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Abstract—Convolutional Neural Networks (CNN) are widely
used for image classification and have achieved significantly
accurate performance in the last decade. However, they require
computationally intensive operations for embedded applications.
In recent years, FPGA-based CNN accelerators have been
proposed to improve energy efficiency and throughput. While
dynamic partial reconfiguration (DPR) is increasingly used in
CNN accelerators, the performance of dynamically reconfig-
urable accelerators is usually lower than the performance of
pure static FPGA designs. This work presents a dynamically
reconfigurable CNN accelerator architecture that does not sac-
rifice throughput performance or classification accuracy. The
proposed accelerator is composed of reconfigurable macroblocks
and dynamically utilizes the device resources according to model
parameters. Moreover, we devise a novel approach, to the best
of our knowledge, to hide the computations of the pooling
layers inside the convolutional layers, thereby further improving
throughput. Using the proposed architecture and DPR, different
CNN architectures can be realized on the same FPGA with
optimized throughput and accuracy. The proposed architecture
is evaluated by implementing two different LeNet CNN models
trained by different datasets and classifying different classes.
Experimental results show that the implemented design achieves
higher throughput than current LeNet FPGA accelerators.

Index Terms—FPGA, CNN, Partial Reconfiguration

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been exten-
sively used in computer vision applications such as object
recognition, autonomous driving, and semantic segmentation
[1], [2]. Their state-of-the-art performance in classification
accuracy makes CNNs very attractive. Due to the huge com-
putational load of CNNs, it is difficult to implement energy
efficient designs on CPU and GPU platforms [3]. In real-
time CNN implementations, Field Programmable Gate Arrays
(FPGA) and Application Specific Integrated Circuit (ASIC) are
very good alternatives for accelerating CNNs. Since ASICs are
custom designed integrated circuits and can only be optimized
for accelerating particular CNNs, they lack scalability and
flexibility. FPGAs can be used in CNN accelerator designs
effectively, since they are more energy efficient than CPUs
and GPUs, and more flexible than ASICs [4].

The Dynamic Partial Reconfiguration (DPR) capability of
modern FPGAs allows to dynamically modify the hardware
structure of the implemented circuit by loading partial bit
files while the remaining logic continues to operate [5]. DPR
provides a very high level of flexibility to realize adaptive
hardware designs. In addition, sharing resources between mu-
tually exclusive computations reduces the resource utilization.
This leads to the dynamic FPGA design consuming less power
than the purely static design. Although the major FPGA
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vendors have been supporting DPR for two decades already,
it has remained mostly underutilized due to the limited use
cases and shortage of benefits over static designs [6]. CNN
accelerators represent a suitable application for exploiting
DPR, since different CNN architectures can be implemented
with partial modifications.

In CNN accelerator applications, hardware optimizations
play a key role in performance. To design a high-performance
accelerator, computations and memory operations should be
considered together. Optimizing the bit sizes can reduce
computations and memory requirements, and help to exploit
the trade-off between accuracy and latency [7]. Moreover,
pipelining and parallelism strategies need to be consistent with
the hardware architecture, bit sizes and available resources. As
a result, using DPR and hardware optimizations in the FPGA
design, flexible and efficient CNN accelerators can be realized.
To this end, the contribution of this work is two-fold:

« We devise a flexible hardware design and computer archi-
tecture that allows to easily modify the CNN accelerator
(i.e., insert/delete/update the structure and precision of
each layer) at run time using dynamic partial reconfigura-
tion. The proposed architecture can adapt to different net-
works and, therefore, also to different applications using
DPR without any degradation in accuracy or throughput.

« We introduce a novel method to perform feature extrac-
tion that allows to hide the computations of a pooling
layer behind the computations of a convolutional layer.
This allows to further exploit pipelining and other opti-
mizations for better performance.

II. BACKGROUND & LITERATURE REVIEW

CNNSs belong to a class of deep neural networks that can
be used in image processing and object recognition as they
can extract and classify features in an image. It consists
of convolutional, pooling, and fully connected (FC) layers.
The convolutional layers implement convolutions to extract
the features in an image, while the pooling layers reduce
the data size progressively, thereby decreasing the number of
parameters and the sensitivity to the location of the features.
Thereafter, the feature maps are flattened and fed to FC layers
for classification. An FC layer is a feed forward neural network
that consists of one or more hidden layers. After the hidden
layers, an output layer produces a probability per class/object.

In recent years, CNN architectures have been increasingly
more accurate and complex [8]-[10]. Designing more robust
and accurate CNN architectures results in higher computa-
tional complexity and power consumption. FPGAs can over-



come these limitations due to their custom parallel processing
capabilities and flexibility. Various CNN implementations on
FPGA have been reported in literature [11]-[13], focusing on
different aspects, e.g., the optimization of only the convo-
lutional layers [14], [15] or the overall accelerator through-
put [16]. There are also SW/HW co-design solutions that
exploit the aggregate power of both an embedded processor
and the programmable logic [17], [18]. Some [19], [20] present
resource-intensive designs and achieve high throughput disre-
garding power consumption, while others implement binary
neural networks (BNNs) that achieve high power efficiency at
the cost of reduced accuracy using binary weights/biases [21].

Various studies [22]-[24] investigate the DPR feature of
FPGAs, and design resource-efficient and low-power CNN
accelerators. A hardware design with DPR is divided into two
parts, the static part and the dynamic part. The static part
is configured at power up and contains the unmodified part
of the design. Dynamic parts are the reconfigurable regions
having a set of physical resources on the FPGA. These col-
lections of resources inside one or more rectangular regions are
called Pblocks and can be reconfigured with different partial
bitstreams without changing the static part, which continues to
operate. For DPR, Internal Configuration Access Port (ICAP)
is offered by Xilinx FPGAs and Processor Configuration
Access Port (PCAP) is also provided to reconfigure FPGA
from processor side in Zynq FPGAs [5].

Youssef et al. [7] use DPR to adjust the power consumption
according to the power level of the battery. If the power is
low, a lower accuracy design (i.e., smaller bit sizes) is loaded.
Other works use DPR to change the kernel size dynamically
and execute convolutions with different kernel sizes [25], [26].
There are also CNN accelerators utilizing DPR to reconfigure
the processing engines in the hardware, which operate in
a cascaded manner [27], [28]. Moreover, in some works,
each layer of the CNN accelerator is designed as a separate
partial bit file and every layer is processed after the related
partial bit file is loaded [29], [30]. The resource usage is
considerably minimized, but the DPR overhead significantly
decreases the throughput of the CNN accelerator. Using our
proposed hardware architecture, different CNN accelerators
can be realized using DPR without sacrificing throughput or
accuracy of each CNN accelerator, because DPR is employed
for switching between the different CNN accelerators instead
of switching between layers within the same CNN.

III. SYSTEM DESIGN
A. Accelerator Architecture

In our proposed accelerator, a basic processing element
is referred to as a MacroBlock. A MacroBlock is a generic
construct with three different interfaces: a data interface (i.e.,
AXI stream master/slave) is used for high-speed data transfer,
a memory interface (i.e., AXI4) is used for updating the
weights and biases, and a GPIO interface is employed for
1/O operations. The MacroBlock is a partially reconfigurable
region, thus it has an additional reconfiguration interface and
it can be used to implement any of the CNN layers.

The proposed CNN accelerator architecture, shown in Fig-
ure 1, is a cascaded connection of a number of MacroBlocks,
depending on the CNN depth. Every MacroBlock can be
interconnected to any other MacroBlock or 1/0O port of the
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Fig. 1. Proposed hardware architecture with 4 macro blocks that can be
dynamically interconnected.

FPGA

FPGA using internal bus switches, and these interconnections
can be configured at runtime. This allows to dynamically
change the CNN network size by adding or removing layers,
as well as by replacing the structure of a layer with another
structure to realize different types of CNN networks. In the
updated structure, the weights and biases can be updated using
the memory mapped interface of the MacroBlocks.

Furthermore, the stream switch in the proposed architecture
allows MacroBlocks to be clocked at different frequencies.
When the sender’s data transfer speed is higher than the
receiver’s, the receiver (i.e., slave) can block the sender (i.e.,
master) to decrease the data transfer rate using the back pres-
sure property of the AXI stream interface [31]. Furthermore,
since each MacroBlock can be run at a different frequency,
clock frequencies can be optimized according to the frequency
margin of the related MacroBlock. Thus, if a MacroBlock
needs more clock cycles for execution, it is possible to run
it at higher frequencies to preserve the overall throughput.

B. Design Optimizations

a) Pipeline: A typical CNN architecture consists of
sequential layers where the output of one layer is input to
the next. Thus, several layers are computed concurrently in a
pipelined datapath. The pipeline performance is limited by the
MacroBlock with the highest initiation interval (the number of
cycles that must elapse between issuing two operations). For
the maximum throughput, the available hardware resources are
allocated to adjust the execution times approximately equal for
each layer. In other words, for each layer, the degree of the
parallelism is optimized for the maximization of the overall
throughput, not to maximize the throughput of a specific layer.

b) Quantization: An important factor in a CNN acceler-
ator is the precision of bit sizes for activations, weights, and
biases. Calculations that implement floating-point arithmetic
consume a considerable amount of hardware resources, yet
the performance difference between fixed-point and floating-
point arithmetic implementations in terms of accuracy can be
negligible. This can be achieved only if optimum bit sizes
are used in the fixed-point design. Thus, the network is first
developed using Python Tensorflow and the optimum bit sizes
are determined based on the accuracy drop, as compared
with the accuracy achieved with single-precision floating-point
arithmetic. We use 8-bit weights, 16-bit activations, and 32-bit
biases, with an accuracy drop of less than a 0.01% in compar-
ison with the single-precision floating-point implementation.

c) Merging of the pooling and convolution layers: The
most time-consuming operation in a CNN is the convolution.
To this end, we devise a novel convolution operation that hides
the computations of pooling layers within the convolution
layer, thereby eliminating the delay of the pooling layers. This
optimization is directly applicable to the most popular CNNss,
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Fig. 2. Block diagram of the proposed convolution
such as LeNet, AlexNet, VGGNet, because all of them apply
pooling to the output of the convolutional layers to decrease
sensitivity to the location of the features.

The output pixel of a convolution layer with a() input and f{)
activation function followed by a maximum pooling layer with
2 x 2 kernel, and downsampling by 2 is given by Equation 1.
1

‘]) = max(f(Conv(a(i,j)), f(Conv(a(i,j + 1)),

2°2
f(Conv(a(i +1,7))), f(Conv(a(i+ 1,7 + 1)))) (1

output(

In Equation 1, if f{) is a monotonically non-decreasing func-
tion, then it can be applied after the pooling layer. The most
popular activation functions, such as ReLU, tanh, sigmoid
are all monotonically non-decreasing functions [32]. Thus, the
order of applying the activation operation can be replaced with
the pooling and can be written as in Equation 2.

%, %) = f(maxz(Conv(a(i,j)), Conv(a(i,j + 1)),

Conv(a(i+1,7)),Conv(a(i+ 1,5 + 1)))) )

output(

Using Equation 2 has two advantages: a) the activation is
applied to a smaller number of samples, and b) the pooling
data is already in the buffers, thus no additional read/write
operations are required for the pooling operation. This way the
execution time of the pooling layer is practically eliminated.
The corresponding hardware architecture for Equation 2 is
shown in Figure 2.

Optimization of an FPGA design requires a multi-
dimensional approach considering the architecture with avail-
able resources in the hardware. In Figure 2, if there is enough
number of resources on the FPGA, all processing can be
done in parallel. In other words, using 100 DSPs (i.e., 25
DSPs per convolution), the Equation 2 can be processed in
one clock cycle using the proposed hardware architecture in
Figure 2. Based on the number of resources assigned to any
convolution layer, the number of clock cycles for this operation
can be increased. For instance, if you dedicate 50 DSPs for
any convolution block, the execution time will become 2
clock cycles for the computation in Figure 2. In the design
of convolutional layers, to complete the proposed convolution
in one clock cycle, it is required to read weights and biases in
a single clock cycle. Therefore, all the internal memories (i.e.,
BRAMs) storing weights and biases are 256 bits wide to read
them in a single transaction. In each address of the BRAM,
the weights and biases are stored in a concatenated manner.
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d) Optimizations in fully connected and output layers:

The pseudo code for the conventional computation of an FC
layer is shown in Algorithm 1. As explained in the begin-
ning of this section, to preserve the overall throughput, the
execution time of FC layers should be lower than maximum
execution time of any convolutional layer. Thus, based on the
time budget and available resources, the multiplications can
be parallelized as much as possible. This can be achieved by
unrolling the inner for loop. The amount of parallelism is
limited by the available resources for the specific FC layer.
Moreover, the summation with the bias term can be omitted by
initializing the accumulator with the bias value. Algorithm 2
describes the proposed optimization that reduces the execution
times of the FC layers.

Algorithm 1 Conventional Computation of FC Layers

procedure FCLAYER(X, W, bias)
for i from 1 to outputNodeSize do
accumulator = 0
for j from 1 to inputNodeSize do
accumulator = accumulator + W i][j] X [J]
end for
Y'[i] = accumulator + bias|i]
end for
end procedure

1:
2
3
4
5:
6
7
8
9:

Algorithm 2 Proposed Computation of FC Layers

procedure FCLAYER(X, W, bias)
for i from 1 to outputNodeSize do
UNROLL_LOOP
accumulator = biasli]
for j from 1 to inputNodeSize do
accumulator = accumulator + Wi][§] X [4]
end for
Y[i] = accumulator
end for
end procedure

1:
2
3
4
5
6:
7
8
9
0:

1

The output layer of a conventional CNN relies on a softmax
function to find the probability distribution over the predicted
output classes [33] in order to select the class with the
highest probability as the classification result. The softmax
function, however, consists of complex exponentials and di-
visions which are highly compute- and resource-demanding
operations. While our Python CNN implementation employs
the softmax function in the output layer, our FPGA design does
not implement the softmax function and directly selects the
highest-value class, thereby producing the same classification
result as if the softmax function was used. In addition, since
the values of the output layer are calculated in a sequential
manner, no additional clock cycles are required for finding
the maximum. In other words, it is hidden in the computation
of the output layer.

C. Dynamic Partial Reconfiguration

In addition to the aforementioned optimizations, DPR is
used to reduce resource utilization and power consumption for
the implementation of more than one CNN accelerators. The
underlying idea is that, instead of performing different accel-
erators together, implementing them separately increases the
accuracy greatly. It is clear that training the CNNs separately,
instead of training together, gives more accurate classifications,
since feature detection is much easier in the former case.
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Fig. 3.

In the proposed architecture, each MacroBlock can be a
partially reconfigurable region (Pblock) to realize different
CNN accelerators. To reconfigure a MacroBlock, the PCAP
interface is used. The Pblocks are determined according to the
resource utilization of the MacroBlocks. To avoid routing con-
gestion, only the required MacroBlocks are mapped/assigned
to Pblocks. In other words, when there is no need for DPR of
a particular MacroBlock, the related logic is placed to any part
of the FPGA except for the device area of the Pblocks. DPR
introduces significant flexibility to the system architecture. It
allows realizing more than one CNN architectures using the
same FPGA implementation by only updating a small fraction
of the FPGA resources with a dedicated partial bitstream. The
programmable MacroBlock interconnection allows to imple-
ment other CNN architectures with a smaller or larger number
of layers. Hence, a totally different CNN architecture can be
realized with the proposed hardware architecture. Moreover, a
different CNN architecture only requires the implementation
of new MacroBlocks, while the placement and routing of
the static design do not need to change, thereby lowering
implementation times for new CNN architectures. If there is
high variability in layer sizes among different CNNs, multiple
DPR regions with different sizes can also be used.

Implementation of different CNN accelerators

D. Case Study

For the proof of concept, two different LeNet CNN ar-
chitectures have been developed for letter classification and
digit classification. LeNet was the first CNN architecture and
promoted the development of deep learning [34]. To switch the
required accelerator, the weights and biases of the convolution
layers are updated and the FC layers are dynamically partially
reconfigured with the corresponding MacroBlocks. The block
diagram of an example design is shown in Figure 3.

In the example design, the CNN input is a 32 x 32 grayscale
image and the output is the classification result. Both CNN
accelerators consist of 2 convolutional layers, 2 max pooling
layers, a hidden FC layer and an output layer. The size of the
hidden layer and output layer are different for the accelerators.
Except for the last layer, ReLU activation function is used in
the convolutional and hidden layers. In convolutional layers,
the convolutional kernel and pooling kernel are selected as 5
x 5 and 2 x 2 for its better performance as compared to other
size kernels. In the pooling layers, down sampling factor is
selected as 2. After the convolutional layers, data is flattened
and fed to the FC layers. In letter recognizer CNN accelerator,
48 nodes and 10 nodes are used for hidden and output layer,
respectively. For the letter recognizer, 96 nodes and 26 nodes
are used for hidden and output layer, respectively. The CNNs
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Fig. 4. MacroBlocks used in the CNN accelerator. The red square indicates
the partially reconfigurable MacroBlock that can be dynamically exchanged
to implement FC layers for digit/letter classification.

are trained and tested using MNIST handwritten digit dataset
and EMNIST handwritten letter dataset separately [35], [36].

IV. IMPLEMENTATION & EVALUATION

The CNNs in Figure 3 are implemented using the hardware
architecture depicted in Figure 1 and MacroBlocks given in
Figure 4. The hardware design is implemented using Xilinx
Vivado 2020.2. The MacroBlocks are designed in Vitis HLS,
which relies on a high-level synthesis (HLS) approach to
transform a C, C++, or System C code into a register transfer
level implementation for Xilinx FPGAs. Using pragmas in the
software code, different levels of parallelization and, therefore,
different hardware structures can be generated [37]. The Vitis
HLS allows a designer to develop and verify the designs faster
than the traditional hardware description languages. For the
DPR, Vivado’s partial reconfiguration flow is used.

The design is first verified on the simulation environment
of Vivado. Then, it is implemented and tested on a Zedboard
FPGA board [38]. The board is equipped with a Xilinx Zynq
7020 FPGA. The input images are loaded from serial port of
the Zedboard and the result is printed on the LEDs. In addition,
the internal data transfers between MacroBlocks are tested on
the system using Vivado Hardware Manager. The proposed
architecture operates at 100 MHz clock frequency.

In the hardware architecture, since the only difference
between the digit and letter CNN accelerators is in the FC
layers, only the MacroBlock that implements the FC layers
is reconfigurable as denoted by the red square in Figure 4.
For another application, other MacroBlocks could be reconfig-
urable as well. Note that weights and biases also differ between
the two CNN accelerators but they are updated through the
memory-mapped interface of the MacroBlocks. The layout of
the FPGA implementation of the CNN accelerator and the
reconfigurable Pblock for the MacroBlock of the FC layer is
shown in Figure 5. The size and location of the Pblock is
determined according to the resource utilization of the related
MacroBlock of the CNN accelerators.

Because multiplications dominate computation, the avail-
able DSP slices on the target device are fully utilized in the
proposed CNN accelerator to maximize performance. These
resources are shared between MacroBlocks to be able to make
the execution times of them nearly equal. The resource usage
and processing times of the MacroBlocks are given in Table 1.
As can be observed in the table, the execution time of the FC
layer in the letter CNN accelerator is higher than the other
MacroBlocks since the system is optimized to maximize the
throughput of the digit CNN accelerator.

Table II provides implementation results for three different
accelerators: Hybrid CNN, letter CNN, and digit CNN. The
accelerators employ all the DSP slices on the device (i.e., 220
DSPs on the Zedboard) to maximize throughput. The digit



Fig. 5. Layout of the implemented CNN accelerator. The red square Pblock
corresponds to the partial reconfigurable area.

TABLE 1
RESOURCE USAGE AND PROCESSING TIME OF DIFFERENT LAYERS (L)

BRAM [ DSP | LUT | Clock Cycle [ Processing Time
Conv L T + Max Pool L T 5 50 7372 2022 20.22 ps
Conv L 2 + Max Pool L 2 22 150 [ 14761 2069 20.69 us
FC Layer (Digit) 9 20 639 2128 21.28 pus
FC Layer (Letter) 20 20 601 4401 44.01 ps
TABLE 11

COMPARISON OF PROPOSED CNN ACCELERATOR WITH HYBRID CNN
ACCELERATOR IN TERMS OF RESOURCE USAGE AND ACCURACY

BRAM | DSP LUT Accuracy | Execution Time
Hybrid CNN (Static) 55 220 [ 26897 87.53 87.55 ps
Letter CNN (DPR) 55 220 [ 26807 92.45 84.92 ps
Digit CNN (DPR) 44 220 | 26845 98.88 62.19 ps
TABLE III

PERFORMANCE COMPARISON OF DIFFERENT LENET CNN ACCELERATORS

BRAM [ DSP | LUT Accuracy | Processing Time
Shi [39] 54 204 | 25276 | 99.11 170 ps
Youssef [7] [ 9 N/A | 19141 | 98.12 270 ps
Li [28] 619 916 | 9071 98.16 490 s
This work 44 220 | 26845 | 98.88 62 us

CNN and the letter CNN use the same static implementation
but require a different MacroBlock for the FC layers. The
hybrid CNN deploys a mixed CNN model that has been
trained with both letter and digit datasets without using DPR.
It has the same number of nodes with the letter CNN in
the hidden layer (i.e., 96 nodes), while the output layer has
36 nodes (i.e., 26 for letters and 10 for digits). The same
optimizations (Section III) have been applied to all three CNN
accelerators, and the resource utilization of the hybrid CNN
is similar to the letter CNN. However, the main differences
between the hybrid CNN and the others are in terms of
accuracy and throughput. Accuracy drops by 5% and 10% in
comparison with the letter and the digit CNNs, respectively.
Similarly, throughput also decreases in the hybrid CNN in
comparison with dedicated digit and letter CNN accelerators
using DPR. Therefore, DPR allows to explore the trade-offs
between resource usage, throughput, and accuracy.

To conduct a fair performance evaluation of the proposed
CNN accelerator, we compare performance with 3 state-of-
the-art CNN accelerators that use the same LeNet architecture
(i.e., 2 convolutional layers, 2 pooling layers, 1 hidden layer),
trained with the MNIST dataset. The first CNN accelerator is a
static design [39] and the ZCU102 evaluation board is used for
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Fig. 6. Pipelined processing of the proposed CNN accelerator.

the implementation. For each convolutional layer and pooling
layer, separate accelerators are designed. The second is a DPR
design and according to the energy level of the power source,
the processing system uploads the required partial bitstream
at run time using ICAP [7]. The last work is using cascaded
connections of processing engines designed to compute the
convolution [28]. Pipelining and tiling techniques are used
to improve the performance of that design. The performance
comparison with these studies is given in Table III. As can be
seen from Table III, our proposed accelerator has the shortest
processing time to complete the classification of an image,
due to the hardware optimizations discussed in Section III
that allow for a considerable throughput improvement in
comparison with the previous accelerators. Moreover, accuracy
is similar to the other designs. The LUT usage is slightly
higher than the other designs because of the implementation
of the flexible hardware architecture in Figure 1.

In the proposed architecture, all data is processed in a
pipelined manner. Although the total processing time is 62
ps for the letter CNN accelerator; the accelerator can be fed
with a higher frame rate. Every MacroBlock can process new
data after finishing its task, i.e., there is no need to wait until
the end of the overall processing of one image to proceed
with the next. As shown in Figure 6, the overall frame rate
depends on the processing time of the MacroBlock with the
largest delay. Therefore, using the pipelining in Figure 6,
the proposed accelerator achieves frame rates of up to 45K
images/sec in digit classification which is 7x higher than the
state-of-the-art LeNet CNN accelerators given in Table III.
Lastly, in the proposed architecture, the switch time between
CNN accelerators (i.e., DPR time) is 9.1 ms since the PCAP
throughput is 145 MB/s and our partial bit file size is 1.32
MB [40].

V. CONCLUSION

In this work, a high performance and flexible CNN accel-
erator architecture is proposed and implemented on a FPGA
platform. By optimizing the operations in the CNN accelerator,
throughput is improved without any degradation of accuracy.
In addition, we use DPR to realize different CNN accelera-
tors without changing the entire FPGA implementation. The
method is evaluated by implementing a single static design
for two different LeNet CNN accelerators on a Zedboard, and
employing DPR to switch between them. Experimental results
showed that the proposed LeNet CNN accelerator achieves
higher throughput with moderate DSP and BRAM usage in
comparison with previous LeNet implementations on FPGAs.
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