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Abstract. Coastal tidal wetlands are significant and vulnerable aquatic ecosystems.
Quantitative remote sensing of biophysical and biochemical properties in coastal tidal wetland
habitats through the inversion of physical models has vital practical significance for monitoring
ecosystem function, environmental restoration, the global carbon, and nitrogen cycles. The
objectives of this research were to map leaf area index (LAI), chlorophyll content, as well
as the sensible heat flux, latent heat flux, and productivity in Chongming Dongtan coastal tidal
wetland habitats of China and to provide a mapping protocol of biophysical and biochemical
properties in Chongming Dongtan wetland for environmental protection and restoration as well
as assessment and monitoring. In order to obtain significant information for biodiversity pro-
tection and management, a method based on the Soil Canopy Observation of Photosynthesis and
Energy fluxes model and lookup table approach has been developed. The results derived from
our study contain the reflectance values of Scirpus mariqueter and Phragmites australis spectra
are lower than those commonly found for vegetated areas. This may be caused by the dark soil
background and low LAI. Moreover, as for the values of latent heat flux (between 120 and
190 Wm−2) and productivity (between 3 and 14 μmolm−2 s−1), mudflats are lower than veg-
etation. However, the values of sensible heat flux (between 140 and 170 Wm−2) of mudflats are
higher than that of vegetation. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.15.038508]
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1 Introduction

Tidal wetlands are significant and vulnerable aquatic ecosystems. They are present all around
the world and serve as a kind of critical habitat for extensive varieties of fish, plants, and other
wildlife.1 This sort of ecosystem contributes to protecting and buffering shorelines, adjusting
river runoff, controlling, and storing floodwaters potentially as well as purifying natural water
bodies.2 Moreover, as rapid growth of carbon dioxide from the air in recent years, tidal wetlands
have become carbon sinks for atmospheric greenhouse gases due to the enormous carbon seques-
tration potential.3 Nevertheless, these habitats are rapidly declining in area due to destruction
by natural and human activities such as other species invasion,4 sea-level rise,5 and rapid
urbanization.6 Therefore, monitoring and protecting tidal wetlands, especially for coastal tidal
wetlands, is important and valuable not only for ecosystem biodiversity but also for human
sustainable development.

An effective wetland monitoring method for conservation and management should be
integrated in nature, including multifarious significant aspects such as properties, distribution,
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productivity, and components.7,8 Nevertheless, conventional monitoring methods, which depend
on sampling in field work to research characteristics of wetland, are usually time-consuming,
expensive, and insufficient for analyzing the extensive regional difference and variability of time
and space.9 Remote sensing techniques using satellite sensors supplies an economical and con-
venient method to onerous field work for assessing, monitoring, and protecting coastal tidal
wetland and its dynamic variations in different resolutions and scale levels.10

Over the past decade, developments in remote sensing techniques and rising availability of
high-spectral and spatiotemporal resolution data have obviously improved our capacity to map
properties of wetland habitats.11 Multi-resolution spatiotemporal images from satellite such as
MODIS, Landsat, and ASTER are available for free to the public and such sensors have been
used in a few researches for the classification of wetland ecosystems.12–14 Furthermore, some
relatively high-resolution sensors just as Quickbird, SPOT, and RapidEye have been used by
several studies for classification of dynamic detection analysis in wetland habitats.15,16

Remote sensing technique in wetland is more difficult than that of terrestrial vegetation due to
the fact that coastal interface of wetland habitats that weakens the near-infrared (NIR) signal
intensity, transfers red-edge locations, and eventually reduces effects of red-edge type indices
and NDVI to detect growing vegetation.17–19 Wetland habitats show relatively high-spatial and
spectral variations as well because of the sudden changes of conditions in surrounding environ-
ments that generate limited ecotone areas, making plant community boundary identification
difficult.20 Vegetation diversity in wetland ecosystem generates diverse species combinations
with various biochemical components and morphological structures, which, in reverse, produces
different spectral performances resulting in difficulties in mapping of coastal tidal wetlands.21,22

Also spectral overlaps make discrimination of green vegetation difficult.14

In recent years, some researches for monitoring and evaluating wetland habitats using remote
sensing methods as well as varieties of image processing technologies have been concentrated on
classification of vegetation communities23,24 and depicting the scope of these ecosystems.25,26

This sort of mapping supplies essential information about the spatial extent in the past and
present and the dynamics changes of wetland coverage. Other remote sensing researches con-
centrate on analyzing and detecting the biophysical characteristics of coastal tidal wetland hab-
itats using satellite sensors with coarse temporal resolution.27,28 Although the research supplies
profound scientific information of biophysical properties [such as leaf area index (LAI) and
chlorophyll content (Cab)], they are always impossible to provide deeper understanding about
the spatial variation of the tidal wetlands in wide coverage. Recently, a research developed map-
ping of tidal wetland biophysical properties for productivity dynamic changes analysis in the
long term using MODIS through establishing relationship between VIs and biophysical
characteristics.29 However, this sort of mapping needs a lot of sampling data in different years
and the process of field work is time-consuming.

Physically based modeling can be used to relate remote sensing signals to ecosystem char-
acteristics. The Soil Canopy Observation of Photosynthesis and Energy (SCOPE) fluxes model,
which is a representative soil-vegetation-atmosphere transfer approach combined with radiative
transfer models for leaf and canopy,30 has been used for the combined simulation of fluorescence
signals, top of Canopy (TOC) reflectance, and thermal radiation with CO2, energy, and water.31

The SCOPE model that takes into account leaf biochemistry processes combining of radiative,
mass transfers, and turbulent models inside the canopy is applied to surface energy balance,
photosynthesis processes, and reflectance spectra between 400 and 50,000 nm.32 In the visible
wavelength range, reflectance reduces with increase in both chlorophyll and LAI values.
Meanwhile, LE (latent heat flux), H (sensible heat flux), and gross primary productivity (GPP)
are positively related to LAI and Cab so that LAI and Cab (and other pigments) can be used to
simulate fluxes of H, LE, and GPP.

Chongming Dongtan coastal tidal wetland habitat is the largest estuary Alluvial Island and
Sand Island in the world. And the Chongming Dongtan Nature Reserve was listed in the Chinese
Protected Wetlands in the year of 1992, as well as regarded as internationally significant under
the Ramsar Wetlands Convention in 2001 and also national nature preserve in the year of 2005.33

In order to obtain significant information for biodiversity protection and management, the main
objective of this study is to map of LAI, chlorophyll content, as well as the sensible heat flux,
latent heat flux, and productivity in Chongming Dongtan coastal tidal wetland habitat of China
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through SCOPE model and lookup table approach using Landsat 8 data to help fill this knowl-
edge gap.

2 Materials and Methodology

2.1 Study Area

Chongming Dongtan wetland habitat is located in the mouth of the Yangtze River Estuary in
northeastern Shanghai, China (121°50′ to 122°05′ E, 31°25′ to 31°38′ N) (Fig. 1). It has an area
of ∼326 km2 and it consists of marshland and tidal channels. And it has been regarded as a
subtropical monsoon climate, with an average annual rainfall and temperature of 1022 mm and
15.3°C, respectively.34

There are several types of vegetation distributed in the study area such as Scirpus mariqueter,
Spartina alterniflora, and Phragmites australis (from field investigation in September 2016).
Scirpus mariqueter community dominates the vegetation at an elevation between 2 and 2.9 m
in the salt marsh, whereas plant communities are dominated by Phragmites australis above
2.9 m.33 As for Spartina alterniflora, it is a kind of invasive species that could be found on
the most elevated soils higher than 3.5 m but its spatial distribution is not widespread.33

2.2 Study Materials

Landsat 8 Operational Land Imager (OLI) and thermal infrared sensor (TIRS) image on
September 22, 2016 were selected for this study corresponding to the field data. Table 1 shows
that the spatial resolution of Landsat 8 image for spectral bands 1 to 7 and 9 is 30 m. Landsat 5
Thematic Mapper (TM) images in the year between 2005 and 2007 were selected to validate
simulated results corresponding to the flux tower data (2005 to 2007). The specific information
of Landsat 5 TM sensor is illustrated in Table 1. Meteorological data in this research were used
to complete atmospheric correction of the Landsat 8 OLI and TIRS image and Landsat 5 TM
images. Meteorological data contained aerosol optical thickness, water vapor (g∕cm2), ozone
(g atm cm), and surface pressure (hpa). They were collected from Meteorological Station
website, Ozone and Air Quality website, and AERONET. The flux tower data in this research
from the year 2005 to 2007 are all from two flux towers: Dongtan 2 Chongming China

Fig. 1 Landsat 8 image of Chongming Dongtan wetlands in Shanghai on September 22, 2016
(locations of two flux towers: Dongtan 2 Chongming China and Dongtan 3 Chongming China).
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(31.5847° N, 121.9035° E) and Dongtan 3 Chongming China (31.5169° N, 121.9717° E)
(Fig. 1). The flux tower data were all provided by State Key Laboratory of Estuarine and
Coastal Research (SKLEC) and can supply listing of the variables [air temperature, wind speed,
net ecosystem exchange (NEE), wind direction, CO2 flux or the rate of vertical transfer of CO2,
sensible heat flux, latent heat flux, etc.], and they provide time series of sensible heat flux and
latent heat flux. Without GPP processed (only NEE), this study was limited to H and LE. And
measurement metadata (the information of locations, spectrum number, land cover types, veg-
etation height, vegetation fraction, soil moisture, and weather condition) were collected in
September 2016.

2.3 Methodology

2.3.1 Data preprocessing of Landsat image

Data preprocessing has been performed to convert the level 1 Landsat 8 image to an atmospheri-
cally corrected image with TOC reflectance. To commence with, DN has been converted to
reflectance in Integrated Land and Water Information System (ILWIS) using conversion guide-
lines and equations provided by USGS, for bands 1 to 9 of Landsat 8 OLI image containing the
study area. In addition, atmospheric correction has been performed using the simplified method
for the atmospheric correction (SMAC) toolbox in ILWIS using the data in Table 2. SMAC is a
simplification of the code 6S35 for atmospheric correction of visible- and near-visible bands of
some satellite sensors.

Table 1 Band combinations of Landsat 8 OLI TIRS image and Landsat 5 TM image.

Bands Wavelength (μm) Resolution (m)

Landsat 8 OLI and TIRS Band 1: coastal aerosol 0.43 to 0.45 30

Band 2: blue 0.45 to 0.51 30

Band 3: green 0.53 to 0.59 30

Band 4: red 0.64 to 0.67 30

Band 6: SWIR 1 1.57 to 1.65 30

Band 7: SWIR 2 2.11 to 2.29 30

Band 8: panchromatic 0.50 to 0.68 15

Band 9: cirrus 1.36 to 1.38 30

Band 10: TIRS 1 10.60 to 11.19 100

Band 11: TIRS 2 11.50 to 12.51 100

Launched February 11, 2013 Band 5: NIR 0.85 to 0.88 30

Landsat 5 TM Band 1: blue 0.45 to 0.52 30

Band 2: green 0.52 to 0.60 30

Band 3: red 0.63 to 0.69 30

Band 4: NIR 0.76 to 0.90 30

Band 5: NIR 1.55 to 1.75 30

Band 6: thermal 10.40 to 12.50 120

Band 7: mid-infrared 2.08 to 2.35 30

Note: TIRS bands are acquired at 100 m resolution but are resampled to 30 m in delivered data product.
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2.3.2 Model calibration with in situ data

RTMo is the radiative transfer part of SCOPE for the visible to NIR.36 After inputting the in situ
reflectance, which was collected by ASD FieldSpec handheld 2 tool from field sampling into the
RTMo retrievals of SCOPE model, the best estimates of vegetation and soil parameters were
obtained. Meanwhile, the simulated reflectance spectra are also obtained. In order to reach the
optimization of parameter sets, objective function has been selected to evaluate the results of the
model calibration. The tools for the best fitting are already available at https://github.com/
christiaanvandertol. Subsequently, the retrieved parameters (Cab, LAI, and soil parameters) are
obtained.

The objective function used for the retrieval was

EQ-TARGET;temp:intralink-;sec2.3.2;116;398RMSE1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðsimulated reflectance − in situ reflectanceÞ2
n

s
;

where RMSE1 is the root-mean-square error between simulated reflectance and in situ reflec-
tance, n is the number of bands of in situ reflectance spectra, the simulated reflectance is the
output reflectance of SCOPE model, and the in situ reflectance is the measured reflectance in
the field.

2.3.3 Simulated maps from SCOPE model with Landsat 8 data

The SCOPE model simulated productivity, sensible heat flux, and latent heat flux correspond to
respective reflectance data obtained based on iterative calculation of SCOPE algorithm. Using
reflectance data and corresponding meteorological data, the productivity, sensible heat flux, and
latent heat flux can be simulated by SCOPE model calibration, it is possible to estimate pro-
ductivity, sensible heat flux, and latent heat flux from for example a Landsat 8 image:

EQ-TARGET;temp:intralink-;sec2.3.3;116;201RMSE2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðsimulated reflectance − Landsat8 reflectanceÞ2
n

s
;

where RMSE2 is the root-mean-square error between simulated reflectance and Landsat 8
reflectance, and n is the number of bands of Landsat 8 image. Simulated reflectance is the
output reflectance of SCOPE model converting into Landsat 8 OLI bands (the first seven
bands) after calibration and Landsat 8 reflectance is the TOC reflectance from Landsat 8
OLI image.

Table 2 Necessary parameters and their data source of atmospheric correction.

No. Input data for SMAC Unit Data source

1. Aerosol optical thickness — AERONET website

2. Water vapor g∕cm2 AERONET website

3. Ozone g atm cm Ozone and Air Quality website

4. Surface pressure hpa Chinese Meteorological Station

5 Solar azimuth deg Landsat image products

6. Solar zenith deg Landsat image products

7. Sensor zenith deg Assumed NADIR

8. Sensor azimuth deg 0
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2.3.4 Model validation

Without GPP processed (only NEE) from flux tower data, this study was limited to sensible heat
flux and latent heat flux for model validation. First of all, it is necessary to repeat the steps in
Sec. 2.3.3 to get the simulations of sensible heat flux, latent heat flux, and the corresponding soil
spectra, LAI, and chlorophyll content in the year from 2005 to 2007 using Landsat 5 images.
Meanwhile, soil spectra, LAI, and chlorophyll around flux tower from simulations can be
selected through the above simulations. Then the time series of sensible heat flux and latent
heat flux were simulated with the time series module of SCOPE model with the value of the
above soil spectra, LAI, and chlorophyll around the flux tower.

Furthermore, the measured time series of sensible heat flux and latent heat flux were com-
pared to field measurements. (The flux tower data for the year from 2005 to 2007 were available
at SKLEC.) Then model validation was carried out through comparing the two curves mentioned
above using objective function as follows:

EQ-TARGET;temp:intralink-;sec2.3.4;116;573RMSE3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðsimulated results − flux tower dataÞ2
n

s
;

where RMSE3 is the root-mean-square-error between simulated results and flux tower data, n is
the number of measuring records. Simulated results include the sensible heat flux, productivity,
and latent heat flux from time series module of SCOPE model in the year from 2005 to 2007,
using Landsat 5 TM images and flux tower data is the corresponding sensible heat flux, pro-
ductivity, and latent heat flux collected from 2005 to 2007 at SKLEC.

3 Results

3.1 Analysis of Model Calibration with Measurements and Simulations

The objective of this section is to calibrate the measuring data with the simulation ones to select
the best vegetation parameters as the input data in SCOPE model simulations through adjusting
parameter values with some prior information.37,38

3.1.1 Mudflats

RTMo (transfer of solar and sky radiation) retrievals of SCOPE model should be used for this
section. For the mudflats, the LAI was set to zero (no vegetation) and then the soil parameters
[soil brightness (B), parameters that determine the shape of the soil reflectance spectrum exclud-
ing soil brightness (lat and lon), and soil moisture content (SMp), which mostly affects the
soil brightness] are varied to obtain the optimization of soil parameters and simulations for
each sample points (Fig. 2). As all the 15 graphs of mudflats spectra shown, the measurements
matched the simulations pretty well. Especially, the total one (Fig. 3) that represented the RTMo
results and measured data were fairly satisfying excluding the final noise (reflectance after
900 nm). Meanwhile, the RMSE values between the simulations and measuring data for each
sample point are all below 0.014, and its mean value is 0.00524.

Table 3 depicts the maximum, minimum, and mean values of those four soil parameters after
simulations of RTMo retrievals. The mean values of those four soil parameters are selected as
the soil basic values in RTMo retrievals of SCOPE model.

3.1.2 Vegetation

Based on the above results of mudflats, four soil parameters were treated as constant for the
vegetated areas and the vegetation parameters [the chlorophyll concentration of the leaves
(Cab), the carotenoid concentration of the leaves (Cca), dry matter concentration of the leaves
(Cmd), the water concentration of the leaves (Cw), senescent material content (Cs), the mes-
ophyll thickness parameter (N), the leaf inclination parameter (LIDFa), the bimodality of the
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Fig. 3 The total simulated and measuring reflectance spectra of mudflats.

Table 3 The maximum, minimum, and mean values of four soil
parameters in RTMo retrievals.

Parameters Maximum Minimum Mean

B 0.8187 0.3042 0.5354

lat 28.7078 23.2313 26.9000

lon 44.8608 17.5263 29.8265

SMp 51.4208 14.7901 43.1477

Fig. 2 The simulated (gray line) and measuring (blue line) reflectance spectra of mudflats in each
sample point.
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leaf inclination (LIDFb), and the LAI] were retrieved. According to the types of vegetation
(Phragmites australis, Scirpus mariqueter, and Spartina alterniflora), simulations of vegetation
parameters were divided into three parts as Fig. 4 describes. All of them were quite satisfying due
to the fact that the simulations matched measurements quite well in the wavelength range
between 400 and 900 nm. As for the value of RMSE between simulations and measurements,
Phragmites australis is no more than 0.004, Scirpus mariqueter is no more than 0.005, and
Spartina alterniflora is no more than 0.008. Thus the spectra were well reproduced after the
calibration. However, independent leaf measurements were available to validate whether the
retrieved parameters were correct.

Table 4 illustrates the maximum, minimum, and mean values of nine vegetation parameters
for three vegetation types after retrievals using RTMo. The mean values of six vegetation
parameters (Cmd, Cw, Cs, N, LIDFa, and LIDFb) for three vegetation types, and the mean values
of the above four soil parameters (B, lat, lon, and SMp) were selected as the input data in the
next step of SCOPE model simulation: the generation of the lookup table for retrievals from
Landsat 8.

3.2 Mapping of Productivity, Latent Heat Flux, Sensible Heat Flux, and
Vegetation Parameters

As we can see from Fig. 5, chlorophyll pigment concentration in coastal tidal wetlands in image
is between 5 and 60 μg cm−2 and those who have higher concentration are resembles to agri-
culture farms or parks in the whole map. As for the masked part in chlorophyll map, it represents
the masked area of which RMSE > 0.05. The reasons for the strange phenomenon can be
explained in Sec. 4. Meanwhile, LAI in coastal tidal wetland in image is no more than
2.0 m2 m−2 and those who have higher constant LAI values (more than 2.5 m2 m−2) resemble
to agriculture farms and parks in image. Moreover, the map of productivity flows mostly the
same trend as of LAI in coastal tidal area. It can be confirmed from the map of productivity and
LAI that the area with high LAI has a higher productivity. Last but not least, the latent heat flux is
between 90 and 150 Wm−2 in coastal tidal wetland part, whereas the sensible heat flux is almost
between 140 and 170 Wm−2. Also the sensible heat flux of vegetated areas in coastal tidal
wetland is lower than that of mudflats.

3.3 Results of Model Validation with Simulations and Measurements

Based on the above section, fluxes were simulated for the whole September of the 3 years. Thus
SCOPE model was executed for 6 times, assuming that the retrieved Cab and LAI could be
considered representative for a month. And then the simulated time series of latent heat flux
and sensible heat flux in September from 2005 to 2007 were obtained. The simulated and mea-
sured curves of latent heat flux and sensible heat flux in the two flux towers in the year of 2005
were described in Figs. 6 and 7 (the curves in 2006 and 2007 were similar). The records of flux
tower measurements during rainy days were removed, because during those days, the reliable
data could not be obtained. As seen from the following figures, the simulated data have little
difference with the actually measured data, which indicated that the results of model simulation
are effective.

4 Discussion

4.1 Analysis of Selecting Variable Value Range of Input Parameters in
SCOPE Model Simulation

Selection of input data (Cab, Cca, LAI, soil spectra number, etc.) range in SCOPE model
influences the final simulations of mapping profoundly. The simulated maps of productivity,
latent heat flux, sensible heat flux, LAI, and chlorophyll can be obtained as Fig. 8(a) illustrates
through individual run of SCOPE model with all the parameters of 46 measuring points as input
data in the LUT. Although RMSE value is no more than 0.05 along coastal tidal wetland,
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Fig. 4 The total curves between simulations and measurements of three vegetation types:
(a) Phragmites australis, (b) Scirpus mariqueter, and (c) Spartina alterniflora.
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Table 4 The maximum, minimum, and mean values of nine vegetation parameters for three
vegetation types in RTMo retrievals.

Parameters

Phragmites australis Scirpus mariqueter Spartina alterniflora

Maximum Minimum Mean Maximum Minimum Mean Maximum Minimum Mean

Cab (μg cm−2) 56 21 31 59 15 29 59 37 52

Cw (g cm−2) 0.0213 0.0152 0.0184 0.0322 0.0159 0.0228 0.0180 0.0135 0.0151

Cmd (g cm−2) 0.0121 0.0002 0.0059 0.0200 0.0002 0.0132 0.0069 0.0001 0.0024

Cs (a.u.) 0.3073 0.0601 0.2000 0.3996 0.0128 0.2258 0.2105 0.0850 0.1288

Cca (μg cm−2) 10.5 6.2 8.6 11.4 7.4 9.4 13.7 9.2 11.7

N
(dimensionless)

2.27 1.06 1.45 2.07 1.00 1.17 3.46 1.50 2.78

LAI (m2 m−2) 1.56 0.99 1.35 2.38 0.34 1.74 2.51 0.43 1.23

LIDFa −0.1401 −0.9802 −0.7128 0.0788 −1.0000 −0.8820 0.7117 −0.5570 0.2272

LIDFb −0.0048 −0.1637 −0.1130 0.0068 −0.1283 −0.0321 −0.0518 −0.1337 −0.0821

Fig. 5 Map of biophysical and biochemical properties in Chongming Dongtan: (a) leaf chlorophyll
content (μg cm−2), (b) LAI (m2 m−2), (c) productivity (μmolm−2 s−1), (d) latent heat flux (Wm−2), and
(e) sensible heat flux (Wm−2).
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the values of productivity, latent heat flux, sensible heat flux, LAI, and chlorophyll in coastal
tidal wetland are not changed so much. However, actually mudflats account for a large part of
wetland in September. Therefore, the values of LAI and chlorophyll should not be high and
similar along coastal tidal wetland. An LUT of only 46 combinations cannot represent the
whole area well. As for the combination of LAI and chlorophyll without 0 value [Fig. 8(b)],
the simulated maps are better than those of the combination of 46 measuring points. However,
the mudflats were also not simulated satisfyingly. The cause is that the simulation has not
contained mudflats’ properties and SCOPE cannot simulate well in such conditions.

Fig. 6 The simulated and measured curves of latent heat flux in the year of 2005: (a) Dongtan 2,
(b) larger version of the yellow rectangle in (a), (c) Dongtan 3, and (d) larger version of the yellow
rectangle in (c).
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4.2 Reasons for the Uncertainties of Mapping with SCOPE Model

Based on Sec. 3.3, there was masked part in simulated maps of productivity, latent heat flux,
sensible heat flux, LAI, and chlorophyll for which RMSE of the simulated Landsat 8 OLI reflec-
tance exceeded 0.05. As for the reasons for removing the parts of which RMSE value is more
than 0.05 can be found in comparing Landsat 8 OLI image in natural color composite with the
simulated maps before removing (Fig. 9). Actually LAI value in the mudflats and ocean parts
should be 0, but they had nonzero value in the simulated LAI map. Therefore, the incorrect part

Fig. 7 The simulated andmeasured curves of sensible heat flux in the year of 2005: (a) Dongtan 2,
(b) larger version of the yellow rectangle in (a), (c) Dongtan 3, and (d) larger version of the yellow
rectangle in (c).
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should be removed. When RMSE value is more than 0.05, the clouds, unrealistic mudflat, and
ocean parts can be all masked. Therefore, a limit of RMSE of 0.05 was used.

To be more specific, we can select two points [one is in vegetated area (RMSE < 0.02), and
the other is in mudflats (RMSE > 0.1)] in the simulated map to analyze the simulated accuracy
of different areas. From Fig. 10(a), the results of five simulated reflectance spectra and pixel
values in seven bands of Landsat 8 in vegetated area is relatively consistent. However, the
model simulations and pixel values in seven bands of Landsat 8 in mudflats from Fig. 10(b)
are completely different. In brief, through comparing the specific simulations of two points,
the reasons for the uncertainties of SCOPE model simulations can be inferred as follows:5

meteorological influence;4 insufficiency of input data of soil properties;23 the quality and

Fig. 8 The simulated maps of productivity, latent heat flux, sensible heat flux, LAI, chlorophyll, and
RMSE with combination: (a) 46 measuring points and (b) LAI and chlorophyll without 0 value.

Fig. 9 The simulated maps of productivity, latent heat flux, sensible heat flux, LAI, chlorophyll, and
RMSE before removing.
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quantity of field work data;9 and the number of simulated combinations. If the above problems
can be improved, the simulated results could improve.

5 Conclusions

Initially, in the case of the differences of in situ measured spectral signatures of the different
vegetation types and the mudflats, the reflectance values of Scirpus mariqueter and Phragmites
australis spectra are lower than those commonly found for vegetated areas. This may be caused
by the dark soil background and low LAI. Moreover, in terms of LAI and chlorophyll value,
mudflats should be 0, whereas the counterparts of vegetation are around 1 to 2 m2 m−2 and
5 to 60 μg cm−2, respectively. As for the values of latent heat flux and productivity, mudflats
are lower than vegetation. However, the values of sensible heat flux of mudflats are higher
than that of vegetation. Last but not least, the uncertainties of the productivity (photosynthesis)
product of the SCOPE model from Landsat 8 are:5 uncertain meteorological condition (only an
example of meteorological condition in SCOPE input data, not the real weather for study area);4

insufficient simulation of mudflats;23 the quality and quantity of field work data;9 and the
number of simulated combinations.

Fig. 10 The five simulated reflectance spectra and pixel values in seven bands of Landsat 8 in
different areas: (a) vegetated area and (b) mudflats area.
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For further study, if the quality and quantity of field work data can be improved, the results of
mapping protocol of biophysical and biochemical properties in Chongming Dongtan wetland for
environmental protection and restoration as well as assessment and monitoring will be much
better. Furthermore, this work gives good suggestions related to quantifying present or future
biophysical and biochemical properties of ecosystem, at least in coastal tidal wetland habitats,
through multi-spectral satellite data.
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