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ABSTRACT:  

 

Deep learning-based semantic segmentation models for building delineation face the challenge of producing precise and regular 

building outlines. Recently, a building delineation method based on frame field learning was proposed by Girard et al., (2020) to extract 

regular building footprints as vector polygons directly from aerial RGB images. A fully convolution network (FCN) is trained to learn 

simultaneously the building mask, contours, and frame field followed by a polygonization method. With the direction information of 

the building contours stored in the frame field, the polygonization algorithm produces regular outlines accurately detecting edges and 

corners. This paper investigated the contribution of elevation data from the normalized digital surface model (nDSM) to extract accurate 

and regular building polygons. The 3D information provided by the nDSM overcomes the aerial images’ limitations and contributes to 

distinguishing the buildings from the background more accurately. Experiments conducted in Enschede, the Netherlands, demonstrate 

that the nDSM improves building outlines’ accuracy, resulting in better-aligned building polygons and prevents false positives. The 

investigated deep learning approach (fusing RGB + nDSM) results in a mean intersection over union (IOU) of 0.70 in the urban area. 

The baseline method (using RGB only) results in an IOU of 0.58 in the same area. A qualitative analysis of the results shows that the 

investigated model predicts more precise and regular polygons for large and complex structures. 

 

 

1. INTRODUCTION 

 

Building extraction has been active for decades due to the 

availability of a large amount of very high-resolution remote 

sensing data and the need for detailed information of small-scale 

objects in multiple applications. Precisely extracting the building 

boundaries is of utmost importance for producing cadastral and 

topographic maps and applications in urban planning and 

management. With the rise of deep learning, deep convolutional 

neural networks (CNNs) based models became the dominant 

approach in building extraction. CNNs have outperformed 

traditional methods based on spectral and geometric features. 

However, accurately extracting buildings is still challenging for 

several reasons: (i) Buildings have various sizes, geometrical 

complexity, and spectral responses across the bands. (ii) Trees or 

their shadows often obscure them. (iii) The high intra-class and 

low inter-class variation of building objects in high-resolution 

remotely sensed images make it hard to extract the buildings’ 

spectral and geometrical features (Huang, Zhang, Xin, Sun, & 

Zhang, 2019).  

 

Automatically delineating regularized building boundaries as 

polygons is a promising direction. Most deep learning techniques 

focus on producing the binary segmentation map by the neural 

network. However, applications based on geographic 

information systems (GIS) require a vector representation of 

polygon objects. Raster maps demand complicated and 

expensive post-processing to obtain polygons (Girard et al., 

2020). PolyMapper, proposed by Li et al. (2019), is an end-to-
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end deep learning architecture that can automatically delineate 

small buildings’ boundaries. Zhao, Persello, & Stein (2021) 

upgrade the feature extractor and extraction module of 

Polymapper and improve its performance. To differentiate 

buildings from their complex background in Very High 

Resolution (VHR) remotely sensed images, a boundary 

refinement block (BRB) is introduced to amplify the distinction 

of features. However, such a method’s performance decreases 

significantly with large buildings, resulting in less accurate 

outlines than Mask R-CNN (Li et al., 2019). Moreover, it cannot 

deal with polygons with holes. To better regularize the complex 

building, such as buildings with holes, Girard et al. (2020) trained 

an FCN to learn the interior map, edge map, and a frame field 

aligned with the building outline tangents. Then the frame field 

and interior map are used in their polygonization algorithm to 

produce regular and accurate building polygons.  

 

Due to the limitations of optical sensors and the availability of 

multimodal data, the use of data fusion to improve building 

extraction accuracy has been an important research field for 

many years. LiDAR sensors have a different imaging mechanism 

that makes them able to penetrate the clouds and sparse 

vegetation. Hence, elevation models derived from LiDAR data 

can significantly alleviate the performance degradation in 

building delineation caused by the lack of height information in 

optical images (Hong et al., 2020). Digital Surface Model (DSM) 

and nDSM are popular options to provide 3D information in data 

fusion. Different combinations of fusion data and network 

architectures have been proposed to extract the building 

footprint. 
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Figure 1. The workflow of the investigated frame-field method for building delineation fusing nDSM and RGB data. Adapted from 

Girard et al., (2020). 

 

Bittner et al., (2018) proposed a Fused-FCN4s network that used  

three branches to take the RGB, nDSM, and panchromatic (PAN) 

channels as input for each branch separately. Hong et al., (2020) 

tested different fusion modules and found that compactness-

based fusion networks (including encoder-decoder fusion 

strategy and a newly proposed cross fusion) present a 

performance superior to others in blending multimodal features. 

 

State-of-the-art methods (Girard et al., 2020; Li et al., 2019) only 

take RGB imagery as input. The fusion of aerial images and 

nDSM could provide more information and help overcome 

problems in building extraction like low contrast with its 

neighbour and obscurity caused by shadows. We follow this 

research line by introducing nDSM and RGB data fusion to the 

framework to improve building outline accuracy. The three main 

contributions of this study are: 

 

1) We introduce the nDSM into the model, use the fusion of VHR 

images and 3D information to optimize information extraction in 

building segmentation. 

2) We experimentally investigate our approach on a new data set 

acquired in the city of Enschede, the Netherlands.  

3) We evaluated the performance of the considered methods 

adopting different metrics assessed at pixel, object and polygon 

level. 

 

2. METHODOLOGY 

2.1 Overview 

Girard et al. (2020) proposed a framework based on an FCN to 

perform multi-task learning for pixel-wise segmentation. In 

particular, a frame field aligned with the object tangents is 

learned at every pixel of the image and used by the 

polygonization algorithm to create regular polygons aligned to 

the reference data, especially for the complex buildings with a 

slanted wall. A frame field consists of two pairs of vectors, each 

pair with 𝜋 symmetry (Vaxman et al., 2016). Figure 1 shows the 

investigated framework, including two main parts. The first part 

is the U-Net, which takes RGB images and nDSM data as input 

for multi-task learning. The second part is the polygonization 

algorithm, which takes the segmentation and frame field 

produced by FCN to generate the polygons. With the height 

information provided by the nDSM, the segmentation and frame 

field generated by the network are improved. In the 

polygonization algorithm, the segmentation is vectorized and 

simplified into polygons using the direction information from the 

frame field. Therefore, the predicted footprint in the polygon is 

also improved. 

 

2.2 Frame field learning 

Unlike the original framework, we use ResNet-101 as the 

encoder instead of U-Net16. As the network layer becomes 

deeper, the performance usually starts to decrease. He et al. 

(2016) proposed the residual networks with the identity shortcuts 

to address the degradation problems. These shortcuts skip one or 

more layers to performs identical mapping and add their output 

to the stacked layers.  

 

The first layer of the network is extended to support taking input 

images with four channels. Then the output features of the 

backbone are fed into two branches with a shallow structure. The 

specific structure is shown in Figure 2. The edge mask and 

interior mask are produced by one network as two channels of an 

image. The frame field is produced by another network as an 

image of four channels. 

 

Figure 2. The two branches to produce segmentation and frame 

field.  

The model was trained in a supervised way. The polygons in 

reference footprints are rasterized in the pre-processing part of 

the algorithm to generate reference edge mask and interior mask. 
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For the frame field, the reference is an angle calculated from the 

segments of the footprints. These related tasks help the model to 

focus on the important and representative feature extracted from 

the input data. The combined loss functions constrain these tasks 

to make them consistent with each other. 

 

The interior map and frame field are then input to the 

polygonization method. First, an initial contour is extracted from 

the interior map by marching squares (Lorensen & Cline, 1987). 

Then they are optimized by an active contours model 

(ACM)(Kass & Witkin, 1988) to make them more aligned to the 

frame field. Before simplification, corners are found with the 

direction information of the frame field. Then contours are split 

at corners into edges. Edges are simplified to reduce the number 

of vertices and produce a regular shape. In this phase, all the 

vertices within the tolerance distance, controlled by the tolerance 

parameter, are removed from the original edges. 

 

2.3 Loss Function 

The total loss function combines multiple loss functions for the 

different learning tasks: 1) segmentation, 2) frame field, and 3) 

coupling losses. H and W is the height and width of input image, 

respectively. The segmentation loss consists of a cross-entropy 

function for edge mask and interior mask, given by the equation 

below. 

 

𝐿𝐵𝐶𝐸(𝑦̂, 𝑦) =
1

𝐻𝑊
∑ 𝑦̂(𝑥) ⋅ log(𝑦(𝑥)) + (1 − 𝑦̂(𝑥))

𝑥∈𝐼

⋅ 𝑙𝑜𝑔(1 − 𝑦(𝑥)) (1) 

  

where 𝐿𝐵𝐶𝐸 is the cross-entropy loss applied to the interior and 

the edge outputs of the model, respectively. The frame field is an 

essential element in the polygonization algorithm. The output 

frame field contains four channels, each two for the two complex 

coefficients 𝐶0 , 𝐶2 ∈ ∁ . They define an equivalence class 

corresponding to a frame field. The reference is an angle 𝜃𝜏 ∈
[0, 𝜋), it is the tangent vector of the building contour.  

  

𝐿𝑎𝑙𝑖𝑔𝑛 =  
1

𝐻𝑊
∑ 𝑦̂𝑒𝑑𝑔𝑒(𝑥)𝑓 (ⅇ𝑖𝜃𝜏; 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (2) 

 𝐿𝑎𝑙𝑖𝑔𝑛90 =  
1

𝐻𝑊
∑ 𝑦̂𝑒𝑑𝑔𝑒(𝑥)𝑓 (ⅇ𝑖𝜃𝜏⊥; 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (3) 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝐻𝑊
∑(‖∇𝐶0(𝑥)‖2 + ‖∇𝐶2(𝑥)‖2

𝑥∈𝐼

) (4) 

Where 𝜃𝜏  is the direction of vector 𝜏 , and 𝜏⊥ = 𝜏 −
𝜋

2
 .The 

𝐿𝑎𝑙𝑖𝑔𝑛 makes the frame field more aligned with the tangent of the 

line segment of polygons. 𝐿𝑎𝑙𝑖𝑔𝑛90 prevents the frame field from 

collapsing into a line field. 𝐿𝑠𝑚𝑜𝑜𝑡ℎ  produces a smooth frame 

field. Because these outputs are closely related and represent 

different information of the building footprints, there are the 

following functions to make them compatible with each other. 

  

𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛 =  
1

𝐻𝑊
∑ 𝑓(∇𝑦𝑖𝑛𝑡(𝑥); 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (5) 

                                                                 
1  Kadaster (The Netherlands' Cadastre, Land Registry and 

Mapping Agency) 
2 PDOK (the Public Services On the Map), https://www.pdok.nl/ 

 𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛 =
1

𝐻𝑊
∑ 𝑓 (∇𝑦𝑒𝑑𝑔𝑒(𝑥); 𝐶0(𝑥), 𝐶2(𝑥))

2

𝑥∈𝐼

 (6) 

𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 =
1

𝐻𝑊
∑ 𝑚𝑎𝑥(1 − 𝑦𝑖𝑛𝑡(𝑥), ‖∇𝑦𝑖𝑛𝑡(𝑥)‖2)𝑥∈𝐼 ⋅

|‖∇𝑦𝑖𝑛𝑡(𝑥)‖2 − 𝑦𝑒𝑑𝑔𝑒(𝑥)|  
(7) 

Where  𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛  and 𝐿𝑒𝑑𝑔𝑒 𝑎𝑙𝑖𝑔𝑛  constrain interior mask 𝑦𝑖𝑛𝑡 

and edge mask 𝑦𝑒𝑑𝑔𝑒 aligned with the frame field. The 𝐿𝑖𝑛𝑡 𝑒𝑑𝑔𝑒 

is to make the interior and edge mask compatible with each other. 

 

3. EXPERIMENTAL RESULTS 

3.1 Datasets and Evaluation Metrics 

3.1.1 Datasets 

We performed experiments in the municipality of Enschede, the 

Netherland. The dataset contains three parts. 1) A VHR true-

ortho aerial image with 0.25 m spatial resolution provided by 

Kadaster1. The image of the study area is part of the nationwide 

summer flight. A Web Map Service (WMS) of this dataset is 

publicly available on PDOK2 , a portal website hosting open 

datasets from the government with current geo-information. 2) 

An nDSM obtained by subtracting the digital terrain model 

(DTM) from the DSM, then resampled to 0.25 m. The DTM and 

DSM with 0.5 m resolution are publicly available. The DTM has 

‘no-data’ values in built-up areas filled using the QGIS ‘fill 

nodata’ tool with a maximum distance of 1000 pixels. AHN3 is 

the digital elevation map for all of the Netherlands. AHN3 dataset 

is acquired in the 3rd acquisition period (2014-2019), and the 

DTM and DSM are derived from point cloud based on the 

Squared IDW method with 0.5 m resolution. The mean point 

density of AHN3 is 8-10 points/m2. The LiDAR point clouds and 

DSM are shown in Figure 3. 3) Building footprints are obtained 

using publicly available geodata combining small buildings from 

the BAG4 with larger ones from BRT5. The BAG is part of the 

government system of key registers. Municipalities are source 

holders of the BAG. The BRT is a collection of digital 

topographical data on different scales. Buildings from the 

TOP10NL product were used in this research, which is 

topographical data suitable for the scales 1:5000-1:25000. 

Example images and the corresponding label are shown in Figure 

4. The nDSM is stacked as a 4th channel on top of the RGB 

images, producing a composite image.  

 

We consider two datasets with different spatial extent. One 

comprises the entire study area. Another one only includes the 

urban area. The extent and distribution of tiles are shown in 

Figure 5. For each dataset, tiles are extracted from the aerial 

image (RGB) and composite image (RGB + nDSM) with the 

same location and size. The dataset details are shown in Table 1. 

 

Dataset 
Type 

Number of 

tiles 

Number of 

buildings 
Ratio 

Entire 

study 

area 

training 1107 26383 0.6 

validation 369 8184 0.2 

test 369 8392 0.2 

Urban 

area 

 

training 579 27268 0.7 

validation 82 3924 0.1 

test 165 7803 0.2 

Table 1. Information of training, validation, and test set for the 

two study areas. The size of each tile is 1024×1024 pixels. 

3 AHN ((Het Actueel Hoogtebestand Nederland) 
4 BAG (Basisregistratie Adressen en Gebouwen) 
5 BRT (Basisregistratie Topografie) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-487-2021 | © Author(s) 2021. CC BY 4.0 License.

 
489



 

Figure 5. The entire study area is the whole image of the city of Enschede; the urban area is denoted by the red polygons (right). The 

right side shows the tile distribution for the urban area (upper right), and the entire study area (lower right). 

 

Figure 3. Sample data of LiDAR point clouds (left) and the 

derived DSM with 0.5 meters of spatial resolution (right) 

 

Figure 4. Sample data of the building footprints (left) and an 

aerial image of the represented area (right). 

 

3.1.2 Evaluation Metrics 

Pixel-level metrics. For evaluating the results, we used the mean 

Intersection over Union (IoU). IoU is computed by dividing the 

intersection area by union area of a predicted segmentation (𝑝) 

and a ground-truth (𝑔) at the pixel level.  

 

𝐼𝑜𝑈 =  
𝑎𝑟ⅇ𝑎(𝑝 ∩  𝑔)

𝑎𝑟ⅇ𝑎(𝑝 ∪  𝑔)
 (8) 

 

Object-level metrics. Building delineation is closely related to 

object segmentation, so we introduced mean Average Precision 

(AP) and mean Average Recall (AR) in Common Objects in 

Context (COCO) measures to evaluate the result. They help 

determine whether a building was extracted correctly, and 

whether a predicted building actually exists.  AP and AR are 

calculated based on multiple Intersection over Union (IoU). 

There are 10 IoU thresholds ranging from 0.50 to 0.95 with 0.05 

steps. AP and AR are the average value of all precisions and 

recalls calculated over 10 IoU categories. The metrics are usually 

applied on segmentation mask in COCO format. We followed the 

same standards of the metric but applied to building polygons 

directly. To be specific, the IOU calculation is based on 

polygons.  

Polygon-level metrics. Besides the COCO metrics, Polygons and 

line segments measurement (PoLiS) were introduced to evaluate 

the similarity of the predicted polygons with corresponding 

reference polygons. It accounts for positional and shape 

differences by considering polygons as a sequence of connected 

edges instead of only point sets (Avbelj, Muller, & Bamler, 

2014). We used this metric to evaluate the quality of the predicted 
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polygon. We first filter the polygons with IoU ≥ 0.5 to find the 

prediction polygons and the corresponding reference polygons. 

The metric express as follows: 

𝑝(𝐴, 𝐵)

=
1

2𝑞
∑ min

𝑏∈𝜕𝐵
‖𝑎𝑗 − 𝑏‖

𝑎𝑗∈𝐴

+
1

2𝑟
∑ min

𝑎∈𝜕𝐴
‖𝑏𝑘 − 𝑎‖

𝑏𝑘∈𝐵

 

(9) 

where 𝑝(𝐴, 𝐵) is defined as the average of the distances between 

each vertex 𝑎𝑗 ∈ 𝐴,j = 1,…,q, of A and its closest point 𝑏 ∈ 𝜕𝐵 

on polygon B, plus the average of distances between each vertex 

𝑏𝑘 ∈ 𝐵, k = 1,…,r, of B and its closest point 𝑎 ∈ 𝜕𝐴 on polygon 

A. The closest point is not necessarily a vertex, it can be a point 

on edge. (1/2q) and (1/2r) are normalization factors to quantify 

the overall average dissimilarity per point.  

3.2 Implementation Details 

The model was trained with the following settings: Adam 

optimizer with a batch size b = 4 and an initial learning rate of 

0.001. It applies an exponential decay to the learning rate with a 

decay rate of 0.99, the max epoch is set to 200. The network is 

implemented using PyTorch 1.4. The training and testing are 

performed on a single NVIDIA Tesla P100 GPU. We set several 

values (0.125,1,5,7) for tolerance parameter in the 

polygonization method. 

 

3.3 Results and Discussion 

We compared results obtained on the test set of aerial images 

(RGB) and composite images (RGB + nDSM) for the entire study 

area and for the urban area, respectively. There are two results 

for each study area: 1) aerial images with RGB channels, and 2) 

multi-band images with nDSM as the additional channel. To 

ensure a fair comparison of the two models, the configurations 

are kept the same except for the input data. 

 

3.3.1  Quantitative analysis  

Table 2 shows the quantitative results obtained using the 

composite images (RGB + nDSM) and the single aerial images 

(RGB). For the entire study area, both mean IoUs are about 50%, 

with the experiment over the composite image performing 

slightly better. The main part of the framework is training the 

FCN to learn the segmentation and frame field of the buildings. 

Since the entire study area contains both urban areas and rural 

areas, even though the polygons have the similar ratio as the tiles 

in training, test, validation set, there are still some tiles with very 

few buildings or even without buildings. Girard et al., (2020)  

used the Inria dataset, which covers a larger extent and has all 

tiles extracted from urban settlements such as cities and towns 

(Maggiori, Tarabalka, Charpiat, & Alliez, 2017). Based on the 

difference between our dataset and the Inria dataset, we may 

hypothesize that the model needs more polygons in the training 

set to better learn the buildings' characteristics outside the city 

centres.  

 

Table 3 shows that, for the urban area, The mean IoU achieved 

on the composite image test set was 70%, against 58% achieved 

for the test set of RGB image. This shows that the addition of the 

nDSM led to an improvement of 12% on the mean IoU, 

demonstrating that the model benefited from the data fusion. The 

higher average precision obtained using composite images shows 

that height information could help to reduce false positives, and 

higher average recall shows it helps prevent missing the real 

buildings on the ground. 

In terms of the similarity of the polygons, the PoLiS distance 

achieved on the composite image test set was 0.87, considerably 

smaller than 1.22 for the RGB image. Because the smaller PoLiS 

distance means the smaller dissimilarity, showing that the nDSM 

improves the similarity of the predicted polygons with the 

reference data. 

 

Table 1 shows fewer tiles and more polygons in the urban area 

dataset than the entire city. The mean IoU achieved in the urban 

area was higher than that achieved in the entire city. It was 10% 

higher for the RGB images and 19% higher for the composite 

image. Hence we may deduce that the model performs better with 

the dense urban area.  

 

Dataset Data 

type 

Mean 

IOU 

mAP mAR PoLiS 

Entire 

City 

RGB 

images 
0.48 0.04 0.09 1.06 

RGB + 

nDSM  
0.51 0.05 0.12 1.33 

Table 2. Extraction results on the entire study area of the 

Enschede dataset. The mAP, mAR and PoLiS are calculated on 

the polygons with 1 pixel tolerance for polygonization. 

 

Dataset Data 

type 

Mean 

IOU 

mAP mAR PoLiS 

Urban 

area 

 

RGB 

images 
0.58 0.06 0.20 1.22 

RGB + 

nDSM  
0.70 0.20 0.37 0.87 

Table 3. Extraction results on the urban area of the Enschede 

dataset. the mAP, mAR and PoLiS are calculated on the 

polygons with 1 pixel tolerance for polygonization. 

 

3.3.2 Qualitative analysis 

Figure 6 compares the polygons predicted by the two models and 

the corresponding reference. The polygons obtained using the 

composite images are more aligned with the reference data and 

with fewer false positives than those obtained from RGB images 

only. The performance gain is particularly visible for big 

buildings with complex structures and the building with holes. 

Less false positives are observed for small buildings. In addition, 

the polygons of big buildings are more regular than the small 

ones in dense urban areas. In summary, the nDSM improved 

building outlines’ accuracy, resulting in better-aligned building 

polygons and preventing false positives. 

 

Figure 7 compares the predicted polygon on aerial image (RGB) 

with that on composite image (RGB+nDSM), showing that only 

with spectral information, the model cannot differentiate nearby 

buildings. This results in the predicted polygon on aerial image 

(RGB) corresponding to several individual buildings. In addition,  

the part of the road on the left side of the building is considered 

to be a building. 

 

Figure 8 compares the predicted polygon with different tolerance 

levels. For the sample building, the increase of tolerance results 

in the decrease of the number of vertices. Table 4 shows that with 

the increase of tolerance, the PoLiS increase too, which means 

dissimilarity of the predicted polygon and reference polygon 

increase. Compared to the polygon with 1 pixel tolerance, some 

changes also happen to the shape of the polygon with 7 pixel 
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tolerance. In the lower right part of the polygon, as the vertices 

are simplified, the edge deviates from the ground truth too. 

 

Polygon b c d e f 

tolerance  0.125 1 5 7 

PoLiS  0.866 0.873 0.912 1.021 

vertices 23 542 100 54 51 

Table 4. Example polygon with different tolerance and number 

of vertices. The columns b, c, d, e, f correspond to the polygons 

(b), (c), (d), (e), (f) in Figure 8.  

 

 
(a) (b) (c) 

Figure 6. Results on the urban area test dataset. The 

background is the aerial image and the corresponding nDSM. 

The predicted polygons produced with 1 for the tolerance 

parameter of the polygonization method. From left to right: (a) 

Reference building footprints, (b) Predicted polygons on aerial 

images (RGB), (c) Predicted polygons on composite images 

(RGB + nDSM) 

 

4. CONCLUSIONS 

In this study, we investigated an automatic strategy for building 

outline polygon extraction fusing VHR images and a nDSM 

model, respectively. By adding the 3D information from the 

nDSM, the model based on the frame field learning was 

improved in terms of accuracy and regularity. The comparison 

against the results achieved only with the aerial image 

demonstrates that fusing those data helps in differentiating 

buildings from its surrounding, which results in polygons being 

more aligned with the reference boundaries. Our further study 

will focus on the following parts: 1) explore different fusion 

strategies, 2) refining the training strategy, 3) explore and 

compare against other polygonization methods. 

 
(a) (b) (c) 

Figure 7. Results on the urban area test dataset. The predicted 

polygons produced with 1 pixel for the tolerance parameter of 

the polygonization method. From left to right: (a) Reference 

building footprints, (b) Predicted polygon on aerial images 

(RGB), (c) Predicted polygon on composite images (RGB + 

nDSM) 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. Example polygon obtained with different tolerance 

values using the composite images (RGB + nDSM) for urban 

area dataset: (a) Aerial image, (b) Reference building footprints, 

(c) Predicted polygon with tolerance 0.125 pixel, (d) 1 pixel, (e) 

5 pixel, (f) and 7 pixel. 
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