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Abstract
Overflow mechanisms can be found in a variety of queueing models. This paper studies a
simple and generic overflow system that allows the service times to be both job type and
station dependent. This system does not exhibit a product form. To justify simple product
form computations, two product form modifications are given, as by a so-called call packing
principle and by a stop protocol. The provided proofs are self-contained and straightforward
for the exponential case and of merit by itself. Next, it is numerically studied whether and
when, or under which conditions, the modifications lead to a reasonable approximation of
the blocking probability, if not an ordering. The numerical results indicate that call packing
provides a rather accurate approximation when the overflow station is not heavily utilized.
Moreover, when overflowed jobs have an equal or faster service rate, the approximation is
consistently found to be pessimistic, which can be useful for practical purposes. The stop
protocol, in contrast, appears to be less accurate for most natural situations. Nevertheless, for
an extreme situation the order might change. In addition, for the stop protocol the product
form is proven to be insensitive (i.e. to also apply for arbitrary non-exponential service times).
For call packing, this numerically appears not to be the case, as of interest by itself. However,
from a practical viewpoint the sensitivity seems light. The results are intriguing for both
theoretical and practical further research.

Keywords Overflow queues · Call packing · Stop protocol · Product form · Blocking
probability · Insensitivity

1 Introduction

Overflow queueing is a most natural phenomenon to let service requests be handled by an
auxiliary or alternate or second preference service source when the primary service facility
is congested or unavailable. Examples are found from classical alternate routing in com-
munications up to daily life logistics, such as call centers (skill based routing), health care
(see e.g. Asaduzzaman and Chaussalet 2014; Litvak et al. 2008) or emergency units (e.g.
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Fig. 1 Overflow model of interest
in this paper

Type 1

Type 2 Station 2

Station 1

ambulances) from neighbouring areas. In this paper, we study a simple and generic overflow
system consisting of two stations as depicted in Fig. 1. Arriving type 1 jobs are overflowed
to station 2 if all servers at the primary station 1 are busy.

In most natural situations, type 1 and 2 jobs do not require the same amount of service,
which means that their mean service times will be different (i.e. the service times are job type
dependent). Moreover, type 1 jobs may also have a different mean service time if the jobs are
overflowed to station 2. Therefore, the service times are also allowed to be station dependent.
This can be of practical interest, such as for call centers, in which call center agents might
be less or more suited to handle a specific call type. For example, the overflow servers may
cause the call duration to be longer (e.g. by having to read a more general script), or just the
opposite, they may represent more generalized or multiple skilled or advanced servers who
will service faster, but probably at higher costs. Another example of an application area is
health care (e.g. different specialized care units in which intensive care is to be provided).

1.1 Motivation and objective

For the overflow system of interest, no simple analytic expression for the joint steady-state
distribution of the number of jobs in service or related performance measures (e.g. blocking
or loss probabilities) seems to be available. One possible way to recover analytic solvability
is to modify the system into a product form model (i.e. a model that does exhibit a product
form). This paper mainly concerns two intuitively obvious modifications which turn the
overflow system into a product form model. These modifications turn out to coincide with
either of two concepts, the so-called call packing principle or the stop protocol. The call
packing principle roughly states that jobs will be served at the station of highest preference,
possibly by switching if capacity at a more preferred station becomes available. The stop
protocol is a purely artificial modification which requires the service of overflowed type 1
jobs to be stopped if not all servers at station 1 are occupied.

The resulting product forms can be used to approximate specific performance measures
for the original system, such as the mean number of busy servers or blocking probabilities. In
this paper, themain focuswill be on the blocking probability of type 1 jobs (i.e. the probability
that a type 1 job finds both station 1 and 2 congested upon arrival). In particular, the primary
objective is to studywhether the call packing and stop protocol lead to a simple and reasonable
approximation or even particularly to a secure upper bound for this blocking probability.
Moreover, it is investigated whether the product forms and hence the expressions for the
blocking probabilities are insensitive (i.e. only depending on the service time distribution
through their means).

In short, the objective of the paper is threefold:
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– to provide straightforward verifiable product form modifications for a generic overflow
system with job type as well as station dependent characteristics,

– to numerically study to which extent these modifications lead to accurate approximations
if not ordered bounds for the blocking probability of type 1 jobs,

– to examine the feature of insensitivity.

1.2 Outline

The structure of this paper is as follows. First, in Sect. 2 related literature is discussed. Then,
in Sect. 3 the overflow model is presented more formally. The product form modifications is
then proven for the exponential case in Sect. 4. Next, in Sect. 5 it is argued in which cases call
packing and the stop protocol can be expected to provide a pessimistic approximation for the
blocking probability of type 1 jobs. Subsequently, in Sect. 6 numerical results are given. The
results are studied and discussed extensively as to accuracy and ordering. Finally, in Sect. 7
it is investigated whether the results remain valid for arbitrary (i.e. non-exponential) service
distributions.

2 Related literature

In this section, literature on product forms, approximations and bounds and insensitivity
related to overflow systems is discussed.

2.1 Overflow systems

Overflow systems are well known to be hard to solve. For one thing, as already detected
in teletraffic engineering, overflow traffic at an overflow group will generally violate stan-
dard Poissonian arrival stream assumptions. For example, Van Doorn (1984) shows that the
overflow stream from a standard Erlang loss system is hyperexponential. As a consequence,
analytic results for overflow loss systems appear to be rather limited.

Nevertheless, in some cases analytic results can be obtained. For example, El-Taha and
Heath (2000) derive the joint probabilities of the number of primary and secondary busy
servers for an overflow system with two arrival streams. This overflow system is closely
related to the system of interest in this paper, but there are some differences. One of these
differences is that there is no direct arrival stream at the secondary server group, which is
purely meant to serve overflowed jobs. Moreover, the service times are allowed to be station
or server group dependent, but not job type dependent. Other types of overflow systems
for which analytic results can be obtained include, for example, the overflow system under
the assumption of call packing or the stop protocol. This is described more extensively in
Sect. 2.3.

In order to determine specific performance measures for overflow systems, numerous
approximation results have also been developed in early up to recent years (see e.g. Akimaru
and Takahashi 1983; Borst et al. 1999; Brandt and Brandt 2001; Shortle 2004). Many of
these originate from classic teletraffic engineering and are related to communications. These
approximations can be based on, for example, moment approximations (e.g. Brandt and
Brandt 2001) or an Equivalent RandomMethod (ERM) (e.g. Borst et al. 1999; Shortle 2004;
Wilkinson 1956).
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In this paper, another approach to approximate the performancemeasures, and in particular
the blocking probability, is taken. This approach is to turn the overflow system into a product
formmodel, which can then be used to approximate the performancemeasures for the original
system. Moreover, this may even lead to bounds, as is more widely discussed in Sect. 2.4.
However, before stepping into further detail for the overflow system of interest, as the area
of product forms and related insensitivity results is huge, let us first place these phenomena
in slightly more perspective in Sect. 2.2.

2.2 General product form approaches

Product form results have been established as based upon different concepts. A vast majority
relies upon principles of partial balances for the global balance equations. Initiated by the
pioneering work by Jackson (1957, 1963), this has already beenmade explicit in early papers
as by Gordon and Newell (1967a, b) and Kingman (1969), who devotes a special section to
partial balance. The well-known papers by Baskett et al. (1975) and Chandy and Martin
(1983) also rely upon this approach. Partial balance roughly requires that the global balance
equations can be decomposed and verified by specified subequations. These subequations
generally have a natural interpretation of outrate and inrate equalities. Here, different levels
or forms of partial balance might be distinguished, such as for each station, for a group of
stations (e.g. Boucherie and Van Dijk 1993), for each job class or for each individual job
separately (e.g. Van Dijk 2011).

A second process based approach is the well-known concept of quasi-reversibilty, as
most elegantly displayed and made explicit in the famous book of Kelly (1979). It roughly
preserves the Poissonian nature of arrivals and departures at specified service stages, so that
service stations can be regarded as individual queues.

One common feature of partial balance and quasi-reversibility is that such results can be
related to a characterization of reversibility. This can be either in direct form (as by Kelly
1979; Kingman 1969; Pittel 1979) or indirectly by a newly constructed process. For example,
the constructed process can be an additional process, such as an adjoint process (e.g. Hordijk
and Van Dijk 1983a; Van Dijk 2011), or an opposite or dual process by considering flows
(as of holes) in reversed direction (e.g. Harrison 2004). The reversibility, in turn, has the
appealing property that it can be checked in different ways, such as by path invariance or
Kolmogorov’s criterion (e.g. Hordijk and Ridder 1987, 1988; Kelly 1979).

Also worthwhile to mention is the viewpoint and product form result developed by
Boucherie (1994) since it may find an application in the context of this paper (see Remark 1).
In this reference, the equilibrium distribution for a product process of a collection of Markov
chains competing over resources is given. Here, the state of aMarkov chain determines which
resource it is using. Two or more Markov chains are then competing over a resource when
they cannot simultaneously use that resource. Therefore, as soon as one of the competing
Markov chains starts using a specific resource, the other Markov chains that are compet-
ing over this resource are frozen. In Appendix B.2, this competition mechanism is further
explored for its possible application to the system of interest.

A similar line of thought holds for a characterization in the work of Harrison (2004).
In this reference, the time-reversed process is studied. A Markovian process algebra (MPA)
description is used, and a generalization of the Reversed Compound Agent Theorem (RCAT)
is applied in order to determine the equilibrium state probabilities of interacting Markov pro-
cesses. The same approach is also outlined andmademore practical by Balsamo et al. (2010).
Several network examples of serial (hence non-reversible routing) and parallel structures are
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contained. In the latter case, the parallel routing probabilities are fixed, which means state
independent. It does therefore not directly seem to cover overflow as by state dependent
routing and different service rates.

To conclude the introduction on general product form approaches, it is important to briefly
mention the aspect of finite capacity constraints. In queueing networks, these constraints
generally destroy analytic feasibility in terms of product forms with two major exceptions:

– The routing from one station to another is reversible (see e.g. Kelly 1979; Kingman 1969;
Pittel 1979).

– A skipping blocking mechanism is assumed. This means that a customer or job ‘skips’ a
station or service center if there is no capacity available. For networks, this has already
extensively been studied by Pittel (1979) (see also e.g. Balsamo et al. 2010).

To a certain extent, a simple “open single service network” can be seen as by a reversible
routing with the exterior. From this perspective, product form results have also been expected
for networks with internal multiple stages but total population constraints, as shown more
detailed by, for example, Kaufman (1981) and Lam (1977).

The overflow system as studied in this paper does not fit in either of the two exceptions,
but it is indirectly related. Clearly, when no access is feasible at all, the request is lost, which
can be seen as skipping. However, when station 1 is congested and a server at station 2 is
available, instead of skipping, overflow of type 1 jobs takes place. As discussed in Sect. 4,
for these overflowed jobs a natural (and reversible) partial balance interpretation of outflow
is equal to inflow is necessarily violated. An adaptation to make it product form solvable will
thus be required. This, in turn, will lead to modifications as will be discussed in Sect. 2.3 and
specified analytically in Sect. 4.

2.3 Overflow systems and product forms

For the overflow system of interest, the joint steady-state distribution of the number of jobs in
service cannot be expected to have a product form solution (see Sect. 4). However, a product
form can be obtained when either of the following protocols is assumed:

– A call packing protocol
– A stop protocol

Both these protocols have already been associatedwith product form results in literature. First
of all, the call packing principle has long been known in the area of telecommunications and
is well known to lead to a product form solution. For example, product form results for call
packing networks have already been provided byBerry andHenderson (1989) andHenderson
and Taylor (1988) (see also Remark 1). Besides that, it has been shown by Van Dijk and Van
der Sluis (2009) that both call packing and the stop protocol lead to a product form result.
The system that is studied in this reference is similar to the overflow system of interest in the
present paper. As main difference, the present paper allows that the mean service times for
type 1 jobs at station 1 and overflowed type 1 jobs at station 2 are not necessarily equal (i.e.
the service parameters are allowed to be station dependent). In addition, the overflow station
will be restricted to a so-called coordinate convex set, as explained in Sect. 3.

As mentioned above, a product form solution for the joint steady-state distribution of the
number of jobs in the overflow system of interest can be derived if either call packing or the
stop protocol is assumed. To the best of the authors’ knowledge, it seems that these product
forms have not been proven directly or reported explicitly, although they could implicitly be
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concluded from literature (e.g. see Remark 1). In this paper, easily verifiable and purely self-
contained proofs of the product forms are given. These proofs are implicitly based on partial
balance. For call packing, partial balance is shown at station and class level, which means
that the mean service rates can be allowed to differ at these levels. For the stop protocol, it
is possible to show partial balance for each individual job, which is also referred to as job-
local-balance (see e.g. Hordijk and Van Dijk 1983a). This principle is known to be directly
related to the concept of insensitivity, as is further discussed in Sect. 2.5.

Finally, it is noted that call packing could be applicable in twoways, either as natural part of
the system (e.g. Berry and Henderson 1989; Henderson and Taylor 1988) or as modification
to obtain an approximation or bound (e.g. Van Dijk and Van der Sluis 2009). The stop
protocol, in contrast, is merely meant to be seen as a purely artificial modification. For the
stop protocol, the resulting performance measures should therefore only be considered as an
approximation or bound (e.g. Hordijk and Ridder 1987, 1988). In this paper, both protocols
are specifically applied as modifications in order to obtain approximations or even ordered
estimates or bounds for the blocking probability of type 1 jobs for the original overflow
system. This is further discussed in Sect. 2.4.

2.4 Product form approximations and bounds

In Sect. 2.3, it is discussed that the overflow system of interest can be turned into a product
form model by either of two modifications, which are referred to as call packing and stop
protocol. Thesemodificationsmight be useful when the original overflow system (i.e. without
call packing or stop protocol) is analyzed. For example, as mentioned in Sect. 1.1, several
performance measures for the original system can be approximated by using the resulting
product forms. In fact, in some cases this may lead to a bound for a specific performance
measure of interest.

More specifically, it has already been shown byVanDijk and Van der Sluis (2009) that call
packing leads to an upper bound for the blocking probability of type 1 jobs if the service times
are only job type dependent (i.e. γ = μ1, using the notation that is introduced in Sect. 3).
Furthermore, it is provenbyVanDijk (1989) that the stop protocol leads to an insensitive upper
bound for the blocking probability of type 1 jobs for a pure overflow system, that is, without
arrival stream of type 2 jobs (i.e. λ2 = 0). Also worthwhile to mention is the work of Hordijk
and Ridder (1987, 1988). In this reference, the overflow system with only station dependent
parameters (i.e. γ = μ2) is considered. The authors suggest a different modification, which
leads to the same expression for the blocking probability as the stop protocol. It is shown
that this expression provides an insensitive upper bound for the blocking probability.

In this paper, the more general case of both job type and station dependent service times
is considered. For this more general case, it seems to be an open question under which
conditions call packing and the stop protocol lead to a bound for the blocking probability of
type 1 jobs. In this paper, this will be studied numerically. Hence, as opposed to the references
mentioned above, no formal proof will be provided (see also Remark 5). Instead, intuitive
arguments are given to determine in which cases the modifications can be expected to lead
to a pessimistic approximation (in the sense that the blocking probability for the original
system will be smaller). Moreover, numerical experiments are performed to provide support
of the intuitive arguments. This may indicate under which conditions on the parameters the
modifications could be expected to provide an upper bound for the blocking probability of
type 1 jobs. The ordering results that are obtained are discussed in Sect. 6.
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2.5 Insensitivity

Another aspect, which is only briefly mentioned yet, concerns the feature of insensitivity.
This feature is well known to be highly related to product form results. It implies that the
product form is independent of the service distributional forms other than determined by
their means (e.g. Barbour 1976; Hordijk and Van Dijk 1983b; Taylor 2011). This appealing
property is known to be if and only if related to detailed notions of partial balance as per fixed
position or individual job (e.g. Hordijk and Van Dijk 1983a; Schassberger 1977, 1978). In
the first reference, such balance is specifically referred to as job-local-balance.

For the overflow system of interest, the insensivity feature is also studied as an intriguing
phenemenon. For the stop protocol, asmentioned in Sect. 2.3, a balance per position implicitly
appears to apply. Therefore, an insensitivity result can be expected. A more technical, but
self-contained proof of this result is included in Sect. 7.2. It is shown that the product form
remains valid for the general class of Erlang mixtures, which can be argued to represent all
non-negative distributions.

For call packing, in contrast, strict insensitivity appears not to hold, as illustrated by
numerical counterexamples in Sect. 7.1. From a practical point of view, however, at least
for the simulated situations, the effect appears to be light. Nevertheless, such a sensitive
product form result seems uncommon, if not unreported. It is in line, though, with earlier
queueing results for classical ideal gradings in telephony. It also does not conflict with
the insensitivity results in the work of Burman et al. (1984) and Conway (1989), who both
study communication networks and exclude alternative or overflow routing. The multi-server
product form sensitivity, even though light, can be regarded as of interest in itself. Particularly,
from a theoretical point of view, sensitivity error bounds would be appealing for future
research.

3 Model

The overflowmodel that is considered in this paper is depicted in Fig. 1. Two types of jobs are
distinguished. Type 1 jobs arrive according to a Poisson process with arrival rate λ1 at station
1, which has a finite number of N1 servers. When station 1 is congested, arriving type 1 jobs
are rerouted to station 2. Moreover, type 2 jobs arrive at station 2 according to a Poisson
process with arrival rate λ2. Upon arrival at station 2, overflowed type 1 jobs and arriving
type 2 jobs are assigned to a server, provided they are accepted. Here, as an extension of
just a common constraint of a finite number of servers, a more general admission interaction
between the two job types is also allowed. More precisely, let (n,m) = (n1, n2,m) denote
the state of the system, where

n1 is the number of type 1 jobs at station 1,
n2 is the number of type 2 jobs at station 2,
m is the number of overflowed type 1 jobs at station 2.

Then, station 2 is restricted to a coordinate convex set C as characterized by:

(n2,m) ∈ C ⇒
{

(n2 − 1,m) ∈ C (n2 > 0)

(n2,m − 1) ∈ C (m > 0)
(1)

An overflowed type 1 job is then accepted at station 2 if (n2,m + 1) ∈ C and a type 2 job is
accepted at station 2 if (n2 + 1,m) ∈ C. If this is not the case, the overflowed type 1 job or
arriving type 2 job is rejected and lost.
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Fig. 2 Coordinate convex
example for station 2
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An example of a coordinate convex structure is the natural situation in which station 2 has
just a fixed number of N2 servers that can be used by either type 1 or 2 jobs. In this case, we
have that C = {(n2,m)|n2 +m ≤ N2}. But special ‘reservation’ schemes are conceivable as
well. For example, it is also possible to choose C as illustrated in Fig. 2. In that case, type 1
jobs can use at most M servers at station 2, so that N2 − M servers are exclusively kept for
type 2 jobs.

Finally, the service times at a server are assumed to be exponential with parameters μ1

for type 1 jobs at station 1, μ2 for type 2 jobs at station 2 and γ for overflowed type 1 jobs
at station 2.

4 Analytic solution

For the system as described in Sect. 3, a notion of class balance for overflowed type 1 jobs
is necessarily violated, as illustrated more detailed by Van Dijk and Van der Sluis (2009)
for the special case γ = μ1. In short: when there is an available server at station 1, the
services of overflowed type 1 jobs still continue (positive outrate), while they could not enter
(zero inrate). Therefore, no product form solution for the joint steady-state distribution of the
number of jobs in the system can be expected (cf. Chandy and Martin 1983; Van Dijk 2011).
Sects. 4.1 and 4.2 discuss two product form modifications which can be used to repair this
rate inconsistency and recover analytic solvability.

4.1 Call packing

The first modification that can be suggested to recover analytic solvability is the following
call packing principle.

Definition 1 (Call packing) An overflowed type 1 job at station 2 will be switched to station
1 when a server at station 1 becomes available.

Theorem 1 Under the assumption of call packing and with c a normalizing constant, for all
states (n,m)with n1 ∈ {0, ..., N1} and (n2,m) ∈ C the steady-state distribution πcp is given
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Table 1 Proof balances For n1 < N1 For n1 = N1, m = 0 For n1 = N1, m > 0

(4.1)= (4.7) (4.1)= (4.7) (4.1) + (4.2)= (4.8)

(4.3)= (4.9) (4.3)= (4.9) (4.3)= (4.9)

(4.4)= (4.10) (4.5)= (4.11)+ (4.12) (4.5)= (4.11)+ (4.12)

(4.6)= (4.13) (4.6)= (4.13) (4.6)= (4.13)

by:

πcp(n1, n2,m) = cF(m)
∏
i=1,2

1

ni !
(

λi

μi

)ni
, with

F(m) =
{

λm1 /
∏m

k=1(N1μ1 + kγ ) m > 0

1 m = 0

(2)

Proof First, it is noted that the set of admissible states S is restricted to:

S = {(n1, n2,m)|0 ≤ n1 < N1,m = 0, (n2, 0) ∈ C or n1 = N1, (n2,m) ∈ C} (3)

For each (n,m) ∈ S, we need to verify the global balance equations. Here, beforehand, it
is mentioned that terms are organized for the different interpretations and the verification by
‘detailed’ balances below. The global balance equations can then be written as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πcp(n1, n2,m)n1μ11{n1>0}+
πcp(n1, n2,m)mγ 1{m>0}+
πcp(n1, n2,m)n2μ21{n2>0}+
πcp(n1, n2,m)λ11{n1<N1}+
πcp(n1, n2,m)λ11{n1=N1}1{(n2,m+1)∈C}+
πcp(n1, n2,m)λ21{(n2+1,m)∈C}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.1)
(4.2)
(4.3)
(4.4)
(4.5)
(4.6)

= (4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πcp(n1 − 1, n2,m)λ11{n1>0}1{m=0}+
πcp(n1, n2,m − 1)λ11{n1=N1}1{m>0}+
πcp(n1, n2 − 1,m)λ21{n2>0}+
πcp(n1 + 1, n2,m)(n1 + 1)μ11{n1<N1}+
πcp(n1, n2,m + 1)N1μ11{n1=N1}1{(n2,m+1)∈C}+
πcp(n1, n2,m + 1)(m + 1)γ 1{n1=N1}1{(n2,m+1)∈C}+
πcp(n1, n2 + 1,m)(n2 + 1)μ21{(n2+1,m)∈C}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)
(4.8)
(4.9)
(4.10)
(4.11)
(4.12)
(4.13)

By substituting (2), the global balance equations (4) are satisfied by more detailed equalities
as specified in Table 1. Here, the special role of the indicators in the left and right hand sides
of these balances is noted. Also note that all unmentioned equations are equal to 0.

The proof is hereby completed. ��
Remark 1 (Proof) The overflow system of interest allows that γ �= μ1, which means that
overflowed type 1 jobs can have a different mean service time (e.g. an accelerated service
speed, say at higher costs). It can be noted that this differs from the call packing systems that
are discussed by Henderson and Taylor (1988) and Van Dijk and Van der Sluis (2009), in
which the mean service rate of overflowed jobs is kept identical. Here, it is mentioned that in
Example 2 in the former reference type 1 calls are sped up if the number of type 1 calls present
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exceeds a predetermined limit N∗, which could be chosen equal to N1.However, this concerns
all type 1 calls instead of only the overflowed type 1 calls. Nevertheless, the product form (2)
could implicitly be concluded from this reference, as illustrated in Appendix B.1. Moreover,
another approach could be to model the overflow system of interest in the framework of
Boucherie (1994), that is, by seeing it as competing Markov chains. For its insight, this is
illustrated in Appendix B.2 for the case without type 2 jobs. The present proof is easily
verifiable and purely self-contained. In simplicity, it relies upon balance for each job class
separately. As such, it can be seen as of merit in its own right.

Remark 2 (Coordinate convex structure) The inclusion of a coordinate convex structure at
one station is also worthwhile mentioning. Such product form structures have generally been
reported as by Burman et al. (1984), Kaufman (1981), Lam (1977) and Van Dijk (2011) on
total population constraints for the entire network. These exclude multiple stations or routing
with call packing (e.g. Burman et al. (1984) state: “this precludes alternate or hierarchical
routing”). Condition (g) of Henderson and Taylor (1988) can be seen as a directly related
condition with its proof relying upon the paper by Chandy and Martin (1983).

Remark 3 (Call packing: practical?) The term call packing (or repacking) originates from
the area of telecommunications (see e.g. Berry and Henderson 1989; Henderson and Taylor
1988), which may illustrate its practical and appealing interest for computation. Clearly, also
in the aforementioned applications of skill based routing in call centers or specialized care
units within health care a practical applicability seems well conceivable depending on the
actual availabilities and protocols.

4.2 Stop protocol

The second intuitive product form modification could be referred to as conservative (e.g.
Hordijk and Van Dijk 1983a; Van Dijk 1993) or stop (e.g. Van Dijk 1993) protocol and is
stated as follows.

Definition 2 (Stop protocol) When a server at station 1 (i.e. a primary preferred server for
type 1 jobs) becomes available, preemptively stop the servicing of overflowed type 1 jobs at
station 2. These services are only resumed whenever station 1 becomes and stays saturated.

Theorem 2 Under the stop protocol and with c a normalizing constant, for all states (n,m)

with n1 ∈ {0, ..., N1} and (n2,m) ∈ C, the steady-state distribution πs is given by:

πs(n1, n2,m) = c
∏
i=1,2

1

ni !
(

λi

μi

)ni 1

m!
(

λ1

γ

)m

(5)

Proof First, it is noted that the set of admissible states S is now restricted to:

S = {(n1, n2,m)|0 ≤ n1 ≤ N1, (n2,m) ∈ C} (6)

As in the proof of Theorem 1, the global balance equations need to be verified for each
(n,m) ∈ S. Again, beforehand, it is mentioned that terms are organized for the different
interpretations and the verification by ‘detailed’ balances as specified below. The global
balance equations can then be written as follows:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πs(n1, n2,m)n1μ11{n1>0}+
πs(n1, n2,m)mγ 1{n1=N1}1{m>0}+
πs(n1, n2,m)n2μ21{n2>0}+
πs(n1, n2,m)λ11{n1<N1}+
πs(n1, n2,m)λ11{n1=N1}1{(n2,m+1)∈C}+
πs(n1, n2,m)λ21{(n2+1,m)∈C}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.1)
(7.2)
(7.3)
(7.4)
(7.5)
(7.6)

= (7)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πs(n1 − 1, n2,m)λ11{n1>0}+
πs(n1, n2,m − 1)λ11{n1=N1}1{m>0}+
πs(n1, n2 − 1,m)λ21{n2>0}+
πs(n1 + 1, n2,m)(n1 + 1)μ11{n1<N1}+
πs(n1, n2,m + 1)(m + 1)γ 1{n1=N1}1{(n2,m+1)∈C}+
πs(n1, n2 + 1,m)(n2 + 1)μ21{(n2+1,m)∈C}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.1)′
(7.2)′
(7.3)′
(7.4)′
(7.5)′
(7.6)′

It is noted that the indicator 1{n1=N1} is included in (7.2) and (7.5)′ because of the stop
protocol. As a consequence, we have that the indicator functions in (7.i) are equal to those
in (7.i)′ for each i = 1, ..., 6. Next, by substituting (5), it is verified that the global balance
equations (7) are satisfied by the more detailed equalities (7.i)=(7.i)′, i = 1, ..., 6.

The proof is hereby completed. ��

Remark 4 (Proof) Indirect proofs can be concluded from general results as in the work of
Hordijk and Van Dijk (1983a) as based on specific notions of station balance or job-local-
balance. Moreover, in Sect. 7.2 a detailed proof is provided for the more general case of
non-exponential service times. Nevertheless, for illustrating the distinction with call packing
and self-containedness, a direct proof is provided for the case of exponential service times
in Theorem 2 as well.

5 Blocking probability

Several performance measures can be derived from the steady-state distributions (2) and (5),
such as the mean number of busy servers, the throughput and loss or blocking probabilities.
For example, with the coordinate convex setC as illustrated in Fig. 2, the blocking probability
of type 1 and 2 jobs (denoted by B1 and B2, respectively) for the call packing system can be
found as follows:

B1 =
N2∑

n2=0

πcp(N1, n2,min{M, N2 − n2}) (8)

B2 =
N1∑

n1=0

πcp(n1, N2, 0) +
M∑

m=1

πcp(N1, N2 − m,m) (9)

Similarly, B1 and B2 for the system with stop protocol are given by:

B1 =
N2∑

n2=0

πs(N1, n2,min{M, N2 − n2}) (10)

123



Annals of Operations Research

B2 =
N1∑

n1=0

M∑
m=0

πs(n1, N2 − m,m) (11)

In what follows, the blocking probability of type 1 jobs is taken as our performance measure
of primary interest. In particular, it is studied to what extent the blocking probability of
type 1 jobs for the original system (i.e. without call packing or the stop protocol) can be
well approximated by the expressions for B1 in (8) and (10). Here, it would be of particular
interest if the modifications always provide a pessimistic approximation (in the sense that
the blocking probability for the original system will be smaller) and thus an upper bound.

For call packing, this is true if γ = μ1, as formally proven by Van Dijk and Van der
Sluis (2009). This is also intuitively supported since without call packing overflowed jobs
use (one may speak of ‘steal’) capacity from type 2 jobs, even while own capacity at station
1 is available. In this way, this capacity is kept exclusively available for newly arriving type
1 jobs. The same intuition also holds for any γ �= μ1. In this case, however, the change of
service speed after switching from station 2 to station 1 also affects the blocking probability
of type 1 jobs.

γ > μ1: In the call packing system, an overflowed type 1 job switches from a faster
server at station 2 to a slower server at station 1 if a server at station 1 becomes available. It
is thus intuitively obvious that the slower servers will be used more often than in the original
system (i.e. without call packing). This leads to a longer mean sojourn time of type 1 jobs
in the call packing system. Consequently, call packing can be expected to give a pessimistic
approximation of the blocking probability of type 1 jobs if γ ≥ μ1.

γ < μ1: Similarly, in this case the faster servers will be usedmore often in the call packing
system than in the original system. This means that the mean sojourn time of type 1 jobs
will be shorter and consequently the blocking probability might be smaller than that for the
original system. Therefore, no secure upper or lower bound for the blocking probability of
type 1 jobs can be expected if γ < μ1, as also visible in Fig. 3.

Finally, in most cases it can be expected that the blocking probability of type 1 jobs for the
system with stop protocol will be larger than for the original system. This is intuitively clear
because under the stop protocol overflowed type 1 jobs will occupy the servers at station 2
for a longer time. However, if the service of overflowed jobs is substantially faster than the
service of type 2 jobs (γ � μ2), the stop protocol might even lead to a smaller blocking
probability.

The intuitive reasoning for this is as follows. In the system with stop protocol, overflowed
type 1 jobs at station 2 will be stopped when station 1 is not saturated. This can also be seen
as if the servers at station 2 that are occupied by overflowed type 1 jobs are ‘reserved’ as
long as type 1 jobs can be served at station 1 (i.e. there are servers at station 1 available).
Obviously, these ‘reserved’ servers do not become available immediately after station 1
becomes congested, but after a relatively short service time of on average 1/γ . However,
this may still be beneficial since it may prevent these servers to be taken by relatively much
slower type 2 jobs during the time that station 1 is not fully occupied.

As a consequence, in such special cases the blocking probability of type 1 jobs for the
system with stop protocol might be smaller than for the original system, as illustrated in
Fig. 7. On the other hand, since such a situation can only occur if γ is larger than μ2, it
can be expected that the stop protocol leads to a pessimistic approximation of the blocking
probability of type 1 jobs if γ ≤ μ2.

Remark 5 (Formal proof bounds) For special cases of the overflow system as depicted in
Fig. 1, both call packing and the stop protocol have already been suggested and shown to

123



Annals of Operations Research

provide an upper bound for the blocking probability of type 1 jobs, as more extensively
discussed in Sect. 2.4. However, for the more general case with job type as well as station
dependent service times, as dealt with in this paper, it seems unknown under which conditions
on the parameters the modifications provide a bound for the blocking probability of type 1
jobs. From the intuitive arguments in this section, it is conjectured that call packing leads to
an upper bound for the blocking probability of type 1 jobs if γ ≥ μ1 and the stop protocol
if γ ≤ μ2. This is supported by all numerical experiments that are performed (see Sect. 6).
Nevertheless, a formal proof that the modifications provide an upper bound for the blocking
probability of type 1 jobs (under the aforementioned or even less strict conditions) would
still be of interest. This remains a challenging point for future research.

6 Numerical results

This section contains some numerical results for the blocking probability of type 1 jobs. The
blocking probabilities for the original system are calculated from the steady-state probabili-
ties which are determined using the Grassmann-Taksar-Heyman (GTH) algorithm (see e.g.
Stewart 2009, chapter 10). Besides that, the blocking probabilities for the call packing system
and for the system with stop protocol are computed using the expressions for B1 as given in
(8) and (10), respectively.

Finally, for reference, the results of an approximation using Erlang loss expressions are
also given. First of all, let L1 be the blocking probability for an Erlang loss system with
arrival rate λ1 and mean service time 1/μ1. Furthermore, let L2 be the blocking probability
for an Erlang loss system with two types of arrivals, type 2 jobs with arrival rate λ2 and mean
service time 1/μ2 and type 1 jobs with arrival rate L1λ1 (the loss rate of the first station) and
mean service time 1/γ (or, equivalently, the blocking probability for an Erlang loss system
with arrival rate L1λ1+λ2 and mean service time L1λ1

L1λ1+λ2

1
γ

+ λ2
L1λ1+λ2

1
μ2

). Combining these
blocking probabilities leads to the approximation L1 · L2, which will be referred to as the
Erlang loss approximation. The approximation is more likely to be optimistic (in the sense
that the blocking probability for the original system will be larger) since it samples overflow
at random times instead of during busier periods.

6.1 Low utilization for station 2

In Table 2, the parameter values for numerical experiment 1 are given. It is noted that this
example corresponds to a quite natural situation. The servers at station 1 are heavily utilized
(utilization of 100%), while station 2 has a relatively low utilization of 40%, so that overflow
is reasonable. Fig. 3 shows the results of the experiment. A noteworthy observation in this
example is that the blocking probability of type 1 jobs for the call packing system can both be
smaller (γ = 1) and larger (γ = 2) than for the original system if γ < μ1. On the other hand,
call packing is found to provide a pessimistic approximation if γ ≥ μ1. It can also be noted
that call packing leads to a far more accurate approximation than the stop protocol. However,
this is not generally the case, as illustrated by numerical experiments 3 and 4. Finally, it can
be observed that the Erlang loss approximation leads to an underestimation of the blocking
probability.

The parameter values and results of numerical experiment 2 are given in Table 3 and
Fig. 4. This experiment shows how the blocking probability is affected if not all servers
at station 2 can be used to serve overflowed type 1 jobs (i.e. M < N2). In this example,
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Fig. 3 Results of numerical
experiment 1
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Table 2 Parameter values of
numerical experiment 1

λ1 λ2 μ1 μ2 γ N1 N2 M

30 20 3 5 – 10 10 10

Fig. 4 Results of numerical
experiment 2
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Table 3 Parameter values of
numerical experiment 2

λ1 λ2 μ1 μ2 γ N1 N2 M

30 20 3 5 4 10 10 –

call packing appears to provide an accurate approximation, which lies slightly above the
blocking probability for the original system. The stop protocol also leads to a pessimistic
approximation, although it is not nearly as accurate as the call packing approximation. Fur-
thermore, the decreasing marginal effect of making extra servers at station 2 available for
serving overflowed type 1 jobs is interesting to note.

6.2 High utilization for station 2

The numerical experiments in Sect. 6.1 considered situations with a low utilization for station
2. In order to study the effect of the workload at station 2 on the performance of the approx-
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Fig. 5 Results of numerical
experiment 3
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Table 4 Parameter values of
numerical experiment 3

λ1 λ2 μ1 μ2 γ N1 N2 M

15 – 2 1 3 10 10 10

Fig. 6 Results of numerical
experiment 4
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Table 5 Parameter values of
numerical experiment 4

λ1 λ2 μ1 μ2 γ N1 N2 M

15 20 1 3 2 – 5 5

imations, the arrival intensity of type 2 jobs (λ2) is varied in numerical experiment 3 (see
Table 4). Fig. 5 shows that call packing again provides a pessimistic approximation, which is
quite accurate for small λ2. However, the call packing approximation becomes less accurate
when the arrival intensity of type 2 jobs gets larger. As a consequence, the stop protocol
provides a better approximation of the blocking probability if λ2 is equal to 10. Finally, it
can be noted that the Erlang loss approximation again leads to an optimistic approximation
of the blocking probability.

In numerical experiment 4, we consider a scenario with a high workload for both station
1 and 2 (utilization up to 150% for station 1 and utilization of 133% for station 2), as could
occur for example during peak hours in call centers. Table 5 and Fig. 6 contain the parameter
values and results for this experiment. It can be seen that the call packing approximation is
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Fig. 7 Results of numerical
experiment 5
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Table 6 Parameter values of
numerical experiment 5

λ1 λ2 μ1 μ2 γ N1 N2 M

5 1 1 0.1 − 5 10 10

not as accurate as in numerical experiments 1 and 2, although it still performs reasonably
well. Interestingly though, in this experiment the stop protocol performs superior over call
packing. The reason for this is that stopping overflowed type 1 jobs occurs less frequently if
the stations are highly congested.

In the previous experiments, the blocking probability for the system with stop protocol
turned out to be larger than for the original system. However, this does not hold true in general
since the stop protocol might lead to a smaller blocking probability for special cases. This is
illustrated by numerical experiment 5. As can be seen in Table 6, this experiment considers
a situation with a mean service time for type 2 jobs that is a relatively long compared to
the mean service time for overflowed type 1 jobs (i.e. μ2 is small compared to γ ). Fig. 7
shows that the stop protocol leads to an underestimation of the blocking probability if γ ≥ 2.
On the other hand, the blocking probability for call packing again lies above the blocking
probability for the original system. This is as expected, since γ ≥ μ1 in this experiment.

6.3 Conclusions of numerical experiments

In conclusion, call packing appears to provide a rather accurate approximation of the blocking
probability of type 1 jobs for natural situations with a low utilization for station 2. The
blocking probability for the stop protocol numerically appears to be far more off than for call
packing for these situations. However, this does not hold true for more extreme situations
with highly congested stations. In such cases, the negative impact of the stop protocol on
the blocking probability is smaller. Consequently, the stop protocol might provide a more
accurate approximation than call packing for such situations.

Besides that, the numerical results support the intuitive arguments in Sect. 5. More
specifically, in all numerical experiments call packing appears to provide a pessimistic
approximation if γ ≥ μ1. The stop protocol approximation, in turn, is always found to
be pessimistic if γ ≤ μ2. Moreover, it is shown that call packing does not provide a secure
upper or lower bound if γ < μ1 and the stop protocol if γ > μ2 (see the counterexamples in
numerical experiments 1 and 5, respectively). Hence, this supports the idea that call packing
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Table 7 Insensitivity experiment:
parameter values

λ1 λ2 μ1 μ2 γ N1 N2 M

Scenario 1 30 20 3 5 4 10 10 10

Scenario 2 15 5 2 1 3 10 10 10

provides an upper bound for the blocking probability of type 1 jobs if γ ≥ μ1 and the stop
protocol if γ ≤ μ2. Formal proofs for such ordering results, even for limited cases, remain
of interest.

Finally, in all numerical experiments the blocking probability of type 1 jobs according
to the Erlang loss approximation is consistently found to be smaller than that for the origi-
nal system. In general, however, an upper bound for a blocking probability seems of more
practical value, such as for dimensioning capacities.

7 Insensitivity

In this section, the effect of non-exponentiality of service times is addressed. Until now, the
service times have been assumed to be exponentially distributed. However, in reality service
times might not be accurately described by the exponential distribution. It would thus be
of interest if the results remain valid when the service times follow a different distribution.
As discussed in Sect. 2.5, such a notion is well known under the term of insensitivity. The
overflow system of interest is already known to be sensitive (e.g. Hordijk and Ridder 1987;
VanMarion 1968), that is, the stationary distribution is affected if the exponentiality of service
times is no longer valid. In this section, it is studied whether the product forms (2) and (5)
are insensitive. In that case, the expressions for the blocking probabilities in (8)–(11) would
also remain valid if the service times follow a different (non-exponential) distribution.

7.1 Simulation

In this section, it is investigated whether the product forms (2) and (5) can be expected to be
insensitive. In that case, the blocking probability of type 1 jobs for the call packing system and
the systemwith stopprotocol should not be affected by the service timedistribution. In order to
investigatewhether this holds true, two scenarios are considered (seeTable 7 for the parameter
values). For both scenarios, it is studied whether or not the same blocking probability of
type 1 jobs results if the service times are assumed to be lognormally distributed instead of
exponentially distributed. Therefore, for comparison, in Table 8 the blocking probabilities
of type 1 jobs in case of exponentially distributed service times are given. These blocking
probabilities are either determined numerically by using theGTH algorithm (original system)
or analytically by using equation (8) or (10) (call packing and stop protocol, respectively).

Next, Discrete Event Simulation is used to determine the blocking probability of type
1 jobs in case of lognormally distributed service times. Moreover, for completeness, the
blocking probability in case of exponentially distributed service times is also determined by
simulation. The simulated blocking probabilities are shown in Table 9. Here, 95% confidence
intervals as based on the t-distribution are given between brackets.

Original system: For both scenarios, the simulated blocking probability for the original
system is not significantly different from the numerical blocking probability if the service
times are exponentially distributed. However, apart from when the coefficient of variation
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Table 8 Insensitivity experiment: blocking probability B1 in case of exponential service times, determined
numerically by using the GTH algorithm (original system) or analytically by using expression (8) or (10) (call
packing and stop protocol, respectively)

Original system Call packing Stop protocol

Scenario 1 0.0182 (1.82%) 0.0234 (2.34%) 0.0603 (6.03%)

Scenario 2 0.0079 (0.79%) 0.0099 (0.99%) 0.0214 (2.14%)

Table 9 Insensitivity experiment: blocking probability B1 for different service time distributions, determined
by simulation

Service dist. CVa Scenario 1 Scenario 2

Original system Exponential 1 0.0183 (0.0181–0.0185)b 0.0080 (0.0079–0.0080)

Lognormal 0.1 0.0194 (0.0193–0.0194) 0.0089 (0.0088–0.0090)

Lognormal 0.5 0.0184 (0.0183–0.0184) 0.0083 (0.0083–0.0084)

Lognormal 1 0.0182 (0.0181–0.0183) 0.0079 (0.0079–0.0080)

Lognormal 2 0.0180 (0.0180–0.0181) 0.0076 (0.0075–0.0077)

Lognormal 10 0.0162 (0.0158–0.0165) 0.0070 (0.0067–0.0072)

Call packing (resume) Exponential 1 0.0234 (0.0233–0.0234) 0.0100 (0.0099–0.0100)

Lognormal 0.1 0.0264 (0.0263–0.0265) 0.0114 (0.0113–0.0114)

Lognormal 0.5 0.0244 (0.0244–0.0245) 0.0105 (0.0104–0.0105)

Lognormal 1 0.0234 (0.0234–0.0235) 0.0100 (0.0099–0.0101)

Lognormal 2 0.0226 (0.0225–0.0228) 0.0095 (0.0095–0.0096)

Lognormal 10 0.0220 (0.0217–0.0223) 0.0092 (0.0088–0.0097)

Call packing (resample) Exponential 1 0.0235 (0.0231–0.0239) 0.0099 (0.0098–0.0099)

Lognormal 0.1 0.0651 (0.0649–0.0652) 0.0148 (0.0147–0.0149)

Lognormal 0.5 0.0467 (0.0466–0.0468) 0.0139 (0.0138–0.0140)

Lognormal 1 0.0300 (0.0299–0.0302) 0.0114 (0.0114–0.0115)

Lognormal 2 0.0176 (0.0175–0.0177) 0.0086 (0.0085–0.0087)

Lognormal 10 0.0075 (0.0073–0.0076) 0.0052 (0.0049–0.0054)

Stop protocol Exponential 1 0.0604 (0.0603–0.0606) 0.0214 (0.0213–0.0215)

Lognormal 0.1 0.0603 (0.0602–0.0604) 0.0214 (0.0213–0.0215)

Lognormal 0.5 0.0603 (0.0602–0.0604) 0.0214 (0.0213–0.0215)

Lognormal 1 0.0604 (0.0602–0.0605) 0.0214 (0.0213–0.0215)

Lognormal 2 0.0604 (0.0602–0.0605) 0.0213 (0.0212–0.0215)

Lognormal 10 0.0601 (0.0594–0.0608) 0.0212 (0.0205–0.0220)

a Coefficient of variation
b 95% confidence interval between brackets

(CV) is 1, this is not the case if the service times are lognormally distributed. Hence, this
implies the aforementioned sensitivity of the original system.

Call packing: For the call packing system, two aspects need to be taken into consideration
when the service times are assumed to be non-exponential:

– When an overflowed type 1 jobs goes from station 2 to station 1 by call packing, the
(residual) service time at station 1 can be determined in either of two ways. The service
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can be continued (resume) or completely started over (resample). In the resuming case,
the service time at station 1 is computed as the residual service time multiplied by γ /μ1

to account for the difference in service speed. In the resampling case, the service time at
station 1 is determined by sampling from the service time distribution with mean equal to
1/μ1. Because of the memoryless property of the exponential distribution, the results for
resuming and resampling should be similar for exponential service times. On the other
hand, this does not hold true for non-exponential service times. In Table 9, the results for
resuming as well as resampling are given.

– When multiple overflowed type 1 jobs are present at station 2 and a type 1 job departs
from station 1, it must be decided which overflowed type 1 job goes from station 2 to
station 1. In this case, there are different methods to make this decision, such as selecting
the job that is present for the longest time (first in, first out, FIFO), picking an arbitrary
job (random) or choosing the job that arrived last (last in, first out, LIFO). Again, with
exponential service times these methods should lead to similar results because of the
memoryless property. In Table 9, the results for FIFO are given, but it is mentioned that
for random and LIFO similar conclusions are drawn.

From Table 9, it can be seen that for both scenarios the simulated blocking probability is
indeed similar for resuming and resampling if the service times are exponentially distributed.
Moreover, they are not significantly different from the corresponding analytic blocking proba-
bilities as given in Table 8. The numerical experiment also shows that the blocking probability
differs across the coefficients of variation for both resuming and resampling if the service
times follow a lognormal distribution. Here, almost all computed results are well outside
each other’s 95% confidence intervals. At the same time, in case of resuming, the amount of
sensitivity with the CV range of variability appears to remain rather limited within these as
well as more scenarios. Furthermore, the simulated blocking probabilities for the call pack-
ing (resume) system were found to be similar for the different coefficients of variation if the
mean service time of overflowed type 1 jobs at station 2 is set equal to the mean service time
at station 1 (i.e. γ = μ1).

Stop protocol: As opposed to the results for call packing, the scenarios show no statisti-
cally significant difference between the analytic and simulated blocking probabilities for the
system with stop protocol. This holds for exponentially as well as lognormally distributed
service times.

Conclusion: Simulation is used to investigate whether the product forms can be expected
to remain valid for non-exponential service times. For call packing, in contrast to the special
case for which γ = μ1, for the case dealt with in this paper, which allows γ �= μ1, a
strict insensitivity result appears not to be valid. This observation itself is of considerable
theoretical interest since both stations could be regarded as standard Erlang loss systems.
These, in turn, are well known to be strictly (i.e. 100%) insensitive.

In this respect, the stop protocol also becomes of interest. Admittedly, as illustrated in
Sect. 6, the stop protocol numerically appears to provide a less accurate approximation than
call packing if the stations are not highly congested. Nevertheless, the stop protocol might
still be of interest since the product form can be concluded for arbitrary (i.e. non-exponential)
service time distributions. This statement is formally shown for the general class of Erlang
mixtures in Sect. 7.2.
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7.2 Insensitivity of the product form for the systemwith stop protocol

As the stop protocol is of particular interest for the non-exponential case, in this section the
insensitivity result is studied more detailed. More specifically, it is proven that the product
form (5) is insensitive. As discussed in Remark 8, such a result could be concluded indirectly
based on more abstract and combined literature. Below a proof is provided for a so-called
class of mixtures of Erlang distributions. These are known to be dense and can be argued to
represent all non-negative distributions (see Remark 6). In this section, we will mostly follow
the notation of Van Dijk (2011).

As we will only focus on the overflow station 2, while overflowed type 1 jobs will remain
there until completion of the service, without loss of generality only the service times of jobs
at station 2 are assumed to be non-exponential. More specifically, it is assumed that type t
jobs at station 2 require an amount of service with distribution function:

Gt =
∞∑
k=1

qt (k)E(k, νt ), t = 1, 2 (12)

Here, qt (k) represents the probability that the distribution is an Erlang E(k, νt ) distribution
of k exponential phases with parameter νt .

Furthermore, let

τt =
∞∑
k=1

qt (k)[k/νt ], t = 1, 2 (13)

γ = [τ1]−1 and μ2 = [τ2]−1 (14)

Ht (r) = [τtνt ]−1
∞∑
k=r

qt (k), t = 1, 2 (15)

Here, τt is the mean service requirement and γ and μ2 are similar to the parameters for the
exponential case as introduced in Sect 3. Finally, Ht (r) can be seen as steady-state probability
that there are r residual exponential phases until a next renewal in a discrete renewal process
with (inter) renewal distribution function Gt . By (15) the following discrete renewal relation
is verified directly:

Ht (r) = Ht (r + 1) + Ht (1)qt (r), t = 1, 2 (16)

In order to prove the insensitivity result, as rather standard (e.g. Barbour 1976; Schassberger
1977), we first aim to establish a detailed product form result that also includes residual
service times. This, in turn, requires that individual jobs are kept track of. Therefore, we
introduce the notion of positions, say p = 1, . . . , n, when n jobs are present at station 2.
Moreover, as discussed in Remark 7, a randomized allocation in combination with a simple
shift protocol is used. More specifically, when n − 1 jobs are present and a (type 1 or 2) job
arrives at station 2, it will be assigned one of the positions p = 1, ..., n each with probability
1/n. The jobs previously at positions p, ..., n − 1 then move to positions p + 1, ..., n. When
a job at position p completes its service, the jobs previously at positions p + 1, ..., n shift to
positions p, ..., n − 1.

The system can now be represented by a continuous-time Markov chain (CTMC) with
state description:

(n1, [T , R]) where [T , R] = [(t1, r1), (t2, r2), ..., (tn, rn)] (n = n2 + m) (17)

123



Annals of Operations Research

Here, the pth element of [T , R] denotes that the job at position p at station 2 is of type tp
and has rp residual exponential phases for servicing each with parameter νt , where t = tp .

Furthermore, the following shorthand notation will be useful when the job at position p
for a fixed p is considered.

[T , R] − (tp, rp)p = ((t1, r1), ..., (tp−1, rp−1), (tp+1, rp+1), ..., (tn, rn)) (18)

[T , R] − (tp, rp)p + (tp, rp + 1)p
= ((t1, r1), ..., (tp−1, rp−1), (tp, rp + 1), (tp+1, rp+1), ..., (tn, rn)) (19)

[T , R] + (t, r)p

= ((t1, r1), ..., (tp−1, rp−1), (t, r), (tp, rp), ..., (tn, rn)) t = 1, 2 r = 1, 2, ... (20)

Here, in (18) the job at position p is left out, and the jobs that were previously at positions
p + 1, ..., n are moved to positions p, ..., n − 1. Besides that, in (19) the job at position p
has its number of residual phases changed from rp to rp + 1 phases. Finally, in (20) a type
t job with r exponential phases is added at position p, and the jobs that were previously at
positions p, ..., n are moved to positions p + 1, ..., n + 1.

The following detailed product form result can now be obtained for the system with stop
protocol. This detailed product form, in turn, will lead to the insensitivity result as aimed for
(see Corollary 1).

Theorem 3 Let n = n2 +m be the number of jobs at station 2 and c a normalizing constant.
Under the stop protocol, the following detailed product form then applies for all states
(n1, [T , R]) with n1 ∈ {0, ..., N1} and (n2,m) ∈ C:

π(n1, [T , R]) = c
1

n1!
(

λ1

μ1

)n1 1

n!
∏

p:tp=1

{
λ1

γ
H1(rp)

} ∏
p:tp=2

{
λ2

μ2
H2(rp)

}
(21)

Proof As before, the proof will be based on the global balance equations. Herein, it will
be shown that a notion of balance is satisfied for each position p (i.e. each individual job),
separately. This principle could also be referred to as job-local-balance (e.g. Hordijk and Van
Dijk 1983a).

Before stating the balance equations, it is first recalled that n = n2 + m represents the
positions at station 2 and noted that the set of admissible states S is restricted to:

S ={(n1, [T , R])| 0 ≤ n1 ≤ N1, (n2,m) ∈ C,

tp = 1, 2 (p = 1, ..., n), rp = 1, 2, ... (p = 1, ..., n)} (22)

Now, the rate out of state (n1, [T , R]) is given by (23.1)+ ...+ (23.6).

π(n1, [T , R])n1μ11{n1>0} (23.1)
n∑

p=1

π(n1, [T , R])ν11{n1=N1}1{tp=1} (23.2)

n∑
p=1

π(n1, [T , R])ν21{tp=2} (23.3)

π(n1, [T , R])λ11{n1<N1} (23.4)

n+1∑
p=1

π(n1, [T , R]) 1

n + 1
λ11{n1=N1}1{(n2,m+1)∈C} (23.5)
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n+1∑
p=1

π(n1, [T , R]) 1

n + 1
λ21{(n2+1,m)∈C} (23.6)

The rate into state (n1, [T , R]), in contrast, is given by (23.1)′ + ...+ (23.6)′.

π(n1 − 1, [T , R])λ11{n1>0} (23.1)′

n∑
p=1

1{tp=1}
{
π(n1, [T , R] − (1, rp)p)

1

n
q1(rp)λ11{n1=N1}+ (23.2)′

π(n1, [T , R] − (1, rp)p + (1, rp + 1)p)ν11{n1=N1}
}

n∑
p=1

1{tp=2}
{
π(n1, [T , R] − (2, rp)p)

1

n
q2(rp)λ2+ (23.3)′

π(n1, [T , R] − (2, rp)p + (2, rp + 1)p)ν2
}

π(n1 + 1, [T , R])(n1 + 1)μ11{n1<N1} (23.4)′

n+1∑
p=1

π(n1, [T , R] + (1, 1)p)ν11{n1=N1}1{(n2,m+1)∈C} (23.5)′

n+1∑
p=1

π(n1, [T , R] + (2, 1)p)ν21{(n2+1,m)∈C} (23.6)′

Here, it is noted that the indicator 1{n1=N1} in (23.2), in the second line of (23.2)′ and in
(23.5) is to be included because of the stop protocol. The proof can now be completed by
showing that (23.i)= (23.i)′, i = 1, ..., 6, for each (n1, [T , R]) ∈ S. Here, beforehand, it is
mentioned that we will write (23.i.p) and (23.i.p)′ for i = 2, 3, 5, 6 and all positions p when
referring to the pth element of the sum in these equations.

First of all, it is noted that the indicators in (23.i) are equal to those in (23.i)′ for i = 1, ..., 6.
Therefore, it suffices to only consider the non-zero cases. These, in turn, are verified as
follows.

(23.1)=(23.1)′: This can be verified directly for n1 > 0 by substituting the detailed product
form (21).

(23.2)=(23.2)′: First, it can be noted that by assuming (21) we have:

π(n1, [T , R] − (1, rp)p)

π(n1, [T , R]) = n
γ

λ1

1

H1(rp)
p = 1, ..., n (24)

π(n1, [T , R] − (1, rp)p + (1, rp + 1)p)

π(n1, [T , R]) = H1(rp + 1)

H1(rp)
p = 1, ..., n (25)

By using these ratios and the discrete renewal relation (16) (and noting that H1(1) = γ /ν1),
it can be verified that (23.2.p)= (23.2.p)′ for all p = 1, ..., n with tp = 1 if n1 = N1. Hence,
by summing over p it follows that (23.2) = (23.2)′.

(23.3)=(23.3)′: In a similar way as for the previous case, it is possible to show that (23.3.p)
= (23.3.p)′ for all p = 1, ..., n with tp = 2, after which summing over p leads to the desired
result.
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(23.4)=(23.4)′: This can be verified directly for n1 < N1 by substituting the detailed
product form (21).

(23.5)=(23.5)′: It can be noted that by assuming (21) we have:

π(n1, [T , R] + (1, 1)p)

π(n1, [T , R]) = 1

n + 1

λ1

γ
H1(1) = 1

n + 1

λ1

ν1
p = 1, ..., n + 1 (26)

Using this ratio, it is easily verified that (23.5.p)=(23.5.p)′ for p = 1, ..., n + 1 with tp = 1
if n1 = N1 and (n2,m + 1) ∈ C. Summing over p then yields (23.5) = (23.5)′.

(23.6)=(23.6)′ : In a similar way as for the previous case, it is possible to show that (23.6.p)
= (23.6.p)′ for all p = 1, ..., n + 1 with tp = 2 if (n2 + 1,m) ∈ C, after which summing
over p again results in the desired result.

Hence, it is shown that (23.1) +...+ (23.6) = (23.1)′ +...+ (23.6)′ by substituting the
detailed product form (21). This completes the proof. ��
From the result in Theorem 3, it can now be shown that the product form (5) also remains
valid for mixtures of Erlang distributions as service time distribution.

Corollary 1 Under the stop protocol and with c a normalizing constant, the following product
form applies for all states (n1, n2,m) with n1 ∈ {0, ..., N1} and (n2,m) ∈ C:

π(n1, n2,m) = c
1

n1!
(

λ1

μ1

)n1 1

m!
(

λ1

γ

)m 1

n2!
(

λ2

μ2

)n2
(27)

Proof The result follows by summing the detailed product form (21) over all possible con-
figurations with m type 1 and n2 type 2 jobs at station 2, and, for each configuration, over all
possible phases rp for each position p = 1, ..., n. See Appendix A for the technical details.

��
Remark 6 (General service time distributions) General non-negative distributions can be
approximated arbitrarily closely in the sense of weak convergence by mixtures of Erlang dis-
tributions, that is, distributions as in (12). By using general weak convergence limit theorems
on D-sample path spaces (e.g. Barbour 1976; Hordijk and Schassberger 1982; Schassberger
1977, 1978), the insensitivity result as expressed by Corollary 1 can therefore also be con-
cluded for general non-negative service time distributions.

Remark 7 (Service discipline of station 2)As mentioned before, the positions at station 2 are
introduced in order to keep track of the individual jobs and their number of residual phases.
However, the positioning itself is not essential, as each job at station 2 gets fully served by
one of the N2 servers. Therefore, it is justified to use a randomized allocation in combination
with a shift protocol, so that the positions remain successive. In fact, the described service
discipline coincides with a processor sharing protocol (see e.g. Baskett et al. 1975; Kelly
1979), which is a special case of a symmetric service discipline. With additional notation but
by the same proof steps a similar product form expression can also be concluded for other
service disciplines, such as any “symmetric” discipline (see Kelly 1979). This contains, for
example, preemptive-resume last come, first served (LCFS) servicing.

Remark 8 (Literature) For the stop protocol, the insensitivity could indirectly be concluded
by combining a specific feature or concept of detailed balance, such as job-local-balance
(e.g. Hordijk and Van Dijk 1983a), for the exponential case with more abstract insensitivity
results as given by Barbour (1976), Hordijk and Van Dijk (1983b) or Schassberger (1977,
1978). The present proof along with its extension to the general restriction by C is kept
self-contained.
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8 Evaluation

Overflow within service systems is a most common feature in practice, such as in telecom-
munications, health care and daily life logistics. It is thus of interest to obtain insights in its
possible solvability, either exact or approximate, and effects of underlying service distribu-
tional assumptions, even for simplified situations. In this paper, we study a most simplistic
two-station overflow system, which essentially allows overflowed jobs to have a different
mean service rate. From a product form point of view, this system already appears to be hard
to analyze, if not unsolvable.

A threefold direction is taken from a product form perspective:

– It studied two product form modifications, which are both already known from available
literature. These are the call packing principle and stop protocol.

– It numerically explored to which extent these lead to a useful approximation of the
blocking probability and it pays attention to possible ordering.

– It studied the possibility of insensitivity as to non-exponentiality assumptions.

Here, the call packing mechanism might also be regarded as natural. As such, it is also
studied in literature and already shown to exhibit a product form in slightly different setting.
The primary purpose in this paper is to regard it as modification for computation. The stop
protocol, which is purely artificial, is meant for that purpose as well.

First, for the exponential case and both protocols, straightforward and self-contained
proofs of the product forms are given as by forms of partial balance. Despite the vast literature
on product forms and practical interest for the system that is studied, the product form
expressions do not seem to be proven directly or reported explicitly. For the overflow system
with call packing, one closely related product form reference and one which has an entirely
different viewpoint are also studied for possible application and further insight. It shows
that even such a ‘simple’ system can still be intriguing from different perspectives and be of
considerable interest in their own right.

As next step, an extensive numerical evaluation of the simple analytic (product form)
expressions is performed. For both protocols, the quality of the approximations of the blocking
probability of type 1 jobs is studied. It appears that call packing leads to a far more accurate
approximation than the stop protocol for natural situations with a low utilization at station
2. For more extreme situations with heavily loaded stations, in contrast, the stop protocol
might outperform call packing. Besides that, call packing is consistently found to provide a
pessimistic approximationwhen the overflowed type 1 jobs are served faster (on average) than
the non-overflowed type 1 jobs. The stop protocol, in turn, appears to lead to a pessimistic
approximation for all experiments except those in which it is assumed that the service of
overflowed type 1 jobs is extremely fast relative to the service of type 2 jobs.

Finally, as third aspect, for both protocols the (in)sensitivity is also studied. As could be
expected based on literature, the stop protocol is shown to lead to insensitivity as based on
a sufficiently detailed notion of partial balance. From a practical point of view, this property
could make the stop protocol appealing since it allows not to bother about exponential-
ity assumptions. For call packing, in contrast, it appears that strict insensitivity cannot be
concluded, as supported by simulation. From a theoretical perspective, this might be seen as
noteworthy given a product form result reflecting Erlang loss stations. For practical purposes,
the sensitivity seems light.

Both the ordering and (in)sensitivity results do not seem to conflict with existing literature,
yet they illustrate intriguing aspects for comparisons and extensions. Different challenging
points remain, such as:
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– Formal proofs for bounds and its specific conditions, such as for station and/or job type
depending characteristics.

– Numerical support, if not even formal error bounds, for the effect of service distributional
forms (sensitivity).

– More complex overflow structures, such as with multiple phases, parallel as well as
serial overflow and hierarchical structures, as arising in different practices (e.g. flexible
manufacturing, skill based routing or flexible specialized intensive care units).

The results illustrate that even simple network structures and corresponding product form
findings might still be of considerable interest for future research from both a theoretical and
practical point of view.
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Appendix A Proof of Corollary 1

In this appendix, a proof of Corollary 1 is given.

Proof In order to prove the result, consider an arbitrary state (n1, n2,m)with n1 ∈ {0, ..., N1}
and (n2,m) ∈ C. Moreover, let n = n2+m again denote the total number of jobs at station 2.
Then, it is first noted that there are several possible configurations with m type 1 and n2 type
2 jobs at station 2, positioned at positions 1, ..., n. In total, the number of such configurations
is equal to: (

n2 + m

m

)
= (n2 + m)!

m!(n2 + m − m)! = (n2 + m)!
m!n2! (28)

Next, arbitrarily choose one of these configurations, specified by t1, ..., tn (remember that
tp ∈ {1, 2} denotes that the job at position p is of type tp , p = 1, ..., n). Then, the probability
to observe this configuration (and n1 type 1 jobs at station 1), denoted by P , needs to be
determined. This can be done by summing the detailed product form (21) over all possible
phases rp for each position p = 1, ..., n. Hence, using the factorizing form of the detailed
product form, it follows that:

P =
∞∑

r1=1

· · ·
∞∑

rn=1

c
1

n1!
(

λ1

μ1

)n1 1

n!
∏

p:tp=1

{
λ1

γ
H1(rp)

} ∏
p:tp=2

{
λ2

μ2
H2(rp)

}

= c
1

n1!
(

λ1

μ1

)n1 1

n!
(

λ1

γ

)m (
λ2

μ2

)n2 ∞∑
r1=1

· · ·
∞∑

rn=1

∏
p:

tp=1

{
H1(rp)

} ∏
p:

tp=2

{
H2(rp)

}
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= c
1

n1!
(

λ1

μ1

)n1 1

n!
(

λ1

γ

)m (
λ2

μ2

)n2 ∏
p:

tp=1

⎧⎨
⎩

∞∑
rp=1

H1(rp)

⎫⎬
⎭

∏
p:

tp=2

⎧⎨
⎩

∞∑
rp=1

H2(rp)

⎫⎬
⎭

= c
1

n1!
(

λ1

μ1

)n1 1

n!
(

λ1

γ

)m (
λ2

μ2

)n2
(29)

Here, the last step follows by recalling the probability interpretation of Ht (·) as by (15), so
that

∑∞
r=1 Ht (r) = 1, t = 1, 2.

Hence, the expression for P as specified by (29) is independent of t1, ..., tn and thus equal
for each configuration with m type 1 and n2 type 2 jobs at station 2. Therefore, using (28)
and (29), it follows that:

π(n1, n2,m) =
(

(n2 + m)!
m!n2!

)
· P

=
(

n!
m!n2!

)
·
(
c
1

n1!
(

λ1

μ1

)n1 1

n!
(

λ1

γ

)m (
λ2

μ2

)n2)

= c
1

n1!
(

λ1

μ1

)n1 1

m!
(

λ1

γ

)m 1

n2!
(

λ2

μ2

)n2
(30)

This completes the proof of Corollary 1. ��

Appendix B Alternative proofs of Theorem 1

In Sect. 4.1, a proof of Theorem1 based on the global balance equations is given.As discussed
in Remark 1, the product form (2) could also be concluded from product form results in
literature. For illustrative purposes, two alternative proofs of Theorem 1 are therefore given
in this appendix.

B.1 Alternative routing network satisfying certain conditions

The product form (2) can also be proven by showing that the overflow system with call
packing satisfies conditions (a) to (g) stated by Henderson and Taylor (1988). Then, the
product form follows directly from the result in this reference. This is made explicit below.
Here, it is assumed that overflowed type 1 jobs preemptively resume service if they go to
station 1 by call packing.

Proof In order to prove the product form (2), it needs to be shown that conditions (a) to (g)
of Henderson and Taylor (1988) are satisfied. For this purpose, the overflow system under
the assumption of call packing needs to be described using the notation in the paper by
Henderson and Taylor (1988). To this end, the following notation is introduced.

First of all, let T = {1, 2} and n = {n(t), t ∈ T } = {n(1), n(2)}, where
n(1) is the number of type 1 jobs present in the system (n(1) = n1 + m),
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n(2) is the number of type 2 jobs present in the system (n(2) = n2).

Moreover, let λ(t) = λt , t = 1, 2, and F = S, where the state space S is as specified by (3).
Besides that, the following non-negative function is defined:

φ(n) =

⎧⎪⎨
⎪⎩

1
n(1)!

(
1
μ1

)n(1)
1

n(2)!
(

1
μ2

)n(2)
for n(1) ≤ N1

1
N1!

(
1
μ1

)N1 1∏n(1)−N1
k=1 (N1μ1+kγ )

1
n(2)!

(
1
μ2

)n(2)
for n(1) > N1

(31)

Finally, in order to describe the overflow system under the assumption of call packing, r(t),
p(t, s), δt (l,n) and γt (l,n) can be chosen as follows (see Henderson and Taylor (1988) for
the interpretation of these functions):

r(t) = 1 t = 1, 2 (32)

p(t, s) = 0 t, s = 1, 2 (33)

δ1(l,n) = 1/n(1) for l = 1, ..., n(1) (if n(1) ≤ N1) (34)

δ1(l,n) =
{
0

1
n(1)−N1

for l = 1, ..., N1

for l = N1 + 1, ..., n(1)
(if n(1) > N1) (35)

δ2(l,n) = 1/n(2) for l = 1, ..., n(2) (36)

γ1(l,n) = 1/n(1) for l = 1, ..., n(1) (if n(1) ≤ N1) (37)

γ1(l,n) =
{

μ1
N1μ1+(n(1)−N1)γ

γ
N1μ1+(n(1)−N1)γ

for l = 1, ..., N1

for l = N1 + 1, ..., n(1)
(if n(1) > N1) (38)

γ2(l,n) = 1/n(2) for l = 1, ..., n(2) (39)

Then, it can be verified that conditions (a) to (g) are satisfied. As a consequence, it follows
from Theorem 2 of Henderson and Taylor (1988) that the steady-state distribution π(n) is
given by:

π(n) = cφ(n)
∏
t∈T

[y(t)]n(t) (40)

where c is the normalizing constant and the y(t) satisfy:

y(t) = λ(t) +
∑
s∈T

y(s)p(s, t) for t ∈ T (41)

This expression is equivalent to the expression for πcp that is given in (2). Hence, this
completes the proof of Theorem 1. ��
Remark 9 (γ = μ1) It is noted that it does not matter whether a type 1 job receives service
at station 1 or 2 if γ = μ1. Therefore, δ1(l,n) (i.e. the probability that an arriving type 1 job
is allocated label l amongst the type 1 jobs when n(1) − 1 type 1 and n(2) type 2 jobs are
present) can then also be given by 1/n(1) for l = 1, ..., n(1) (even if n(1) > N1). Moreover,
the expression for γ1(l,n) (i.e. the proportion of service effort that is given to the lth type
1 job when the state is n) then simplifies to 1/n(1) for l = 1, ..., n(1). This means that a
symmetric service discipline results (i.e. δt (l,n) = γt (l,n)). As a consequence, condition (f)
(“If type t calls have a non-exponential holding time distribution δt (l,n) = γt (l,n)”) is also
satisfied for non-exponential service times if γ = μ1. On the other hand, this is not the case
if γ �= μ1. This means that insensitivity can be concluded if γ = μ1, while the product form
may be sensitive if γ �= μ1. Hence, this is in line with the simulation results in Sect. 7.1.
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B.2 CompetingMarkov chains

Another way to prove the product form (2) is to model the overflow system with call packing
as competing Markov chains. Then, the product form can be concluded from the result of
Boucherie (1994). This is illustrated below for the case without type 2 jobs and coordinate
convex structure at station 2. As discussed at the end of this appendix, a proof along similar
lines can be expected when type 2 jobs and a coordinate convex structure at station 2 are also
included.

Proof First of all, the following two continuous-time Markov chains are defined.
Markov chain 1: First of all, Markov chain 1 describes the transitions of type 1 jobs at

station 1. Here, it is noted that station 1 can be considered as a standard Erlang loss system
(M |M |N1|N1 queue) with arrival rate λ1 and mean service rate μ1.

Therefore, it follows that the steady-state distribution π1 is as follows:

π1(n1) = c1
1

n1!
(

λ1

μ1

)n1
n1 ∈ S1 (42)

Here, c1 is a normalizing constant and S1 the state space, which is given by:
S1 = {n1|0 ≤ n1 ≤ N1}.

Markov chain 2: Secondly, Markov chain 2 describes the transitions of overflowed type
1 jobs at station 2 when station 1 is congested (i.e. n1 = N1). This means that arrivals occur
with rate λ1. Moreover, whenm jobs are present, the total service rate is equal to N1μ1+mγ

if m > 0 and 0 if m = 0. It is noted that the term N1μ1 is included since there is also a
departure from station 2 if a job at station 1 completes its service (because of call packing).

Then, it can be verified that the steady-state distribution π2 is given by:

π2(m) =
{
c2 if m = 0

c2
λm1∏m

k=1(N1μ1+kγ )
if m > 0

m ∈ S2 (43)

Here, c2 is a normalizing constant and S2 the state space, which is given by:
S2 = {m|0 ≤ m ≤ N2}.

It can be noted that these Markov chains do not accurately describe the overflow system
yet. More specifically, if n1 < N1 (and hence m = 0), no arrivals at station 2 should occur
because arriving type 1 jobs would go to station 1. Moreover, ifm > 0 (and hence n1 = N1),
no departures from station 1 should occur since the place of a departing job at station 1 would
immediately be taken by an overflowed type 1 job from station 2 (because of call packing).
Hence, this is where the competition mechanism comes in.

To this end, define the index set I = {1, 2} and let Aki andCki , k = 1, 2, i ∈ I , be defined
as follows (see Boucherie 1994, for the precise interpretations):

A11 = {n1|n1 = N1} C11 = ∅ (44)

A12 = {n1|0 ≤ n1 < N1} C12 = {2} (45)

A21 = {m|m = 0} C21 = ∅ (46)

A22 = {m|0 < m ≤ N2} C22 = {1} (47)

This means that Markov chains 1 and 2 compete over resource 2, while they do not compete
over resource 1. More specifically, both Markov chains are allowed to make a transition if
both n1 ∈ A11 and m ∈ A21 hold. On the other hand, only Markov chain 1 can make a
transition if n1 ∈ A12 and m ∈ A21 (in this case, Markov chain 2 is frozen). Similarly, only

123



Annals of Operations Research

Markov chain 2 can make a transition if m ∈ A22 and n1 ∈ A11 (then, Markov chain 1 is
frozen). Finally, a state (n1,m) with both n1 ∈ A12 and m ∈ A22 cannot occur.

As a consequence, the state space S is as follows:

S = S1 × S2\A12 × A22

= {(n1,m)|0 ≤ n1 < N1,m = 0, or n1 = N1, 0 ≤ m ≤ N2} (48)

Subsequently, the coefficients c1(n1) and c2(m) can be chosen equal to 1 for all n1 ∈ S1
and m ∈ S2, respectively. The transition rates (q(n̄, n̄′), n̄, n̄′ ∈ S), where n̄ = (n1,m) and
n̄′ = (n′

1,m
′), are then given by:

q(n̄, n̄′) = q1(n1, n
′
1)1{m=m′∈A21} + q2(m,m′)1{n1=n′

1∈A11} (49)

Here, (q1(n1, n′
1), n1, n

′
1 ∈ S1) and (q2(m,m′),m,m′ ∈ S2) are the transition rates of

Markov chain 1 and 2, respectively.
The Markov chain at state space S as in (48) and with transition rates q as in (49) is then

called the product process of the collection of Markov chains 1,2 competing over resources
I . Moreover, the described product process provides an accurate description of the behaviour
of the overflow system with call packing and without the presence of type 2 jobs.

As a consequence, it can be concluded from Theorem 1 of Boucherie (1994) that the
steady-state distribution π is equal to:

π(n1,m) = Bπ1(n1)π2(n2,m) (n1,m) ∈ S (50)

Here, B is the normalizing constant, determined by the form of S. After substitution of (42)
and (43), the following product form results:

π(n1,m) =
⎧⎨
⎩
c 1
n1!

(
λ1
μ1

)n1
if m = 0

c 1
n1!

(
λ1
μ1

)n1 λm1∏m
k=1(N1μ1+kγ )

if m > 0
(n1,m) ∈ S (51)

Here, c is the normalizing constant. ��

Remark 10 (Inclusion of type 2 jobs) If type 2 jobs at station 2 are also included, Markov
chain 2 would have to describe the transitions of both overflowed type 1 jobs and type 2
jobs at station 2. Since the arrivals and departures of type 2 jobs should not be stopped if
n1 < N1, Theorem 1 of Boucherie (1994) is therefore no longer applicable. In this case,
however, Theorem 2 of Boucherie (1994) could be applied. To this end, it is noted that the
transition rates for Markov chain 2 can be separated into a part that describes the behaviour
of overflowed type 1 jobs and a part that describes the behaviour of type 2 jobs (note that
Markov chain 2 is locally balanced with respect to this separation). The processes with these
transition rates are then Markov chains on their own, which are referred to as Markov chain
(2,1) for overflowed type 1 jobs andMarkov chain (2,2) for type 2 jobs. Hence, we obtain two
Markov chains which operate on the same state space. Moreover, it is possible that Markov
chain (2,1) is frozen if n1 < N1, while Markov chain (2,2) can still undergo transitions. In
this way, a proof of the product form can also be expected when type 2 jobs and a coordinate
convex structure at station 2 are included. As the technical description is more detailed, it is
not included here (but merely conjectured).
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