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Modelling streamflow response to climate change in

data-scarce White Volta River basin of West Africa using

a semi-distributed hydrologic model

Sulemana Abubakari, Xiaohua Dong, Bob Su, Xiaonong Hu, Ji Liu,

Yinghai Li, Tao Peng, Haibo Ma, Kai Wang and Shijin Xu
ABSTRACT
This study uses high resolution Climate Forecast System Reanalysis (CFSR), SWAT and two IPCC

climate change (CC) scenarios (A1B and B1) combined with two general circulation models (GCMs)

(HADCM3 and MPEH5) to evaluate impact of CC on streamflow in the White Volta basin of West

Africa. The evaluation criteria (R2 and NSE> 0.70 and PBIAS within ±25%) during calibration and

validation showed good simulation of the basin hydrology. Using average streamflow from 1979 to

2008 as a baseline, there were uncertainties over the sign of variation of annual streamflow in the

2020s. Annually, streamflow change is projected to be within �4.00% to þ13.00% in the 2020s and

þ3.00% to þ16.00% in the 2050s. Monthly streamflow changes for most months vary between

�13.00% and þ32.00%. A shift in monthly maximum streamflow from September to August is

projected, while the driest months (December, January and February) show no change in the future.

Based on the model results, the White Volta basin will likely experience an increase in streamflow by

the mid-21st century. This would call for appropriate investment into cost-effective adaptive water

management practices to cater for the likely impact of CC on the future hydrology of the basin.
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INTRODUCTION
Surface water plays a crucial role in many sectors in West

Africa (WA), such as agriculture, hydropower generation, fish-

eries, livestock watering, recreation and tourism. Even though

most of the agriculture in WA is rain-fed, some regions

strongly depend on surface water. For example, the surface

water impounded through large dams on the Niger, Volta,

Senegal, Gambia rivers, etc., in WA serves as a major source
of hydropower generation. The fishing sector depends strongly

on river discharge. The drought conditions that occurred in

WA in the 1970s and 1980s caused a drop of�50% in fisheries

production of the Niger delta, resulting in a loss of about USD

20 million per year (Neiland & Béné ).

The Fifth Assessment Report (AR5) of the Inter-

governmental Panel on Climate Change (IPCC) (IPCC
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) projects average temperatures in Africa to increase by

1.5 to 3 �C by 2050, which is very likely to be larger than the

global annual and seasonal mean warming with potential

impacts on the hydrological cycle. Projections from climate

models all agree on a warming in WA with its magnitude

ranging from þ2 to þ6 �C in 2100 across climate models

(IPCC ). However, precipitation projections are uncer-

tain. Almost half of them predict an increase in rainfall

and the other half a decrease (Vigaud et al. ; Berg

et al. ), with changes in annual rainfall roughly ranging

from �20 to þ20% (Sultan et al. ).

Rainfall changes may have a direct effect on river flow.

A study by Conway et al. () regarding rainfall–runoff

relationships on water resources variability in sub-Saharan

Africa during the 20th century revealed varying behaviour

including strong but non-stationary relationships, particu-

larly in the WA sub-region with rainfall accounting for

around 60%–70% of river flow variability. According to a

study by Roudier et al. (), there is uncertainty on signs

of the future change of streamflow in WA except for (i) the

Gambia River, which exhibits a significant negative

change (�4.5%) and (ii) the Sassandra and the Niger

rivers, where the change is positive (þ14.4% and þ6.1%).

Correlation analysis from the same study revealed that

runoff changes are highly linked to changes in rainfall

(R¼ 0.49), and also to a smaller extent to changes in poten-

tial evapotranspiration.

Hydrologic and climate models serve as important tools

for the quantification of climate change (CC) impacts on the

hydrology of a watershed. Previous studies looked at avail-

able meteorological data and used hydrological models to

quantify freshwater availability in African river basins.

These studies have reported a lack of detailed measured

weather data and other agriculture and reservoir manage-

ment data, which have hindered model development and

caused high uncertainties in model results (Schuol & Abbas-

pour ; Sood et al. ). Milzow et al. () investigated

the utilization of combined satellite radar altimetry, surface

soil moisture estimates (SSM) and Gravity Recovery and

Climate Experiment (GRACE) total storage change datasets

for the calibration of the Soil and Water Assessment

Tool (SWAT) hydrological model in the poorly gauged

Okavango watershed in Southern Africa. The study revealed

that the combination of the three datasets improved the
om http://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
Y OF TWENTE FACULTY user
2021
parameterization of the model. However, the model showed

poor performance at a daily time step due to the lack of

in-situ precipitation measurements and large variations in the

three precipitation datasets. But the relatively good fit of the

flow regimes suggested that the model was able to simulate

the proper rainfall–runoff characteristics of the catchment

and thus could be used for long-term scenario analyses.

Mango et al. () used the SWAT model to investigate

the impacts of land use and CC on the hydrology of the

Mara River basin in Kenya. Due to the lack of climate

data, rainfall estimates were obtained from the remote sen-

sing data provided by the Famine Early Warning System

(FEWS). The NSE value for the observed and simulated

flows was 0.43, while the R2 value was 0.56. Although the

correlation results were not satisfactory for the accurate pre-

diction of flows in the river basin, the data could be utilized

for a better understanding of the hydrological processes in

the basin. Schuol & Abbaspour () applied a weather-

generator algorithm based on weather statistics from the

UK Climate Research Unit as input into SWAT model for

modelling poorly gauged and data-scarce WA basins like

the Niger, Volta and Senegal. Their model calibration results

showed mixed performance, with some calibrating stations

giving Nash–Sutcliffe values of over 0.7 while others pro-

duced values below �1.0. Schuol et al. () applied

SWAT for the estimation of freshwater availability in

18 WA countries covering about 4 million km2. In Volta

River basin, Sood et al. () used a SWAT model to evalu-

ate the impact of dynamically downscaled A1B CC scenario

on flows for 2021–2050 and 2071–2100, using 1983–2012 as

the reference period. Due to data constraints, calibration

was done in multiple steps, with the most upstream sub-

basins calibrated first and the most downstream last. The

calibrated model performed well for downstream gauging

stations but poorly for upstream gauging stations. Overall,

the results revealed increased variability and a decrease of

up to 40% in river flow as a consequence of decreasing rain-

fall and increasing temperature. Wagner et al. ()

attempted to quantify the spatial and temporal changes in

the hydrology of the Volta basin. They concluded that at a

larger spatial scale, the effect that lack of meteorological

data had on model performance was moderate and that

the model could be used reasonably for the ‘contemporary’

estimation of the hydrology of the basin (Sood et al. ).
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The freshwater resource of the White Volta River basin

of WA is vital for the economic growth and social develop-

ment of the riparian countries (Burkina Faso and Ghana).

Previous studies (Jung & Kunstmann ; Laux et al.

; Van de Giesen et al. ; Lacombe et al. ; Sood

et al. ), revealed significant changes in both spatial and

temporal distribution of rainfall in the basin with some

sub-catchments having abundant fresh water, leaving

others with very limited water to satisfy increasing demands.

Gyau-Boakye & Tumbulto () computed reductions in

the average annual rainfall and river discharges of up to

12% and 35%, respectively, in some areas of the Volta

basin and on major tributaries of the Volta River, respect-

ively, in the period 1971–1991, relative to 1951–1970.

Oguntunde et al. () applied the Mann–Kendall statistic

to assess trends and variability of hydro-climatology of the

Volta basin in WA from 1901 to 2002. Their results revealed

that a 10% relative decrease in precipitation accounted for a

16% decrease in runoff between 1936 and 1998. These fac-

tors have significant impact on water availability within

the basin. Anthropogenic pressures and CC are likely to

aggravate these situations. The basin’s population is pro-

jected to grow at an annual rate of 2.5% (Obuobie et al.

). This will likely result in significant increase in water

demand, particularly for crops and livestock production in

the near future. According to Roudier et al. (), due

to population growth in WA, water withdrawals have

increased by 31% between 1983–1987 and 1998–2002 and

would increase much more in the future as food demand

quintuples by 2050 in the region. The ongoing global CC

will place further constraints on the already limited water

resources in the basin, resulting in non-attainment of the

Millennium Development Goals in areas such as health, era-

dicating poverty and hunger (Kankam-Yeboah et al. ).

Numerous studies have attempted to utilize climate

models in quantifying effects of CC on hydrology and

water resources management in the data-scarce White

Volta River basin of WA. Obuobie () used precipitation

and temperature for 1991–2000 and 2030–2039 generated

by stochastic downscaling model, Long Ashton Research

Station Weather Generator (LARS-WG) and reflecting

MM5-simulated monthly changes, future CC scenario

IS92a and SWAT model to evaluate effects of CC on

recharge of groundwater in the White Volta River basin.
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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Results of this study found an increase in mean annual rain-

fall of about 6% in 40 years, resulting in an increase of about

29% in groundwater recharge. Kankam-Yeboah et al. ()

used an ensemble of two general circulation models (GCMs)

(ECHAM4 and CSIRO) downscaled using LARS-WG, A1F1

future CC scenario and SWAT model to estimate impacts of

CC on streamflow in the White Volta basin. Results of this

study found that mean annual streamflow showed a

decrease of 22% and 50% for 2006–2035 (2020s) and

2036–2075 (2050s), respectively, relative to the baseline

(1961–1990). Awotwi et al. () assessed impacts of CC

on various water balance components of the White Volta

basin using downscaled CC projections from Regional Cli-

mate Model (REMO), A1B future CC scenario and SWAT

model. Results of this study revealed that an increase of

8% and 1.7% of mean annual precipitation and temperature,

respectively, in 2030–2043 leads to an increase of 26% in

mean annual surface runoff relative to the baseline (1995–

2008).

The focuses of these studies were aimed at investigating

the response of streamflow to CC under a single future emis-

sion scenario. However, due to uncertainties in climate

projections, the use of different climate models and multiple

scenarios will be useful for understanding the range of CC

impact that can be expected on water resources in the

White Volta River basin (Obuobie & Diekkrüger ;

Kankam-Yeboah et al. ).

The main objective of this study therefore was to evalu-

ate the CC effect on the future streamflow in the data-scarce

White Volta River basin of WA using different climate

models and multiple scenarios. To achieve this objective,

high resolution (0.3� ∼ 3 km) Climate Forecast System Rea-

nalysis (CFSR), SWAT hydrologic model and different

GCMs were used for CC impact assessment. The SWAT

model was calibrated using an automatic calibration algor-

ithm to simulate the streamflow at Nawuni (outlet) of the

White Volta River basin. Next, the future precipitation and

temperature changes projected by different GCMs under

various CC scenarios were input into SWAT to project

future annual, monthly and seasonal streamflow changes.

The results obtained in this study are expected to pro-

vide more insight into the availability of future streamflow,

and to provide local water management authorities and

policy makers with quantitative data for the appropriate
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design and management of water resources as well as for

incorporation into CC adaptation strategies to reduce vul-

nerability and ensure water security within the basin.
MATERIALS AND METHODS

Study area

The White Volta basin (Figure 1) is a major sub-basin of the

Volta River basin of WA. It is located between latitude 8 �N

and 15 �N, and longitude 1 �E and 4 �W. It is a transbound-

ary river basin with a drainage area of about 106,300 km2

and shared mainly by Burkina Faso and Ghana. The topo-

graphy is predominantly flat with more than half of the

basin lying in the elevation range of 200–300 m with mean

elevation of about 270 m. The basin has two major climate

zones: semi-arid climate in the north and humid climate in

the south. Mean annual rainfall in the semi-arid north is

around 600 mm while that in the humid south is around

1,200 mm (Oguntunde et al. ). The basin experiences

a high variability in rainfall between wet and dry seasons

as well as from one place to another. There is a prolonged

dry season of about seven months in most areas. In addition,

there is the ephemeral nature of many rivers and streams in

the basin. A water balance study of the Volta basin by

Andreini et al. () revealed that runoff is extremely sensi-

tive to rainfall and that in the White Volta basin about 17%

of the rainfall results in runoff to Lake Volta. The temporal

variability of the annual runoff is higher than that of rainfall.

This has been attributed to a non-linear response of runoff to

rainfall and to threshold effects in the basin (Andreini et al.

). The monthly stream discharge in the basin has a

mono-modal pattern with the peak occurring in September.

In the semi-arid north, mean monthly temperature

ranges from 36 �C in March to 27 �C in August while in

the humid south, it ranges from 30 �C in March to 24 �C

in August. The basin’s mean annual temperature and poten-

tial evapotranspiration (PET) are 26 �C and 1,650 mm,

respectively (Oguntunde et al. ).

The soils in the basin are Luvisols, Regosols, Lithosols,

Vertisols, Planosols, Cambisols and Gleysols. The basin is

dominated by Luvisols, Regosols and Lithosols, which

cover about 70% of the basin area. The land use/cover is
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predominantly savannah, grassland and agriculture with

small patches of forest.

SWAT model description

SWAT is a process-based model for continuous hydrologic

simulations. It was developed by the United States Depart-

ment of Agriculture (USDA), Agricultural Research Service

(ARS) to predict impact of land use practices on water,

sediment and agricultural chemical yields in large and

complex watersheds with diverse weather, varying soils,

land use and management and topographic conditions

over long periods (Neitsch et al. ). In several regions

around the world and WA, SWAT has been used to simu-

late watershed hydrology and for estimating impacts of

climate and land-use changes on streamflow and sediment

yield (Obuobie et al. ; Coffey et al. ; Solaymani &

Gosain ; Zang ). It uses a geographic information

system (GIS) interface and operates on daily time step; how-

ever, daily outputs can be aggregated into monthly and

annually outputs.

The hydrological components of a river basin modelled

by SWAT are given by the soil water balance of a river basin,

which is represented as (Arnold et al. ):

SWt ¼ SWo þ
Xt

i¼1

(Rday �Qsurf � Ea �Wseep �Qgw) (1)

where: SWt is the final soil water content (mm), SWo is the

initial soil water content on day i (mm), Rday is the amount

of precipitation on day i (mm), Qsurf is the amount of surface

runoff on day i (mm), Ea is the amount of evapotranspiration

on day i (mm), Wseep is the amount of water entering the

vadose zone from the soil profile on day i (mm), Qgw is

the amount of return flow on day i (mm).

The SWAT model requires a digital elevation model

(DEM), soil and land-use maps and data, climate and hydro-

logical data, for modelling a river basin. The model uses the

DEM to divide a river basin into multiple sub-basins which

are further subdivided into hydrologic response units

(HRUs). Each HRU is made up of homogeneous land-use,

management and soil characteristics (Gassman et al. ).

The HRUs make it possible to assess the impact of the differ-

ent land-use types, soil properties and management



Figure 1 | Map of the White Volta River basin.
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practices on the hydrology of a basin. To provide a better

physical description of the water balance of a river basin,

SWAT simulates the hydrological processes separately for

each HRU and routes them to obtain the total runoff

(Neitsch et al. ). In the SWAT model, there are two
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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options for determining the HRU distribution. The options

are to assign a single or multiple HRU to each sub-basin.

This study utilized the Penman–Monteith method in com-

puting the potential evapotranspiration. The input data for

this option are solar radiation, air temperature, relative
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humidity and wind speed. Surface runoff volumes were

quantified in the model using the modified SCS curve

number, which is a function of antecedent soil moisture con-

ditions, land use and soil permeability. The SCS curve

number method employs an empirical model with an

empirical relationship between rainfall and runoff that pro-

vides a consistent, reliable and accurate basis for estimating

the amount of runoff variation under different land-use and

soil types (Kankam-Yeboah et al. ). The SCS curve

number equation is given by (USDA-SCS ):

Qsurf ¼
(Rday � Ia)

2

(Rday � Ia þ S)
(2)

where: Qsurf is the accumulated runoff (rainfall excess) in

(mm), Rday is the rainfall depth for the day (mm), Ia is the

initial abstraction which includes surface store, interception

and infiltration prior to runoff (mm), S is the retention par-

ameter (mm) and it is defined as:

S ¼ 25:4
100
CN

� 10
� �

(3)

where: CN is the curve number for the day. Ia is commonly

given as 0.2S. Hence, Equation (2) becomes:

Qsurf ¼
(Rday � 0:2S)2

(Rday þ 0:8S)
(4)

Runoff is generated only when Rday> Ia. A detailed

description of SWAT can be obtained from Neitsch et al.

().
Model input data and set-up

The SWAT model requires a digital elevation model (DEM),

soil and land-use maps and data, climate and discharge data,

for modelling a river basin. The DEM used for this study has

a spatial resolution of 90 m and was obtained from the

Shuttle Radar Topographical Mission (SRTM) (CGIAR-CSI

). The DEM was used for the delineation of the water-

shed which included slopes’ definition, defining stream

networks, defining outlets and inlets of the river basin and
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calculation of the sub-basin parameters. The land-use/

cover (LULC) map used is a modified Food and Agricultural

Organization (FAO) map with a spatial resolution of 400 m

which exists in a raster format. It was obtained from the

WaterBase project (WaterBase a). Land-use types are

based on FAO Land Cover Classification System (LCCSS)

and had to be re-modified to match the land-cover classes

in SWAT. Based on the LULC map, about 71.0% of the

White Volta basin’s land use is savannah, 24.1% is agricul-

ture, 4.7% is grassland, 0.1% is forest and 0.1% is wetland.

The soil map is a FAO digitized soil map of the world

and derived soil properties. It has a spatial resolution of

10 km and was obtained from the WaterBase Project

(WaterBase b). The soil data were used for determining

the texture, bulk density, saturated hydraulic conductivity,

organic carbon content and available water content for the

different layers of each soil type.

The climate data used for this study are the National

Centers for Environmental Prediction (NCEP) Climate Fore-

cast System Reanalysis (CFSR). The CFSR weather was

obtained from the Texas A&M University spatial sciences

website (globalweather.tamu.edu) (Globalweather ). It

consists of daily rainfall, maximum and minimum tempera-

ture, wind speed, relative humidity and solar radiation.

The CFSR weather is produced using cutting-edge data-

assimilation techniques (both conventional meteorological

gauge observations and satellite irradiances) as well as

highly advanced (and coupled) atmospheric, oceanic and

surface-modelling components at ∼30 km resolution (Saha

et al. ). CFSR was used due to the basin’s sparse climate

station networks and also due to most of the measured data

having many missing and erroneous data. According to

some studies (Dile & Srinivasan ; Fuka et al. ), uti-

lizing the CFSR precipitation and temperature data to

force a watershed model provides stream discharge simu-

lations that are as good as or better than models forced

using traditional weather gauging stations.

Monthly observed discharge data for Nawuni stream

gauge representing the outlet of the basin was obtained

from the Global Runoff Data Centre (GRDC), Koblenz,

Germany. Some of the gaps in the data were filled using

the spatio-temporal dynamic model employing the Kalman

smoother and the expectation maximization algorithm

developed by Amisigo et al. ().
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The monthly observed discharge data were used for per-

forming sensitivity analysis, calibration and validation of the

SWAT model. The SWAT model set-up for the White Volta

River basin (Figure 2) was done through the ArcSWAT 2009

interface following a step-by-step procedure outlined in the

SWAT user guide. The model set-up was in five stages:

data preparation, sub-basin discretization, HRU definition,

parameter sensitivity analysis and calibration and model

evaluation. All the spatial input datasets, i.e., the soil map,

LULC map and the DEM were projected to the same projec-

tion, WGS84 UTM Zone 30 N, which is the projection of

the basin.

Each basin was divided into sub-basins based on the

DEM and stream networks of the basin. The number of

sub-basins obtained was determined by the threshold input

value for defining drainage area in the SWAT model.

Threshold drainage area was set to a pre-defined value of

5,500.293 km2 and this resulted in 14 sub-basins. Sub-basin

delineation was followed by calculation of sub-basin par-

ameters and subdivision of sub-basins into hydrologic

response units (HRUs). The HRU analysis tool was used

to load the LULC, soil layers to the project. The LULC

and soil were reclassified in order to match that in SWAT,

and the basin’s slopes were also defined. After land-use,
Figure 2 | Flow chart of the steps in the SWAT model application in the White Volta basin (ad

://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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soil and slope definition, they were then overlaid for HRU

definition. This study employed the multiple HRU option.

Since the topography of the basin is predominantly flat,

with about 96% of the land having slopes less than 5%;

the single slope class option was used. Each sub-basin was

divided into HRUs according to the land use and soil

types. Based on the guidelines of HRU definition provided

by Neitsch et al. (), and studies by Akpoti et al. ()

and Kankam-Yeboah et al. (), land-use class percentage

over sub-basin area was set to 20%, soil class percentage

over land-use area was set to 10% and slope class percentage

over soil area was set to 20%. This created 67 HRUs.

The CFSR weather data were obtained for a bounding

box of latitude 6�–16�N and longitude 2�E–5�W. The

weather data were prepared in .dbf format and imported

to the SWAT model database. The weather station data in

SWAT were linked to the centroid of each sub-basin. The

model was set up and run using climate data from 1979 to

2008.

Parameter sensitivity was assessed with respect to model

performance in terms of monthly flows by using the auto-

matic sensitivity analysis tool incorporated in the SWAT

model. The SWAT model employs the Latin Hypercube

One-factor-At a-Time (LH-OAT) method proposed by
apted from Akpoti et al. 2016).
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Morris () to perform the sensitivity analysis. The LH-

OAT method integrates the Latin Hypercube (LH) sampling

(global sensitivity analysis method) and the One-factor-At-a-

Time (OAT) design (local sensitivity analysis method), and

employs the LH samples as initial points for an OAT

design (van Griensven et al. ) and can efficiently pro-

vide a rank ordering of parameter importance. SWAT

parameters (Table 1) used in similar studies in the basin

(Kankam-Yeboah et al. ; Sood et al. ; Awotwi

et al. ; Akpoti et al. ) served as guidelines in the

selection of the parameters for sensitivity analysis. Twenty-

one parameters were selected and subjected to sensitivity

analysis. The main aim of this analysis was to determine

the model parameters that had greatest influence on the

model output. Only the most influential parameters were

optimized in the calibration procedure and this went a

long way to minimize greatly parameter uncertainty and

also the total time spent during the calibration process.
Table 1 | SWAT input parameters used for sensitivity analysis

No. Parameter Description

1 Alpha_Bf Baseflow alpha factor (–)

2 Blai Maximum potential leaf area index (–)

3 Canmx Maximum canopy storage (mmH2O)

4 Ch_Erod Channel erodibility factor (–)

5 Ch_K2 Channel effective hydraulic conductivity (mm/hr)

6 Ch_N2 Manning’s value for main channel (–)

7 Cn2 SCS runoff curve number (–)

8 Epco Plant uptake compensation factor (–)

9 Esco Soil evaporation compensation factor (–)

10 Gw_Delay Groundwater delay (days)

11 Gw_Revap Groundwater revap coefficient (–)

12 Gwqmn Threshold water depth in the shallow aquifer for ret

13 Rchrg_Dp Deep aquifer percolation coefficient (–)

14 Revapmn Threshold depth of water in the shallow aquifer for

15 Slope Mean slope steepness (mm�1)

16 Slsubbsn Mean slope length (m)

17 Sol_Alb Moist soil albedo (–)

18 Sol_Awc Soil available water capacity (mm H2O/mm soil)

19 Sol_K Saturated hydraulic conductivity (mm/hr)

20 Sol_Z Depth from soil surface to bottom layer (mm)

21 Surlag Surface runoff lag time (days)

Method of changing parameter value. afor changing by value and bby percentage.
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The detailed description of the SWAT input parameters

can be found in Neitsch et al. ().

Since only the monthly observed flow data at the outlet

gauging station (Nawuni) were available, calibration was

performed on monthly time step. This was done to minimize

the differences between simulated and measured monthly

flows by adjusting the selected SWAT model parameters.

In this study, we applied an automatic single-objective cali-

bration based on PARASOL (Parameter Solutions method)

developed by Van Griensven et al. (). Because of the

non-linearities in the SWAT model, we further opted for a

global search optimization algorithm. We applied the

shuffled complex evolution algorithm (SCE-UA) developed

by Duan et al. (). The time span selected for calibration

was 1985–1991, with the first two years as a warm-up

period. Thus, 1987–1991 was used for actual calibration

and 1985–1986 was used as the warm-up period. The vali-

dation period was 1992–1996.
Lower and upper bounds Initial value

0–1a 1

0–1a 61

0–10a 7

0–1a 50

0–150a 54

0–1a 51

±25a 10

0–1a 28

0–1a 27

±10a 2

±0.036a 3

urn flow to occur (mm H2O) ±1,000a 6

0–1a 4

‘revap’ to occur (mm H2O) ±100a 5

±25b 23

±25a 24

±25a 22

±25b 17

±25a 15

±25a 16

0–10a 33
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Model performance at calibration and validation was

analyzed using three quantitative statistics: Nash–Sutcliffe

efficiency (NSE) (Nash & Sutcliffe ), the co-efficient of

determination (R2) and the percent bias (PBIAS) (Equations

(5)–(7), respectively). Model performance for monthly

streamflow calibration was considered acceptable when

R2> 0.60, NSE> 0.50 and PBIAS was within ±25%

(Moriasi et al. ):

NSE ¼ 1�
PN

i¼1 (Oi � Pi)
2

PN
i¼1 (Oi � �O)

2 (5)

R2 ¼
PN

i¼1 (Oi � �O)(Pi � �P)
PN

i¼1 (Oi � �O)
2

h i0:5 PN
i¼1 (Pi � �P)2

h i0:5
8><
>:

9>=
>; (6)

PBIAS ¼
PN

i¼1 (Oi � Pi)PN
i¼1 (Oi)

× 100 (7)

where: Oi is the measured data, Pi is the simulated data, �O is

the mean of the measured data, �P is the mean of the simu-

lated data, and N is the total number pairs of simulated

and observed data.
Climate change scenarios and projections

The IPCC A1B and B1 scenarios were used for climate

change (CC) projections. The A1B scenario emanates from

the IPCC, A1 that describes a future of balanced socioeco-

nomic and environmentally based development while

emission scenario B1 describes a future development that

will be more environmentally based than at present (Nakice-

novic et al. ).

The A1B and B1 scenarios were chosen by Ghana

Meteorological Agency (GMET) because they are two of

the six illustrative scenarios of the IPCC and represent

medium and low concentrations of greenhouse gases

(CO2, NH4 and N2O), respectively, projected to be emitted

in the 2020s and 2050s (IPCC ).

The rainfall and temperature projections were obtained

from the outputs of two global climate models (GCMs):

HadCM3 developed by the Hadley Centre for Climate Predic-

tion and Research/Met Office (UK) and MPEH5 (ECHAM5)

developed by the Max Planck Institute for Meteorology
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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(Germany). These GCMs were selected because: (1) they are

two of the major models used in the IPCC Fourth Assessment

Report; (2) HADCM3 simulates climate variables better than

other GCMs (Stott et al. ; Reichler & Kim ); and

(3) MPEH5 (ECHAM5) was also selected because for WA, it

produces temperature and rainfall results that lie approxi-

mately in the middle of the band of projections produced

from the ensemble of 19 global circulation models (Roeckner

et al. ; Sood et al. ). These two GCMs have been used

for climate change studies in Africa, WA and the Volta River

basin (Andah et al. ; Ruelland et al. ; Sood et al. ).

HADCM3 and MPEH5 (ECHAM5) GCMs have spatial

resolutions of 3.75� longitude × 2.5� latitude (417 km ×

228 km) and 1.90� longitude × 1.90� latitude (211 km ×

173 km), respectively. The spatial resolutions of these two

GCMs are too coarse to assess the regional effects of climate

change (Snell et al. ). This necessitated the downscaling

of the two GCM outputs through the use of the stochastic

downscaling model, Long Ashton Research Station Weather

Generator (LARS-WG) (Semenov & Barrow ). In LARS-

WG, the historical observed daily precipitation data for a

weather station for each month are analysed using a first-

order Markov chain to obtain statistical characteristics,

such as the number of dry days and wet days as well as the

mean and distribution of the daily precipitation for each

month of the year. The minimum and maximum tempera-

tures and solar radiation are modelled using different semi-

empirical distributions. Temperature is assumed to have a

normal distribution, with the mean and standard deviation

varying daily according to a finite Fourier series. For minimum

and maximum temperatures, time series auto-correlations are

assumed to be constant throughout the year for a particular

site while for solar radiation, semi-empirical distributions

with equal interval sizes are used (Semenov & Barrow

). LARS-WG was selected for downscaling because it is

freely available, easy to use, computationally inexpensive

and allows for incorporation of variability into scenarios

(Kankam-Yeboah et al. ). The process of GCM downscal-

ing using LARS-WG can be divided into three distinct steps,

namely, bias correction (site analysis), model validation (Q

test) and generation of synthetic weather data (generator).

The bias correction (site analysis) step involves the analyses

of observed weather data to determine their statistical charac-

teristics and storage of this information in two files: (1) a
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parameter file which contains the parameters required by

LARS-WG to generate synthetic weather time-series and (2)

a statistics file containing the seasonal frequency distributions

for wet and dry series length and for hot and cold spells,

which is used in the model validation (Q test) process.

Once LARS-WG has been bias corrected using observed

station data, the next step in the process is model validation

(Q test), i.e., to determine how well the model performs so

as to assess the ability of LARS-WG to simulate the climate

at the chosen station. This is done using the generator

option to synthesize daily weather data based on the infor-

mation in the station parameter files obtained during the

site analysis step and then undertake comparisons between

the observed and synthetic data based on t-test, F-test and

chi-square goodness of fit test. Each test produces a p-value

that measures the probability that both data come from the

same distribution. Once LARS-WG has been calibrated

using observed weather data for a station (site analysis) and

the performance of the weather generator has been verified

(Q test), synthetic weather data which have the same statisti-

cal characteristics as the observed weather data, or synthetic

weather data corresponding to a scenario of CC are generated

using the generator option. For a detailed description of

GCM downscaling by LARS-WG, reference can be made to

Semenov & Barrow ().

CFSR daily climate data (1979–2008) at a station within a

sub-basin were used for bias correcting the LARS-WGmodel.

The model was then validated by generating weather data of

the same time span (baseline data) and comparing its
Figure 3 | Sensitivity analysis results.
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statistical characteristics with the CFSR data. The GCM pro-

jected difference in the average monthly precipitation and

temperature between the 2020s (2011–2030) and 2050s

(2046–2065) and the baseline (1979–2008) periods were com-

puted. These average monthly climate changes were then

added to the generated baseline weather data for a station

to represent future climate conditions. LARS-WG is a

station-specific tool and hence these downscaling processes

were done for each of the climate stations in the basin.

Projected future changes in streamflow

The calibrated SWATmodel was forced to simulate flowswith

the generatedmeteorological variables over the future periods

and in the baseline period. The simulated streamflows

corresponding to nine climate modelling chains derived

from the MPEH5 and HADCM3 for the A1B and B1 scen-

arios and future periods of 2020s and 2050s were compared

to the simulated baseline streamflow and their differences

were computed to represent future changes in streamflow.
RESULTS AND DISCUSSION

Sensitivity analysis

The results of the sensitivity analysis for the White Volta

basin are presented in Figure 3. The y-axis represents the

relative sensitivity (the average change in flow resulting
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from changes in each model parameter), and the numbers in

brackets represent the sensitivity ranking. Fourteen of the 21

parameters analysed were found to be more sensitive to the

output of SWAT in the basin.

The most sensitive input parameter for the White Volta

basin was the SCS runoff curve number (Cn2) followed by

the soil evaporative compensation factor (Esco) and

threshold water depth in the shallow aquifer for return

flow to occur (Gwqmn). The two most sensitive parameters,

i.e., Cn2 and Esco are in agreement with sensitivity analysis

results of previous studies by Awotwi et al. () and

Kankam-Yeboah et al. () in the White Volta basin. The

Cn2 determines the amount of precipitation that becomes

runoff and the amount that infiltrates, Esco is used for mod-

ifying the depth distribution to meet soil evaporative

demand and accounts mainly for the effect of capillary

action and Gwqmn is used for regulating return flow
Table 2 | Final parameter values of the 14 most sensitive parameters during calibration

Parameter Lower and upper bounds Fitted values

Cn2 ±25 13.200

Esco 0–1 0.423

Gwqmn ±1,000 510.530

Sol_Awc ±25 5.480

Rchrg_Dp 0–1 0.760

Sol_Z ±25 �0.002

Ch_K2 0–150 85.985

Epco 0–1 0.607

Blai 0–1 0.372

Gw_Revap ±0.036 �0.022

Surlag 0–10 0.634

Alpha_Bf 0–1 0.351

Gw_Delay ±10 4.100

Revapmn ±100 58.104

Table 3 | Model performance during calibration and validation periods

Period

Average obs. flow (m3/s) Stand

Obs. Sim. Obs.

Calibration (1987–1991) 314.6 286.0 506.

Validation (1992–1996) 269.9 247.0 445.

://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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(Neitsch et al. ). The 14 most sensitive model input par-

ameters determined from the sensitivity analysis were

optimised in the calibration.

Calibration and validation

The main aim of calibration was to adjust the input par-

ameters to obtain the best fit between the observed and

simulated streamflows. The 14 most sensitive parameters

optimized during calibration and their fitted values are sum-

marized in Table 2. The parameter ranges and final fitted

parameter values are in agreement with previous studies in

the WA sub-region and White Volta River basin (Schuol

et al. ; Kankam-Yeboah et al. ; Sood et al. ).

The simulated streamflow (Table 3) showed 9.10% and

8.60% underestimation for both the calibration and vali-

dation periods, respectively, compared to the average

observed monthly streamflow. The flow hydrographs

(Figure 4) also exhibited discrepancies in the peak timings.

Similar calibration issues were faced by Awotwi et al.

(), Kankam-Yeboah et al. (), Schuol & Abbaspour

(), Schuol et al. () and Sood et al. () when

they applied SWAT model to the basin. Some of the reasons

for this are: (a) the model was forced with CFSR data, which

might differ from the observed ones; (b) limitations in qual-

ity observed flow data, lack of management practices in

agricultural land-use information and non-inclusion of

dams, reservoirs and ponds in the model; (c) although the

model was set up using 2007 land use map, the model was

calibrated for 1987–1991, and there is a probability that

land cover has changed significantly between these periods

and this is likely to affect the calibration results; and (d)

underestimation of the streamflow might be as a result of

baseflow underestimation which could be due to more

than one aquifer contributing to baseflow in the basin, a situ-

ation which is not handled in SWAT 2009.
ard deviation (m3/s) Model performance

Sim. NSE R2 PBIAS

8 392.7 0.74 0.76 �11.0%

6 380.1 0.73 0.74 �8.6%



Figure 4 | Monthly discharge during (a) calibration and (b) validation.
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A comparison of the hydrographs (Figure 4) and model

performance (Table 3) shows that the performance

measures R2 and NSE were greater than 0.70 for both the

calibration and validation periods. PBIAS was within

±25%, i.e., �11.0% and �8.6% for calibration and vali-

dation periods, respectively.

These indicate good correlation between the monthly

observed and simulated streamflow which is a clear indi-

cation that the runoff in the basin is well reproduced by

the model.
Validation of the LARS-WG downscaling model

The performance of LARS-WG in simulating CFSR (rainfall,

minimum and maximum temperatures) (Figure 5) was

assessed using t-test, F-test and chi-square goodness-of-fit

test. Each test shows whether the two sets follow the same

distribution.

The average p values between CFSR and LARS-WG for

the three tests for simulated rainfall, minimum and maximum
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temperatures were 0.989, 1.000 and 0.998, respectively. This

shows satisfactory reproduction of the CFSR (rainfall, mini-

mum and maximum temperatures) indicating minimum

model biases and errors.
Climate projections

Projections of future changes in climate were determined

from outputs of two GCMs, HADCM3 and MPEH5

(ECHAM5), for two CC scenarios, A1B and B1, for two

future time periods, 2011–2030 representing the 2020s and

2046–2065 representing the 2050s. The future changes in cli-

mate (Tables 4 and 5) represent the difference between the

mean precipitation and temperature, respectively, in the

future and the baseline period (1979–2008) for the White

Volta basin. For this analysis, H represents HADCM3

GCM, M represents MPEH5 GCM and A1B and B1 rep-

resent the CC scenarios. For illustration, H2020A1B

represents climate conditions in the 2020s projected by the

HADCM3 GCM under the A1B scenario.



Table 4 | Annual and monthly mean temperature changes (%) under different modelling chains for the White Volta basin

Scenario

Month

Annual1 2 3 4 5 6 7 8 9 10 11 12

H2020A1B 2.81 2.47 1.97 1.57 1.44 1.53 1.36 0.94 1.45 2.2 2.97 3.30 2.00

M2020A1B 2.30 2.20 1.97 1.86 2.00 2.03 1.67 1.26 1.22 1.55 2.00 2.31 1.86

H2020B1 2.40 2.10 1.97 1.92 1.80 1.78 1.33 1.33 1.25 1.28 1.93 2.70 1.82

M2020B1 2.08 2.30 2.06 1.83 1.65 1.60 1.30 1.23 1.06 1.15 1.29 1.59 1.60

H2050A1B 8.49 6.73 5.54 5.11 5.34 5.89 5.62 4.76 5.18 6.58 8.62 9.90 6.48

M2050A1B 6.59 6.33 5.98 5.90 6.07 5.95 5.35 4.52 4.23 5.10 6.44 6.98 5.79

H2050B1 6.63 5.18 4.28 4.18 4.48 4.41 3.78 3.71 3.99 4.77 6.36 7.67 4.95

M2050B1 6.12 5.92 5.39 4.88 4.78 4.73 4.53 4.24 3.90 4.31 5.18 5.84 4.98

Figure 5 | Comparison of CFSR and LARS-WG simulated rainfall and temperature for the period of 1979–2008.

Table 5 | Annual and monthly precipitation changes (%) under different modelling chains for the White Volta basin

Scenario

Month

Annual change1 2 3 4 5 6 7 8 9 10 11 12

H2020A1B 0.00 0.0 0.94 �0.30 �1.24 4.90 13.64 �2.92 1.30 �1.50 0.00 0.00 2.97

M2020A1B 0.00 1.96 2.50 �0.20 �2.31 �3.79 �3.56 0.68 0.98 �0.50 �0.63 0.00 �1.13

H2020B1 0.00 0.00 0.31 0.30 0.39 1.32 8.31 6.73 5.41 1.06 �0.63 0.00 5.40

M2020B1 0.00 0.00 0.31 0.59 �0.39 �1.79 �0.31 �3.29 0.30 �1.50 �1.25 0.00 �1.43

H2050A1B 0.00 0.00 1.25 �0.69 �2.59 3.60 13.38 0.99 3.67 �0.50 0.00 0.00 4.36

M2050A1B 0.00 0.00 0.94 0.00 �3.71 �1.71 2.12 8.69 6.37 4.79 0.63 0.00 4.10

H2050B1 0.00 0.00 0.31 0.49 1.43 3.40 11.49 8.81 2.39 �3.39 �0.63 0.00 6.64

M2050B1 0.00 1.96 2.81 0.00 �1.92 �2.84 1.65 3.03 3.47 0.39 �1.25 0.00 1.52
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The analysis of temperature change (Table 4 and

Figure 6) shows an increase in the future. Annual average

temperature increase ranges from 1.60% to 2.00% in the

2020s and 4.98% to 6.48% for the 2050s. Increase in

temperature at monthly time step across the modelling

chains showed more uncertainty with ranges of 1.20%

to 2.50% in the 2020s and 4.30% to 7.60% in the 2050s.

Further analysis (Figure 6) revealed that the A1B scenario

projected higher temperatures than B1 in both the 2020s

and 2050s.

Under the same CC scenario, HADCM3 projected

higher temperatures than MPEH5 for both the A1B and

B1 scenarios in the 2020s but projected higher temperatures

than MPEH5 for the A1B scenario but slightly lower temp-

eratures than MPEH5 for B1 scenario in the 2050s. The

projected changes indicate that temperature will become

warmer in future.

The monthly and annual mean precipitation change

values are listed in Table 5. Higher uncertainty in precipi-

tation is projected for the 2050s than the 2020s. All

modelling chains (Figure 7) projected more precipitation

in the 2050s than in the 2020s, with an average increase

of 1.45% in the 2020s and 4.20% in the 2050s. Concerning
Figure 6 | Annual temperature change in (a) the 2020s and (b) the 2050s.
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the sign of change and amplitude at monthly time step,

there were different trends. In general, MPEH5 projected

relatively lower monthly precipitation change, while

HADCM3 projected a higher change in precipitation pat-

terns. Precipitation changes at monthly and annual time

steps showed more uncertainties in the 2020s than in the

2050s. Monthly precipitation uncertainties were �0.89% to

4.52% in the 2020s and �0.63% to 1.21% in the 2050s.

For annual, they were �1.43% to 5.4% for the 2020s and

1.52% to 4.36% for the 2050s. HADCM3 projected annual

precipitation increases in both the 2020s and 2050s while

MPEH5 projected a decrease in the 2020s but an increase

in the 2050s. Under the same CC scenario, HADCM3 pro-

jected a higher annual precipitation increase than MPEH5

in both the 2020s and 2050s. Further analysis revealed

that B1 scenario projected higher annual precipitation

uncertainty than A1B in both the 2020s and 2050s across

the modelling chains.

In the 2020s, the projected precipitation changes

ranged from 1.20% to 2.50% in the wet season (April to

October) and from �0.17% to 1.50% in the dry season

(November to March). In the 2050s, the projected precipi-

tation changes ranged from 4.30% to 7.60% in the wet



Figure 7 | Average annual precipitation change in (a) the 2020s and (b) the 2050s.
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season and from 0.00% to 1.51% in the dry season. Further

analysis revealed that HADCM3 B1 scenario projected no

change in future dry season precipitation while MPEH5

B1 scenario projected a decrease in the 2020s and an

increase in the 2050s. Overall, the projected seasonal

precipitation changes were not so dramatic (within

�0.20% to 7.00%).

All modelling chains project the effective rainfall in the

White Volta basin to start later in the year (i.e., May rather

than April) and the peak of rainfall to shift from September

to August. Thus, the rainfall season would be effectively

shortened. This might have a significant impact on agricul-

ture. This finding is in agreement with previous studies

(Van de Giesen et al. ; Sood et al. ).

In the 2020s, average annual projection for B1 scenario

is 2.00% compared to 0.92% for A1B while in the 2050s,

projection for B1 scenario is 4.08% compared to 4.23% for

A1B. Unlike temperature changes, precipitation changes

show much uncertainty under different GCMs and different

CC scenarios.

These uncertainties might be due to: first, climate model

and emission scenario uncertainties. Uncertainties in CC
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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projections increase with length of time horizon. According

to Jenkins & Lowe (), in the near future (the 2020s), cli-

mate model uncertainties play the most important role;

while over longer time horizons, uncertainties due to selec-

tion of emissions scenario become increasingly significant;

second, the complexity of the monsoonal system of WA is

most likely due to the lack of the influence of land-surface

changes in the climate simulations (Jung ).

Streamflow response to climate change

Annual streamflow change

Figure 8 shows the effect of possible future climate change

on annual streamflow.

Flow projections differ across modelling chains in mag-

nitude and sign in the 2020s. While HADCM3 projected an

increase, MPEH5 projected a slight decrease. However,

there is a consensus that average streamflow will increase

by the mid-21st century. Annual streamflow change is pro-

jected to range between �4.00% to þ13.00% in the 2020s

and þ3% to þ16% in the 2050s. All modelling chains project



Figure 8 | Average annual streamflow change in (a) the 2020s and (b) the 2050s.
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higher annual average streamflows in the 2050s than in the

2020s.

Further analysis of future runoff changes in the northern

sub-basins (1, 2, 3, 4, 5, 6, 7 and 8) and southern sub-basins

(9, 10, 11, 12, 13 and 14) (Figure 9 and Table 6) show simi-

lar trends as that of annual streamflow changes for the

entire basin. The projections differ across modelling

chains in magnitude and sign in the 2020s with

HADCM3 projecting an increase in both parts of the

basin while MPEH5 projected a decrease. However, both

GCMs agree on an increase by mid-21st century. Annual

average runoff changes are projected to be more in the

southern compared to northern parts of the basin in the

2020s. In the 2050s, the A1B scenario projects higher

changes in southern than northern parts of the basin;

HADCM3 B1 scenario projects higher changes for

southern than northern while the reverse is projected by

MPEH5 B1 scenario. Runoff changes in northern parts of

the basin are projected to range between �2.20% to

þ11.50% and þ4.10% to 8.70%, while those in the

southern parts are �5.70% to þ10.30% and þ3.70% to

16.20% in the 2020s and 2050s, respectively. The projected
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decrease in runoff by MPEH5 in the 2020s in both parts of

the basin might have dire consequences, especially in the

semi-arid north which already has water scarcity.

Monthly streamflow change

Figure 10 shows monthly streamflow volume changes for

the different climate conditions. Monthly streamflow

changes show much higher uncertainties compared to the

annual ones, with monthly average uncertainties of

�12.50% to þ31.49% in the 2020s and �12.50% to

þ29.79% in the 2050s compared to annual changes of

�2.21% to þ12.97% in the 2020s and þ3.71% to 15.90%

in the 2050s.

In the 2020s and 2050s, January, February and Decem-

ber showed no average change while the projected

streamflow changes in March, April, May, June, July,

August, September, October and November ranged between

�13.00% to þ32.00% and �12.50% to þ30.00% in the

2020s and 2050s, respectively. Different modelling chains

projected differences in stream flow volumes. For example,

the H2050A1B projected a þ8.12% increase in streamflow



Figure 9 | Projected spatial average annual runoff distribution (mm) across modelling chains.
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in June while the M2050B1 projected a �6.96% decrease

and H2050B1 projected a �4.89% decrease in streamflow

in October while the M2050A1B projected a þ10.18%

increase. A shift in monthly maximum streamflow from Sep-

tember to August is projected by all the modelling chains,

while the driest months (December, January and February)

will show no change in future. From the results of this analy-

sis, it is evident that projected future monthly streamflow

changes for most months would be within �13.00% to

þ32.00%.
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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Seasonal streamflow change

Figure 11 shows the seasonal streamflow change resulting

from the modelling chains. In general, the projected

streamflow changes for the two seasons exhibit different

trends. In the 2020s, the projected streamflow changes

ranged from �3.52% to þ13.06% in wet season and from

�1.74% to þ1.82% in the dry season. In the 2050s, projected

streamflow changes ranged from þ3.73% to 16.00% in wet

season and from 0.00% to 2.00% in the dry season.



Table 6 | Projected average changes (%) in annual runoff in northern and southern

catchments

Modelling chain
Northern Δ Annual
runoff (%)

Southern Δ Annual
runoff (%)

H2020A1B 2.67 10.23

M2020A1B �1.46 �3.52

H2020B1 11.49 16.82

M2020B1 �2.21 �5.77

H2050A1B 5.00 15.18

M2050A1B 8.63 13.94

H2050B1 14.58 19.61

M2050B1 4.12 3.72
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HADCM3 B1 modelling chain projects no change in dry

season streamflow volume. The magnitude and sign of the

seasonal streamflow changes show significant uncertainties

among different modelling chains. With the exception of

the M2020A1B and M2020B1 modelling chains, the magni-

tude and sign of change in streamflow volume in the wet

season are higher compared to that of the dry season. This

might be due to the projected higher rainfall in the wet

season than the dry season.
Figure 10 | Monthly streamflow volume change in (a) the 2020s and (b) the 2050s.
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Dry season streamflow shows higher changes for A1B

compared to B1 scenario for all modelling chains while

wet season streamflow shows higher changes for B1 than

A1B in the 2020s. In the 2050s, H2050B1 projects higher

wet season streamflow changes than H2050A1B while a

higher change is projected by M2050A1B compared to

M2050B1. In the 2020s, the average dry season streamflow

change for A1B is 1.68% compared to �0.87% for B1

while for wet season, it is 1.49% for A1B compared to

4.77% for B1. In the 2050s, dry season changes are 4.55%

for A1B compared to 1.00% for B1; for wet season, it is

9.15% for A1B compared to 9.87% for B1. It is also noted

that while dry season streamflow volume decreases in

M2020B1, it increases in M2050B1. Overall, the projected

seasonal streamflow changes were not so dramatic (within

�4.00% to þ17.00%).
Comparison of study results with previous studies

The results of this study and similar previous studies carried

out in the Volta and White Volta basins are shown in

Table 7.



Figure 11 | Seasonal streamflow change in (a) the 2020s and (b) the 2050s.

Table 7 | Results of this study and previous studies

Source River
Target
period

Hydrologic
model

Climate
model Scenario

Δ Annual
rainfall (%)

Δ Annual
streamflow (%)

Study White Volta 2011–2030 SWAT HADCM3 A1B 3.0 5.2

Study White Volta 2011–2030 SWAT HADCM3 B1 5.4 13.0

Study White Volta 2046–2065 SWAT HADCM3 A1B 4.4 8.4

Study White Volta 2046–2065 SWAT HADCM3 B1 6.6 15.9

Study White Volta 2011–2030 SWAT MPEH5 A1B �1.1 �2.2

Study White Volta 2011–2030 SWAT MPEH5 B1 �1.4 �3.6

Study White Volta 2046–2065 SWAT MPEH5 A1B 4.1 10.3

Study White Volta 2046–2065 SWAT MPEH5 B1 1.5 3.7

Andah et al. () Volta 2020–2039 WEAP HADCM3 A2 8.0 27.0

Andah et al. () Volta 2020–2039 WEAP HADCM3 B2 10.0 34.0

Andah et al. () Volta 2070–2099 WEAP HADCM3 A2 6.0 13.0

Andah et al. () Volta 2070–2099 WEAP HADCM3 B2 9.0 34.0

Obuobie () White Volta 2030–2039 SWAT ECHAM4-MM5 IS92a 6.0 33.0

Jung () Volta 2030–2039 WaSIM ECHAM4-MM5 IS92a 5.0 17.0

Jung () White Volta 2030–2039 WaSIM ECHAM4-MM5 IS92a 5.0 22.3

Kankam-Yeboah et al. () White Volta 2006–2035 SWAT ECHAM4-CSIRO A1F1 �12.3 �22.0

Kankam-Yeboah et al. () White Volta 2036–2075 SWAT ECHAM4-CSIRO A1F1 �19.6 �50.0

Awotwi et al. () White Volta 2030–2043 SWAT REMO A1B 8.0 26.0
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The increase in the future simulated annual stream-

flow, as projected by H2020A1B, H2020B1, H2050A1B,

H2050B1, M2050A1B and M2050B1 modelling chains in

this study for the White Volta basin, depicts similar

trends as that obtained for the entire Volta basin in the

ADAPT project (Andah et al. ). The results of the

ADAPT project show an increase in the streamflow for

all the future CC scenarios. The A2 and B2 scenarios of

the time slice 2020–2039 are of particular interest because

of the similarity they have with this study by way of their

time slice for 2011–2030 (2020s) and the magnitude of

increase in the future streamflows. The ADAPT projected

increases in the mean annual streamflow for the A2 and

B2 scenarios, respectively, for 2020–2039 is much higher

compared to this study.

Another study of interest for comparison purposes is the

CC impact studies done by Jung () in the Volta and

White Volta basins. The results of the H2020A1B,

H2020B1 modelling chains in this study are similar to

those obtained by Jung () for Volta and White Volta

basins. Both results show increases in streamflow in the

near future, i.e., 2011–2030 (study) and 2030–2039 (Jung

), respectively. However, the projections by Jung

() are much higher compared to this study.

Similarly, the projected annual increases in stream-

flow by the H2020A1B and H2020B1 modelling chains

in this study are similar to those obtained by Awotwi

et al. () for the White Volta basin. Projected increase

in the mean annual streamflow by Awotwi et al. () for

2030–2043 is also much higher compared to 2011–2030 of

this study.

The projected annual decreases in streamflow by the

M2020A1B and M2020B1 modelling chains in this study

agree with those of Kankam-Yeboah et al. () for the

White Volta basin. However, projected decrease in the

mean annual streamflow by Kankam-Yeboah et al. ()

for 2006–2035 (2020s) is also much higher compared to the

2020s in this study. Although Kankam-Yeboah et al. ()

projected decrease in rainfall and consequently decrease in

the streamflow in the White Volta basin in 2036–2075

(2050s), our results projected increase in rainfall and surface

runoff in the 2050s for all the different modelling chains.

Possible reasons for the deviations in this study results

compared with previous studies with regards to the
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magnitude and sign of change of the future annual stream-

flow projections could be due to differences in: (i) the way

the future climate series were processed before being used,

(ii) hydrological models used, (iii) GCMs used, (iv) emission

scenarios used and (v) model calibration periods used.

Policy implications for water storage and water

resources management

The model results project greater climate variability, such

as delayed onset of rainfall, shortening of the rainy

season, higher temperatures (resulting in increased poten-

tial evapotranspiration). These will make farming systems

in the basin more highly vulnerable to CC. Famers in the

basin have already adopted a wide range of CC adaptation

techniques to increase crop yield (Van de Giesen et al.

). To add to these, agricultural policy strategies must

shift towards those which will enable farmers to better uti-

lize the rains in a growing period; such as the planting of

rapidly maturing crops, planting crops adapted to the

new climate patterns, synchronizing farming calendars to

the new rainfall regime and developing new drought and

heat-resistant varieties.

Based on the model results, there are uncertainties over

the sign of the variation of both precipitation and stream-

flow in the basin in the 2020s. While HADCM3 projected

an increase in runoff in both the northern and southern

parts of the basin, MPEH5 projected a decrease. The pro-

jected decrease in runoff by MPEH5 in the 2020s might

have dire consequences, especially for the semi-arid north

which already has water scarcity. To reduce the negative

effects of the decreasing water availability, water use effi-

ciency and environmental integrity must be adopted for

effective management of water resources in both parts of

the basin. Efficient utilization of water will go a long way

to reducing demands from the three main water sectors:

domestic supply, agriculture and industry. This is a cost-

effective way of adapting to the decreasing water resources

projected for the future in both basins (Kankam-Yeboah

et al. ). Awareness of the need to maintain environ-

mental integrity and the creation of buffer zones for

headwaters, wetlands and river bodies would minimize the

pollution and degradation of the basin’s water resources

due to anthropogenic factors (Kankam-Yeboah et al. ).
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The consensus that average streamflow in the White

Volta basin will increase by mid-21st century among all

modelling chains will call for appropriate investment in

adaptive water management practices that are cost-effective

(e.g., small reservoirs) for harvesting runoff water. Water

stored in small reservoirs can serve multiple uses (e.g., irriga-

tion, livestock watering and aquaculture). The use of small

reservoirs for harvesting runoff is already being practised

in the White Volta basin. In the entire Volta basin, there

has been an increase in small reservoirs between 1984 and

1999 (Van de Giesen et al. ). This increase has halted

in Ghana although a couple are undergoing rehabilitation.

In Burkina Faso, the construction continues and, currently,

the number of small reservoirs is estimated at 2,000 (Van

de Giesen et al. ). Unfortunately, the reservoirs are

designed without considering CC. The designs can be

improved with CC considerations. Both Ghana and Burkina

Faso have plans to develop large reservoirs purposely for

irrigation and hydropower. It would therefore be necessary

to increase the storage capacity of both planned and existing

reservoirs (e.g., the Bagre Reservoir which is vital for hydro-

power and irrigation in Burkina Faso) to store more water in

wet years to partly offset the difficulties associated with dry

years.

A study by Obuobie () in the White Volta basin

reveals that annual recharge to the groundwater in the

basin is about 7% of annual rainfall. This figure is expected

to increase by about 33% in future as a result of CC. Geophy-

sical surveys and physico-chemical parameter tests of

shallow groundwater by Barry et al. () in the Atankwidi

catchment in the White Volta basin reveal higher

annual aquifer water storage of approximately 3.7 × 108m3,

which is more than annual irrigation water demand of

8.9 × 104 m3, and suitability of the water for both water

supply and irrigation. The high value of RCHRG_DP

(deep aquifer percolation fraction, i.e., the fraction of perco-

lation from the root zone that recharges the deep aquifer),

up to 0.8 in the basin, indicates the potential for harnessing

water stored in the deep aquifer. Irrigation using ground-

water from both shallow and deep wells could be

developed and linked with energy policies, given the impor-

tance of energy in sustainable groundwater development.

Therefore, in light of changing climate, there is the need

to develop integrated water resource management strategies
://iwaponline.com/jwcc/article-pdf/10/4/907/640623/jwc0100907.pdf
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that consider water storage as a system comprising a range

of storage options (Sood et al. ). CC adaptation mechan-

isms must be incorporated into feasibility studies and

projects, and within the broader development context for

the basin (Kankam-Yeboah et al. ). Any development

within the basin should take into consideration the likely

impact of CC on the future hydrology of the basin and

make the necessary provisions in planning, design and

budgeting.
CONCLUSIONS AND RECOMMENDATIONS

For this study, a high resolution (0.3� ∼ 3 km) Climate Fore-

cast System Reanalysis (CFSR), hydrologic model (SWAT)

and two IPCC climate change (CC) scenarios (A1B and

B1) combined with two global climate models (HADCM3

and MPEH5) downscaled using LARS-WG were used to

evaluate the impact of CC on streamflow in the data-

scarce White Volta River basin of WA.

The model results project greater climate variability,

such as later onset of rainfall, shortening of the rainy

season and higher temperatures. These will make farming

systems in the basin more highly vulnerable to CC.

There was uncertainty over the sign of the variation of

both precipitation and streamflow in the basin in the

2020s. While HADCM3 projected an increase in runoff in

both the northern and southern parts of the basin,

MPEH5 projected a decrease. The projected decrease in

runoff by MPEH5 in the 2020s might have dire conse-

quences, especially for the semi-arid north which already

has water scarcity.

There was, however, consensus among all climate mod-

elling chains that the White Volta River basin will likely

experience an increase in streamflow by mid-21st century.

It would call for appropriate investment into cost-effective

adaptive water management practices (e.g., runoff water har-

vesting through small reservoirs) to store more water in wet

years to partly offset the difficulties associated with dry

years. Agricultural policy strategies must also shift towards

those which will enable farmers to better utilize the rains

in a growing period. It is also suggested that any develop-

ment within the basin should take into consideration the

likely impact of climate change on the future hydrology of
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the basin and make the necessary provisions in planning,

design and budgeting.

While the results of this study are important regarding

CC impacts on streamflow, which can serve as crucial

input for CC adaptation mechanisms in the White Volta

basin, there were three key uncertainties related to it: (a)

input data (e.g., climate and discharge data); (b) hydrologic

model; and (c) climate model and scenarios. It is therefore

recommended that: (a) a more extensive study that involves

the use of multiple hydrological models, climate change

scenarios and climate models is planned for the near

future; (b) more climate and gauging stations be established

by the Volta Basin River Authority (VBRA); and (c) proper

training of personnel in the measurement, recording and sto-

rage of data. These will go a long way to improve the quality

of ground observations. In light of changing climate, it is

also recommended that water resource management in the

basin must be done in an integrated way that considers

water storage as a system comprising a range of storage

options; this will ensure water security within the basin.
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