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Abstract— Reinforcement learning algorithms have proven to
be capable of solving complicated robotics tasks in an end-
to-end fashion without any need for hand-crafted features or
policies. Especially in the context of robotics, in which the cost of
real-world data is usually extremely high, Reinforcement Learn-
ing solutions achieving high sample efficiency are needed. In
this paper, we propose a framework combining the learning of
a low-dimensional state representation, from high-dimensional
observations coming from the robot’s raw sensory readings,
with the learning of the optimal policy, given the learned state
representation. We evaluate our framework in the context of
mobile robot navigation in the case of continuous state and
action spaces. Moreover, we study the problem of transferring
what learned in the simulated virtual environment to the real
robot without further retraining using real-world data in the
presence of visual and depth distractors, such as lighting
changes and moving obstacles. A video of our experiments can
be found at: https://youtu.be/rUdGPKr2Wuo.

I. INTRODUCTION

Reinforcement Learning [1], or RL, is the machine learning
field studying the problem of optimal sequential decision
making in the presence of uncertainties through the trial-
and-error paradigm. Reinforcement Learning has shown to
be able to learn complex behaviours directly from high-
dimensional input data, e.g. raw pixel inputs, in different
domains such as robotics [2], [3] and video-games [4], [5],
[6]. Thus, Reinforcement Learning has the potential to achieve
high degrees of motoric and cognitive intelligence.

Learning from high-dimensional inputs, or observations,
comes at the price of low sample efficiency and high
computational load. The problem of high sample-efficiency of
the algorithms is of crucial importance in robotics due to the
cost of real hardware and simulators [7], [8]. Unfortunately,
simulators rely on mathematical models (e.g. physics) that
approximate the real world. These approximations make
transfer learning a big challenge in many cases. This problem
is referred to, in literature, as the simulation-to-reality gap
[7]. Moreover, when aiming to solve real-world challenges,
we must rely on raw sensory data, such as RGB cameras or
laser range sensors. Sensory data are often noisy, partial and
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high-dimensional, and therefore it is difficult to deal with
them.

The state space can be manually hand-crafted to contain
only the relevant features and consequently reduce its
dimensionality to overcome the issue of learning policies
directly from raw observations and improve sample efficiency.
While this step is possible for simple tasks, designing the
state space is a non-trivial challenge in real-world problems.
Moreover, hand-crafted features are usually brittle to changes
in environments such as lighting conditions or non-modelled
dynamics. The robustness of feature extraction methods is
especially critical in robotics Reinforcement Learning that
heavily relies on virtual simulators to reduce the cost of real-
world samples. Therefore, we need methods for extracting
task-relevant features in robust and sample-efficient ways.

State representation learning, or SRL, [9] is the name
given to all the methods learning to extract informative
and compact state representations from high-dimensional
observations to facilitate the learning of the policy of
the Reinforcement Learning algorithms. Instead of directly
solving the problem of learning the optimal policy, mapping
observations to actions, it is beneficial, for sample-efficiency
and robustness of the learned policy, to first learn a low-
dimensional representation of the observations, i.e. the state
representation, then learn the optimal policy directly from
such representation.

Robots live in spaces governed by physical laws. These
spaces have a lower dimensionality than the space of raw
sensory observations. We can exploit such knowledge and
represent the sensory information into learned state spaces of
low dimensionality. Moreover, additional and general priors
[11], i.e. prior knowledge, of the world can be used to aid
the learning of meaningful state representations, such as
smoothness of the state changes or the relation between
action magnitude and state changes. These priors can be
used to shape the loss functions used for learning such
mappings. In the particular case of robotics, the authors of
[12] propose the so-called robotics priors, i.e. loss functions
that are shaped to incorporate physical knowledge of the
world and used to constrain and steer the learning of the
state representation loosely. The robotics priors are means
to learn meaningful state representations in all the cases
in which physical laws govern the environment, and they
consequently allow robustness and sample efficient learning
of the Reinforcement Learning policy.

This research proposes a framework for state representation
learning and Reinforcement Learning to efficiently solve
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Fig. 1: Proposed framework combining state representation learning and Reinforcement Learning.

mobile robots navigation tasks directly from raw sensory
information. This framework is shown in Figure 1. Our
research contributes to improving the sample efficiency of
the Reinforcement Learning algorithm, increasing robustness
and interpretability of the learned state features, combining
the use of deep learning with prior knowledge, and bridging
the simulation-to-reality gap. In particular:
• We study the problem of unsupervised learning, i.e.

without the need for expensive labelled data, of mean-
ingful and interpretable state representations using the
robotics priors in continuous state and action spaces.
Continuous action spaces allow smoother and more
advanced trajectories, and therefore should be preferred
for robotics.

• We introduce a new set of robotics priors, i.e. loss
functions for learning the state representation, that
exploits the underlying structure of continuous action
spaces for obtaining smoother and more informative
state representations. The new loss functions do not only
contain information of states but also actions.

• Eventually, we show that the proposed framework allows
the transfer of the policies and representations learned in
virtual simulation environments to the real robot without
further retraining using real-world data.

II. BACKGROUND

A. Markov Decision Processes

Markov Decision Processes, or MDPs, [13] are a mathemat-
ical framework for studying and solving sequential decision
making processes. In any MDP, we can identify two major
entities: the agent and the environment. The agent, or the
decision-maker, tries to learn the optimal way of behaving,
i.e. the optimal policy, while the environment corresponds
to the world in which the agent lives. Formally, an MDP
M is a tuple (S,A,T,R), where S is the set of states,
A is the set of actions, T(s, a) : S × A −→ [0, 1] is the
transition function determining the evolution of the states

and R(s, a) : S ×A −→ R is the reward function evaluating
the quality of the actions taken by the agent. When the
dynamic model of the MDP, i.e. the transition function T and
the reward function R, is not known a priori, the agent has
to discover the best acting strategy by interacting with the
environment through the trial-and-error paradigm.

B. Reinforcement Learning

Reinforcement Learning, or RL, [1] is the name given
to the collection of algorithms solving sequential decision-
making processes without any knowledge of the underlying
MDP. The aim of any RL algorithm is finding the optimal
policy π, mapping states to actions, for maximizing the total
cumulative return Rt in Equation (1).

Rt = Σ∞t=0γ
trt+1 (1)

where the subscript t indicates the time steps, γ is the discount
factor, and rt is the instantaneous reward received by the
agent at time step t.

Deep Deterministic Policy Gradient: Deep Deterministic
Policy Gradient, or DDPG, [14] is an actor-critic RL algorithm
that extends Deep Q-Network, or DQN, [4] to continuous
action spaces. The actor, i.e. the policy π, chooses an
action for each input state, while the critic, i.e. the action-
value function Q, evaluates the performance of the actor.
The actor and the critic are modelled using two neural
networks, respectively θπ and θQ. To improve the training
stability, DDPG uses a copy of the critic and the actor
networks, parametrized respectively by θQ′

and θπ
′
, that

are updated with a slower frequency than the actor and the
critic accordingly to Equation (2).

θQ′
= ρθQ + (1− ρ)θQ′

θπ
′

= ρθπ + (1− ρ)θπ
′ (2)

where ρ is a constant determining the speed of the updates
of the target networks. To improve the policy, first, the
parameters of the critic θQ, are adjusted according to the mean
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square error loss between the predicted Q-value Q(st, at|θQ
i )

and the target Q-value yt = r(st, at) + γQ(st+1, at+1|θQ′

i )
estimated via the target network, as shown in Equation (3).

L(θQ) = Eπ[(Q(st, at|θQ)− yt)2] (3)

The estimate of the state-action value function Q is used
to update the parameters of the actor network, θπ, that are
adjusted in the direction of the gradient of the expected return
∇θπJ(πθ), shown in Equation (4).

∇θπJ(πθ) = Eπ[∇aQ(st, π(st|θπ)|θQ)∇θππ(st|θπ)] (4)

In this way, the gradient of the critic guides the improvements
of the actor.

C. State Representation Learning

In many interesting applications, the state of the environ-
ment is not directly observable by the RL agent. However,
the agent can only perceive the environment through high-
dimensional observations, such as sensory reading, e.g. RGB
images or LiDAR data in the case of a mobile robot. While RL
algorithms can learn the relevant information from the inputs
using only the reward signal, it is possible and convenient, for
the sake of sample-efficiency, generalization and robustness
[9], [10], to first learn a compact and low-dimensional
state representation encoding all the relevant information
for solving the given task and then learn the optimal policy
directly using the learned state representation.

Learning a good state representation in unsupervised
manners is a non-trivial challenge, as the state representation
should contain all, and only, the information which is
relevant for allowing the agent to improve the policy and
to solve the task. At the same time, the dimensionality
of the state should be kept to a minimum to improve the
agent’s training efficiency. The state representation should
also map observations to states in unambiguous ways, i.e. the
state representation should be Markovian [27]. Eventually,
the observation-state mapping should generalise to unseen
observations with similar properties to the seen ones.

Many methods for unsupervised or self-supervised learning
of state representations using neural networks have been
developed over the years. However, three major categories
of approaches can be distinguished accordingly to [9].

The first category includes all the methods of encoding
information to low-dimensional spaces by relying only on
observation reconstruction. In this context, Auto-Encoders, or
AEs, variational AEs, or denoising AEs [15], [2] and [16] can
be used for learning to reconstruct the input observations that
are fed through a neural network, composed of an encoder
and a decoder, with a bottleneck. The bottleneck is used as
the state vector for learning the policies. Despite the success,
this framework is known for ignoring small objects present
in the observations, while these objects can be relevant for
solving the task. Moreover, the observation reconstructions
are not usually used by the RL algorithms making the decoder
an unnecessary complexity [17].

The second category of approaches for learning state
representations takes advantage of the learning of the MDP

model, i.e. the forward transition model, the reward model,
and the inverse model.Because no decoder is used, the
representation may collapse to trivial solutions, especially
in case of sparse rewards [17], [18], [19]. Therefore, often
these dynamical models are combined with the auto-encoder
framework in order to improve and prevent collapsing of the
learned state representation or with contrastive losses [20].

Eventually, the third category includes all the methods
loosely constraining the state space using auxiliary loss
functions injecting prior knowledge in the form of loss
functions for training the encoder networks. The so-called
robotics priors have been introduced in [12] as loss functions
for encoding prior knowledge of the world, e.g. the physical
laws, into the learning of the state representation for different
robotics navigation tasks. In this work, we focus on this
category of approaches.

III. RELATED WORK

The concept of robotics priors is introduced by [12]
for solving the problem of unsupervised learning of an
informative state representation in the context of simple
robotics navigation tasks. In those experiments, the agent’s
action space is chosen to be discrete, and the mobile robot
can only move forward, backward, left or right at each time
step. Furthermore, the robot is equipped with an RGB camera
with a field of a view of 300°.

In [21], the priors are adapted to incorporate the reward
properties better, improve the quality of the learned state
representation and, consequently, the quality of the learned
Reinforcement Learning policy.

In [24], the authors propose the so-called position-velocity
encoder for learning a valid state representation. This work
introduced new prior losses that exploit the relation between
the position and the velocity of the inverted pendulum, the
cart-pole and the ball-in-a-cup problems. Using the position-
velocity encoder, all these different tasks can be efficiently
learned from pixel inputs.

In [25], the original set of robotics priors [12] is evaluated
in the presence of distractors, i.e. disturbing visual elements
such as shadows or randomly moving backgrounds. When the
domain randomization is strong, the robotic priors struggle
to construct a coherent state representation. Therefore, the
authors propose the reference-point prior, using true state
values, to regularize the learned state space and mitigate such
a limitation.

Eventually, in [26], the authors propose an approach for
learning state representation using the robotics priors in
the case of more complex environments where a single
observation is not enough to distinguish between two or
more states. Therefore, they employ a recurrent LSTM-based
encoder, mapping sequences of observations to single state
predictions. Moreover, to obtain a coherent representation,
they extend the reference-points prior, proposed in [25], to
include multiple reference points, or landmarks, to connect
the state predictions from different trajectories.

Differently from all these approaches, we study the problem
of learning state representations in the context of continuous
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action spaces and by exploiting the underlying action structure
when constructing the priors, i.e. the loss functions. Here,
we do not consider heavy domain randomization nor the
problem of a recurrent state representation. However, we
focus on a purely unsupervised approach that does not require
the knowledge of true state values. Our approach can be
considered orthogonal to [25] and [26]. The proposed priors
can be directly combined with the reference-points prior and
with a recurrent encoder network. Moreover, differently from
[24], [25], [26], we test our approach on a real robot.

Eventually, all these approaches study the problem of state
representation learning by introducing different robotics priors
with the underlying assumption of discrete action spaces.
In our work, we study the problem of state representation
learning in continuous action spaces. Moreover, we aim at
exploiting the structure of the action space to improve the
quality of the learned state representation and, consequently,
the efficiency of the policy learning.

IV. METHODOLOGY

A. Proposed Approach

We propose a framework for sample efficient end-to-end
RL for solving different robotics navigation tasks directly
from high-dimensional sensory readings. The framework is
composed of two building blocks: first, a low-dimensional
state representation is learned from the observations, and
then the optimal policy is learned solely based on such state
representation, as shown in Figure 1. The state representation
is learned in an unsupervised fashion by introducing a new
set of robotics priors. The robotics priors are a way to inject
prior knowledge into the state representation learning step by
loosely constrain the learned state space. Our work extends
the concept of robotic priors to continuous action spaces by
exploiting the underlying structure of the actions into the
encoding step of the state representation learning.

For learning the optimal policy, we choose deep determin-
istic policy gradient, DDPG, as the candidate RL algorithm
for its ability to deal with continuous state and action spaces.
However, it is worth mentioning that the proposed approach
is independent of the specific RL algorithm and any algorithm
that can deal with continuous action space can be in principle
employed.

With this work, we aim at addressing the following research
questions:
• How can we take advantage of the underlying action

structure of continuous action spaces for learning the
state representation using the robotic priors?

• To what extent can the priors, exploiting actions structure,
be beneficial for policy learning?

• To what extent can the learned state representations,
using the proposed priors, and the policies learned from
such representations be transferred to real robots without
further re-training using real-world data?

B. Robotics Priors for Continuous Action Spaces

Continuous actions spaces have an underlying structure
that we can exploit when learning a low-dimensional state

representation. In many situations, observation changes and,
consequently, agent’s state changes are directly related to the
magnitude of the action taken. This simple concept can be
exploited and used as a loose constraint when learning the
state representation using the robotics priors. The new set of
robotics priors is presented below, where ŝt corresponds to
the state prediction1 given observation ot, at is the action
and ∆ŝt = ŝt+1 − ŝt.

Simplicity prior: The task-relevant information lies in a
space with dimensionality much smaller than the sensory
observations.

Temporal coherence prior: The temporal coherence prior,
introduced in [12], encodes the property that state changes
are slow and states close in time should also be close in space.
However, this prior treats all the state pairs similarly and
does not consider the magnitude of the action taken. In our
approach, we use the magnitude of the action at, connecting
state prediction ŝt and next state prediction ŝt+1, as weighting
factor for the state distance ||∆ŝt||. In particular, when an
action with a large magnitude connects two state predictions,
the loss function does not enforce the states to be as close
as when an action with a small magnitude is taken. In this
way, we can better exploit the structure of the smooth and
continuous action space. This intuition leads to the prior in
Equation (5).

Ltemp = E
[(
‖∆ŝt‖e−α‖at‖

)2]
(5)

where the hyper-parameter α is used to weight the effect of
the action magnitude on the state difference.

Proportionality prior: The original proportionality prior
[12] encodes the heuristic that the state variation of two
different state pairs should be similar if the actions taken are
similar. With similar reasoning to the case of the temporal
coherence prior, in continuous action spaces, the similarity
in states property translates into an additional weighting
factor dependent on the difference in magnitude between the
actions at1 and at2 . The action difference scales the need
of minimizing the state difference. The new proportionality
prior is shown in Equation (6).

Lprop = E
[(
‖∆ŝt2‖ − ‖∆ŝt1‖

)2
e−β‖at1−at2‖

2
]

(6)

where hyper-parameter β is used to weight the effect of the
action difference on the state difference.

Repeatability prior: The repeatability prior reinforces the
similarity of states not only in magnitude but also in direction.
In particular, if two different states are similar and similar
actions are taken in each of them, the magnitude of difference
in the transition ∆st1 and ∆st2 should be limited. The new
repeatability is shown in Equation (7).

Lrep = E
[
‖∆ŝt2 −∆ŝt1‖2e−||ŝt2−ŝt1 ||

2

e−β||at1−at2 ||
2
]
(7)

Causality prior: The temporal coherence and proportion-
ality are aggregating priors that tend to reduce the distance

1 ·̂ is used to distinguish the state prediction ŝt from the true state of the
environment st which is assumed not directly observable by the agent.
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(a) Env-1 (b) Env-2 (c) Env-3 (d) Env-4 (e) Env-5

Fig. 2: Examples of simulation environments.

between the state predictions. Therefore, to prevent the trivial
mapping in which all the states are mapped to the origin,
we employ a contrastive loss pushing apart state predictions.
We further enhance the so-called causality prior, with an
additional penalty dependent on the action difference. This
prior is shown in Equation (8).

Lcaus = E
[
e−||ŝt2−ŝt1 ||

2

e−β||at1−at2 ||
2
]

(8)

Total loss: The overall loss function that is minimised for
learning the state representation is shown in Equation (9).

L = ω1Ltemp+ω2Lprop+ω3Lrep+ω4Lcaus+ω5Lreg (9)

where ω1 = 1, ω2 = 1, ω3 = 1, ω4 = 2, ω5 = 1 and Lreg
corresponds to the L2 regularization loss. The weights of
the single loss functions are chosen by performing a grid
search ∈ {1, 2, 3, 4, 5}. However, the method is not highly
sensible to the choice of the hyperparameters and other sets
of weights may produce similar results.

C. Neural Network Architectures
As shown in Figure 1, the framework includes two map-

pings: from observations to low-dimensional state predictions
and from state predictions to actions. Both mappings are
learned through neural networks. In particular, the SRL
network is responsible for the learning of the low-dimensional
state representation from the multi-modal sensory observa-
tions. The architecture is similar to the one used in [21],
where the sensor modalities are independently processed
by convolutional layers, flattened and merged through fully
connected layers to create the final low-dimensional state
prediction of dimension 5. The state dimension is chosen
accordingly to the studies done in [21] and [26]. On the
other side, the RL networks, composed of an actor mapping
states to actions, and a critic estimating the action-value
function, are responsible for the learning of the optimal policy.
Both architectures present three fully connected hidden layers
of dimension 512. The output layer of the actor generates
the linear and angular velocities set-point for the low-level
controllers of the robot. We allow only forward motion by
limiting the linear velocity with sigmoid activation. The output
of the critic estimates the Q-value of the input state-action
pairs.

V. EXPERIMENTAL DESIGN
A. Mobile Robot Navigation with Multiple Sensor Modalities
in Different Environments

We evaluate the proposed approach by studying the problem
of learning to control a differential-drive mobile robot,

equipped with an RGB camera (images of size 32× 24× 3)
and a 2D LiDAR (40 data points on the 360° range), to reach
various target locations without collision with obstacles in
different environments. Examples of environments are shown
in Figure 2.

Since investigating the applicability of transfer learning is
one of the goals of this work, we first experiment in virtual
simulated environments using the ROS-Gazebo platform,
where we aim at learning the state representation and the
optimal policy. Then, we transfer the learned models to
the real robot without further training using real data. For
the transfer learning experiments, we use the environments
depicted in Figure 2d and 2e. The robot used is the TurtleBot
3 Waffle Pi.

For all the experiments, we use a distance-based reward
function, as shown in Equation (10).

R(st, at) =


rreached, d ≤ dmin,

rcrashed, st = sts,

−ζ(dt − dt�1), otherwise.
(10)

where dt = ‖px,yt − g‖2 is the distance from the current
position pt of the robot at time t with respect to the inertial
frame and the target’s location g expressed in the robot’s
coordinate frame, dt−1 the distance at time t− 1, rreached is a
bonus for reaching the target, dmin is the minimum distance
threshold below which the navigation target is considered
reached, ζ is a scaling factor, and rcrashed is a penalty for
reaching a terminal state sts, e.g. hitting an obstacle or
reaching the maximum number of steps in a single training
episode. A distance-based reward function is a common
choice for solving navigation tasks [22], [23].

B. Baselines

We compare the proposed approach for learning the state
representation with:

• The adaptation of original robotics priors introduced
in [12] for continuous action spaces, where the action
equality is replaced with a similarity between the action
pairs, i.e. two actions are similar if the difference of
their magnitudes is below a given threshold.

• The reward-shaped robotics priors proposed in [21].
• The robotics priors proposed in [26], where, for fairness

of the comparison, we remove the landmark prior that
requires true state values.

• An Auto-Encoder (AE), where the latent code of the
AE is used as an input to the RL networks.
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(a) True state values (b) Our Priors (c) Priors in [21]

(d) Adaptation of the priors in [12] (e) Adaptation of the priors in [26] (f) Auto-Encoder

Fig. 3: True state values (Figure 3a), and first two principal components (Figure 3b-3f), obtained with PCA, of learned state
representations for environment Env-1 and target location in the bottom left corner (see Figure 2a). The states with obstacles
are depicted in black.

For each environment, we collect a data set comprised
of randomly generated trajectories. We first learn a state
representation of dimension 5 for each approach by updating
the SRL network for 20 epochs. In the AE case, the state
dimension is set to 20, and the training lasts 200 epochs.
Because our goal is to reach any possible target in a given
environment, at each training episode, we randomly change
the goal location and the starting pose of the robot to prevent
getting biased by the environment structure. Therefore, to
inform the agent of the target information, we concatenate
the learned state predictions to the (x, y)-coordinates of the
target position. Eventually, for further training stability, the
previous action taken by the agent is also added to the
complete extended state vector to improve the smoothness of
the resulting trajectories.

We analyse the quality of the learned state representations
and the consequent performances in terms of success ratio2

over the training of the RL agent when fed with the learned
representations, mean Ground Truth Correlatetion (GTC) as
in [10], mean K-Nearest Neighbour (KNN) as in [26], and
mean Linear Reconstruction Error (LRE). For fairness of
comparison, the same SRL and RL networks architectures are
used for each method, with the exception of the AE, where a
decoder network is added to reconstruct the input data from
the latent code.

Additionally, we compare with the agent trained using
the true state, i.e. the pose of the robot. We concatenate the

2The success is defined by the robot reaching the target without collisions.

target position and the previous action taken for fairness of
comparison to the true pose.

VI. RESULTS AND DISCUSSIONS

A. Analysis of the Learned State Representations

In Figure 3, we show, through the plotting of the true
states, i.e. the true robot’s poses, and the first two principal
components computed using PCA [28], of the different state
representations obtained when training the SRL network with
the different baselines in environment Env-1. Due to the
additional regularization provided by the action terms in the
priors (see Equation (5)-(8)), the learned state space appears
to be the smoothest and most coherent with the true state
space. Our approach achieves the highest mean GTC and LRE
compared to other methods and the third best KNN score,
as shown in Table I. These results mean that our approach
better incorporates the properties of the true state space3. In
particular, the priors proposed in [21], in Figure 3c, suffer
from a slight lack of smoothness near obstacles due to sudden
changes in the rewards. The original priors, proposed in [12],
in Figure 3d, by forcefully aggregating states in which similar
actions are taken, disrupt the intrinsic smoothness of state and
action spaces. The prior in [26] in Figure 3e, can achieve a
good representation, even though less smooth when compared
to our priors especially around obstacles. By evaluation pairs

3It is worth noticing that in the context of unsupervised representation
learning without labelled data, the first and second dimension of the learned
state space may not correspond necessarily to the x-position and y-position,
but they may appear flipped (see Figure 3b).
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(a) Env-1 (b) Env-2 (c) Env-3

- our pnors

- ground truth

- priors in [11]

- priors in [20]

- priors in [23]

- Auto-Encoder

Fig. 4: Evolution of the success ratio over training in the different environments. The solid line represents the mean and the
shaded area, the variance of the success ratio.

of state predictions, our proportionality prior (in Equation
6) and repeatability prior (in Equation 7) better regularize
all the transitions leading to a collision with obstacle, as
it can be notice by the clustering on the collision states in
Figure 3b. Eventually, as expected, the AE, in Figure 3f,
learns the least interpretable representation. The latent states
are only aggregated based on similarities of the observations,
and there are no guarantees that two consecutive yet different
observations are mapped close to each other.

Approach mean GTC mean KNN (k=20) mean LRE
our 0.7318 1.8207 1.6289

priors in [12] 0.6971 1.8029 1.7032
priors in [21] 0.7002 1.8305 1.7022
priors in [26] 0.6508 1.8283 1.6405

AE 0.6266 1.7862 1.6415

TABLE I: Quantitative evaluation of the different approaches
in environment Env-1.

B. Simulation Results

To assess the quality of the learned state representations
in quantitative manners, we compare the performance of the
different RL agents when trained on such representations.
Figure 4 shows the success ratio over training of the agents
for the different simulation environments depicted in Figure
2a-2c. The agent trained with the proposed method for state
representation learning outperforms the other baselines4 due
to the smoother and more coherent state representation that
betters incorporates the properties of the true state space.

Furthermore, in Figure 5, we show the trajectories achieved
after training by our approach. The robot has to reach a set
of targets in Env-2 and Env-3 based on the sequence labelled
in the Figure. The agent can successfully reach a sequence
of different targets without collision with the obstacles.

C. Real-World Experiments

Eventually, we train the state representation and policy
networks in the simulated environments Env-4 and Env-5,
depicted in Figure 2d and 2e respectively, that resemble the

4The state representation incorporates information about the robot’s pose,
the obstacles and the topology of the environment too, while the ground
truth includes only the robot’s pose. Because of that, the policies, trained
on optimal low-dimensional state representations, may achieve performance
slightly superior to the ground truth.
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Fig. 5: Trajectory tracking in the testing virtual
environments.

real-world environments. Then, we directly transfer them
to the real robot without further retraining using real-world
data. The learned low-dimensional state representation can
robustly extract the most important features out of the sensory
readings, and it can effectively reduce, if not cancel out the
simulation-to-reality gap. Moreover, we test the robustness of
the learned model against visual and depth distractors, such
as lighting changes and a suddenly appearing moving object
on the robot’s path to the target. The complete video of our
real-world experiments can be found at: https://youtu.
be/xujdA4b8-tY.

VII. CONCLUSIONS

This paper presents an end-to-end deep Reinforcement
Learning framework that explicitly separates the learning of a
low-dimensional state representation, given high-dimensional
observations, with the policy learning for continuous state and
action spaces. We show that we can exploit the underlying
continuous action structure by means of the new robotics
priors, in Equations (5)-(8). The new priors allow the learning
of a smoother and more coherent representation than the
different robotics priors proposed in the literature. This
translate into a higher success ratio of the learned policies
when trained in different simulation environments. Eventually,
the representations and policies learned in the simulation
environment can be successfully transferred to the real world
without any retraining using real-world data. The compression
of high-dimensional observations into a low-dimensional state
vector is the key element for transferring the learned models
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in the simulation environment to the real world.

APPENDIX

A. Ablation Study

We study the variation of the mean GTC, mean KNN, and
mean LRE for different sets of loss coefficients (Table II)
and for different sets of α and β hyperparameters (Table III).

In particular, in Table II, we show the contribution of the
priors on the overall structural scores by individually set
each prior to zero. The proposed weight set achieves good
scores and the highest cumulative reward over training. The
removal of the temporal coherence prior (ω1 = 0) has positive
influence on the scores. However, the qualitative inspection
of the representation highlights the lack of smoothness of the
representation that may negatively influence the performance
of the agent especially in complex environments rich of
features. Crucial is the role of the causality prior and when
removed (ω4 = 0) the representation collapses to the zero-
vector.

(ω1,...,5) mean GTC mean KNN (k=20) mean LRE
(1,1,1,2,1)* 0.7318 1.8207 1.6289
(1,1,1,1,1) 0.6871 1.7964 1.6273
(0,1,1,2,1) 0.7423 1.8169 1.6319
(1,0,1,2,1) 0.6741 1.8295 1.6280
(1,1,0,2,1) 0.6859 1.8215 1.6304

(1,1,1,0,1)** - - -

TABLE II: Study of the loss coefficients ω1, ω2, ω3, ω4,
and ω5 in environment Env-1. The asterisk * indicates
the configuration used in the experiments in Section VI.
The double asterisk ** indicates the collapsing of the
representation to the zero-vector.

In Table III, the structural scores are computed in func-
tion of the parameter α and β. The choice of these two
hyperparameters in our experiments (α = 2, β = 10) is
not necessarily the best in terms of overall structural scores.
However, the agent trained on such learned representation
outperforms the other baselines.

(α, β) mean GTC mean KNN (k=20) mean LRE
(2,10)* 0.7295 1.8270 1.6278
(1,10) 0.6658 1.8189 1.6298
(3,10) 0.7474 1.8251 1.6341
(4,10) 0.6877 1.8298 1.6306
(5,10) 0.6933 1.8141 1.6290
(2,5) 0.7304 1.8142 1.6307
(2,15) 0.7176 1.8290 1.6315
(2,20) 0.7570 1.8453 1.6316
(2,50) 0.6534 1.8834 1.6314

TABLE III: Study of the hyperparameter α and β in
environment Env-1. The asterisk * indicates the configuration
used in the experiments in Section VI.
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