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ABSTRACT
Object-based convolutional neural networks (OCNNs) have achieved 
great performance in the field of land-cover and land-use classifica-
tion. Studies have suggested that the generation of object convolu-
tional positions (OCPs) largely determines the performance of 
OCNNs. Optimized distribution of OCPs facilitates the identification 
of segmented objects with irregular shapes. In this study, we propose 
a morphology-based binary tree sampling (BTS) method that pro-
vides a reasonable, effective, and robust strategy to generate evenly 
distributed OCPs. The proposed BTS algorithm consists of three 
major steps: 1) calculating the required number of OCPs for each 
object, 2) dividing a vector object into smaller sub-objects, and 3) 
generating OCPs based on the sub-objects. Taking the object identi-
fication in land-cover and land-use classification as a case study, we 
compare the proposed BTS algorithm with other competing meth-
ods. The results suggest that the BTS algorithm outperforms all other 
competing methods, as it yields more evenly distributed OCPs that 
contribute to better representation of objects, thus leading to higher 
object identification accuracy. Further experiments suggest that the 
efficiency of BTS can be improved when multi-thread technology is 
implemented.
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1. Introduction

Object-based image analysis (Blaschke 2010, Blaschke et al. 2014, Luus et al. 2015) 
introduces a new paradigm into geographical applications, and particularly to land- 
cover and land-use classification. In object-based image analysis, remote sensing images 
are processed based on objects that represent vector polygons (often meaningful geo-
graphical units) segmented from remote sensing images. Based on these objects, a variety 
of geographical features can be extracted, including fractal geometry (Krummel et al. 
1987), perimeter-area relationship (Zhang and Atkinson 2016), minimum width bounding 
box (Chaudhuri and Samal 2007), and morphological building and shadow indices (Huang 
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et al. 2014), benefiting a wide range of remote sensing applications. Therefore, object- 
based image analysis serves as a bridge that links remote sensing and geographical 
information science. As a basic step of object-based image analysis, the identification of 
objects is of great importance for downstream analysis.

Object-based convolutional neural networks (OCNNs) are deep learning based meth-
ods that aim to identify irregular objects (Zhang et al. 2018, Lv et al. 2018b). Taking 
advantage of the great object locating capability of CNNs, OCNNs incorporate object- 
based image analysis and CNNs that aim to extract and learn deep features for discrimi-
native localization of objects in images (Oquab et al. 2014, 2015, Zhou et al. 2016, Bazzani 
et al. 2016). Existing studies have shown that an activation map for a particular object 
category points to a discriminative image region that benefits its identification, i.e. objects 
and their surrounding regions are observable in activation maps. For a certain object, the 
OCNN generates multiple locations as object convolutional positions (OCPs) to exact 
patches and further feed them into the CNN. During this process, OCNN assigns 
a unique label to each OCP based on the corresponding receptive field, and all pixels in 
an object are assigned to the same label with the highest frequency. Figure 1 presents an 
example of object identification via OCNNs.

This study serves as an extension of existing OCNN studies. OCNNs generate multiple 
OCPs, i.e. centroids of convolutional windows in objects, and extract the convolutional 
receptive fields from images based on these OCPs. However, most OCNN studies tend to 
focus on the optimization of network structures, largely ignoring the selection of OCPs, 
despite such selection plays an important role in object identification, as misclassifications 
via OCNNs are often caused by poor choices of OCPs (Chen et al. 2019). According to the 
principle of OCNN, in an extracted patch centered on an OCP, the center and surrounding 
pixels in the patch are the real object (see Figure 1). To guarantee a successful object 
identification, we need to make sure the center of the patch (the real object) is activated in 
the model (i.e. OCPs must be located within the object). Studies have shown that if the 
center pixel and nearby pixels are close to the object boundary, misclassifications tend to 
occur (Lv et al. 2018b, Chen et al. 2019). Thus, OCPs should be located away from the 
object boundary in order to ensure accurate object identification and classification. In 
most cases, objects present great homogeneity, and OCPs are able to obtain true labels 
with a high probability when the homogeneity of the pixels around the OCP is high. The 
distribution of OCPs also affects the identification of objects, as patches generated by 
evenly distributed OCPs can cover the object in a comprehensive manner, providing 
sufficient information for the CNN model.

OCPs are rarely used in traditional computer vision algorithms but are rather common 
in geographical applications. The OCP selection process is essentially a data sampling 
process. Hence, in this study, we propose a morphology-based binary tree sampling (BTS) 
method that considers the shape attributes (e.g. shape index (SI) and area) of segmented 
geographical objects to solve OCP sampling problems. The proposed BTS facilitates the 
generation of evenly distributed OCPs. The strategy of BTS is to select locations in objects 
used for standard CNNs. After image segmentation and object delineation using well- 
established methods, a series of image processing techniques are used to split each 
object into a tree structure and further identify the locations of OCPs. The goals of this 
study are to optimize OCP selection and to investigate the importance of OCPs in object 
identification. In addition, we propose a distribution index that can be used to evaluate 
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the distribution of OCPs in objects. Taking object identification in land-cover and land-use 
classification as a case study, we compare seven OCP generation methods using two very 
high resolution (VHR) images and five standard CNN models, including AlexNet 
(Krizhevsky et al. 2012), VGG16 (Simonyan and Science 2015), VGG19 (Simonyan and 
Science 2015), Inception_v3 (Szegedy et al. 2015), and ResNet (Kaiming et al. 2016).

The main contributions of the proposed method are as follows: 

(1) We propose a morphology-based binary tree sampling (BTS) method that provides 
a reasonable, effective, and robust strategy to select OCPs for identifying objects 
based on OCNNs.

(2) We propose a distribution index to evaluate the distribution of OCPs in objects.

Figure 1. The concept of Object-based convolutional neural networks (OCNNs). Object convolutional 
positions (OCPs) (red dots) are distributed within a certain object (the blue polygon) and their 
corresponding patches (red dashed lines).
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(3) We illustrate the advantages and shortcomings of OCNN and a typical end-to-end 
network (U-Net). The results confirm that our OCNN incorporated with the BTS 
algorithm outperforms U-Net in full-element mapping from large-scale remote 
sensing images. 

This paper is divided into seven sessions. Following the Introduction session 
(Section 1), Section 2 introduces relevant works. Section 3 documents our methodology 
in detail. Section 4 introduces the study area. Section 5 presents the classification results. 
Section 6 presents a discussion on the results, followed by Section 7 that concludes this 
study.

2. Related works

Data obtained from advanced earth observation techniques provide rich spatial and 
spectral information. Compared with images with median and low spatial resolution, 
remote sensing images with high resolution contain abundant information and thus are 
advantageous for geographical applications (Huang et al. 2020) that require precise 
thematic maps (e.g. land-cover and land-use classification). VHR image processing 
requires the extraction of deep features, posing challenges for conventional classification 
methods (Zhao and Du 2016).

CNNs contain multiple convolutional and pooling layers with hundreds or even 
thousands of filters (Krizhevsky et al. 2012). Based on the deep structures, CNNs are 
ideal in terms of extracting deep features from VHR images (Zhao et al. 2015) and 
thus have been applied to many geographical applications (Ma et al. 2019). In recent 
years, CNN-based algorithms have been greatly improved with respect to scene 
classification (Zou et al. 2015), image fusion (Shao and Cai 2018, Lu et al. 2019), 
object identification (Huang et al. 2020), land-cover and land-use classification (Wang 
et al. 2020, Martins et al. 2020), change detection (Yaqian et al. 2020), and semantic 
segmentation (Zhang et al. 2018, Guo and Feng 2020). As one of the most popular 
architectures, U-Net achieves high semantic segmentation and category mapping 
accuracy using natural remote sensing images (Alhassan et al. 2019, Flood et al. 
2019). The object-based image analysis involves four key processes (Phiri et al. 
2018): 1) segmenting images to generate objects, 2) designing object features, 3) 
training classifiers, and 4) classifying objects. The third step, i.e. the feature design 
process of object-based image analysis, can be replaced by CNNs to achieve better 
object identification accuracy. Hence, OCNN (the combination of object-based image 
analysis and CNN) was proposed to facilitate the extraction and utilization of deep 
features (Zhang et al. 2018, Fu et al. 2018, Lv et al. 2018a, 2018b, Zheng et al. 2020).

In OCNNs, OCP selection plays an important role in object identification. To date, 
two methods are widely adopted in OCP generation. Certain studies selected object 
(polygon) centroids (CID) as OCPs (Fu et al. 2018, Lv et al. 2018a, Chen et al. 2019, 
Zhang et al. 2020, Ghorbanzadeh et al. 2020). However, such an approach may lead 
to misclassification for complex objects. Another approach is to generate multiple 
OCPs in objects, notably the random generation method (RAND_L) proposed by Lv 
et al. (2018b). However, such an approach tends to general OCPs that are located on 
objects’ boundaries, potentially leading to increased uncertainties. Based on random 
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generation methods, an overall position generation method (RAND_Z) combined 
with the object’s CIDs has been proposed for urban functional zone classification 
(Zhou et al. 2019). Several morphology-based approaches for the generation of OCPs 
have been proposed. For example, the OCP analysis (OCPA) method based on the 
minimum moment bounding (MB) box was proposed to overcome the uncertainties 
of random methods (Zhang et al. 2018); the OCPs are distributed near the long axis 
of the moment box. The patch-based method (PBM) was proposed to integrate 
checkboard segmentation, ignoring the objects in the images (Sharma et al. 2017). 
In another study (intersect of patch and object, IPO) (Tong et al. 2020), the results of 
multiresolution segmentation and checkboard segmentation were combined. The 
multiresolution segmentation is used to generate the objects in the image, while 
checkboard segmentation is applied to generate patches that are used as the CNN 
input. Objects are identified according to the intersection by the multiresolution 
segmentation and checkboard segmentation (Tong et al. 2020). However, the afore-
mentioned methods fail to meet the requirements of a robust representation of the 
entire object. A method that is able to generate OCPs with even distribution to 
represent the whole object is needed.

3. Methodology

This study aims to integrate object-based image analysis and CNNs. To illustrate the 
robustness and accuracy of our proposed method, seven comparative approaches 
were applied using five standard CNNs. VHR images were first segmented into 
representative geographical objects. Five typical CNN modes were simultaneously 
trained using labeled data. The OCPs within objects were generated using the 
proposed BTS and other comparative methods. Further, CNN models were used 
to extract deep features from the VHR images. Based on the positions of OCPs and 
pretrained CNN models, segmented objects were identified. Finally, the classifica-
tion results obtained from OCNNs were compared, analyzed, and summarized.

3.1. Image segmentation

Based on the bottom-up theory the follows a minimum heterogeneity principle, the 
multiresolution segmentation method is often used to segment images into meaningful 
objects that are internally connected by guaranteeing that the pixels inside the objects 
are homogeneous (Rabiee et al. 1996). Our following analysis is based on segmented 
objects via multiresolution segmentation.

3.2. Binary tree sampling

As mentioned above, several approaches have been proposed to address the generation 
of OCPs, such as CID, RAND_L, RAND_Z, OCPA, PBM, and IPO. However, all these methods 
have their intrinsic limitations. To improve the robustness and universality of OCP gen-
eration, we proposed a BTS approach to generating evenly distributed OCPs within 
objects.
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The proposed BTS generates suitable OCPs by dividing an object (polygon) into two 
sub-objects and recursively dividing the resulting sub-objects until the OCP number 
meets the requirements specified in Equation (1): 

S nð Þ ¼
Ps1 ; n ¼ 1

S 1
a n
� �� �

þ S a� 1
a n

� �� �
; n> 1

�

(1) 

where n presents the number of OCPs in an object, a is the ratio of the area of the parent 
object to that of the sub-object, and S(*) is the kernel function for the BTS of objects. The BTS 
method divides an object under a divide-and-conquer strategy. The kernel function returns 
the centroid Ps1 of the sub-object when n is one. The OCPs of inseparable sub-objects (the 
smallest sub-objects) are their centroids. The flowchart of the BTS method is shown in 
Figure 2.

The workflow of the proposed BTS method contains four major steps: 

Step 1. Calculating the convex hull of an object and generating the minimum bound-
ing rectangle (MBR) of the convex hull.

Step 2. Computing the centroid of the object and dividing the object into two sub- 
objects by creating a line vertical to the longest side of the MBR and passing 
through the midpoint of the longest side.

Step 3. Recursively applying Steps 1 and 2 to each sub-object until the required 
number of OCPs is reached.

Step 4. Local fine-tuning of OCPs (see Section 3.2.6).

3.2.1. Convex hull
Given a real vector space V and point dataset X ¼ ðx1; x2; . . . ; xnÞ, a convex hull is defined as 
the intersection of all convex sets containing X. In contrast to the convex hull of a disorder 
point dataset, the convex hull of a polygon is the smallest convex containing the polygon 
composed of order points. The convex hull of a convex polygon is the convex polygon, 
whereas that of a concave polygon can be calculated with a well-designed method.

Figure 2. The workflow of the proposed binary tree sampling (BTS) method.
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3.2.2. Minimum area bounding rectangle (MBR)
The MBR that suggests the bounding rectangle enclosing the minimum area (Lewis et al. 
1997, Jiao et al. 2012) can be generated based on the convex hull of polygons. The MBR 
method is based on two axioms:

Axiom 1: The MBRs of polygons and their convex hulls are equivalent.
Axiom 2: At least one edge of the MBR of a polygon’s convex hull coincides with an 

edge of the polygon.
The MBR of a polygon is calculated by iterating the edges of a polygon’s convex hull.

3.2.3. Determining the number of OCPs
The number of OCPs for a certain object depends on its area and SI. For extremely small 
objects, one OCP is sufficient. The number of OCPs increases when an object’s area increases, 
although their relationship does not necessarily follow a linear rule. Owing to the fact that 
objects usually contain homogeneous areas, the number of OCPs should no longer increase 
when the object’s area reaches a certain level (a user-defined threshold). We define that 
objects’ area can be divided into three categories: small, medium, and large. The SI indicates 
the smoothness of the border of an image object and is defined as the perimeter (C) of the 
object divided by four times the square root of its area (S), as shown in Equation (2): 

SI ¼
C

4
ffiffiffi
S
p (2) 

The smoother the border of an object, the lower the SI value. The more convoluted the 
border of an object, the higher its complexness index. Objects with a lower SI require 
only fewer OCPs. In contrast, objects with a high SI require more OCPs. Similar to the 
area, the SI of objects can also be divided into three categories based on a user-defined 
threshold. The number of OCP within objects can be calculated based on an intersection 
matrix composed of three categories of object areas and three SI categories, as shown in 
Table 1.

These thresholds are often defined by the user. Si and Ai are the i-th interval for 
the SI and area, respectively. Thresholds between Si and Si+1 (1.7 and 2.0 in this 
study) and between Ai and Ai+1 (300 and 600 pixels in this study) are user-defined 
parameters.

3.2.4. Binary tree division
Recursion is an important divide-and-conquer strategy in the data processing. The 
proposed BTS can be divided into three steps: 1) dividing, 2) conquering, and 3) combin-
ing. An object is first divided into two smaller sub-objects by fusing the MBR and center-
line of the MBR. The total number of OCPs required by the parent object is assigned to the 

Table 1. The number of object convo-
lutional positions (OCP) within objects 
using the intersection matrix.

S1 S2 S3

A1 1 3 5
A2 3 3 5
A3 3 5 7
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two sub-objects based on their area ratios. The sub-objects are then recursively split into 
two until the assigned OCP number is one (the ‘base case’). In the base case, the object’s 
centroid is considered to be one OCP. Finally, the centroids of all base cases are combined 
as the final OCPs of the original objects. The pseudocode below shows the recursive OCP 
generation progress.

In the BTS algorithm, Obj represents an object with two attributes (AdjustCentroid and 
Area). n is the number of OCPs. Q is the queue structure used to store the OCPs. The 
CutObj(*) function is used to split an object into two sub-objects.

The CutObj(*) function is based on the centerline of the MBR. An object is internally 
connected (as mentioned in Section 3.3); however, it is possible for the sub-objects to be 
unconnected after splitting. Thus, an internal adjustment approach is used, which is 
illustrated in Figure 3.

In Figure 3, an object is split into two parts along the cutting line. A sub-object (Part II) 
has multiple separate parts. By ignoring the maximum area part (lower Part II) of this sub- 
object, the other part (upper Part II) is merged into Part I. The adjusted final sub-objects 
are internally connected. The centroids of concave objects may fall outside of the objects. 
Illustrated in Figure 3, a position adjustment approach can be used to address this issue 
for both concave and convex objects. First, a vertical line (vertical to the longest side of 
the minimum bounding rectangle (MBR)) that passes through the centroid is constructed. 
The centroid further moves to the midpoint of the longest intersected line of the vertical 
line and the object.

Figure 3. The flowchart of the adjustment of objects with internally unconnected parts.

Algorithm: BTS

Input: object Obj, number n, queue of OCPs Q
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10.

Q = []; 
if n = = 1: 
centroid = Obj.AdjustCentroid; 
Q.Add(centroid); 
return; 
(sub-object1, sub-object2) = CutObj(Obj); 
n1 = n * sub.object1.Area/Obj.Area; 
n2 = n * sub.object2.Area/Obj.Area; 
BTS(sub-object1, n1); 
BTS(sub-object2, n2);

8 X. LV ET AL.



3.2.5. Determining the centroid of an object
The centroids of objects are the gravity centers of the base cases. Assuming (x,y) is a point 
in an object, the centroid position ð�x;�yÞ can be expressed by Equations (3) and (4) (Gere 
et al. 1977): 

�x ¼

ðð

xdσ

S
(3) 

�y ¼

ðð

ydσ

S
; (4) 

where dσ ¼ d�x � d�y is the differential area around point (x,y).

3.2.6. Iterative local fine-tuning of OCPs
The OCPs are directly generated by the proposed BTS algorithm. An iterative local fine- 
tuning method was proposed to optimize the distribution of OCPs based on Voronoi 
graphs (Franz and Aurenhammer 1991, Okabe 2016). The adjusted OCPs can be calculated 
using Equations (5)–(7). 

On ¼ T Pn� 1ð Þ (5) 

Pn ¼ S Onð Þ (6) 

Pn ¼ S T Pn� 1ð Þð Þ ¼ STð Þ1S T Pn� 2ð Þð Þ ¼ STð Þ2S T Pn� 3ð Þð Þ ¼ � � � ¼ STð ÞnP0; (7) 

where P0 represents the initial location of an OCP generated by the BTS, n is the number of 
iterations defined by the user, T(*) is a function for the generation of Voronoi graphs based 
on n and the original object, and On is the n-th Voronoi graph. The new positions are 
generated using the function S(*) based on the same principle as that of the object centroid. 
The symbol ST represents function S(*) and function T(*). The final result Pn represents the 
locations after n iterations. Figure 4 shows the workflow of OCP optimization (n = 5).

Figure 4. The workflow of iterative local fine-tuning of object convolutional positions (OCPs). Initial 
positions are the raw positions generated via previous steps.
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3.3. Comparative methods

Six comparative OCP generation methods (CID, RAND_L, RAND_Z, OCPA, PBM, and IPO) 
and U-Net were implemented to illustrate the superiority of BTS and the importance of 
selected OCPs. U-Net is a standard and classical network with an end-to-end structure, 
which has been widely adopted by numerous applications. Given the popularity of U-Net, 
Figure 5 only shows the basic principles of the other six comparative methods.

In CID (Figure 5(a)), the centroid (gravity center) of an object is selected as the OCP (Fu 
et al. 2018). For objects with regular shapes, centroids are located inside the objects. 
However, for objects with irregular shapes, the centroids may be located outside of the 
objects, leading to great uncertainty for subsequent analysis.

RAND_L (Figure 5(b)) generates OCPs within objects via a two-step random sampling 
method (Lv et al. 2018b). An object is first partitioned into multiple triangles; the vertices 
of the triangles are the corner points of object boundaries. A triangle is randomly selected 
from the partitioned triangles. The envelope of the triangle is then used as an extent to 
randomly generate a point in the envelope. If the point is located on the triangle, the next 
point is generated under the same process. Otherwise, the point is mirrored inside the 
triangle.

The concept of RAND_Z (Figure 5(c)) is the same as that of RAND_L. Different from 
RAND_L, however, the processing unit of RAND_Z is the whole image (Zhou et al. 2019). 
RAND_Z first generates points within the whole image and then determines points that 
are located in the objects as OCPs. RAND_Z shares the limitations as RAND_L.

Figure 5. Six comparative OCP generation methods. (a) CID (object’s centroids), (b) RAND_L (random 
method), (c) RAND_Z (overall position generation method), (d) OCPA (object convolutional position 
analysis), (e) PBM (patch-based method), and (f) IPO (intersect of patch and object).
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OCPA (Figure 5(d)) calculates OCPs using the major and minor axes of the MB box of 
the object inertia (Zhang et al. 2018). The MB box is the MBR based on the moment 
orientation of an object. The MB box is equally divided into a specific number (depend-
ing on the number of OCPs) of sub-boxes along the major axis. Objects in the MB box 
are also divided into sub-objects. The middle points of lines that intersect two sub- 
objects are selected as OCPs. However, the OCPA method ignores the shape of the 
objects.

In PBM (Figure 5(e)), the sampling of OCPs is based on checkboard segmentation with 
equal squares (patches) in images (Sharma et al. 2017). Thus, the center of each patch 
becomes the OCP for the CNN. Theoretically, the PBM-based method does not fall into the 
category of object-based methods.

The IPO (Figure 5(f)) incorporates the concepts from the patch- and object-based 
methods. The IPO uses the patch-based classification result to identify objects that are 
covered by multiple patches (Tong et al. 2020). These objects are defined based on their 
patches intersecting with the highest proportion of the area. The limitation of IPO is that it 
fails to consider object information.

3.4. Standard CNN models

The CNNs extract abstract features using sub-images with square shapes as initial data. 
A CNN usually contains multiple deep layers that include the convolutional, max pooling, 
average pooling, batch normalization, and local response normalization layers. 
Convolutional layers are a series of filters with small sizes, which are used to extract 
spatial-spectral information from the input data. Pooling layers aim to reduce the amount 
of data and improve the calculating efficiency. Normalization layers are intermediate 
layers between convolutional layers and the activation function. They can normalize 
convoluted data to facilitate network convergence. The activation function is implemen-
ted after each normalization to determine whether a certain node is activated. Based on 
these well-designed layers, CNNs can extract deep features with useful information from 
raw input data. At the end of a CNN model, input data are convoluted and pooled into 
a one-dimensional vector, followed by several fully connected layers and classifiers (e.g. 
softmax) to generate the final results. In the study, we used standard CNNs that include 
AlexNet, VGGNet (VGG16 and VGG19), GoogleNet (Inception_v3), and ResNet.

3.5. OCNN

OCNNs that use segmented objects as processing units were proposed to address the 
inefficient computing of the pixel-wise CNNs and pixel-level errors in VHR image classi-
fication. However, the segmented objects are usually with complex shapes; therefore, 
they cannot be directly fed into the networks. OCNNs use multiple points distributed in 
the objects as centers of convolutional windows to predict the semantic category of each 
OCP. Based on the statistics of OCPs’ categories, all pixels within the object are assigned to 
a certain category via majority voting. In this study, we fine-tuned the fully connected 
layers of AlexNet, VGG16, and VGG19 using transfer learning techniques (earlier layers 
before the fully connected layer used pre-trained parameters). The Inception_v3 and 
ResNet were retrained.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



3.6. Accuracy assessment

The overall accuracy (OA) and f1-score based on the confusion matrix were used to 
measure the performance with respect to the identification of objects. The confusion 
matrix yields four results: true positive (TP), false positive (FP), false negative (FN), and true 
negative (TN). The TP represents the number of correctly identified samples, FP represents 
the number of misidentified samples, FN is the number of samples of one category 
misidentified as samples of another category, TN is the number of samples of another 
category that was identified correctly. The OA, recall, and precision can be expressed by 
the following equations: 

OA ¼
TPþ TN

TP þ FPþ FNþ TN
(8) 

recall ¼
TP

TPþ FN
(9) 

precision ¼
TP

TP þ FP
(10) 

The f1-score is based on recall and precision and is defined by Equations (11) and (12): 

f 1k ¼ 2 �
precisionk � recallk

precisionk þ recallk
(11) 

f 1� score ¼
1
n

X
f 1k; (12) 

where f1k is the k-th category and f1-score is the mean f1k of all categories.

3.7. Evaluation of OCPs

Three indices were utilized to measure the robustness of OCPs’ distribution, i.e. the area 
index, The cover index, and the distribution index. The area index was used to measure 
the area fluctuation in the Voronoi graphs of the objects. The cover index, calculated as 
the ratio of the convex hull of the convolutional positions to that of the objects, measures 
whether objects are sufficiently covered. The distribution index aims to measure the 
evenness of the sample distribution. These three indices can be expressed as follows: 

AreaIndex ¼ σ2 ¼

Pn
i¼1 �s � sið Þ

2

n � 1
(13) 

CoverIndex ¼
S0

S
(14) 

DistributionIndex ¼
u � σ

u
þ k � CI; (15) 

where n is the number of OCPs, si (i= 1,2 . . . n) is the area of the ith Voronoi graph, and �s is 
the average area of all Voronoi graphs. A small area index indicates that the distribution of 
OCPs is close to an even distribution. Conversely, a high cover index indicates 
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a widespread distribution. A desirable sampling method is expected to have a low area 
index and a high cover index. The cover index ranges from 0 to 1. The standard deviation 
σ and mean u of the area of all Voronoi graphs were used to normalize the area index. As 
a more comprehensive measurement, the distribution index expresses the linear combi-
nation of cover index and normalized area index. In addition, k (a user-defined constant; 
k = 1 in this study) can be used to adjust the weights of two other indices. A high 
distribution index indicates that the generated OCPs are generally representative and 
evenly distributed.

4. Study area

We downloaded two VHR images with three bands, one located in Sacramento and the 
other one located in Auckland, from Google Earth provided by WorldView. Complex 
objects were further segmented from VHR images.

Two images in Auckland and Sacramento were captured on 17 August 2018 and 
3 April 2018, respectively. The spatial resolutions of both images are the same (60 cm per 
pixel), and the images contain three panchromatic bands. The image in Sacramento 
covers 4,960 × 6,971 pixels, and the image Auckland covers 8,185 × 7,850 pixels.

Randomly stratified samples were selected from the study areas. Each category con-
tains ~1,600 samples. The sample set was divided into two subsets: training and valida-
tion. The training set consisted of 62.5% of the samples for each category, while the 
validation set contained the remaining 37.5% of samples (Zhang et al. 2018). The detailed 
numbers of samples corresponding to different categories are listed in Table 2.

Sacramento contains ten categories, while Auckland contains nine categories (Bare soil 
is not available in Auckland). Figure 6 shows some very irregular objects segmented by 
the multiresolution segmentation algorithm.

As shown in Figure 6, categories greatly differ in shapes, sizes, and textures. For 
example, residential houses, water bodies, and wetlands have a relatively simple appear-
ance. Asphalt roads, cement roads, shadows, and vegetation have complex shapes with 
a high SI. Vegetation that includes the greenbelt and trees has varying shapes with strong 
homogeneity. Industrial buildings are the most complex objects in terms of their textures, 
shapes, and materials.

Table 2. Sample numbers corresponding to different 
categories in two study areas.

Category Auckland Sacramento

Asphalt road 2,000 2,000
Bare soil — 1,600
Cement road 1,600 1,600
Industrial building 1,598 1,598
Parking space — 1,500
Residential house 1,600 1,600
Shadow 1,800 1,800
Truck 1,472 —
Vegetation 1,800 1,800
Water body 1,600 1,600
Wetland 692 692
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5. Results and analysis

The image segmentation process by the multiresolution segmentation algorithm involves 
three key parameters: scale, shape, and compactness. Efforts have been made to inves-
tigate scale selection in image segmentation (Al-Huda et al. 2020). Here, scale affects the 
size of the segmented object, while shape and compactness control the form of the 
object. After investigating these two study areas, we selected [scale: 25, shape: 0.5, 
compactness: 0.5] for Sacramento and [scale: 30, shape: 0.4, compactness: 0.5] for 
Auckland via a trial-and-error process.

5.1. Model training and analysis for OCNN

All five models were trained using the training dataset described in Section 3. The learning 
rate, initial number of epochs, and batch size dropouts of AlexNet, VGG16, and VGG19 
were the same, respectively set as 0.01, 200, and 0.5. The initial learning rate, number of 
epochs, and batch size of Inception-v3 and ResNet were the same, respectively set as 1e-3, 
200, and 50. In addition, the learning rate of Inception_v3 and ResNet was set to 1e-4 
when epoch > 50, 1e-5 when epoch > 100, and1e-6 when epoch > 150. We documented 
train loss value, validation loss value, validation accuracy, convergence epochs, and 
convergence time in Figure 7.

Figure 6. Irregular objects with different shapes segmented by the multiresolution segmentation 
algorithm.
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Although the initial epochs of all five CNNs were set as 200, the convergence epochs were 
different. The convergence epochs of AlexNet, VGG16, and VGG19 on Auckland were all 150; 
the convergence epochs of Inception_v3 and ResNet were both 60. The convergence epochs 
of AlexNet, VGG16, and VGG19 on Sacramento were all 200; the convergence epochs of 
Inception_v3 and ResNet were both 60. Despite their longer training time, Inception_v3 and 
ResNet took fewer epochs to converge compared to AlexNet, VGG16, and VGG19.

5.2. Object identification

This study aims to investigate the effects of OCPs on the OCNN in object identification. We 
further divided the dataset into three subsets (excluding training set and validation set) 
based on the required OCP numbers: 1) all objects, 2) objects with more than one OCP, 

Figure 7. Training statistics for five models in two study areas. (a) Training statistics for the Auckland 
image; (b) training statistics for the Sacramento image. The name of sub-figures represent [model 
name: convergence epochs, and convergence time(seconds)]; for example, [AlexNet: 150; 1,682].
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and 3) objects with more than three OCPs. The identification performance of the pro-
posed method was tested using these three subsets of objects based on the pre-trained 
CNN model. Figure 8 shows the OA of the proposed BTS method and other comparatives 
methods based on five standard CNNs.

We observe the great performance of BTS in identifying irregular objects. The 
highest identification accuracies of all objects obtained by BTS for Auckland were 
90.24% (AlexNet), 93.18% (VGG16), 92.25% (VGG19), 94.64% (Inception_v3), and 
93.93% (ResNet52). For Sacramento, BTS also reached high identification accuracies: 
87.78% (AlexNet), 88.03% (VGG16), 88.57% (VGG19), 96.88% (Inception_v3), and 
96.11% (ResNet52). The above results show that diverse CNNs yield very similar 
object identification accuracy. The performances of the competing methods can be 
divided into three notable echelons. The BTS and OCPA (considering the distribution 
of OCPs in objects) represent the first echelon. The RAND_L and CID (locating OCPs 
within objects) represent the second echelon. The RAND_Z, IPO, and PBM represent 
the third echelon characterized by their large object identification uncertainties. In 
general, the proposed BTS achieves the best performance, followed by OCPA, 
RAND_L, CID, RAND_Z, IPO, and PBM.

Figure 8. Overall accuracy (OA) in object identification of the proposed binary tree sampling (BTS) 
algorithm and comparative methods.
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The identification results prove that the CNNs achieve better performance when the 
OCPs are located inside the objects. The BTS uses morphological features (objects’ shapes 
and areas) to generate evenly distributed OCPs. Thus, the features of objects can be fully 
represented based on the derived OCPs. In comparison, OCPA only guarantees that the 
generated OCPs are located inside the objects but fails to consider their distribution. 
Despite that RAND_L can generate multiple OCPs, many OCPs are located on or near the 
boundaries of the objects, responsible for its great uncertainties. The CID method selects 
polygon centroids as OCPs. However, only when objects are concave polygons does such 
an approach locate OCPs within objects. Methods that include RAND_Z, IPO, and PBM do 
not consider the locations of OCPs at all. The generation of OCPs by RAND_Z is completely 
random, potentially leading to undersampled OCPs in an object, which greatly affects the 
object identification accuracy. The semantic segmentation results in urban and rural 
settings using OCNNs with different OCP generation methods and U-Net are presented 
in Figure 9.

From visual interpretation, the semantic segmentation performance presents notable 
differences between urban and rural areas. In the rural setting, U-Net achieved great 
performance, so did BTS, CID, RAND_L, IPO, RAND_Z and OCPA. In comparison, the 
performance of PBM was considered poor. In the urban setting, however, the perfor-
mance of U-Net was reduced, evidenced by many misclassified residential buildings. In 
comparison, OCNNs coupled with OCPs generated by BTS, CID, RAND_L, and OCPA 
performed well, with our proposed BTS achieving the best performance in semantic 
segmentation.

Tables 3 and 4 show the f1-score of each category in the study areas. The trends of the 
overall f1-score of all categories confirmed the aforementioned object identification 
results. The proposed BTS was more effective than other competing methods. Methods 
that consider the spatial morphology (BTS and OCPA) outperformed those that do not 
(e.g. CID, RAND_L, and RAND_Z). For most categories, the proposed BTS achieved the 
highest f1-scores. We also observed that methods that can generate multiple OCPs 
generally outperformed methods that only generate a single OCP.

We observed that BTS and OCPA achieved the highest f1-scores for most categories, 
with BTS representing the majority. Despite that U-Net is able to predict tiny objects (at 
pixel-level) that OCNN can not, its performance in urban areas was unsatisfactory. In terms 
of workload in building training samples, end-to-end networks like U-Net require pixel-by- 
pixel labels, which are labor-intensive and time-consuming to derive. In comparison, 
OCNNs are based on image objects segmented by automatic segmentation algorithms, 
only requiring very limited workloads on sample labeling. Therefore, we believe OCNN 
methods are more suitable in practical applications, especially in situations that lack 
training samples. We observed that the object identification performance of the same 
category notably differed when different OCP generation methods were used. The 
performance gaps in water bodies and wetlands were insignificant. The performance 
gaps in asphalt roads and industrial buildings were notable, while those for parking 
spaces, residential houses, and vegetation were very notable. The performance gaps for 
the same category can be explained from the perspective of feature representation via 
OCPs, as the identification of objects is significantly affected by the OCP selection 
strategy. The OCPs generated from BTS, OCPA, and RAND_L ensure that centers of 
windows are located inside the objects, thus decreasing the possibility of 
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Figure 9. Semantic segmentation results in urban and rural settings using OCNNs with different OCP 
generation methods and U-Net. (a) The urban setting; (b) The rural setting.
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Table 3. The f1-scores of the OCNNs with different OCP generation methods and U-Net for each 
category in Auckland.

Models Methods Ar Ib Ps Rh Sd Cr Vg Wa Wl

AlexNet BTS 91.34** 83.82** 87.44 93.15** 93.53** 80.54 86.71** 96.89 82.29**
CID 87.39 78.94 85.71 88.23 83.85 67.76 71.72 90.81 71.65
RAND-L 88.48 81.22 79.40 86.49 81.47 66.00 74.54 95.55 80.45
IPO 76.28 68.65 50.65 56.67 33.74 18.87 48.54 92.20 73.79
OCPA 91.29 82.89 87.84** 92.52 89.84 81.85** 82.33 97.05** 76.76
PBM 71.08 63.94 49.27 55.11 30.62 18.84 46.92 86.85 63.32
RAND-Z 87.36 80.64 69.80 77.59 75.06 60.69 79.91 96.05 83.16

VGG16 BTS 94.52* 89.32 92.82 94.48** 94.35** 83.91** 90.83** 98.08** 87.24
CID 92.81 86.95 90.32 91.28 87.21 69.21 78.36 95.22 78.26
RAND-L 92.96 87.81 88.28 89.77 84.92 76.07 83.97 96.52 84.79
IPO 78.74 73.81 60.10 61.86 38.44 24.66 53.09 95.42 82.18
OCPA 93.98 89.77** 94.08** 93.70 92.01 82.63 86.68 97.05 88.04**
PBM 75.14 69.91 58.47 60.85 37.31 26.64 54.77 92.44 71.92
RAND-Z 90.25 83.16 74.03 80.36 77.57 65.71 83.89 96.91 86.46

VGG19 BTS 93.93** 88.19 92.58** 93.05 92.56** 83.33 89.91** 97.73** () 86.91**
CID 92.57 86.66 90.05 91.19 86.53 74.10 80.24 93.13 71.96
RAND-L 91.81 87.26 85.29 89.25 82.25 76.16 81.57 96.18 82.54
IPO 76.63 72.49 56.27 63.11 37.85 22.33 53.57 93.97 78.64
OCPA 93.83 88.52** 92.43 93.40** 89.51 84.41** 85.04 97.08 81.29
PBM 73.39 69.36 57.14 60.99 34.94 23.07 51.89 90.12 65.09
RAND-Z 89.65 83.76 73.99 79.62 75.46 66.47 82.48 96.91 86.91

Inception-V3 BTS 95.54** 93.34** 93.75** 97.53** 94.17** 86.88 89.12** 98.62** 89.77**
CID 93.63 90.30 90.54 91.60 83.03 71.38 78.37 96.23 83.24
RAND-L 93.98 92.06 89.01 95.20 88.33 78.93 85.13 97.60 88.76
IPO 78.05 77.11 55.04 64.41 29.71 23.10 54.11 95.36 86.21
OCPA 95.40 92.59 93.30 97.06 91.99 88.83** 88.26 97.76 85.08
PBM 75.24 73.55 56.17 62.56 28.48 23.02 51.12 93.63 79.35
RAND-Z 91.24 88.76 74.53 84.05 80.60 66.26 84.98 96.61 94.74

ResNet BTS 94.70** 91.40** 91.42** 96.35** 95.58** 84.66** 91.28** 97.94** 88.37**
CID 92.44 88.74 91.46 91.49 84.3 69.21 78.25 96.15 75.79
RAND-L 92.49 90.45 86.93 94.16 89.92 76.53 85.72 96.94 83.33
IPO 78.12 76.79 56.63 63.36 30.26 22.54 51.11 96.10 89.39
OCPA 94.5 91.08 90.77 95.64 93.25 84.43 89.43 97.93 83.80
PBM 73.86 72.63 54.76 62.38 28.54 22.56 49.86 92.78 75.27
RAND-Z 90.36 88.20 74.84 83.78 79.77 64.16 85.23 97.42 91.71

U-Net 90.44 62.69 83.04 82.18 72.04 62.69 68.91 92.77 82.43

Table 4. The f1-scores of the OCNNs with different OCP generation methods and U-Net for each 
category in Sacramento.

Models Methods Ar Bs Cr Ct Ib Rh Sd Vg Wa Wl

AlexNet BTS 87.41** 93.76** 81.01** 84.15** 92.34** 90.32** 84.55** 80.87** 97.32** 83.05**
CID 84.17 90.87 74.09 79.80 88.12 85.85 77.59 76.92 93.50 76.09

RAND-L 83.04 91.91 72.79 80.67 89.88 83.48 76.59 72.20 91.57 79.76
IPO 57.86 82.91 30.84 46.05 75.14 44.47 27.95 44.44 76.06 82.08

OCPA 87.12 93.52 79.16 82.93 90.50 89.58 84.07 79.06 95.30 80.90
PBM 54.31 81.73 28.46 44.17 72.53 44.78 27.43 42.77 72.41 81.56

RAND-Z 80.28 89.05 53.12 52.34 78.97 64.31 58.03 62.43 91.78 82.95
VGG16 BTS 89.84** 95.47** 77.54 91.93** 94.30** 95.07** 79.76 77.81 95.94 90.24**

CID 87.26 93.04 76.09 75.88 91.15 89.88 75.34 78.73 95.00 80.63

RAND-L 84.29 92.26 71.29 77.65 90.23 87.07 74.38 74.04 93.67 79.76
IPO 59.99 82.44 37.84 48.23 80.78 48.27 25.39 41.63 80.73 80.93

OCPA 88.51 94.21 77.98** 80.54 91.95 90.95 81.92** 80.66** 96.69** 83.33
PBM 55.77 81.11 35.81 44.79 79.22 49.28 26.4 40.44 76.69 80.23

RAND-Z 81.57 88.93 52.28 49.22 81.65 67.06 57.55 65.52 94.12 85.08

(Continued)
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misidentification caused by other objects in the patches. The above results confirmed that 
OCNN coupled with the proposed BTS strategy is with high robustness in identifying 
various types of objects.

5.3. OCP generation via BTS in extreme cases

In our experiments, the largest number of OCPs in an object was seven, and the median 
was three. However, other applications, such as skeleton detection, may require more 
OCPs. In this session, we conducted additional experiments on BTS, OCPA, and RAND_L in 
generating multiple OCPs within objects in extreme cases. Figure 10 presents the OCP 
generation results with a number of 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, for geographical 
objects and hand-drawn objects.

We observe that the proposed BTS is able to generate OCPs with an even distribution in 
all scenarios. The superiority of BTS is more notable when the number of required OCPs 
increases. The performance of OCPA is acceptable when the OCP number is less than seven. 
However, when the OCP number further increases, the OCPA algorithm assigns OCPs to the 
centerlines of objects. Compared with OCPA, the OCPs generated by the proposed BTS are 
able to represent the whole object in a comprehensive manner. In comparison, the RAND_L 
algorithm has notably large uncertainty given its randomness: 1) OCPs appear on the 
boundary when the number is three, and 2) OCPs are overconcentrated when the number 
of OCPs is larger than five. These uncertainties of RAND_L become more dominant with an 
increasing number of OCPs.

Table 4. (Continued).

Models Methods Ar Bs Cr Ct Ib Rh Sd Vg Wa Wl

VGG19 BTS 89.64** 95.17** 80.47** 82.22** 94.77** 91.41 83.16** 80.65** 98.43** 87.06
CID 86.95 93.21 77.88 75.07 91.15 90.44 74.50 80.12 95.29 85.87

RAND-L 83.23 90.95 71.79 79.54 92.72 86.84 75.31 72.51 93.98 84.15
IPO 59.87 82.71 36.55 45.00 79.40 47.34 28.60 45.46 81.61 80.72

OCPA 88.76 94.17 78.64 80.98 92.78 92.46** 82.44 79.49 96.55 87.42**
PBM 55.19 80.38 33.92 42.77 78.21 48.84 28.60 42.64 77.03 78.83
RAND-Z 83.30 88.33 53.57 48.03 81.41 67.76 57.92 65.65 94.43 88.24

Inception-V3 BTS 97.26** 98.71** 95.73** 98.45** 97.50** 98.72** 96.75 94.00** 98.27 84.70**
CID 95.16 97.43 88.22 86.69 94.77 93.65 84.27 88.18 97.50 83.80

RAND-L 94.27 98.07 89.95 94.83 95.65 96.88 90.21 88.25 96.68 84.85
IPO 64.21 85.50 40.54 45.05 84.41 51.14 27.22 46.60 84.84 86.90

OCPA 96.97 98.51 95.44 96.59 97.14 98.43 97.25** 93.89 98.59** 83.23
PBM 60.86 83.43 39.04 44.75 82.30 51.89 25.13 44.79 82.49 82.76

RAND-Z 90.24 93.11 70.53 59.5 85.34 74.17 69.62 74.31 96.00 84.39
ResNet BTS 96.07** 98.46** 94.95** 96.00** 97.03** 97.56** 96.05** 93.39** 97.63 85.38

CID 93.44 97.47 84.53 85.88 94.10 92.51 83.54 86.33 95.74 83.42

RAND-L 92.69 97.05 88.16 92.16 94.52 95.11 88.32 87.09 95.51 83.53
IPO 63.26 85.64 39.06 40.66 81.48 50.47 25.56 45.24 83.77 80.46

OCPA 95.88 98.32 93.65 93.69 96.08 96.41 94.79 92.84 97.80** 87.72**
PBM 59.23 83.03 36.74 40.39 79.21 51.67 24.13 42.99 79.53 74.42

RAND-Z 89.39 92.61 69.33 57.62 85.08 72.48 66.27 74.31 94.44 86.04
U-Net 85.63 94.19 70.40 54.05 91.11 87.29 60.00 80.56 94.14 74.67

Footnote: Ar: asphalt road; Bs: bare soil; Cr: cement road; Ct: container; Ib: industrial building; Ps: parking space; Rh: 
residential house; Sd: shadow; Vg: vegetation; Wa: water body; Wl: wetland.
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These extreme cases demonstrate the robustness and effectiveness of the proposed BTS 
that is expected to benefit other fields such as skeleton line detection and data sampling.

5.4. Evaluating the distribution of OCPs

To evaluate the distribution of OCPs, we proposed a distribution index measurement and 
further derived the distribution index of generated OCPs from multi-OCP methods, i.e. 
BTS, OCPA, and RAND_L. The higher the distribution index, the more evenly distributed 
the convolutional positions. The distribution index of the OCPs in the two study areas is 
shown in Figure 11. We noticed that the distribution index of the two study areas was 
similar. The distribution index obtained via the proposed BTS method (median values of 

Figure 10. The object convolutional positions (OCP) generation results for (a) geographical objects 
(residential house), (b) hand-drawn objects with extremely irregular shapes. OCPs were selected with 
a series of numbers (i.e. 3, 5, 7, 9, 11, 13, 15, 17, 19, 21) for this experiment.
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1.082 and 1.085 for the two cases) were generally higher than those obtained with OCPA 
(median values of 1.025 and 1.023) and RAND_L (median values of 0.70 and 0.69). The 
above results again demonstrate the robustness and efficiency of the proposed BTS 
method in a quantitative manner. In general cases, it is easy to generate OCPs for regularly 
shaped objects such as ribbons, circles, and squares, while difficult for objects with 
complex shapes. Thus, the proposed distribution index serves as a novel measurement 
to evaluate the generation of OCPs, especially for objects with complex shapes.

6. Discussion

6.1. Deep feature representation through BTS

Deep features extracted by CNNs significantly differ from well-designed features. Given 
the varying sizes and shapes, these objects cannot be directly fed into CNNs. Hence, 
multiple partial deep features of objects are extracted by OCP-based CNNs to characterize 
the entire object. However, partial features have notable gaps with respect to the 
representation of the whole object. The object identification accuracy greatly varies 
when objects fail to be fully represented by the deep features obtained from OCP 
selection methods. Morphological attributes are important for deep feature representa-
tion. By considering the morphological attributes, the proposed BTS algorithm is able to 
generate OCPs with optimized distributions that benefit deep feature extraction, leading 
to high object detection accuracy. Figure 12 shows the attention maps of patches from 
BTS-generated OCPs, extracted from the layer ‘Mixed_6e’ of pre-trained Inception_v3.

A class activation map for a particular category indicates the discriminative image 
regions used by the CNN to identify that category (Zhou et al. 2016). In Figure 12, warm 
colors denote activated regions, and cool colors denote otherwise. The activated 
regions are generally the central and nearby pixels of patches; however, some activated 
regions fall outside of the objects. This means that, when classifying a certain object, 
CNNs can consider the features within that object as well as nearby features outside that 
object, as long as these features are activated. Building roofs generally share similar RGB 
reflectances as the sidewalks due to their similar materials (cement). If the activated 

Figure 11. Statistics of distribution index values for the selected two images. (a) Sacramento; (b) Auckland.

22 X. LV ET AL.



region of an industrial building is the same as sidewalks, misclassification is inevitable. 
Thus, accurate object identification requires sufficient activated regions that cover the 
object and its surroundings. The activated regions of Figure 12(c) are consistent with 
what we expected. Not only are the local regions of objects activated, but also these 
surrounding deep features. Earlier studies showed that, despite being trained on image- 

Figure 12. Example attention maps of patches from BTS-generated OCPs. (a) Cement road in 
a residential area with seven OCPs; (b) a residential building with three OCPs; (c) an industrial building 
with fifteen OCPs.
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level labels, CNNs have great capability in localizing objects, particularly important for 
fine-grained recognition (e.g. sidewalks and some factory buildings) where the distinc-
tions between categories are subtle and focused image cropping (selecting convolu-
tional positions) allows for better discrimination.

6.2. Efficiency issues of BTS

Given its binary tree structure, the time complexity of BTS is Oðmnlog2ðnÞÞþθðmÞ, where 
n is the OCP number of each iteration, m is the object number in the study area, O is the 
order of magnitude of the algorithm, and θðmÞ is the time complexity of iterative local 
fine-tuning of OCPs. The space complexity of BTS is Oðlog2ðnÞÞ in terms of results stored in 
the global variable and the binary tree structure. We compared the time and space 
complexity of the proposed BTS with OCPA, which is the most advanced competing 
method to our best knowledge. Their comparison is presented in Table 5. A total of 9300 
objects were implemented in this experiment (~10% of the objects in Sacramento).

We observe that the efficiency of the proposed BTS is lower than that of OCPA. 
However, we implemented data-parallel multi-threading technology to accelerate BTS. 
Table 6 shows the comparison between OCPA and multi-thread BTS.

In this experiment, there are two parameters that determine the running time for the 
proposed BTS, i.e. the batch size that controls the size of data written to disk, and the 
thread amount that defines the number of workers (related to the number of CPU cores). 
We notice that the running efficiency of BTS is very close to that of OCPA under the 
1-thread scenario. With the increase in the number of threads, the running time of BTS 
continues to decrease until 16 threads. The running efficiency of 16-thread BTS is about 
6.75 times that of single-thread BTS and about 5.85 times that of OCPA. Due to the thread 
scheduling issue, the running time of each thread differs, so does the running time of each 
batch. The CPU of our computer is Inter Core i7-7180X (8 physical cores, 16 virtual cores 
optimized on the physical cores by windows operation system) with 32GB memory. An 
excessive number of threads increases the management overhead. Thus, we recom-
mended the number of threads as physical cores×2 (16 in our study) and the batch size 
as 500 ~ 1,000.

Table 5. The time and space complexity for OCPA and BTS.
Methods Time complexity Space complexity

OCPA OðmnÞ OðnÞ
BTS Oðmnlog2ðnÞÞþθðmÞ Oðlog2ðnÞÞ

Table 6. Running time comparison between OCPA and multi-thread BTS.
BTS                                                                      

OCPABatch 1 thread 2 threads 4 threads 8 threads 16 threads 24 threads 32 threads

250 270.5329 189.5830 120.0083 68.9590 44.9894 40.4144 42.1972 228.3523
500 263.0736 191.6844 117.6138 69.6178 45.6017 43.1583 46.8176 234.1499
750 259.6237 197.2496 122.3858 70.2478 46.4414 45.0426 52.3002 221.6957
1000 253.2123 202.5599 117.8896 73.0423 47.5945 47.2003 52.8278 228.1359

(Unit: Seconds)
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7. Conclusions

Numerous studies have suggested that the generation of object convolutional positions 
(OCPs) largely determines the performance of object-based convolutional neural networks 
(OCNNs). In this study, we propose a morphology-based binary tree sampling (BTS) method 
that provides a reasonable, effective, and robust strategy to select OCPs for identifying objects 
via OCNNs. The proposed BTS method considers the shape attributes of segmented geogra-
phical objects and facilitates the generation of evenly distributed OCPs. Taking the object 
identification in land-cover and land-use classification as a case study, we compared the 
proposed BTS algorithm with six competing methods, i.e. CID, RAND_L, RAND_Z, OCPA, PBM, 
and IPO, to illustrate the superiority of BTS. The results suggest that the BTS algorithm 
outperforms all other competing methods, as it optimizes the distribution of OCPs, thus 
leading to higher performance in object identification tasks. Although BTS is less efficient 
given its complex design, we believe its advantages outweigh its disadvantages. Further 
experiments suggest that BTS can be efficient when multi-thread technology is implemented.
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