence of landslides in the catchment is associated
mostly with 10 days of cumulative rainfall. Lastly, for the periods
February to March and the end of the rainy season (April to May), 15
days cumulative antecedent rainfall affect the occurrence of landslides
most. Thus, at the beginning of the rainy season landslides occur for
relatively lower amounts of antecedent rainfall and relatively higher
amounts of rainfall on the event day, as compared to the middle and
end of the rainy season, where higher precipitation amounts are re-
quired.

All the thresholds derived above were quantitatively evaluated. The
evaluation of the thresholds was done based on the following five in-
dices commonly used in the literature (e.g. Begueria, 2006;
Lagomarsino et al., 2015; Martelloni et al., 2012):

a) The positive predictive power (PPP) which is the proportion of po-
sitive results that are true positives (Begueria, 2006b). Calculated as
follows: PPP = TP/ (FP + TP). A perfect classifier would have a
score of 1 for PPP.

b) Negative predictive power (NPP) which is the proportion of pre-
dicted negatives that are true negatives. NPP = TN/(FN + TN).

c) Sensitivity (true positive rate) which is the proportion of positive
cases (landslides) which are correctly classified as such.
Sensitivity = TP/(TP + FN).

d) Specificity (true negative rate) which is the proportion of days
without landslides which are correctly classified as such.

Specificity = TN/(TN + FP).

e) Overall accuracy (Efficiency) which is an index that measures the
overall performance of a model by calculating the proportion of
correct predictions with respect to the total. Overall Accuracy =
(TP + TN)/ (FP + FN + TP + TN) *100.

True positives (TP) are days with landslides correctly detected by
the model. True negatives (TN) are days without landslides which the
model correctly classified as non-landslide days. False positives (FP) are
days which are classified as landslide days but no landslides occurred.
Lastly, false negatives (FN) are days with at least a landslide occurrence
but the model classified as no landslide day.

The results are shown in Table 4; for thresholds considering dif-
ferent days of antecedent rainfall, the threshold considering 15 days
antecedent rainfall has the highest accuracy (86 %). This implies that
this threshold can be linked to the early system for landslides in the
area. It can be observed in Table 4 that partitioning the thresholds
according to landcover and the season of landslide occurrence generally
increases the accuracy of the thresholds in predicting landslides,
therefore increasing the forecasting effectiveness of the thresholds.

5.1. Low and high level warning rainfall thresholds

The low and high warning level rainfall thresholds were determined
as described in Section 4.4. In the resulting graph (Fig. 6), the green line
is the lower envelope of rainfall conditions for landslide triggering
which call it a low level warning. The red line is the upper envelope,
denoting the rainfall for which a higher warning level may be issued.
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Table 4
Overall accuracy calculated for the derived rainfall thresholds of Fig. 5.
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Rainfall thresholds Observed Overall Accuracy (%)
Predicted Landslide No Landslide PPP (%) NPP (%) Sensitivity (%) Specificity (%)

3-Day Landslide 33 8 81 73 73 81 77
No Landslide 12 33

5-Day Landslide 34 7 83 76 76 83 79
No Landslide 11 34

10-Day Landslide 38 8 83 83 84 81 84
No Landslide 7 33

15-Day Landslide 44 11 80 98 98 73 86
No Landslide 1 30

20-Day Landslide 43 14 75 93 96 66 81
No Landslide 2 27

30-Day Landslide 44 13 77 97 98 68 82
No Landslide 1 28

Forested Area Landslide 37 12 76 94 95 74 84
No Landslide 2 34

Built up area Landslide 21 14 60 91 88 71 76
No Landslide 3 32

Seasonal Oct- Nov Landslide 23 2 92 100 100 96 97
No Landslide 0 44

Seasonal Dec-Jan Landslide 17 6 74 97 94 84 88
No Landslide 1 32

Seasonal Feb-Mar Landslide 10 6 63 98 91 87 88
No Landslide 1 40

Seasonal Apr-May Landslide 9 6 60 98 90 87 88
No Landslide 1 40

6. Discussion

Comparison of TRMM rainfall estimates and ERA-Interim rainfall
forecast data with the observed rainfall from meteo stations has in-
dicated that these products generally underestimate rainfall up to 30 %
for both daily and monthly rainfall in the study area. A possible reason
for this poor performance is the coarse resolution of the rainfall pro-
ducts grid (25 km for TRMM) on which the point measurements with
the station data were overlain. Coarser grids demonstrate a smooth-
ening effect on the spatial variability of rainfall, thus leading to a low
correlation with the ground observations, in case of local peaks. For the
TRMM monthly rainfall, the respective correlation was better (0.83) as
the local effects are less pronounced. Better performance might be at-
tributed to the improved calibration of the models used to derive
monthly rainfall as compared to daily rainfall (Toté et al., 2015). For
the ERA-Interim rainfall forecasts, the lack of agreement with observed
rainfall could be attributed to uncertainties related to the para-
meterization of convection (Bumke, 2016).

The effect of spatial resolution is also important here, given that for
a grid of 80km, spatially heterogeneous rainfall patterns cannot be
depicted well. Thus, the use of satellite products for identifying local
rainfall extremes is restricted. The analysis of extreme rainfall using
satellite datasets shows that ERA-interim overestimates the number of

120

Daily rainfall (mm)

*

250

15 days cumulative effective rain (mm)

® Non-triggering

wet days, but the total amount of precipitation is very similar to the
observed rainfall for the period 2003 to 2016. TRMM indicates a larger
number of days with very heavy and extremely heavy precipitation as
compared to ERA-Interim; thus it detects better high rainfall events. For
1 and 5-day maximum rainfall and days with heavy precipitation, ERA-
Interim forecasts outperform TRMM estimates. Nevertheless, ERA-
Interim forecasts underestimate the days with heavy and extremely
heavy precipitation.

As TRMM performs well for the detection of very heavy precipita-
tion (see Table 3 for R20 mm), it can be used to indicate the extreme
rainfall events that often are triggers for landslides. On the contrary, as
ERA-Interim failed to detect those events, its applicability for LEWS
remains limited, for the studied catchment. Bias correction of the pro-
duct data could be a solution to this however this is beyond the scope of
this paper.

Therefore, using the TRMM satellite rainfall product, landslides in
Bogowonto catchment have been empirically correlated with weighted
antecedent rainfall conditions by taking daily rainfall as dependent
variable and different periods of antecedent rainfall as independent
variable. Following this analysis, at least 15 days antecedent rainfall
conditions and daily rainfall on the landslide event day has been found
to be correlated to the occurrence of landslides in the study area. The
weighted thresholds are preferable because they reduce mixing of

Fig. 6. Plot for 15 days effective antecedent rainfall and daily
rainfall: black dots symbolise non-landslide triggering rainfall
events and triangular dots symbolise landslide triggering
rainfall events, using TRMM data. The respective EAR-I data
for triggered landslides are printed in blue (For interpretation
of the references to colour in this figure legend, the reader is
referred to the web version of this article).

A Triggering
& ERA-I (triggering)
Low Level Warning Threshold

High Warning Threshold

300 350
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landslide days from non-landslide days as they make rainfall occurring
more days before the event days to be less important as compared to
rainfall in days close to the event.

The relationship between rainfall and landslides occurrence is not
straight forwared, as evidenced by the non-occurrence of landslides
when the conditions that triggered landslides in the past are reached or
exceeded. This inherent uncertainty can be partly dealt with when the
determination of thresholds is probability-based (Berti et al., 2012).

In the proposed method, the manual fitting of the proposed rainfall
thresholds to the data is a shortcoming entailing uncertainties which
can be minimized using regression analysis. This was out of the scope of
the research presented in this paper; however this improvement is
strongly needed and it will be developed in future research activities.

Transferring the thresholds to other areas may lead to poor results
due to spatial variability of rainfall and differences in hydrological,
geomorphological and geological characteristics of catchments. In ad-
dition, the derived thresholds may be an underestimation as they have
been determined using TRMM rainfall estimates which underestimate
rainfall. Lastly, we did not have enough data to derive different rainfall
thresholds related to different types of landslides, although it has been
shown elsewhere that the effect of antecedent precipitation differs
based on various landslide types for example deep seated and shallow
landslides (e.g. Muntohar, 2008; Zézere et al., 2005)

7. Conclusions

For the study area, the results indicated that it is possible to use
TRMM data to determine rainfall thresholds that can be used in a
landslide EWS, considering daily and antecedent rainfall. We conclude
that TRMM data performed reasonably well for the detection of heavy
precipitation, thus it can be efficiently used to indicate extreme rainfall
events that trigger landslides. However, the use of TRMM-based data
leads to lower rainfall thresholds than based on the measured rainfall
data from rain gauges, thus the two sets of data cannot be combined in
the same system. The thresholds developed using the TRMM data are
still only suitable for now-casting, with information of rainfall on the
day of occurrence. The mixing of TRMM data with ERA-Interim data for
forecasting daily rainfall, as an essential component of LEWS, has been
proven to be problematic in the study area.

For the study area and the recorded landslide events, the occurrence
of landslides is best predicted using a combination of daily rainfall and
15 days antecedent rainfall. The respective rainfall thresholds has an
overall accuracy of 86 %, which is higher than the overall accuracy of
the 3, 5, 10, 20 and 30-day thresholds. However, there are several
uncertainties inherent in the procedure followed, which, besides rain-
fall data, are related to the reliability of the landslide date in the in-
ventory. A high degree of uncertainty is also attributed to the selection
of non-landslide dates, as some events might have not been reported.
Another source of uncertainty is related to the large variability of
conditions under which landslides occur within the same area, due to
variations in soil depth, slope angle and other characteristics.

The results indicated a spatial and temporal variation of rainfall
thresholds in the catchment. The variation of the thresholds for dif-
ferent land uses can be interpreted by the effect of the land cover on the
hydrological and mechanical properties of the soil which influence the
landslide initiation, for example because of decreased water con-
ductivity due to soil compaction, and slower infiltration rates. On the
other hand, the variation of the thresholds at different periods over the
year may possibly be due to differences in the type of landslides oc-
curring in these periods (shallow vs deep seated landslides). However,
this study did not consider such different types of landslides which
according to Muntohar (2008) and Zézere et al. (2005) can be influ-
enced by different antecedent rainfall conditions. These findings in
general suggest that these factors (land cover and period of occurrence)
should be taken into consideration when determining rainfall thresh-
olds for the purpose of improving the forecasting of landslides in the
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area. This approach can eventually help to improve the performance of
dynamic LEWS.
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