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ORIGINAL ARTICLE

Outpatient clinic scheduling with limited waiting area capacity
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aCenter for Healthcare Operations Improvement and Research, University of Twente, Enschede, The Netherlands; bRhythm BV,
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Utrecht, The Netherlands; dDepartment of Rheumatology, Department of Rheumatology, Sint Maartenskliniek, Nijmegen, The
Netherlands; eDepartment of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands

ABSTRACT
This paper proposes an iterative simulation optimisation approach to maximise the number
of in-person consultations in the blueprint schedule of a clinic facing same-day multi-
appointment patient trajectories and restrictions on the number of patients simultaneously
allowed in the waiting area, taking into account the combined effects of early arrival times
(patients arriving early from home), bridging times (minimum time required between
appointments) and waiting times (due to randomness in patient arrivals and provider punc-
tuality). Our approach combines an Integer Linear Program (ILP) that maximises the number
of in-person consultations considering the effect of average early arrival and bridging times
and a Monte Carlo simulation (MCS) model to include the effect of waiting times due to ran-
domness. We iteratively adapt our parameters in the ILP until the MCS model returns a 95%
confidence interval of the number of patients in the waiting area that does not exceed its
capacity. Our results reveal the impact of early arrival, bridging and waiting times on the
number of in-person appointments that may be included in a blueprint schedule. Our results
further show that careful design of the blueprint schedule allows our case study clinics to
organise a vast majority of their appointments in-person.
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1. Introduction

Distancing measures due to the COVID-19 pan-
demic, requiring patients to stay, e.g. 1.5 meters
apart, impose a limit on the number of patients that
can be simultaneously present in a shared space
such as hospital waiting areas. To avoid crowded
waiting areas the starting times of in-person consul-
tations must be separated in time, possibly reducing
the number of in-person consultations, replacing
consultations by telephone or video calls, or extend-
ing consultation hours. The pressure on available
space is even more severe due to patients on same-
day multi-appointment trajectories, as such patients
must bridge the time between subsequent appoint-
ments and may occupy the waiting area for a con-
siderable amount of time. As the number of
available medical professionals is a serious limiting
factor in healthcare delivery, even more so during
the COVID-19 pandemic, and, often, in-person con-
sultations are preferred over telephone or video con-
sultations, efficient scheduling of consultations is of
utmost importance to maximise the number of con-
sultations that can be realised taking into account

the limited availability of space. This paper proposes
a model to optimise the number of consultations
that can take place in-person in the hospital, taking
into account same-day multi-appointment patient
trajectories and the restrictions imposed on the
number of patients simultaneously allowed in the
waiting area. To this end, we optimise the hospital’s
blueprint schedule (also called appointment sched-
ule, template, or raster), which specifies per time
slot and type of resource what patient type should
be assigned by the planners.

The general setting, we consider is that a patient’s
trajectory or visit to the hospital consists of a single
appointment or a number of consecutive appoint-
ments or stages to be completed on the same day.
In a multi-appointment trajectory, the patient might
for example first need preliminary testing, such as a
blood test or a radiology examination. After this
diagnostic test, the patient has a consultation at the
outpatient clinic, followed by a second consultation
with another physician, or for example by some
type of treatment, such as a chemotherapy infusion
in case of an oncology clinic or a visit to the plaster
room in an orthopaedics department, see Figure 1
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for a patient trajectory of four stages: ‘preliminary
tests’, ‘consultation’, ‘treatment’ and ‘post-treatment
appointment’. We will refer to the time between two
consecutive appointments, for example the time
between preliminary tests and the consultation and
the time between the consultation and the treat-
ment, as bridging time. Typically, a minimum dur-
ation applies for these bridging times, for example
to cover the time to analyse the blood draw in the
laboratory, to analyse test results by radiologists, or
to prepare patient specific chemotherapy drugs in
the pharmacy. Only after the testing results or drugs
are available, the next appointment can take place.
This means, for example, that if an oncology patient
finishes preliminary tests at 9:15AM and the min-
imal bridging time equals 45min, this patient’s con-
sultation cannot start before 10AM. Similarly, if the
consultation of this patient starts at 10AM and fin-
ishes at 10:30AM and preparation of chemotherapy
drugs in the pharmacy takes one hour, the treat-
ment cannot start before 11:30AM, i.e. a bridging
time of an hour is minimally required between con-
sultation and treatment. In addition to these bridg-
ing times, a preliminary data analysis in our case
study clinics revealed that in times of COVID-19,
patients who start their visit at the hospital with a
consultation or treatment arrive to the waiting area
on average 30min before the planned start of their
first consultation or treatment, referred to as early
arrival time. Besides early arrival and bridging
times, patients also experience waiting times before
their scheduled appointments that occur as a conse-
quence of randomness in arrival, consultation and
treatment times. The approach proposed in this
paper takes into account the combined effects of
early arrival, bridging and waiting times in the
design of an optimal appointment system.

The physical location of patients during their
early arrival, waiting and bridging times depends on
the lay-out of the hospital. We assume a patient
spends its early arrival, waiting and bridging time
before an appointment in the waiting area of that
appointment. Thus, during the bridging time
between a preliminary test and consultation at the
outpatient clinic, the patient is physically present in

the waiting area of the outpatient clinic. Note that
the waiting areas are typically not fully dedicated to
a single consultation or treatment, but are shared
over various specialties, e.g. multiple consultation
types share the same waiting area, or shared in a
carousel, e.g. (part of) the patient’s trajectory shares
the same waiting area. Hospitals typically face a
complicated case-mix with occupancy of waiting
areas determined by a wide variety of patient types
with different trajectories. At the time of the design
of a blueprint schedule, the actual patients to be
treated have not yet been revealed, but the statistical
information on historical arrivals is available in the
Hospital Information System. Pre-COVID-19 blue-
print design approaches did not consider waiting
area congestion as a limitation and restriction to the
appointment system design, but typically focused on
minimising patient waiting time, resource idle time,
and overtime. However, under the restrictions due
to COVID-19 on the capacity of waiting areas,
when creating a blueprint schedule, we now have to
take into account the minimum bridging times, as
well as the maximum number of patients allowed in
the waiting areas. In this paper, we develop an itera-
tive simulation optimisation approach to maximise
the number of consultations that can take place in
the hospital, taking into account the minimum
bridging times between every stage as well as the
maximum number of patients allowed in the waiting
area of each stage.

Our iterative simulation optimisation approach is
designed as follows. First, using an Integer Linear
Program (ILP) formulation we determine a deter-
ministic blueprint schedule that maximises the num-
ber of in-person consultations taking into account
the effect of early arrival and bridging times and the
waiting area capacity restrictions. Second, we ana-
lyse the effects of waiting times due to randomness
in patient arrivals and provider punctuality using a
Monte Carlo simulation (MCS) model. Typically,
the number of patients in the waiting area increases
due to randomness, which may render a schedule
that is feasible in the deterministic setting of the ILP
infeasible under randomness. If the MCS model
shows that occupancy of the waiting area exceeds

Figure 1. Schematic depiction of a patient trajectory and timeline.
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the capacity of the waiting area, then based on the
outcomes of the MCS model, the input parameters
on waiting area capacity and number of appoint-
ments per appointment type in the ILP are adapted,
the ILP is solved again and the resulting blueprint
schedules are evaluated using the MCS model. We
iteratively adapt our parameters and evaluate the
blueprint schedules, until a solution is found for
which the MCS model shows that the 90% confi-
dence interval of the number of patients present in
the waiting area does not exceed the waiting area
capacity. The final ILP schedule is then used as
blueprint schedule.

This research is inspired by requests from mul-
tiple hospitals in The Netherlands to help maintain
patient volumes and help design appointment sys-
tems for non-COVID-19 related care. During the
first COVID-19 wave, patient volumes in The
Netherlands were drastically reduced for non-emer-
gent care to almost zero. Up-scaling of outpatient
clinic appointments was subsequently done primar-
ily based on intuition and typically in a conservative
way to safeguard patient safety. This led to ineffi-
cient use of capacities and typically empty waiting
areas, except for clinics with high bridging times.
Hospital staff identified a need for an appointment
system that maximises the amount of possible in-
person consultations and continuation of treatments
in such a way that these hospital visits are safe for
patients and staff. In this paper we consider two
case studies: a rheumatology clinic and a medical
oncology & haematology clinic. Sint Maartenskliniek
(SMK) is a specialised hospital for orthopaedic sur-
gery, rheumatology, and rehabilitation medicine.
The rheumatology clinic of SMK serves 225 patients
per working day on average. Patients typically follow
a standardised trajectory. First patients take a blood
test, followed by a consultation and tests with a
nurse. Following a bridging time to analyse the
results of the blood test, the patient has a consult-
ation with a rheumatologist. Afterwards, some
patients may need to have a blood test or radiology
examination or visit the pharmacy to collect medica-
tion. Bridging times in the rheumatology clinic are
typically between fifteen minutes and half an hour.
Every patient who has to bridge time does this in a
shared waiting area. University Medical Center
Utrecht (UMCU) is a large academic hospital in
The Netherlands. The medical oncology & haema-
tology clinic of UMCU serves 194 patients per
working day on average, with a shared waiting area,
as well as chemotherapy, immunotherapy, and other
drug therapies with an individual waiting area. A
blood draw might be required for patients visiting
the oncology clinic before their consultation or
treatment, to ensure the patient is viable for

obtaining the treatment. Bridging times in the
oncology clinic are typically one hour or more, as
blood draws need to be analysed before the consult-
ation, and drugs need to be prepared on an individ-
ual basis for patients after the consultation. Due to
the nature of the treatments, treatment times can
take up to 8 h, restricting the possibilities for the
appointment template design.

The contribution of our paper is twofold. First,
we develop an iterative simulation optimisation
approach, consisting of an ILP model and a MCS
model, that optimises the blueprint schedule for a
hospital, taking into account multi-appointment
patient trajectories. The main assumption that
makes our ILP model tractable is that early arrival
times and appointment durations are deterministic.
Although this assumption is common for the devel-
opment of blueprint schedules, this assumption is
clearly not realistic in practice. We therefore devel-
oped our MCS model to investigate the quality of
the ILP schedule under randomness in early arrival
times and appointment durations. Our iterative
approach allows for inclusion of the effects of these
random durations in the ILP blueprint schedule.
Although blueprint optimisation in general is widely
considered in literature, including the waiting room
occupancy as the main restriction is not yet consid-
ered. Due to distancing measures induced by the
COVID-19 pandemic, including this metric in blue-
print optimisation, as proposed in this paper,
became very relevant. Second, we show through our
case studies that our approach is very generic and
can be applied to outpatient clinics with various
characteristics.

The remainder of this paper is organised as fol-
lows. Section 2 provides an overview of the litera-
ture on waiting area congestion and appointment
planning under COVID-19. Section 3 introduces
our model and simulation optimisation approach
for the blueprint design of same-day multi-appoint-
ment systems, followed by our case study results in
Section 4. Section 5 concludes with a summary of
the main findings, discussions, and opportunities for
future research directions.

2. Literature

Healthcare is under severe pressure from the
COVID-19 pandemic, which is manifested in several
ways: cancellations of elective treatments
(COVIDSurg Collaborative, 2020; van Giessen et al.,
2020); stress experienced by healthcare professionals
(da Silva & Barbosa, 2021; Gonz�alez-Gil et al.,
2021); reallocation of medical resources and staff to
COVID-19 activities (Emanuel et al., 2020) and (the
threat of) overcrowded ICU and wards due to a
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sudden increase in the number of infected patients
(RIVM, 2020). Besides modelling disease spreading,
e.g. (Wu et al., 2020), mathematical models may
support decision making to allocate scarce resources,
see (Currie et al., 2020), to help minimising the
impact of COVID-19 related care and measures on
non-COVID-19 patients. Outpatient clinics and day-
treatment facilities are not affected by bed shortage
at ICU or ward. However, these clinics are consider-
ably affected by distancing measures as they typic-
ally include a waiting area with limited capacity,
which restricts the number of patients simultan-
eously present (Zonderland, 2021). Replacing in-per-
son appointments by digital ones might allow
continuation the majority of appointments, however,
this replacement is not always possible and is not
preferred by patients and physicians (Wehrle et al.,
2021). To support continuation of in-person care
for a large share of non-COVID-19 patients, it is
therefore of utmost importance to use the capacity
of outpatient clinics at its maximum, which calls for
appointment scheduling under restrictions on the
capacity of the waiting area.

Appointment planning and scheduling is widely
studied in healthcare (Ahmadi-Javid et al., 2017;
Leeftink et al., 2018; Marynissen & Demeulemeester,
2019; Zonderland & Boucherie, 2021). However, the
challenges incurred by the COVID-19 pandemic
complicate the appointment planning practices,
through constraining the use of waiting areas.
Therefore, in the remainder of this section we will
discuss relevant literature on outpatient clinic
appointment planning with waiting room restric-
tions. We also include relevant literature focused on
single-day multi-appointment settings, where bridg-
ing time between appointments results in increased
pressure on waiting area congestion.

Multi-appointment scheduling focuses on per-
formance measures from the perspective of the
patient (e.g. waiting time), provider (e.g. overtime),
and system (e.g. utilisation), or a combination
thereof (Lam�e et al., 2016). One-stop-shops and
treatment carousels are examples of such same-day
multi-appointment scheduling problems. The com-
mon approach in design of appointment systems is
via blueprint schedules obtained via an Integer
Linear Programming (ILP) approach (Leeftink et al.,
2018; Marynissen & Demeulemeester, 2019). Such
schedules typically assume ample capacity of the
waiting area, and therefore do not include occu-
pancy of the waiting area, that introduces a consid-
erable restriction on the appointment schedule
under COVID-19 distancing measures.

Outpatient clinics or day-treatment facilities with
limited waiting area need to take waiting room con-
gestion into account in their appointment system

design, which might cause typically well performing
appointment rules, such as the Dome rule (Yang &
Cayirli, 2020), to be unsuitable for appointment plan-
ning. Waiting room congestion in appointment
scheduling is primarily attributed to poor schedule
execution and poor patient punctuality (Cox & Boyd,
2018). Congestion in the waiting area is known to
affect patient and provider satisfaction. To mitigate
amongst others these congestion effects, Lin et al.
(2017) minimised the combination of waiting time,
overtime and waiting area congestion by evaluating
various appointment scheduling heuristics and strat-
egies for resource allocation and appointment sched-
uling. The common approach to take randomness,
due to the variability in the rate of referral and patient
and provider punctuality, into account in appoint-
ment scheduling, is via queueing theory and Monte
Carlo simulation (MCS) (Hulshof et al., 2012;
Zonderland et al., 2021). (Kortbeek et al., 2017) con-
sider a same-day multi-appointment setting and first
use ILP to determine a blueprint schedule and subse-
quently use queueing theory and MCS to evaluate
access times for children with neuromuscular diseases
at the Academic Medical Center, Amsterdam. Same
day waiting times are studied for an integrated emer-
gency post in (Mes et al., 2021) via MCS, where focus
is on evaluation of waiting times as a consequence of
randomness in patient arrivals, but waiting area cap-
acity restrictions are not included. A further example
that illustrates that performance indicators do not
take into account limited waiting area capacity is pro-
vided in (Dobish, 2003), that considers oncology
clinic planning, a typical example of a multi-appoint-
ment planning situation where significant bridging
times are required, due to the one-stop-shop setup
requiring blood analysis and drug preparation time.
In this context, it is empirically shown that same-day
multi-appointment schedules have a significant effect
on waiting times, compared to a next-day chemother-
apy schedule. Although waiting times, patient flow,
and provider workload are often included in litera-
ture, sharing of a limited waiting area over various
specialties or stages in a patient trajectory is not
included, leaving the impact of capacity sharing in a
finite waiting room an open research direction.

Liang et al. (2015) developed a mathematical pro-
gram to generate blueprints with a balanced work-
load for the practitioners in an oncology clinic, and
evaluated the effect of the resulting blueprints using
discrete event simulation. Given that practitioners
are considered resources, just as waiting area space
can be defined as a resource, this approach comes
most close to our proposed method. However,
where providers and treatment locations are related
to scheduled appointments with fixed durations,
waiting area usage is not scheduled with a fixed
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duration, as it depends on the appointment sched-
ule. Furthermore, the waiting area is regularly a
shared resource by multiple providers (e.g. multiple
departments), which requires the joint optimisation
of the appointment schedules of these providers in
order to ensure the most efficient use of the
restricted waiting space. These two aspects compli-
cate the use of available methods in the literature,
and are the motivator of our research. Bridging time
in multi-appointment scheduling problems occurs
when combination appointments or a series of
appointments are scheduled on the same day, and
patients have to wait between the subsequent
appointments. Besides poor schedule execution and
patient unpunctuality, we hypothesise that in same-
day multi-appointment settings, the schedule design
has a significant influence on waiting room conges-
tion as well, due to bridging times. Therefore,
research is needed to minimise the waiting room
congestion in multi-appointment settings, to comply
with the COVID-19 distance measures.

In the remainder of this paper, we will address
the design of blueprint appointment schedules for
same-day multi-disciplinary, multi-appointment set-
tings with limited capacity in shared and dedicated
waiting areas, using a simulation optimisation
approach, that combines mathematical modelling
and simulation modelling.

3. Model and simulation
optimisation approach

This section presents our solution approach for
developing a blueprint schedule that maximises the
number of in-person consultations that can take
place in a hospital taking into account the early
arrival times, bridging times between stages and
waiting times as well as the maximum number of
patients allowed in the waiting area. Our iterative
approach for developing the blueprint schedule is
outlined in Section 3.1. We continue by introducing
the notation in Section 3.2. Then, we present the
Integer Linear Program problem formulation for the
deterministic blueprint schedule design in Section
3.3. The Monte Carlo simulation model for evaluat-
ing the effects of randomness in the patients’ arrival
times and the consultation and treatment times is
discussed in Section 3.4.

To develop a generically applicable model, we
consider a clinic with multiple stages, each stage
corresponding to a set of possible appointment
types. In accordance with the set up in our case
study clinics, the first and last stage are designed as
a walk-in system. The intermediate stages are
designed as appointment based systems. For these
intermediate stages, our aim is to design a blueprint

schedule. Patient trajectories may consist of different
subsets of the stages and may also consist of a single
stage. Note that between stages minimum bridging
times may be defined. As an example, patients
might need to bridge time between their scheduled
consultation or treatment appointment of Stage 3
and a final walk-in visit to the pharmacy in Stage 4,
as they have to wait 15min before going to the
pharmacy due to drug preparation or information
processing time.

3.1. Iterative simulation optimisation approach

To include waiting area capacity restrictions in blue-
print schedule design, we first determine a deter-
ministic blueprint schedule that takes into account
the effect of early arrival and bridging times on
waiting area capacity using an Integer Linear
Program (ILP). As our literature study showed that
waiting area occupancy in appointment scheduling
is also attributed to poor schedule execution and
patient punctuality, we use a Monte Carlo simula-
tion (MCS) model to evaluate the effect of patient
and provider punctuality on the performance of the
blueprints resulting from the developed ILP. Based
on the outcomes of the MCS, the input parameters
on waiting area capacity and number of appoint-
ments per appointment type in the ILP are adapted,
the ILP is solved again, and the resulting blueprint
schedules are evaluated using the MCS. We itera-
tively adapt our parameters and evaluate the blue-
print schedules, until a solution is found for which
the MCS shows that the 95% confidence interval of
the number of patients present in the waiting area
does not exceed the waiting area capacity.

Parameter updating of our iterative approach has
two elements: (1) the waiting area capacity, and (2)
the number of appointments of each appointment
type that may be scheduled in the blueprint sched-
ule. In the first run of the ILP, the waiting area cap-
acity parameter is set to the maximum available
waiting area capacity of the considered instance and
the ILP is solved with the desired case mix of
appointments. Either this results in a feasible solu-
tion, or the number of appointments must be modi-
fied, e.g. by increasing the percentages of in-person
consultations that can be performed by telephone or
video consultations or by reducing the number of
appointments. The resulting ILP schedule is then
used in our MCS model to investigate the impact of
randomness, as manifested by the waiting times, on
the number of patients simultaneously present in
the waiting area. Typically, the number of patients
in the waiting area increases due to randomness,
which may render a schedule that is feasible in the
deterministic setting of the ILP infeasible under
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randomness. If the MCS model shows that the ILP
schedule is also feasible under randomness, then
this ILP schedule will be used as blueprint schedule.
Otherwise, we reduce the capacity of the waiting
area and solve the ILP once more, possibly also
adjusting the case mix as described above.
Subsequently, the new ILP schedule is used in our
MCS model. We continue this iterative optimisation
approach until we obtain an ILP schedule for which
our MCS model gives a 95% confidence interval of
the number of patients present in the waiting area
that at all times does not exceed the waiting area
capacity. The ILP schedule is then used as blue-
print schedule.

The iterative approach described above reduces
the capacity of the waiting area in the ILP to
accommodate the additional patients in the waiting
area due to randomness. We may reduce the cap-
acity in a static or a dynamic way. Under static
reduction, this reduction is the same for all time
slots, if possible equal to the largest difference
between the waiting area occupancy in the MCS
and the deterministic ILP. Under dynamic reduc-
tion, we reduce the waiting area per time slot, if
possible equal to the difference between the waiting
area occupancy in the MCS and the deterministic
ILP for each time slot. This dynamic reduction then
forces the ILP to allocate more appointments in
time slots that are less occupied in the MCS.
Observe that the iterative approach may also modify
the number of appointments by reducing the num-
ber of appointments or replacing in-person appoint-
ments by video consultations. The aim of the
iterative approach is to obtain a blueprint schedule
such that the 95% confidence interval of the number
of patients present in the waiting area does not
exceed the waiting area capacity.

Simulation optimisation refers to solving an ILP
model with stochastic elements (Karatas et al., 2017;
Santos et al., 2017). In many cases simulation is
used to estimate the objective function (Fu, 2015).
In our model, variability is introduced via the early
arrival times and the duration of consultation. This
variability does not affect the value of the objective
function, but may cause the waiting area capacity
constraints to be violated. Our MCS determines
bounds for these constraints such that the probabil-
ity that they are violated is less than 5%. Our
approach therefore falls in the subcategory of
Stochastic Constraints Simulation (Homem-de
Mello & Bayraksan, 2015).

3.2. Sets, parameters, and variables

Consider a clinic setting with T time slots per day,
indexed t 2 T ¼ f1, :::,Tg, in which patients are

scheduled for single-day care trajectories consisting
of at most S consecutive stages, labelled s ¼ 1, :::, S:
In each stage s specific appointment types J s ¼
f1, :::, Jsg can be scheduled, for which a limited
amount of resources I s ¼ f1, :::, Isg is available. In
total, cðjsÞ appointments per appointment type js
should be inserted in the blueprint. A subset of
appointment types J 0

s � J s can be scheduled either
digitally or in-person, whereas the subset ~J s ¼
J s n J 0

s of the total set of appointment types has to
strictly take place in-person. The case mix of
patients visiting the clinic shows a variety of patient
trajectories, P: Let trajectory p 2 P consist of Sp
stages, with appointment type ps 2 J s in stage
s, s ¼ 1, :::, Sp:

Based on a preliminary data analysis of our case
study clinics, we observed that patients arrive in the
hospital from home a significant amount of time
before their scheduled appointment time. This
increases the waiting area occupancy, and therefore
we include an early arrival time ~bðjsÞ for the first
appointment of type js in stage s of a patient trajec-
tory, expressed in number of time slots.
Appointment type js has duration dðjsÞ expressed in
number of time slots. We define the minimum
bridging time bðjs�1, jsÞ as the minimum required
number of time slots between appointment types
js�1 and js in stages s� 1 and s. The blueprint
schedule design is limited by the size of the waiting
area. We consider two types of waiting areas: A
dedicated and a shared waiting area. In case of a
dedicated waiting area, a set of resources of a single
specialty in stage s has a dedicated waiting area. Let
ws, t be the maximum number of patients allowed in
this dedicated waiting area of stage s in time slot t.
In case of a shared waiting area, let A be the num-
ber of shared waiting areas, and wa, t be the max-
imum number of patients allowed in shared waiting
area a in time slot t, a ¼ 1, :::,A: For each waiting
area a, let Sa � S ¼ f1, :::, Sg be the subset of stages
of which patients share this waiting area, i.e. all
patients that have an appointment in stage s 2 Sa

will wait in the shared waiting area a.
We aim to include as many in-person appoint-

ments as possible in the blueprint schedule. To dif-
ferentiate in preference between in-person
appointments of various types, or for example to
ensure a fair comparison of appointment types of
varying durations, we consider a reward rðjsÞ for
including an appointment type js in the blueprint
schedule. We consider two binary decision variables,
xsðis, js, tÞ indicating whether appointment js is
scheduled in-person at the start of time slot t using
resource is at stage s (xsðis, js, tÞ ¼ 1) or not
(xsðis, js, tÞ ¼ 0) and ysðis, js, tÞ indicating whether
appointment js is scheduled digitally at the start of
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time slot t using resource is at stage s
(ysðis, js, tÞ ¼ 1) or not (ysðis, js, tÞ ¼ 0). The notation
is summarised in Table 1.

3.3. ILP Model

To develop a blueprint schedule that does not vio-
late the waiting area restrictions while maximising
the number of in-person scheduled appointments,
we propose an ILP model. This model includes con-
straints, regarding demand, resource capacity, care
trajectory timing and waiting area capacity. A
description of these constraints and the objective
function is provided following the ILP model.

max
xsðis, js, tÞ

XT
t¼1

XS�1

s¼2

XIs
is¼1

XJs
js¼1

rðjsÞxsðis, js, tÞ (1a)

s:t: xsðis, js, tÞ þ ysðis, js, tÞ ¼ usðis, js, tÞ 8t, is, js, s
(1b)

XT
t¼1

XIs
is¼1

usðis, js, tÞ ¼ cðjsÞ, 8js, s (1c)

XJs
js¼1

usðis, js, tÞ � 1, 8t, is, s ¼ 2, :::, S�1 (1d)

usðis, js, tÞ ¼ 0, 8t � T�dðjsÞ, is, js, s (1e)

X
j�s 6¼js

XtþdðjsÞ

n¼tþ1

usðis, j�s , nÞ � ð1� usðis, js, tÞÞM, 8t, is, js, s

(1f)

Xt
n¼1

XIsþ1

isþ1¼1

usþ1ðisþ1, jsþ1, nÞ

�
Xt�bðjs, jsþ1Þ

n¼1

XIs
is¼1

usðis, js, nÞ, 8ðjs, jsþ1Þ 2 P, s, t (1g)

XT
t¼1

XIs
is¼1

xsðis, js, tÞ ¼
XT
t¼1

XIsþ1

isþ1¼1

xsþ1ðisþ1, jsþ1, tÞ,

8ðjs, jsþ1Þ 2 P, s
(1h)

zðtÞ � wa, t , 8t, a, (1i)

xðis, js, tÞ, yðis, js, tÞ, uðis, js, tÞ 2 f0, 1g 8t, is, js, s:
(1j)

The demand dðjsÞ � 0 for all appointment types js
in stages s ¼ 1, S and the auxiliary variable u is
introduced in constraint (1 b) for notational
convenience.

Demand: In a blueprint schedule, a preset num-
ber of appointments of each appointment type must
be scheduled in order to meet all patient demand.
This demand must be met for every appointment
type js either in-person or in its digital counterpart
(Constraint (1c)).

Table 1. Sets, parameters and variables.
Sets
S ¼ f1, . . . , Sg, indexed by s stages
I s ¼ f1, . . . , Isg, indexed by is available resources at stage s
J s ¼ f1, . . . , Jsg, indexed by js appointment types at stage s
J 0

s � J s appointment types at stage s that can take place in-person or digitally
~J s ¼ J s n J 0

s appointment types at stage s that can only take place in-person
P � J 1 � 	 	 	 � J S , indexed by ðj1, . . . , jSÞ patient trajectories consisting of an appointment of type js at stage

s, s ¼ 1, . . . , S
Ps � J s patient trajectory consisting only of a single appointment of type js

at stage s
T ¼ f1, . . . , Tg, indexed by t time slots
A ¼ f1, . . . , Ag, indexed by a shared waiting areas
Sa � S stages of which patients wait in shared waiting area a before their

appointment

Parameters

cðjsÞ demand of appointment type js
dðjsÞ duration of appointment js, expressed in number of time slots
bðjs�1, j0sÞ minimum bridging time between appointment js�1 at Stage 1 and j0s at

stage 2
~bðjsÞ early arrival time for appointment js 2 Ps, i.e. the time a patient

coming from home spends in the waiting area of stage s to have
appointment js

ws, t maximum number of patients allowed in the waiting area of Stage s in
time slot t

wa, t maximum number of patients allowed in the shared waiting area a in
time slot t

rðjsÞ reward for planning appointment js
M big-M

Variables

xsðis , js , tÞ 2 f0, 1g xsðis , js , tÞ ¼ 1 if, at stage s, appointment js is scheduled in-person at
the start of time slot t using resource is, xsðis , js , tÞ ¼ 0 otherwise

ysðis, js, tÞ 2 f0, 1g ysðis , js , tÞ ¼ 1 if, at stage s, appointment js is scheduled digitally at the
start of time slot t using resource is, ysðis , js , tÞ ¼ 0 otherwise
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Resource capacity: All appointments should be
scheduled within the available capacity and time
slots. To this end, Constraint (1d) ensures that at
most one appointment can be scheduled to start in
each stage per resource at a certain time slot.
Constraint (1e) restricts appointments to be sched-
uled in the available time slots, i.e. their starting
time and duration must fit in the planning horizon
of the time slots 1, :::,T: As the duration of an
appointment can cover multiple time slots,
Constraint (1f) ensures that the next appointment
for a specific resource can only start after the dur-
ation of the previously scheduled appointment is
completed, with M being a sufficiently large value.

Patient trajectory timing: The actual bridging
time of a patient depends on the end time of the first
appointment js (given this appointment is scheduled
at time t this equals t þ ds) and the starting time of
the subsequent appointment jsþ1: The actual bridging
time should exceed the minimum bridging time
bðjs, jsþ1Þ: Constraint (1 g) therefore requires for all
subsequent appointments in the patient trajectories
that the total number of stage sþ 1 appointments at
time t does not exceed the total number of stage s
appointments at the minimal bridging time before
time t. If a patient is physically present in the hospital
for part of the care trajectory on a single day, we
require all appointments of that trajectory to be
scheduled in-person, as patients are present in the
waiting area anyway. Therefore, Constraint (1 h)
requires, per in-person appointment type, the total
number of scheduled appointments to be equal.

Waiting area capacity: To ensure the waiting
area capacity is at all times not exceeded, the sum
of all patients that are waiting because they have
their first appointment and all patients that are
bridging between two subsequent appointments
must not exceed the waiting area capacity for each
individual time slot. In our model, we distinguish
between two types of waiting areas: a shared waiting
area for patients that visit resources of varying
stages or specialties, and a dedicated waiting area
for patients that visit resources of a single stage s.

Shared waiting area: First consider a shared wait-
ing area for multiple stages. Let the integer-valued
variable z(t), t 2 T , represent the total number of
waiting patients in this shared waiting area in time
slot t. If the capacity of this waiting area equals
wa, t , then the waiting area capacity constraint is
zðtÞ � wa, t , for all t and a (Constraint (1i)). The
total number of currently waiting patients equals the
sum of (i) the number of patients coming from
home or a preliminary test with an appointment
that starts within ~bðjsÞ time slots from time slot t,
and (ii) the number of patients bridging between
two appointments in stage s0 and stage s. (i) The

number of patients coming from home for a type js
appointment that are waiting at time t, equals

XIs
is¼1

Xtþ~bðjsÞ

n¼tþ1

xsðis, js, nÞ:

(ii) The number of patients bridging between two
appointments, waiting for a type js appointment, equals

XIs
is¼1

Xt�dðjsÞ

n¼1

xsðis, js, nÞ�
XIsþ1

isþ1¼1

X
jsþ12Psþ1

Xt
n¼1

xsþ1ðisþ1, jsþ1, nÞ

if ðjs, jsþ1Þ is the considered patient trajectory.
Combining these terms, the total number of waiting
patients in the shared waiting area at time t is

zðtÞ ¼
XS
s¼1

 XIs
is¼1

Xtþ~bðjsÞ

n¼tþ1

xsðis, js, nÞ þ
XIs
is¼1

Xt�dðjsÞ

n¼1

x1ðis, js, nÞ

�
XIsþ1

isþ1¼1

X
jsþ12Psþ1

Xt
n¼1

xsþ1ðisþ1, jsþ1, nÞ
!
:

(2)

Dedicated waiting area: For a dedicated waiting
area, patients can again either enter the waiting area
directly from home, or from a previous appoint-
ment. Similar to the derivation of Constraint (2), we
thus obtain

XIs
is¼1

Xt�dðjsÞ

n¼1

xsðis, js, nÞ�
XIsþ1

isþ1¼1

X
jsþ12Psþ1

Xt
n¼1

xsþ1ðisþ1, jsþ1, nÞ

þ
XIsþ1

isþ1¼1

X
jsþ12Psþ1

Xtþ~bðjsþ1Þ

n¼tþ1

xsþ1ðisþ1, jsþ1, nÞ � wsþ1, t

8t, s ¼ 1, :::, S�1,
(3)

Objective function: The objective function
(Constraint (1a)) maximises the reward of all in-per-
son scheduled appointments in the planning horizon
and results in a set of optimal solutions. Further opti-
misation possibilities exist within this set of optimal
solutions, for example by considering patient or pro-
vider preferences. Two additional objectives include
levelling of waiting area occupancy and spreading
appointment types equally over resources.

Level waiting area occupancy: Instead of only
addressing the worst-case waiting area occupancy by
hard constraints (Constraint (3)), a levelled expected
waiting area occupancy over the entire clinic open-
ing hours might result in more stable occupancy
under randomness. To this end, we define the auxil-
iary variable q and observe that the highest waiting
area occupancy can be written as maxtzðtÞ: Hence
to level the waiting area occupancy, we want to

minmax
t

zðtÞ,
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which can equivalently be modelled as

min q

s:t: q � zðtÞ, 8t:

We first want to maximise the number of in-per-
son appointments and on a second, lower, hierarch-
ical level we want to level the waiting area
occupancy. To achieve this, the latter constraints
should be added to the ILP and one could set the
parameters rðjsÞ in an order of magnitude higher
than a and let the objective be

objlevel congestion ¼ max
XT
t¼1

XS�1

s¼1

XIs
is¼1

XJs
js¼1

rðjsÞxsðis, js, tÞ�aq:

(4)

Spread over resources: One of the symmetries in
the optimal schedules is that appointment types can
be interchanged for resources of the same resource
type. This allows for further optimising the sched-
ules taking patient preferences and equality into
account. We propose to favour blueprint schedules
in which appointment types are more evenly distrib-
uted over all resources. Recall that at stage s there
are Is available resources and that we need to sched-
ule cðjsÞ appointments of type js. Hence, if the quo-
tient cðjsÞ=Is is integer, it would preferred to
schedule cðjsÞ=Is type js appointments at each
resource is ¼ 1, :::, Is: In general we aim to minimise

XT
t¼1

xsðis, js, tÞ �
cðjsÞ
Is

�����
�����, 8is, js:

To achieve this, we define the auxiliary variables
hðis, jsÞ and the constraints

hðis, jsÞ �
XT
t¼1

xsðis, js, tÞ�
cðjsÞ
Is

, 8is, js, (5)

hðis, jsÞ �
XT
t¼1

xsðis, js, tÞ�
cðjsÞ
Is

, 8is, js: (6)

By adding these constraints to the ILP and setting
the objective function as

objresource spread ¼ max
XT
t¼1

XS�1

s¼1

XIs
is¼1

XJs
js¼1

rðjsÞxsðis, js, tÞ

�
XS�1

s¼1

XIs
is¼1

XJs
js¼1

bðis, jsÞhðis, jsÞ

we aim, at each stage s, to distribute appointments
of all types equally over the available resources.
Again, as the first interest is to maximise the num-
ber of in-person consultations, the parameters rðjsÞ
are best set in an order of magnitude higher than
bðis, jsÞ: Note that this objective could be combined
with objlevelcongestion: In that case, the ratio between
the variables bðis, jsÞ and a determines the hierarchy

in the resulting objective. The ILP is implemented
in Python version 3.9 and solved using Gurobi ver-
sion 9.1.0.

3.4. Monte Carlo simulation model

To test the performance of the blueprint schedules
in a stochastic environment, we develop a Monte
Carlo simulation (MCS) model. The deterministic
ILP model of Section 3.3 optimises the blueprint
schedule under the assumption of deterministic
arrival times and appointment durations. However,
in practice patients arrive early or late and consulta-
tions and treatments may take more or less time
than originally scheduled.

We use Monte Carlo simulation to quantify the
effect of this randomness in the patients’ arrival
times and the consultation and treatment times on
the waiting area occupancy for a given blueprint
schedule. The MCS model mimics the patient trajec-
tories, i.e. it generates patient arrivals and patient
trajectories. In this model, we make the following
assumptions:


 The input blueprint schedule is entirely filled
with patients of the corresponding types, that
will all show up for their scheduled
appointments.


 For an appointment in the input blueprint
schedule of type js, both the patient arrival times
(relative to their scheduled appointment time) as
well as the appointment durations are normally
distributed with mean their early arrival time
~bðjsÞ and scheduled appointment time dðjsÞ,
respectively, and variance equal to 1/3rd of
their mean.


 The minimum bridging times bðjs�1, jsÞ are also
observed in the realisation of the blueprint
schedule, i.e., a physician that is ahead of sched-
ule has to wait until the minimum bridging time
of the next patient has elapsed before this
appointment can start.


 The schedule is not adjusted during the day. A
patient that is too late can therefore not be inter-
changed in the schedule with an already pre-
sent patient.

The outline of the MCS is as follows. At initial-
isation, the blueprint schedule obtained from the
ILP is loaded in the simulation and the early arrival,
consultation and treatment times are generated for
every patient of that arrive during the day. These
randomly generated numbers are then used to
obtain the effectuated schedule by determining the
actual arrival times of the patients and the starting
times of the consultations and treatments.
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Subsequently, the simulation determines for every
time step if a patient is present in the system and if
so whether or not that patient is currently in con-
sultation or treatment. This determines, for each
time step, the number of patients in the waiting
area. After a predetermined number of repetitions, a
95% confidence interval is obtained. The MCS is
detailed in Appendix A.

We simulate the realisation of the blueprint
schedule for 1000 days to obtain a 95% confidence
interval for the waiting area occupancy over time.
As we consider a terminating system, there is no
warm-up period included. The MCS model is imple-
mented in Python version 3.9.

4. Case studies

This section presents the results of our iterative
simulation optimisation approach for two case stud-
ies with pooled and dedicated waiting areas, respect-
ively. In Section 4.1, we describe the case study
experiment settings of the rheumatology clinic of
Sint Maartenskliniek (SMK) and the medical oncol-
ogy & haematology clinic of University Medical
Center Utrecht (UMCU). In Section 4.2, we present
the resulting blueprint schedules for these cases with
their corresponding waiting room occupancy.

4.1. Experiment settings

4.1.1. Rheumatology clinic
During a typical day, the rheumatology clinic of
SMK is operated by three nurses, seven physicians
and three physician assistants (PAs). The morning
shift starts for every employee at 8.30 h and ends at
12.00 h for nurses and at 12.30 h for physicians and
PAs. The nurses’ afternoon shift starts at 12.30 h
and ends at 16.00 h. Physicians and PAs work their
afternoon shift from 13.00 h until 16.45 h.

A patient care trajectory consists of at least one
and at most four stages. Every patient has at least a
consultation with a nurse (Stage 2), a physician, or
a PA (Stage 3). This can be preceded by a prelimin-
ary blood test (Stage 1) and can be followed by a
visit to the pharmacy or a post-consultation blood
test (Stage 4).

All patients bridging or waiting for an appoint-
ment in Stages 2� 4 share a single waiting area
with a capacity of 18 seats. This includes patients
that require a preliminary blood test in Stage 1 that
enter the waiting area upon completion of this test,
as well as patients that require a visit to the phar-
macy or a blood test in Stage 4.

Based on a data-analysis of historical clinic data,
we identified 16 patient care trajectories that, on
average, occur at least once a day. Tables 2 and 3

summarise the input parameters for the SMK case
study. The appointment types at corresponding
stages and duration are shown in Table 2. Table 3
shows the included appointment types in each care
trajectory, whether it is possible schedule these
appointment(s) digitally, the corresponding min-
imum bridging times (if applicable), and the num-
ber of times this care trajectory is included in the
case mix. Observe that there is no minimum bridg-
ing time between the preliminary blood test and
consultation with the nurse at Stage 2, because the
blood test result are only needed upon the start of the
consultation with the physician or PA at Stage 3.
Note that trajectories A – G have counterparts, A-PA
– G-PA, respectively, defined for PAs. The reason for
this is twofold. First, although the trajectories may
include the same type of appointments, e.g. trajecto-
ries A and A-PA both correspond to a new patient,
the consultation time with a physician differs from
the consultation time with a PA (see Table 2).
Second, the distinction allows us to impose a division
between the number of patients seen by a physician
and a PA, e.g. from Table 3 we conclude that 28 new
patients must be seen by a physician and the remain-
ing 6 by a PA. If we simply would have defined trajec-
tory A, which then was required to occur 34 times in
the blueprint schedule and takes 30min with a phys-
ician and 60min with a PA, the ILP might, e.g. allo-
cate 17 patients to physicians as well as to PAs. The
data analysis showed that patients that arrive from
home for an in-person appointment, arrive 15min
early on average.

Figure 2(a) shows the base case blueprint sched-
ule used by the rheumatology clinic before the
COVID-19 pandemic. This pre-COVID-19 blueprint
schedule does not reserve slots for trajectories (from
Table 3), but instead allocates slots to consultation
types, and hence does not take into account the
effect of previous and subsequent appointments in
the care trajectories. Each rectangle depicts an

Table 2. Appointment types rheumatology clinic SMK. Each
appointment type is accompanied with its stage and dur-
ation (in minutes). The colour of a trajectory corresponds to
the blueprint schedule from Figure 2(a).
Appointment type Stage Duration

New patient 3 (consultation with physician) 30

Follow-up type I 3 (consultation with physician) 15

Follow-up type II 3 (consultation with physician) 15

New patient - PA 3 (consultation with PA) 60

Follow-up type I - PA 3 (consultation with PA) 15
Follow-up type II - PA 3 (consultation with PA) 15

New patient 2 (consultation with nurse) 60

Follow-up 2 (consultation with nurse) 15
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appointment of type corresponding to its colour
(for colour code see Table 2).

Figure 2(b) shows the best-case realisation of the
base case blueprint schedule, which we obtained by
optimally inserting the various trajectories in the base
case blueprint schedule such that the expected waiting
room occupancy is levelled. We determined this best-
case realisation using the ILP with unlimited waiting
room capacity, the levelling objective (as described in
Section 3.3) and the subsequently described add-
itional constraints. Observe from Table 3 that trajec-
tories C – G and C-PA – G-PA have a similar colour
tone, respectively, as their Stage 3 appointment type
is identical. In the best-case realisation of the base
case blueprint schedule these care trajectories are
restricted to be scheduled into slots originally allo-
cated to trajectories E and E-PA, respectively (hence
the colours of E and E-PA already occurred in the
blueprint schedule from Figure 2(a)).

4.1.2. Medical oncology & haematology clinic
During a typical day, the medical oncology & haema-
tology clinic of UMCU is operated by four oncologists,
one oncology PA, three haematologists and one
haematology PA. The day-care department has 15 beds
available for treatments (chemotherapy), operated by
nurses. The morning shift starts at 8.30 h for physicians
and at 9.00h for PAs and ends at 12.00 h. Physicians
and PAs both work their afternoon shift from 13.00 h

until 17.00 h. Treatment is provided from 8.30h until
17.00 h and appointments may be scheduled consecu-
tively as staff members take lunch breaks in turn.

In the medical oncology & haematology clinic of
UMCU a patient care trajectory consists of at least
one and at most three stages. A patient has a sched-
uled consultation with a physician or PA (Stage 2),
a treatment (Stage 3), or both. A consultation can
be preceded by a blood test (Stage 1).

The clinic has two waiting areas. Patients bridg-
ing or waiting for an appointment with a physician
or PA share a waiting room with 19 available seats.
The waiting area at the day-care department, dedi-
cated to patients waiting or bridging prior to treat-
ment, has 16 available seats.

Based on a data-analysis of historical data, we
identified 18 different patient care trajectories that
occur, on average, at least once a day. Table 4 lists for
every included trajectory the corresponding appoint-
ment type at each stage, whether it is possible to
schedule these appointment(s) digitally, the corre-
sponding minimum bridging times (if applicable),
and the number of times this care trajectory is
included in the case mix. Trajectories D – G belong to
medical oncology, trajectories H – K belong to
haematology and trajectories L – O represent single
chemotherapy appointments (varying in duration) for
which no specification of specialty is required. Both
medical oncologists and haematologists distinguish

Table 3. Trajectories rheumatology clinic SMK. For each trajectory the appointment type per stage is denoted together with
the option to replace a consultation with a digital consultation, the minimum bridging times (in minutes) and the number
of occurrences required in the blueprint schedule. The duration of every appointment type can be found in Table 2. The col-
our of a trajectory corresponds to the blueprint schedules from Figures 2(b) – 7(a).

Trajectory Stage 1 Stage 2 Stage 3 Stage 4

Digital
consultation
possible?

Bridging time
before Stage 2

Bridging time
before Stage 3

Bridging time
before
Stage 4

Number of
occurrences
in blueprint

A New patient No – – – 28

B Follow-up type I Yes – – – 28

C Follow-up type II Pharmacy No – – 15 26

D Follow-up type II Blood test No – – 15 34

E Follow-up type II Yes – – – 28

F Blood test Follow-up Follow-up type II No 0 30 – 12

G Blood test Follow-up Follow-up type II Pharmacy No 0 30 15 26

A-PA New patient - PA No – – – 6

B-PA Follow-up type I - PA Yes – – – 6

C-PA Follow-up type II - PA Pharmacy No – – 15 12

D-PA Follow-up type II - PA Blood test No – – 15 16

E-PA Follow-up type II - PA Yes – – – 14

F-PA Blood test Follow-up Follow-up type II - PA No 0 30 – 12

G-PA Blood test Follow-up Follow-up type II - PA Pharmacy No 0 30 15 6

H New patient No – – – 6

I Follow-up Yes – – – 4
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two types of consultations (i.e. at Stage 2 there are
two appointment types): new patients that take
40min and follow-up consultations that take 20min,
all independent of whether a patient is seen by a phys-
ician or a PA. For duration of the chemotherapy
treatments is included in Table 4. Note that only

trajectories consisting of a single appointment at
Stage 2 may be replaced with a digital appointment
and that treatments always have to be performed in-
person. The data analysis showed that patients that
arrive from outside the clinic for an in-person
appointment arrive 15min early on average.

Figure 2. The pre-COVID-19 blueprint schedule (a) and its best-case realisation (b) for the rheumatology clinic of SMK. In
both (a) and (b), at the top is the blueprint schedule for nurses (Stage 2) and at the bottom is the blueprint schedule for
physicians and PAs (Stage 3). Along the x-axis is the time and along the y-axis is the resource (at the bottom resources 1 – 7
are the physicians and 8 – 10 the PAs).
In (c) the waiting room occupancy corresponding to the blueprint schedule from (b) is depicted over time. Here the grey bars
denote waiting area occupancy levels taking into account bridging and average early arrival times (result from the ILP) and
the blue line, together with its 95% confidence interval as the shaded area, depicts the waiting area occupancy including ran-
domness in early arrival and consultation times (result from the MCS).
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4.2. Case study results

4.2.1. Rheumatology clinic
To compare the outcomes of our results, we first
analysed the expected waiting occupancy outcomes
of the pre-COVID-19 best-case base case blueprint
schedule of the rheumatology clinic of SMK. Figure
2(c) shows the predicted waiting room occupancy.
In this figure, the peaks around 8.30 h and 13.00 h
show the start of the new clinic sessions, and the
peaks around 11.00 h and 16.00 h clearly shows the
impac of bridging patients.

The blueprint schedule and waiting room occu-
pancy for the SMK case study resulting from the
ILP (1a) – (1i) with no additional objective func-
tions is shown in Figure 3(a). For the given waiting
room capacity of 18 seats, all patient trajectories are
scheduled without replacing in-person appointments
by digital appointments. The expected maximum
waiting room occupancy is 17.

Figure 3(b) depicts the simulated waiting room
occupancy of this blueprint schedule. To analyse the
impact of reducing variability in patient punctuality
and consultation duration, we simulated three vari-
ability settings: (1) regular variability, as described
in Section 3.4; (2) low variable arrival times; and (3)
low variable appointment durations. We observe
that although the deterministic waiting room occu-
pancy is below the maximum of 18 at all times, the
simulated waiting room occupancy violates this con-
siderably in case of regular variability, with peaks up
to 24 patients. Furthermore we observe that reduc-
ing the variability in the arrival times does not sig-
nificantly influence the maximum waiting room
occupancy over time if the variability in

appointment duration is not reduced as well.
However, reducing the variability of the appoint-
ment durations reduces the maximum waiting room
occupancy by approximately 10%.

The deterministic waiting room occupancy for
the blueprint schedule in Figure 3(a) varies consid-
erably during the day. This suggests that the blue-
print schedule can be adjusted to level the waiting
room occupancy. Figure A depicts the blueprint
schedule when the levelling objective (4) is consid-
ered. The ILP results show that all patient trajecto-
ries can be scheduled in-person. The expected
maximum waiting room occupancy is reduced to
14. The simulated occupancy for this blueprint
schedule is shown in Figure 4(a). Although the wait-
ing room occupancy is reduced compared to the
no-levelling blueprint schedule, the occupancy still
exceeds the maximum of 18 for more than 2.5 h
a day.

The next step in the iterative simulation opti-
misation approach is to reduce the waiting room
capacity input parameters in the ILP, as mentioned
in Section 3.1. If we reduce in a static way, itera-
tively solving the ILP shows that a minimal waiting
area capacity of 11 seats is necessary to schedule all
the patient care trajectories given the possibilities
for digital consultations. Figure 5(a) shows the blue-
print schedule and waiting room occupancy for this
case with a waiting area capacity of 11. Here 25% of
the previously scheduled in-person appointments
are now replaced by digital appointments. The cor-
responding simulated waiting room occupancy is
shown in Figure 5(b). Although the waiting room
occupancy is further reduced, it is still exceeding the

Table 4. Trajectories medical oncology & haematology clinic UMCU. For each trajectory the appointment type per stage is
denoted together with the option to replace a consultation with a digital consultation, the minimum bridging times (in
minutes) and the number of occurrences required in the blueprint schedule. The colour of a trajectory corresponds to the
blueprint schedules in Figure 8(a) – 9(b).

Trajectory Stage 1 Stage 2 Stage 3

Digital
consultation
possible?

Bridging time
before
Stage 2

Bridging time
before
Stage 3

Number of
occurrences
in blueprint

A – oncology New patient Yes – – 10
B – oncology Follow-up Yes – – 28
C – oncology Blood test Follow-up No 60 – 40

D Blood test Follow-up Chemo 60min. No 60 60 6
E Blood test Follow-up Chemo 90min. No 60 60 11
F Blood test Follow-up Chemo 120min. No 60 60 10
G Blood test Follow-up Chemo 210min. No 60 60 3

A – haematology New patient Yes – – 8
B – haematology Follow-up Yes – – 21

C – haematology Blood test Follow-up No 60 – 30
H Blood test Follow-up Chemo 30min. No 60 45 10
I Blood test Follow-up Chemo 60min. No 60 45 10
J Blood test Follow-up Chemo 120min. No 60 45 4
K Blood test Follow-up Chemo 180min. No 60 45 3
L Chemo 30min. No – 3
M Chemo 60min. No – – 3
N Chemo 120min. No – – 3
O Chemo 210min. No – – 2
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maximum capacity of 18 seats for approximately
60min a day.

Comparing the simulated waiting room occu-
pancy results for the various scenarios considered so
far, shows an increase in waiting room occupancy
deviation from the deterministically determined
value as the clinic session progresses, both for the
morning as well as afternoon sessions. Therefore, we
expect that a time-dependent maximum waiting
room capacity input that restricts the number of in-
person appointments during these hours will reduce
the actual waiting room occupancy. Therefore, we
perform an experiment in which the available wait-
ing room capacity is time-dependent, with the fol-
lowing settings: from 8.15 h-9.30h, 17 seats; 9.30 h-
11.15h, 14 seats; 11.15 h-12.00h, 8 seats; 12.00 h-
14.00h, 14 seats; 14.00 h-15.30h, 12 seats; 15.30 h-
16.30h, 9 seats; and from 16.30h onwards, 17 seats.
The resulting blueprint schedule is depicted in
Figure 6(a), in which only 12% of the appointments
are scheduled digitally. The simulated waiting room

occupancy, as shown in Figure 6(b), never exceeds
the maximum capacity of 18 seats.

From Figure 6 it can be observed that it is a
necessity to schedule in-person and digital appoint-
ments in an alternating fashion. If this is impossible
to facilitate, an alternative approach for reducing the
waiting room occupancy is to reduce the number of
trajectories that are scheduled in the blueprint
schedule. Figure 7(a) shows the blueprint schedule
for the rheumatology department when the number
of trajectories is reduced to 90% of the total case
mix. This blueprint schedule is again created with
time-dependent waiting room capacity restrictions,
which determines where to leave an empty slot.
Digital appointments are not necessary to meet the
waiting room’s capacity restriction. The simulated
waiting room occupancy is depicted in Figure 7(b).
This result shows that reducing the case mix to 90%
of its the total, reduces the waiting room occupancy
in such a way that the maximum capacity is not
exceeded. This is caused by reducing the number of

Figure 3. Optimal blueprint schedule (a) for the rheumatology clinic of SMK when only the number of in-person consultations
is maximised; and the corresponding waiting room occupancy (b) for three variability settings. We refer to the caption of
Figure 2 for a more detailed explanation of the figure.
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care trajectories that have to be performed in-per-
son, reducing the number of bridging patients.

In conclusion, the rheumatology clinic of SMK
can continue to deliver 100% of their required daily
appointments in times of COVID-19, given the
restrictions to their shared waiting area. Their pre-
COVID-19 best-case base case blueprint schedule
results in peaks up to 25 patients in the waiting
area, given that all patients are seen in-person.
However, by introducing time-dependent waiting
room capacity input restrictions our approach
improves the waiting room occupancy such that the
maximum capacity is no longer exceeded. As a con-
sequence, 12% of the appointments is scheduled
digitally and those digital appointments take place
alternating with in-person appointments. If, for any
reason, the rheumatology cannot this facilitate such
sessions, or is not willing to perform this amount of
appointments digitally, it is also possible to reduce
the number of appointments in the case mix. If we
reduce the number of appointments to 90% of the
total case mix, Figure 7(a) shows a blueprint sched-
ule, based on time-dependent waiting room capacity
restrictions, that also ensures the maximum waiting

room capacity is not exceeded and no digital
appointments have to be scheduled.

4.2.2. Medical oncology & haematology clinic
The medical oncology & haematology clinic case
study considers the situation with dedicated waiting
areas for each stage. Solving the ILP (1a) – (1i) with
no additional objectives, results in the blueprint
schedules of Figures 8(a) and (b). For the given
waiting room capacity of 19 seats at the outpatient
clinic and 16 seats at the day-care department, a
feasible schedule can be found in which none of the
appointments are scheduled digitally. Figures 8(c)
and (d) depict the simulated waiting room occu-
pancy at the outpatient clinic and day-care depart-
ment, respectively. From Figure 8(c) we conclude
that the outpatient clinic waiting room is over-
crowded for the majority of the day and only
around the lunch break there is a period when the
occupancy is acceptable. From Figure 8(d) we con-
clude that during the start of the day the waiting
room occupancy at the day-care department is satis-
factory and the difference between the deterministic
waiting room occupancy and its simulated

Figure 4. Optimal blueprint schedule (a) and waiting room occupancy (b) for the rheumatology clinic of SMK when the num-
ber of in-person consultations is maximised; the waiting room occupancy is levelled; and appointment types are evenly distrib-
uted over all resources. We refer to the caption of Figure 2 for a more detailed explanation of the figure.
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counterpart is small, while later during the day the
occupancy is close to capacity (and even some short
periods over capacity with at most one patient) and
the difference between the deterministic waiting
room occupancy and its simulated counterpart is
increased. The increased difference between deter-
ministic and simulated waiting room occupancy is
because during the beginning of the day there are
more idle periods and exclusively patients coming
directly from home, hence treatment can start
immediately upon arrival of the patient. Patients
coming from the outpatient clinic are scheduled
later during the day and must bridge a minimum
amount of time between consultation and treatment.
Hence, any delay at the outpatient clinic causes
delay at the day-care department, which results in a
increased difference between deterministic and
simulated waiting room occupancy.

In the second iteration of our iterative simulation
optimisation approach, we restrict the waiting area
capacity input parameters during the hours the
simulated waiting room occupancy peaks and used

the levelling objective (4). The characteristics of the
clinic cause that the waiting room capacity cannot
easily be defined per 15min or half an hour, but
that it must be done for irregular time-intervals,
sometimes even for just a single time-slot of 5min.
We omit the list of waiting room capacity over
time, as the set capacity is attained by the resulting
deterministic waiting room occupancy and, hence,
can be observed from Figure 9(c). We will discuss
below how we defined the waiting room capacity at
the day-care department.

The resulting blueprint schedules are shown in
Figures 9(a) and (b), where 22% of the appoint-
ments at the outpatient clinic are scheduled digitally
(of all appointments a maximum of 35% could be
scheduled digitally). In particular, 89% of C – oncol-
ogy appointments and 81% of C – haematology
appointments are scheduled digitally. The corre-
sponding simulated waiting room occupancy at the
outpatient clinic, respectively the day-care depart-
ment is depicted in Figure 9(c) and (d). From
Figure 9(c), it can be observed that, although during

Figure 5. Optimal blueprint schedule (a) and waiting room occupancy (b) for the rheumatology clinic of SMK when the wait-
ing room capacity is set to its minimum necessary to schedule all required occurrence for each trajectory. We refer to the cap-
tion of Figure 2 for a more detailed explanation of the figure.
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the peak moments the occupancy is really close to
capacity, the waiting room occupancy at the out-
patient clinic never violates its capacity of 19 seats.
Furthermore, in Figure 8(d), we observe the waiting
room occupancy at the day-care department to be
around eight patients at 17.00 h, which may cause
the day-care department to finish the session in
overtime. Hence, in the second iteration of our
iterative simulation optimisation approach we set
the waiting room capacity at the day-care depart-
ment time-dependently to its minimum required to
get a feasible blueprint schedule that also satisfies
the capacity restriction at the outpatient clinic. This
resulted in the following settings: from 7.30h-
14.30h, 10 seats; 14.30h-16.00h, 7 seats; 16.00h-
16.15h, 4 seats; and from 16.15h onwards, 3 seats.
With this settings, we observe from Figure 9(d) the
waiting room at the day-care capacity never violates
its capacity and the occupancy at 17.00 h is reduced
to approximately five patients. This suggest the ses-
sion still resorts to overtime to finish and it would
be preferred to even further reduce the waiting

room capacity at particularly the end of the day. By
experimenting we observed that this preferred cap-
acity reduction results in either infeasibility of the
ILP (because treatments need to be scheduled near
the end of the day in order to meet the waiting
room capacity restriction at the outpatient clinic); or
in overcrowding the waiting room occupancy at the
outpatient clinic during periods of the day.

In conclusion, the medical oncology & haematology
clinic of UMCU can continue to deliver 100% of their
required daily appointments in times of COVID-19,
given the restrictions to their dedicate waiting rooms.
As a consequence, 22% of the appointments at the
outpatient clinic is scheduled digitally and those digital
appointments take place alternating with in-person
appointments. At the day-care department, the after-
noon session might need to be extended.

5. Conclusion

In this paper, we have proposed an iterative simula-
tion optimisation approach, combining Integer

Figure 6. Optimal blueprint schedule (a) and waiting room occupancy (b) for the rheumatology clinic of SMK with time-
dependent restrictions on the number of patients simultaneously allowed in the waiting room. We refer to the caption of
Figure 2 for a more detailed explanation of the figure.
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Linear Programming (ILP) and Monte Carlo simula-
tion (MCS), to develop a blueprint schedule for
appointment systems, taking into account capacity
restrictions in waiting areas and care trajectories.
Although blueprint optimisation is widely consid-
ered in literature, including the waiting room occu-
pancy as the main restriction is not yet considered.
Due to distancing measures induced by the COVID-
19 pandemic, including this metric in blueprint
optimisation, as proposed in this paper, became
very relevant. Besides positioning appointments in
the blueprint schedule, our model also determines
which appointments need to be scheduled digitally
to meet the waiting area capacity restrictions under
COVID-19 distancing measures.

The main assumption that makes our ILP model
tractable is that early arrival times and appointment
durations are deterministic. Although this assump-
tion is common for development of blueprint sched-
ules, it is not realistic in practice. Therefore, our
MCS model investigates the quality of the ILP
schedule under randomness in early arrival times
and appointment durations. Furthermore, our itera-
tive approach allows for inclusion of the effects of

these random durations and early arrival times in
the ILP blueprint schedule by adapting the available
waiting area capacity in certain time slots, enforcing
the ILP to schedule appointments in slots that
reduce the occupancy of the waiting area. The new
schedule is investigated using our MCS model, and
if required further adapted.

Our approach is very generic and can be applied
to outpatient clinics with various characteristics, as
we show by our case studies. For our case study
clinics, all patient appointments of the case mixes
can be scheduled, while meeting the capacity restric-
tions, by scheduling at most 12% and 22% of the
appointments digitally. We also showed that for our
case study clinics, a focus on reducing the variability
of appointment durations is preferred over reducing
patient arrival variability, when considering waiting
room occupancy as our main restriction.

Our ILP model can be easily extended to deter-
mine the optimal number of appointments, given a
desired number of appointments per type. Our MCS
model can also be used on an operational level of
control for waiting room occupancy steering.
Instead of evaluating a blueprint with patient types,

Figure 7. Optimal blueprint schedule (a) and waiting room occupancy (b) for the rheumatology clinic of SMK when the num-
ber of trajectories is reduced to 90% of the total case mix. We refer to the caption of Figure 2 for a more detailed explanation
of the figure.
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Figure 8. Optimal blueprint schedule of the outpatient clinic (a) and day-care department (b) for the medical oncology &
haematology clinic in UMCU when only the number of in-person consultations is maximised. Along the x-axis is the time and
along the y-axis is the resource (in (a) resources 1 – 4 and 5 represent the oncologists and oncology PA, resp., and resources
6 – 8 and 9 represent the haematologists and haematology PA, resp.). In (c) and (d) the waiting room occupancy for the out-
patient clinic and day-care department, resp., is depicted over time. Here the grey bars denote waiting room occupancy levels
taking into account bridging and average early arrival times (result from the ILP) and the blue line, together with its 95% con-
fidence interval as the shaded area, depicts the waiting room occupancy including randomness in early arrival and consult-
ation times (result form the MCS).

Figure 9. Optimal blueprint schedule of the outpatient clinic (a) and day-care department (b) for the medical oncology &
haematology clinic in UMCU with time-dependent restrictions on the number of patients simultaneously allowed in the wait-
ing rooms. The corresponding waiting room occupancy is shown in (c) and (d), resp. We refer to the caption of Figure 8 for a
more detailed explanation of the figure.
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actual scheduled patients and the characteristics of
their pathways can be evaluated with the same
model, to determine the expected occupancy on a
short term (today/tomorrow). Our results may also
reveal the impact on waiting area occupancy of
interventions such as improving schedule execution,
and patient and provider punctuality. Other inter-
ventions might further reduce the bridging time.
For example, in advance drug preparation might
decrease the patient bridging times, at the cost of
occasionally wasting medications (Masselink et al.,
2012). Introducing next-day appointment schedules,
for example when patients have their diagnostic
tests one day before the outpatient clinic appoint-
ments (Dobish, 2003), decouples the same-day
appointments and may also reduce waiting area
occupancy as it avoids bridging times. The impact
of such interventions on waiting area occupancy
may be characterised using our method.

Patients requiring non-COVID-19 care in times
of COVID-19 are typically requested to visit the
hospital unaccompanied. However, for specific
patient types, such as children and elderly, patients
with physical discomfort or consultations to discuss
unfavourable outcomes, an accompanying person
will join the patient during the hospital visit. This
puts additional pressure on the waiting area, even in
the case this accompanying person is allowed within
1.5 meters of the patient. In setting the waiting area
capacity limits for the blueprint design, the impact
of accompanying people has to be taken into
account. If a patient wants to bring an accompany-
ing person, the MCS results of the blueprint sched-
ule may give more insight in which slot to select
such that the waiting area occupancy does not
exceed its limits.

Besides well performing blueprint schedules that
incorporate waiting area restrictions, our approach
also provides hospitals with more insight in the
decisions they make regarding their case-mix and
care trajectory design. Besides medically relevant
same-day trajectories, most same-day multi-appoint-
ment trajectories that hospitals pre-COVID-19 used
to offer are considered a service to their patients,
for example to limit the amount of hospital visits.
Our research shows that the choice for coupled
(same-day) instead of decoupled (multi-day) patient
trajectories, or same-day trajectories with large min-
imum bridging times compared to no minimum
bridging times, may come at a cost of reduced
patient volume in times of COVID-19. Our methods
therefore aided decision makers of our case study
hospitals in finding the mix of same-day and multi-
day trajectories that allowed them to safely serve
their patients in times of COVID-19.
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Appendix A.Monte Carlo simulation

Simulation optimisation refers to solving an ILP model
with stochastic elements (Karatas et al., 2017; Santos
et al., 2017). In many cases simulation is used to esti-
mate the objective function (Fu, 2015). In our model,
variability is introduced via the early arrival times and
the duration of consultation. This variability does not
affect the value of the objective function, but may cause
the waiting area capacity constraints to be violated. Our
MCS determines bounds for these constraints such that
the probability that they are violated is less than 5%.
Our approach therefore falls in the subcategory of
Stochastic Constraints Simulation (Homem-de Mello &
Bayraksan, 2015).

The outline of the MCS is as follows. At initialisa-
tion, the blueprint schedule obtained from the ILP is
loaded in the simulation and the early arrival, consult-
ation and treatment times are generated for every
patient of that arrive during the day. These randomly
generated numbers are then used to obtain the effectu-
ated schedule by determining the actual arrival times of
the patients and the starting times of the consultations
and treatments. Subsequently, the simulation determines
for every time step if a patient is present in the system
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and if so whether or not that patient is currently in
consultation or treatment. This determines, for each
time step, the number of patients in the waiting area.

After a predetermined number of repetitions a 95%
confidence interval is obtained. The pseudo code of the
MCS is as follows:

Algorithm 1: Monte Carlo simulation to evaluate waiting area occupancy of blueprint schedule
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