
Cloud Application For Sheet Materials Cutting Optimization

Igor Ilin
Graduate school of Business and

Management
Peter the Great St.Petersburg

Polytechnic University
St. Petersburg Russia
ivi2475@gmail.com

Aleksander Kubarskii
Graduate school of Business and

Management
Peter the Great St.Petersburg

Polytechnic University
St. Petersburg Russia
sasha.kub95@mail.ru

Peter Cornelis Schuur
Industrial Engineering and

Business Information Systems
University of Twente

Enschede Overijssel Netherlands
p.c.schuur@utwente.nl

Aleksander Lepekhin
Graduate school of Business and

Management
Peter the Great St.Petersburg

Polytechnic University
St. Petersburg Russia

lepekhinalexander@gmail.com

Alissa Dubgorn
Graduate school of Business and

Management
Peter the Great St.Petersburg

Polytechnic University
St. Petersburg Russia

alissa.dubgorn@gmail.com

ABSTRACT
The purpose of this study is to provide a working SaaS
application that can be used for sheet materials cutting
optimization using heuristics. For the research, literature and
open sources in the internet were analyzed. The list of the
most common and well-known applications for cutting
optimization was formed. The cloud and on premises
applications were briefly compared and cloud solutions
advantages were highlighted. Few algorithms were chosen
and implemented using JavaScript on server-side and
deployed, using Amazon Web Services. However, there is a
great room for improvement for methods used and
implementation of algorithm for automatic cutting method
choosing.

CCS CONCEPTS
• Networks → Network services → Cloud computing
• Software and its engineering

KEYWORDS
Cloud computing, SaaS, Cutting optimization

ACM Reference format:

Igor Ilin, Aleksander Kubarskii, Peter Cornelis Cornelis Schuur,
Aleksander Lepekhin and Alissa Dubgorn. 2020. Cloud Application

For Sheet Materials Cutting Optimization. In SPBPU DTMIS '20:

Proceedings of Peter the Great St. Petersburg Polytechnic University

International Scientific Conference “Digital Transformation on

Manufacturing, Infrastructure and Service”, November 18–19, 2020,

Saint – Petersburg, Russia. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3446434.3446469

1 Introduction
For the modern economy it is usual to use various

advanced technological processes and methods minimizing
losses in production. Organizations are trying to gain
competitive advantages in the competitive struggle by
minimizing material costs and using new technologies. As a
rule, this can be achieved through the implementation of
mathematical methods in production and IT-technologies as
well [1].

In one of the classes of combinatorial optimization
problems, which is quite common in real production
conditions, the tasks of cutting and packing are highlighted.
They are united by the need to establish a certain
correspondence between two groups, as a rule, large and
small objects. This problem is discussed in [2].

The tasks of cutting packaging have a different applied
interpretation. The most frequently encountered tasks are
orthogonal packing and cutting, where small objects are
rectangular billets - rectangles or boxes of various sizes, and
large ones - material coming in the form of strips, rolls,
rectangular sheets, rods or containers of various capacities.
These tasks are a problem of both theoretical and practical
terms, which has attracted attention of many researchers and
manufacturers. The reason for the growing interest in the
cutting-packing tasks is their diversity, complexity and wide
applicability of the results.

The tasks of cutting-packaging belong to the class of NP-
difficult combinatorial optimization problems [3] - there are
no algorithms of polynomial complexity for finding the
optimal solution, the exact result in the general case can be
obtained only in exponential time.

Classical linear programming methods for solving
packaging and cutting problems in single production
conditions are difficult to apply. In addition, the tasks of
cutting in the conditions of single production arise from
individual production and, as a rule, from expensive
materials.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
DTMIS '20, November 18–19, 2020, Saint Petersburg, Russian Federation
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8890-0/20/11…$15.00
https://doi.org/10.1145/3446434.3446469

SPBPU DTMIS’20, November 18–19, 2020, Saint - Petersburg,

Russia
I. Ilin et al.

Precise and pseudo-precise methods of solving, in some

way or another, relate to the method of branches and
boundaries. To use them, you need to know the lower
bounds of the solution or have an algorithm for calculating
them. However, the exact lower bound of the solution has
not found yet in order to use both precise and approximate
methods based on the method of branches and boundaries.

Considering the complexity of algorithms of linear
programming methods and other exact methods, it should be
mentioned that it is impractical to use them in production,
particularly for the large amount of data, and there is no
reason to use them in SaaS applications as it may cause an
increment in processing time and costs as well.

The justification of development of cloud solution for
cutting optimization refers to the increasing popularity of
cloud computing [4] and the ability to provide multitenant
architecture with advanced role system and flexibility of
companies’ IT architecture [5].

2 Materials and Methods
Firstly, we investigated the market of the cutting

optimization applications. We also analyzed methods for
cutting optimization used in these applications. The pros and
cons of the applications selection were highlighted for
further analysis.

Next the advantages of the cloud computing comparing to
on premises software were studied. The following criteria
were considered: scalability, flexibility, tenants, payment
model, reliability.

Then we made a research of optimization methods that
can be applied in cutting optimization and chose methods
that are applicable for usage in SaaS applications. When SaaS
software is developed, it is necessary to take into account
that used optimization algorithms should be fast and involve
a minimum of computer time. Thus, a critical step in the
development of such software, is the definition of
optimization algorithm. Possible for usage algorithms were
separated into the following categories: heuristic algorithms,
metaheuristic, neural networks, linear programming,
pseudo-exact algorithms.

3 Results
Currently there is a large amount of software that uses

various methods to optimize cutting. The following are the
most well-known software for cutting optimization.

PRO100 – simple and clear – the program can be used for
the design of furniture with the possibility of its virtual
placement in a particular interior. It works with complex
parts: radial, asymmetrical, with oblique sections. It has clear
interface, 3D visualization which is indispensable for both
the designer and the sales manager, tools for building an
interior, there is a function of calculating the estimated cost
of future furniture.

Astra – furniture designer – program specifically
designed for small and medium businesses. With its help, it
is possible to design furniture complexes or individual parts,
save projects created in a special library, have virtual
furniture in a 3D interior. In fact, this is an analogue of the

PRO100 program: a cheaper software with improved cutting
and additive functions, but with much lower design
possibilities.

KitchenDraw – specialized program for modeling and
design of kitchen furniture, as well as – bathrooms. Allows
you to create complex professional projects for non-standard
layouts, “drawing” the interior from scratch to the smallest
detail. A typical kitchen in it can be designed in a few
minutes, using the extensive catalogs of libraries, adjusting
the size and geometry of the furniture.

Master 2 provides users great opportunities not only in
the drafting of cutting, but also in the conduct of business.
Multi-user mode is supported, sorting and systematization of
the entered information is present, data on materials and
counterparties are saved.

The implementation of the warehouse will help to always
be aware of the remaining amount of materials. There is a
distribution to the tables where the active orders are located,
scheduled and archive, all information is available to the
administrator for viewing and editing.

Cutting 3 – has a huge selection of materials and parts. It
is more suitable for individual use. The user will only need to
enter the required dimensions, select materials and specify
additional settings, if necessary.

The listed above programs use heuristics methods to
build a cutting plan. They all have clear user interface and
are built for furniture parts cutting optimization. There are
other industry solutions not only for furniture but for textile,
glass or metal. Only Master 2 provides ability to be deployed
on the server to be accessed by several users at once. Others
do not provide server deployment and integration with
existing software. As a result, they are not suitable for
production purposes. Moreover, this software was designed
to process furniture and it can become a stumbling block for
business to implement it.

In that case the usage of standard cheap solution with
API for integration would be the best solution [6]. And this is
the reason why the SaaS application for cutting optimization
can be considered. At first it has a flexible payment model –
pay per use. It is about purchasing, only necessary amount of
resources, it becomes possible optimize the costs associated
with the work of the organization of information systems.
And in combination with multitenancy [7], sharing resources
between different users reduces costs even further.
Multitenancy is another pros. It implies not only multi-user
access but deep role system development.

Trust in the provider of cloud services is the most
important criterion for evaluating cloud technologies. Cloud
service providers can guarantee better quality of services or
at least the same that business had before.

Another thing to be mentioned is scalability [8]. With
cloud, it is possible to manage the application easily,
implement new instances, use load balancers, create
snapshots or backups for restoring after unexpected
situations. And as the application is provided with SaaS
model, there is no need to examine it.

Heuristic algorithms that are mainly used in cutting
optimization software – algorithms for solving the problem,
which correctness for all possible cases is not proven, but

Cloud Application For Sheet Materials Cutting Optimization
SPBPU DTMIS’20, November 18–19, 2020, Saint - Petersburg,

Russia

about which we know that it gives fairly good solutions in
most cases. In fact, it may even be known that the heuristic
algorithm is formally incorrect. It still can be used, provided
that it gives the wrong result in only a few, fairly rare and a
well-defined case, or gives inaccurate, but still acceptable
results [9][10].

Simply, heuristics – is not fully mathematically grounded
(or even "not quite correct"), but it is almost a useful
algorithm. Summarizing heuristic algorithms does not
guarantee finding the best solutions, does not guarantee
finding a solution, even if it is known to exist (you can "pass
the target"), can give the wrong decision in some cases.

Metaheuristics are another way of solving NP – hard
problems Metaheuristics is a high-level algorithm,
independent of the task framework, which contains a set of
guidelines or strategies for developing heuristic optimization
algorithms. This term is also used to mean a specific
implementation of a heuristic optimization algorithm in
accordance with the guidelines set forth in such a
framework. The best-known solutions for cutting-packing
problems are the following metaheuristics: Ant Colony
Optimization, AFR, Genetic Algorithms, GA, Simulated
Annealing, SA, Tabu Search, TS.

Artificial neural network (ANN) can also be applied to
solving packing problem– it is mathematical model as well as
its software or hardware embodiment, based on the principle
of the organization and functioning of biological neural
networks – networks of nerve cells of a living organism. This
concept originated in the study of the processes occurring in
the brain, and when you try to simulate these processes.
Following the development of learning algorithms derived
model began to be used for practical purposes: to predict
problems, pattern recognition, in control problems,
optimization, and others.

ANN system is connected and interacting simple
processors (artificial neurons). Such processors generally are
quite simple (particularly in comparison with the CPUs used
in personal computers). Each processor of such a network
must deal only with signals that it regularly receives, and
signals that he periodically sent to other processors. And,
nevertheless, being connected by a large network with
controlled interaction are individually simple processors
together are able to perform quite complex tasks.

Last considered algorithms are pseudo exact. The most
famous example pseudo exact optimization method is a
method of branches and borders. The branch and bound
method – total algorithmic method for finding optimal
solutions of various optimization problems, especially
discrete and combinatorial optimization. In essence, the
method is a variation of the exhaustive search with
classifying subsets feasible solutions containing known not
optimal solutions.

For the development of the application JavaScript
language was chosen, as it allows both client side and server-
side development. For the deployment platform amazon EC2
was chosen. Amazon also provides application load balancers
(ALB) and inbuild authentication and authorization with the
help of ALB. Amazon also provides amazon CLI, which

allows to use terraform software, which allows automatically
create, destroy and update existing infrastructure.

To implement cutting optimization algorithms were
chosen the following heuristics: Next Fit Decreasing High
(NFDH), First Fit Decreasing High (FFDH), Best Fit
Decreasing Height (BFDH) and Floor Ceiling No Rotation.
These algorithms become more complex in order they are
listed.

3.1 Next Fit Decreasing High (NFDH)
The rectangles are sorted by non-increasing height

(Decreasing High hints), the highest is located in the lower
left corner of the strip, thereby initializing the first level,
equal in height to it. The remaining rectangles are arranged
from left to right, as long as there is space at the current
level. A rectangle that does not fit in the level is placed on
top, forming the next level, and so on [11][12].

JavaScript NFDH pure function example:
nextFitDecreasingHeight(squares, stripConfig) {
 const {width} = stripConfig;
 const level = [
{
 height: 0,
 width: 0,
 squares: [],
}
];
 squares.map((square, index) => {
if (index === 0 && square.height > level[level.length -

1].height) level[level.length - 1].height = square.height;
if (level[level.length - 1].width + square.width <= width) {
 level[level.length - 1].width += square.width;
 level[level.length - 1].squares.push(square);
} else {
 level.push({
 height: 0,
 width: 0,
 squares: [],
 });
 if (level[level.length - 1].height === 0) level[level.length -

1].height = square.height;
 if (level[level.length - 1].width + square.width <= width)

{
 level[level.length - 1].width += square.width;
 level[level.length - 1].squares.push(square);
 }
}
 });
 return level;
 };

3.2 First Fit Decreasing High (FFDH)
It is similar to the previous algorithm, with the difference

that for each next rectangle a place is searched for not only
at the last level, but starting from the lowest one. From here
and "first fit" - the rectangle is located on the first suitable
level from below. Intuitively, the packaging will be better.
Another significant difference is in performance, since in the

SPBPU DTMIS’20, November 18–19, 2020, Saint - Petersburg,

Russia
I. Ilin et al.

worst case it is necessary to consider all levels from bottom
to top at every step [13][14][15][16][17][18].

JavaScript BFDH pure function example:
firstFitDecreasingHeight(squares, stripConfig) {
 const {width} = stripConfig;
 const level = [
{
 height: 0,
 width: 0,
 squares: [],
}
];
 const usedIndexes = [];
 squares.map((square, index) => {
if (index === 0 && square.height > level[level.length -

1].height) level[level.length - 1].height = square.height;

if (level[level.length - 1].width + square.width <= width) {
 level[level.length - 1].width += square.width;
 if (!usedIndexes.includes(index)) level[level.length -

1].squares.push(square);
} else {
 squares.map((square, k) => {
 if (level[level.length - 1].width + square.width <= width

&& k > index) {
level[level.length - 1].width += square.width;
if (!usedIndexes.includes(k)) level[level.length -

1].squares.push(square);
usedIndexes.push(k);
 }
 });
 level.push({
 height: 0,
 width: 0,
 squares: [],
 });
 if (level[level.length - 1].height === 0) level[level.length -

1].height = square.height;
 level[level.length - 1].width += square.width;
 level[level.length - 1].squares.push(square);
}
 });
 return level;
 };

3.3 Best Fit Decreasing High
It is modification of the previous algorithm. Its essence is

that of the levels that are suitable for packing the next
rectangle, not the first, but the best one is chosen. The best
level is the one on which there will be a minimum of space
after packing the current rectangle. Simply put, the
minimum suitable space is chosen, which contributes to a
better level filling [19][20].

JavaScript BFDH pure function example:
bestFitDecreasingHeight(squares, stripConfig) {
 const {width} = stripConfig;
 const level = [
{
 height: 0,

 width: 0,
 squares: [],
}
];
 squares.map((square, index) => {
if (index === 0) level[level.length - 1].height =

square.height;

let bestFitLevelIndex = level.length - 1;
let smallestSpace = width;
level.map((lvl, index) => {
 const freeSpace = width - lvl.width;
 if (square.width <= freeSpace) {
 if (smallestSpace > freeSpace) {
smallestSpace = freeSpace;
bestFitLevelIndex = index;
 }
 }
});
if (bestFitLevelIndex !== level.length - 1) {
 level[bestFitLevelIndex].squares.push(square);
 level[bestFitLevelIndex].width += square.width;
 return;
}
if (level[level.length - 1].width + square.width <= width) {
 level[level.length - 1].width += square.width;
 level[level.length - 1].squares.push(square);
} else {
 level.push({
 height: 0,
 width: 0,
 squares: [],
 });
 if (level[level.length - 1].height === 0) level[level.length -

1].height += square.height;
 level[level.length - 1].width += square.width;
 level[level.length - 1].squares.push(square);
}
 });
 return level;
 }

3.4 Floor Ceiling No Rotation
The biggest issue of algorithms described above is the

remaining space above the situated on the floor blocks. The
rectangles are sorted by non-increasing height. And the
BFDH algorithm is applied with some modifications. Each
level has a "floor" and "ceiling". If possible, the rectangles are
packed on the "floor" from left to right. When the place ends,
an attempt is made to pack to the "ceiling" from right to left;
if there is no space on the ceiling, then only a new level
begins. In the best traditions of BFDH, at every step all levels
are viewed – first the “floor”, then the “ceiling” – for the
presence of the most suitable place. Packaging, as you can
see, is not bad. The method successfully packs the smallest
rectangles along the “ceilings” [21][22].

As the main idea of packing using BFDH was given below
and the FCNR uses the same principles in this section pseudo
code is presented.

Cloud Application For Sheet Materials Cutting Optimization
SPBPU DTMIS’20, November 18–19, 2020, Saint - Petersburg,

Russia

Input: The number of rectangles to be packed n, the

dimensions of the rectangles {w(Li); h(Li)} and the strip width
W.

Output: The height of a packing obtained in the strip.
1: Sort the rectangles in order of non-increasing height

such that h(L1) ≥ h(L2) ≥ ... ≥ h(Ln)
2: for i = 1..n do
3: if Li is ceiling feasible then
4: pack Li on ceiling with minimum residual space
5: else [Li is not ceiling feasible]
6: if Li is floor feasible then
7: pack Li on the floor with minimum residual space
8: else [Li is not floor feasible]
9: level++;
10: end if
11: end if
12: end for
13: Output the height H of the strip, found by adding the

height of each level.

4 Discussion
It should be mentioned that developed software is far

from production as it does not have inbuilt role system,
integrated payment system and relies on only AWS services
like ALB to achieve it. Moreover, far not all heuristics
algorithms were implemented in the software. There were
implemented only level algorithms. But with the help of
current application architecture and tools that were used, as
terraform it will take a little time to implement new methods
for cutting optimization which is beneficial for business.

Another important thing to be mentioned is that end-user
should manually choose algorithms according to production
situations, materials used. In future researches the model
that can do it automatically can be presented or a decision
support module.

The research provides a brief and possibly blurry
description of some areas, such as cloud computing and its
advantages and disadvantages comparing to on premises
software. But it should be said that the area of cutting
optimization and NP-hard problems solving is extremely vast
and it is complicated to cover even the top of the topic.

REFERENCES
[1] Lyovina, A., Kalyazina, S., Sinelnikov, M., Poljanskihh, A.: Conceptual

model of IT-infrastructure for production company: Target vision and
development approach. In: Proceedings of the 33rd International Business
Information Management Association Conference, IBIMA 2019:
Education Excellence and Innovation Management through Vision 2020.
pp. 8728–8735 (2019).

[2] Knapsack Problem Algorithms and Computer Implementations University
of Bologna // John Wiley & Sons 1990. 296 р.

[3] Lijun Wei, Wenbin Zhu, Andrew Lim.A., Block-based Layer Building
Approach for the 2D Guillotine Strip Packing Problem // European
Journal of Operational Research 2001

[4] ljashenko, O., Bagaeva, I., Levina, A.: Strategy for establishment of
personnel KPI at health care organization digital transformation. In: IOP
Conference Series: Materials Science and Engineering (2019).
https://doi.org/10.1088/1757-899X/497/1/012029.

[5] Anisiforov, A., Dubgorn, A., Lepekhin, A. Organizational and economic
changes in the development of enterprise architecture (2019) E3S Web of
Conferences, 110, № 02051.

[6] Ilin, I., Levina, A., Abran, A., Iliashenko, O. (2017). Measurement of
enterprise architecture (EA) from an IT perspective: Research gaps and
measurement avenues. Paper presented at the ACM International

Conference Proceeding Series, Part F131936, 232-243.
doi:10.1145/3143434.3143457.

[7] Ilin, I. V., Iliashenko, O. Y., & Borremans, A. D. (2017). Analysis of cloud-
based tools adaptation possibility within the software development
projects. Paper presented at the Proceedings of the 30th International
Business Information Management Association Conference, IBIMA 2017 -
Vision 2020: Sustainable Economic Development, Innovation
Management, and Global Growth, 2017-January, 2729-2739.

[8] Krasnov, S., Sergeev, S., Titov, A., Zotova, Y.: Modelling of digital
communication surfaces for products and services promotion. In: IOP
Conference Series: Materials Science and Engineering (2019).
https://doi.org/10.1088/1757-899X/497/1/012032.

[9] Hopper, E., Two-dimensional packing utilizing evolutionary algorithms
and other meta-heuristic methods. // Ph.D. thesis University of Wales
2000.

[10] A new placement heuristic for the orthogonal stock-cutting problem.
Operations Research // Burke, E. K., Kendall, G., Whitwell, G. // 2004.
655-671 p.

[11] Pan W.T., A new Fruit Fly Optimization Algorithm: Taking the financial
distress model as an example //Knowledge-Based Systems 2012. 69-74 p.

[12] Gent, I. 1998. Heuristic solution of open bin packing problems. Journal of
Heuristics 3:299–304.

[13] Local Search in Combinatorial Optimization // E. Aarts and J. K. Lenstra //
Wiley & Sons, Chichester 1997. 91–120 p.

[14] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network Flows. // Prentice Hall,
Englewood Cliffs, 1993.

[15] B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm,
J. Algorithms 6 (1) (1985) 49–70.

[16] E.G.Coffmann Jr., M.R. Garey, D.S. Johnson, Approximation algorithms
for bin packing: A survey, in: D. Hochbaum (Ed.), Approximation
Algorithms for NP-Hard Problems, PWS Publishing, Boston, 1997.

[17] M.Yue, A simple proof of the inequality FFD(L)11/9 OPT(L)+1,∀L, for the

FFD bin-packing algorithm, Acta Math. Appl. Sin. 7 (4) (1991) 321–331.

[18] Gy. Dósa, The tight bound of first fit decreasing bin-packing algorithm
isFFD(I)11/9OPT(I)+6/9, in: ESCAPE 2007, in: Lecture Notes in
ComputerSciences, vol. 4614, 2007, pp. 1–11.

[19] W. Zhong, Gy. Dósa, Z. Tan, On the machine scheduling problem with job
delivery coordination, Eur. J. Oper. Res. 182 (2007) 1057–1072.

[20] Johnson, D. 1973. Near-Optimal Bin Packing Algorithms. Ph.D.
Dissertation, Dept. of Mathematics, M.I.T., Cambridge, MA.

[21] Bischoff E.E. and Wäscher G. Cutting and packing, European Journal of
Operational Research, 1995, No. 84, pp. 503-505. 2.

[22] Ross P., Marin-Blazquez J.G., Schulenburg, S. and Hart E. Learning a
Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based
Approach to Hyper-heurstics, Proceeding of the Genetic and
Evolutionary Computation Conference, GECCO 2003, Chicargo, Illinois,
USA, 2003, pp. 1295-1306.

