
Knowledge-Based Systems 228 (2021) 107256

a

b

c

s
t
e
w
t
o
a
b
p
a
t
p
t
p
a
p

m

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

SDCOR: Scalable density-based clustering for local outlier detection in
massive-scale datasets
Sayyed Ahmad Naghavi Nozad a,∗, Maryam Amir Haeri b, Gianluigi Folino c

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
Learning, Data-Analytics, and Technology Department, University of Twente, Enschede, Netherlands
ICAR-CNR, Rende, Italy

a r t i c l e i n f o

Article history:
Received 30 June 2020
Received in revised form 21 June 2021
Accepted 24 June 2021
Available online 1 July 2021

Keywords:
Local outlier detection
Massive-scale datasets
Scalable
Density-based clustering
Anomaly detection

a b s t r a c t

This paper presents a batch-wise density-based clustering approach for local outlier detection in
massive-scale datasets. Unlike the well-known traditional algorithms, which assume that all the data
is memory-resident, our proposed method is scalable and processes the input data chunk-by-chunk
within the confines of a limited memory buffer. A temporary clustering model is built at the first
phase; then, it is gradually updated by analyzing consecutive memory loads of points. Subsequently,
at the end of scalable clustering, the approximate structure of the original clusters is obtained. Finally,
by another scan of the entire dataset and using a suitable criterion, an outlying score is assigned to
each object called SDCOR (Scalable Density-based Clustering Outlierness Ratio). Evaluations on real-life
and synthetic datasets demonstrate that the proposed method has a low linear time complexity and
is more effective and efficient compared to best-known conventional density-based methods, which
need to load all data into the memory; and also, to some fast distance-based methods, which can
perform on data resident in the disk.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Outlier detection, which is a noticeable and open line of re-
earch [1–4], is a fundamental issue in data mining. Outliers refer
o rare objects that deviate from the well-defined notions of
xpected behavior, and discovering them is sometimes compared
ith searching for a needle in a haystack because the rate of
heir occurrence is much lower than normal objects. Outliers
ften interrupt the learning procedure from data for most of the
nalytical models, and thus, capturing them is very important
ecause it can enhance the model accuracy and reduce the com-
utational load of the algorithm. However, outliers are not always
nnoying, and sometimes, they become of particular interest for
he data analyst in many problems such as controlling cellular
hone activity to detect fraudulent usage, like stolen phone air-
ime. Outlier detection methods could also be considered as a
reprocessing step, which is useful before applying any other
dvanced data mining analytics, and it has a wide range of ap-
licability in many research areas, including intrusion detection,

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
∗ Corresponding author.

E-mail addresses: sa_na33@aut.ac.ir (S.A. Naghavi Nozad),
.amirhaeri@utwente.nl (M. Amir Haeri), gianluigi.folino@icar.cnr.it (G. Folino).
ttps://doi.org/10.1016/j.knosys.2021.107256
950-7051/© 2021 Elsevier B.V. All rights reserved.
activity monitoring, satellite image analysis, medical condition
monitoring, etc. [1,5].

Outliers can be generally partitioned into two different cate-
gories, namely global and local. Global outliers are objects that
show significant abnormal behavior compared to the rest of the
data, and thus in some cases, they are considered point anomalies.
On the contrary, local outliers only deviate significantly w.r.t. a
specific neighborhood of the object [2,6]. In [7,8], it is noted that
the concept of the local outlier is more comprehensive than that
of the global outlier; i.e., a global outlier could also be considered
as a local one, but not necessarily vice versa. This is the reason
that makes finding the local outliers much more cumbersome.

1.1. Motivation

In recent years, advances in data acquisition have made mas-
sive collections of data, which contain valuable information in
diverse fields like business, medicine, society, government, etc. As
a result, the common conventional software methods, including
but not limited to [7,9–29], for processing and management of
such massive amount of data will no longer be efficient, because
most of these methods assume that the data is memory-resident
and their computational complexity for large-scale datasets is
really expensive [4].

One of the usual ways to solve this issue is the use of paral-

lel/distributed computing techniques [30–36]. In such a strategy

https://doi.org/10.1016/j.knosys.2021.107256
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107256&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:sa_na33@aut.ac.ir
mailto:m.amirhaeri@utwente.nl
mailto:gianluigi.folino@icar.cnr.it
https://doi.org/10.1016/j.knosys.2021.107256

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

i
e
m
t
w
t
t

e
a
c
n
c
t
c

i
c
s

1

c
d
a
p
i
b
a
i
i
w
t
s
t
s
t
B
t
t
a
(
(

o
t
o
w
i
t
a
i
i
r
a
b
i
p
i
p
b

t
a
T

n which both the hardware and software facilities are extensively
mployed, a big or even an intolerable task for a single computing
odule is divided into a pack of smaller assignments, as each of

hem is appointed to a distinct processing unit. Therefore, more
ork can be carried out simultaneously by exerting more devices
han the condition in which the task was about to be done at once
hrough an isolated computer.

However, distributed solutions come along with some in-
vitable downsides like being more complicated to implement
nd troubleshoot, requiring additional resources, colossal power
onsumption, and the principal need for hardware cooling tech-
ologies in some cases; furthermore, such dispersed resolutions
ommonly accomplish an activity with a less efficacy compared
o their serial counterparts on account of communication and
oordination overheads.
The motivation behind this study is to propose a scalable

n-memory algorithm that utilizes merely a single stand-alone
omputer while delivering competing results with the single-run
tate of the data mining algorithm on the entire dataset.

.2. Contribution

In this paper, we propose a new scalable and density-based
lustering method for local outlier detection in massive-scale
atasets that cannot be loaded into memory at once, employing
chunk-by-chunk load procedure. In practice, the proposed ap-
roach is a clustering method for huge datasets in which outlier
dentification comes after that as a side effect, and it is inspired
y a scaling clustering algorithm for very large databases named
fter its authors, BFR [37]. However, BFR has some weak spots:
t needs to know the actual number of original clusters in data;
t has a strong assumption on the structure of existing clusters,
hich ought to be Gaussian distributed with uncorrelated at-
ributes; and more importantly, it is not introducing noise. In
hort, this clustering algorithm works as follows. First, it reads
he data as successive (preferably random) samples so that each
ample can be stored in the memory buffer, and then it updates
he current clustering model over the contents of the buffer.
ased on the updated model, singleton data are classified into
hree groups: some of them can be discarded over the updates
o the sufficient statistics (Discard Set, DS); some can be moder-
ted through compression and abstracted as sufficient statistics
Compression Set, CS); some demand to be retained in the buffer
Retained Set, RS).

Like BFR, our proposed method operates within the confines
f a limited memory buffer. Thus, assuming that an interface to
he database allows the algorithm to load an arbitrary number
f requested data points, whether sequentially or randomized,
e are forced to load the data chunk-by-chunk so that there

s enough space for both loading and processing each chunk at
he same time. The proposed approach is based on clustering,
nd therefore, it must avoid outliers being able to play any
nfluential role in forming and updating clusters. After process-
ng each chunk, the algorithm should combine its approximate
esults with those of the previous chunks in a way that the final
pproximate result will compete with the same result obtained
y processing the entire dataset at once. An algorithm, which
s capable of handling data in such a gradual way and finally
rovides an approximate result, from an operational perspective,
s called a scalable algorithm [38]. Moreover, from an algorithmic
oint of view, scalability means that algorithm complexity should
e nearly linear or sublinear w.r.t. the problem size [39].
In more detail, the proposed method comprises three steps. In

he first step, a primary random sampling is carried out to create
n abstraction of the whole data on which the algorithm works.
hen, an initial clustering model is built, and some information
2

required for the next phase of progressive clustering will be
acquired. In the second step, on the basis of the currently loaded
chunk of data into the memory, a scalable density-based cluster-
ing approach is executed in order to identify dense regions, which
leads to building incrementally some clusters, named miniclus-
ters or subclusters. When all chunks are processed, the final clus-
tering model will be built by merging the information obtained
through these miniclusters. Finally, by applying a Mahalanobis
distance criterion [40,41] to the entire dataset, an outlying score
is assigned to each object.

In summary, the main contributions of our proposed method
are listed as follows:

• There is no need to know the real number of original clus-
ters.
• It works better with Gaussian clusters having correlated or

uncorrelated features, but it also works well with convex-
shaped clusters following an arbitrary distribution.
• It has a linear time complexity with a low constant.
• In spite of working in a scalable manner and operating on

chunks of data, in terms of detection accuracy, it is still
able to compete with conventional density-based methods,
which maintain all the data in the memory; and also, with
some fast distance-based methods, which do not require to
load the entire data into the memory at their training stage.

The paper is organized as follows: Section 2 discusses some
related work in the field of outlier detection. In Section 3, we
present the detailed descriptions of the proposed approach. Sec-
tion 4 delineates the experimental design of our analysis for
the proposed method and the other contending techniques. In
Section 5, the experimental results on various real and synthetic
datasets are provided. Finally, conclusions are given in Section 6.

2. Related work

Outlier detection methods can generally be divided into the
following eight categories [42–45]: extreme value analysis, prob-
abilistic methods, distance-based methods, density-based meth-
ods, clustering-based methods, graph-based methods,
information-theoretic methods, and isolation-based methods. Be-
sides, after considering these categories, in a discussion, we
will look upon the capabilities of the corresponding methods to
operate on massive-scale data.

2.1. Extreme value analysis

In extreme value analysis, the overall population is supposed
to have a unique probability density distribution, and only those
objects at the very ends of it are considered outliers. In particular,
these types of methods are useful to find global outliers [42,46].

2.2. Probabilistic methods

In probabilistic methods, we assume that the data were gen-
erated from a mixture of different distributions as a generative
model, and we use the same data to estimate the parameters of
the model. After determining the specified parameters, outliers
will be those objects with a low likelihood of being generated
by this model [42]. Schölkopf et al. [47] propose a supervised
approach, in which a probabilistic model w.r.t. the input data is
provided so that it can fit normal data in the best possible way.
In this manner, the goal is to discover the smallest region that
contains most of the normal objects; data outside this region are
supposed to be outliers. This method is, in fact, an extended ver-
sion of Support Vector Machines (SVM), which has been improved
to cope with imbalanced data; the other name for this method

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

i
p
b
t

2

c
d
d
d
t
p
t
I
t
d

a
a
s
O
b
l
o
a
m
t
F
s
p
i
i
t
n

L
m
d
I
p
m
o
i
r
(
i
t
M
r

u
d
t
f
f
o
n
S
a

2

c
l
t
D
t
a
u
t
s
r
d
b
e
o
v
p
I
a
t
e
r
I
e
r
c
o

w
a
m
d
d
D
a
b
c
a
o
n
(
u
f
c

r
m
t
o
s
i
c
v
c
G
F
f
a

b
N
b
m
s

n the literature is one-class SVM, or in brief, OCSVM [48]. In
ractice, in this way, a small number of outliers is considered as
elonging to the rare class and the rest of the data as belonging
o normal objects.

.3. Distance-based methods

In distance-based methods, distances among all objects are
omputed to detect outliers. An object O is assumed to be a
istance-based outlier if at least fraction p0 of the objects in the
ataset has a distance greater than d0 from O [49,50]. Another
efinition for the distance-based outliers denotes that concerning
he two input parameters, k as a positive integer and R as a
ositive real number, an object O is reported as an outlier if less
han k objects in the dataset rest in the distance R from O [51].
n [9], a Local Distance-based Outlier Factor (LDOF) is proposed
o find outliers in scattered datasets, which employs the relative
istance from each data object to its nearest neighbors.
Bay and Schwabacher [52] propose an optimized nested-loop

lgorithm based on the k Nearest Neighbors (kNN) distances
mong objects, that has a near-linear time complexity and is
hortly named ORCA (Optimal Reciprocal Collision Avoidance).
RCA shuffles the input dataset in random order using a disk-
ased algorithm and processes it in blocks, as there is no need to
oad the entire data into the memory. It keeps looking for a set
f the user-defined number of data points as potential anomalies,
s well as for their anomaly scores. The cut-off value is set as the
inimum outlierness score of the set, and it will get updates if

here is a data point having a higher score in other blocks of data.
or data points that obtain a lower score than the cut-off, they
hould be pruned; this pruning scheme will only expedite the
rocess of distance computation in the case of data being ordered
n an uncorrelated manner. ORCA’s worst-case time-complexity
s O

(
n2

)
, and the I/O cost for the data accesses is quadratic. For

he anomaly definition, it can use either the distance to the kth
earest neighbor or the average distance of kNN.
Angiulli and Fassetti [51] propose DOLPHIN (Detecting Out-

iers PusHing objects into an INdex), a distance-based outlier
ining method that is particularly dedicated to operating on
isk-resident data and functions efficiently in terms of CPU and
/O cost two at a time. Furthermore, both theoretical and practical
roofs are presented that the proposed method occupies the
emory space as much as a small portion of the dataset. DOLPHIN
btains its efficiency certainly through combining three policies
n an integrated plan, namely: (1) careful selection of objects to be
etained in the buffer; (2) employing decent pruning strategies;
3) applying effective similarity inspection approaches, which
s especially achieved without requiring prior indexing the en-
ire input data, differently from the other competing techniques.
oreover, DOLPHIN is capable of being applied on any kind of

ecords attributed to either metric or non-metric scopes.
Sp [53] is a simple and rapid distance-based method that

tilizes the nearest neighbor distance on a small sample from the
ataset. It takes a small random sample of the entire dataset and
hen assigns an outlierness score to each point, as the distance
rom the point to its nearest neighbor in the sample set. There-
ore, this method enjoys a linear time complexity concerning each
ne of the essential variables, viz the number of objects, the
umber of dimensions, and the number of samples; furthermore,
p has a constant space complexity, which makes it ideal for
nalyzing massive datasets.
3

.4. Density-based methods

In density-based methods, the local density of each object is
alculated in a specific way and then is utilized to define the out-
ier scores. Given an object, the lower its local density compared
o its neighbors, the more likely it is that the object is an outlier.
ensity around the points could be calculated by using many
echniques, which most of them are distance-based [7,42]. For ex-
mple, Breunig et al. [7] propose a Local Outlier Factor (LOF) that
ses the distance values of each object to its nearest neighbors
o compute local densities. However, LOF has a drawback: the
cores obtained through this approach are not globally compa-
able between all objects in the same dataset or even in different
atasets. The authors of [10] introduce the Local Outlier Proba-
ility (LoOP), which is an enhanced version of LOF. LoOP gives
ach object a score in the interval [0,1], which is the probability
f the object being an outlier and is widely interpretable among
arious situations. Moreover, two distributed versions of LOF are
resented in [35] and [36] to operate on very large datasets.
n [35], a distributed LOF pipeline framework (DLOF) along with
data assignment strategy are introduced to efficiently handle

he required information exchange among various machines and
levating the independence of every processing unit; this will
educe the number of data replications and save more resources.
n [36], a novel and cautious removal technique is proposed to
ffectively eliminate those objects that are not potential to be
eported as top-ranked outliers and also not capable of being
ontemplated as possible neighbors of other points residing on
ther machines.
An INFLuenced Outlierness (INFLO) score is presented in [11],

hich adopts both kNN and Reverse Nearest Neighbors (RNN) of
n object to estimate its relative density distribution. Further-
ore, Tang and He [12] propose a local density-based outlier
etection approach, concisely named RDOS, in which the local
ensity of each object is approximated with the local Kernel
ensity Estimation (KDE) through nearest neighbors of it. In this
pproach, not only the kNN of an object are taken into account,
ut also the RNN and the Shared Nearest Neighbors (SNN) are
onsidered for density distribution estimation as well. Moreover,
parameter-free density-based algorithm for both clustering and
utlier detection purposes is presented in [54], which utilizes two
ovel neighborhood concepts, namely Unique Closest Neighbor
UCN) and Unique Neighborhood set (UNS), depending on the
nderlying data distribution. This proposed approach does not
ollow random or repetitive solutions to culminate in the best
andidate outcome, and hence, is computationally cost-effective.
A non-parameter outlier detection algorithm based on Natu-

al Neighbors (NaN) is proposed in [13]. In this parameter-free
ethod, first, a novel search algorithm using KD-tree data struc-

ure [55] is introduced for detecting NaN instead of kNN for every
bject. The great benefit of NaN over kNN is that the neighbor
earch method is free of any input parameter, and the calculation
s upon the intrinsic manifold of data. In addition, the NaN con-
ept is scale-free, which means that the number of neighbors for
arious objects is not essentially the same. Furthermore, the new
oncepts of Natural Influence Space (NIS) and Natural Neighbor
raph (NNG) are proposed to finally compute the Natural Outlier
actor (NOF) for each individual data point. A higher NOF value
or an object indicates the higher possibility for it to be identified
s an outlier.
Wahid and Rao have recently proposed three different density-

ased methods, shortly named RKDOS [14], ODRA [15] and
aNOD [16]. RKDOS is mostly similar to RDOS, in which by using
oth kNN and RNN of each point, the density around it is esti-
ated employing a Weighted Kernel Density Estimation (WKDE)
trategy with a flexible kernel width. Moreover, the Gaussian

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

k
e
e
s
l
a
a
a
o
w
o
r
t
l
d
l
I
a

ernel function is adopted to corroborate the smoothness of
stimated local densities, and also, the adaptive kernel bandwidth
nhances the discriminating ability of the algorithm for better
eparation of outliers from inliers. ODRA is specialized for finding
ocal outliers in high dimensions and is established on a relevant
ttribute assortment approach. There are two major phases in the
lgorithm, which in the preliminary one, unimportant features
nd data objects are pruned to achieve better performance. In
ther words, ODRA firstly tries to distinguish those attributes
hich contribute substantially to anomaly detection from the
ther irrelevant ones; also, a significant number of normal points
esiding in the dense regions of data space will be discarded for
he sake of alleviating the detection process. In the second phase,
ike RDOS, a KDE strategy based on kNN, RNN, and SNN of each
ata object is utilized to evaluate the density at the corresponding
ocations, and finally, assign an outlying degree to each point.
n NaNOD, the concept of Natural Neighbors (NaN) is used to
daptively attain a proper value for k (number of neighbors),

which is called here the Natural Value (NV), while the algorithm
does not ask for any input parameter to acquire that. Thus, the
parameter choosing challenge could be mitigated through this
procedure. Moreover, a WKDE scheme is applied to the problem
to assess the local density of each point, as it takes the benefit of
both kNN and RNN categories of nearest neighbors, which makes
the anomaly detection model adjustable to various kinds of data
patterns.

Besides, in recent times, Xie et al. [17] have proposed LGOD, an
outlier model founded upon Newton’s theory of gravitation [56].
In this model, every individual point is supposed as an element
with mass, associated with a Local Resultant Force (LRF) engen-
dered by its neighboring points. LGOD first determines the LRFs
on each data object; then, regarding its tolerance to proximity
parameter k, by aggregating the varying LRF values out of the
fluctuating proximity parameter, outlying scores are deduced.

2.5. Clustering-based methods

Clustering-based methods use a global analysis to detect
crowded regions, and outliers will be those objects not belonging
to any cluster [42]. A Cluster-Based Local Outlier Factor (CBLOF)
in [20], and a Cluster-Based Outlier Factor (CBOF) in [21] are pre-
sented. In both of them, after the clustering procedure is carried
out, in regard to a specific criterion, clusters are divided into two
large and small groups; it is assumed that outliers lie in the small
clusters. At last, the distance of each object to its nearest large
cluster is used in different ways to define the respective outlier
score. Furthermore, a distributed strategy for both clustering and
outlier detection tasks is proposed in [34], in which the classic
k-means/median clustering techniques are fundamentally studied
to become operable on datasets disseminated across various sites.
The proposed method is efficient considering both time and
required communications among multiple machines and has a
satisfactory estimation level, especially on global outliers.

Jobe and Pokojovy [22] propose a data-intensive computing
approach that is established upon cluster analysis and employs
a reweighted variant of Rousseeuw’s minimum covariance deter-
minant method [57]. Adopting the powerful squared Mahalanobis
distance statistic is the core idea of this study, although the
detection capability of this criterion is substantially declined with
the increasing number of outliers in data. Thus by applying a
clustering-based multi-stage algorithm in this method, the po-
tential outlying points which could be misclassified through the
Mahalanobis distance measure are primarily distinguished from
true inliers. Furthermore, Huang et al. [23] propose a novel outlier
cluster detection method called ROCF, which does not require
the count of top-N outliers as an input parameter. Using the
4

mutual neighbors concept, ROCF firstly builds a neighborhood
graph entitled MUNG (MUtual Neighbors Graph). Then, regarding
the truth that outlying clusters are usually smaller in size than the
normal clusters, and also by automatically unraveling the approx-
imate outlier ratio of the input dataset, both singular outliers and
anomalous minuscule clusters are discovered.

2.6. Graph-based methods

Graph-based methods are among the most robust approaches
in the outlier mining area. They have called immense consid-
eration in recent time because they can substantially express
various data conditions [58,59] and extraordinarily grasp the
wide-ranging interrelationships within the data objects [60,61].
In general, each individual object is characterized as a graph node,
and the connections and dependencies among data elements are
represented as the linking edges between the nodes. Then by
assessing the graph structure — whether locally or globally — or
even through evaluating the changing process of the graph or
other suitable criteria, the anomalousness degree for every data
object will be defined.

Moonesignhe and TAN [24,25] propose OutRank, which is
among the very first graph-based approaches for outlier detection
in datasets comprising of multidimensional points. OutRank is
a stochastic algorithm in which, at first, a graph representa-
tion of the input data is constructed based on the similarity
among objects and the count of shared neighbors between them.
Then, employing the Markov chain model established regarding
the attained graph, every object in data will attain an outlying
score. One of the major problems with the graph-based meth-
ods is that they overlook the local information in each node
vicinity, and unfortunately, this entails so many inliers be mis-
takenly identified as outliers, which is referred to as a high
false-positive rate. In [26], a local information graph is built
upon combining the graph delineation of the input data with
the local information around each data object to overcome this
issue. By utilizing the local information graph, the mismatching
inter-dependencies among different kinds of objects are captured.
Finally, the outlying scores are defined by applying a random
walk on the graph. Wang et al. [27] propose another graph-based
method that utilizes multiple neighborhood graphs to obtain
diverse local information from different vantage points. Then,
some stationary distribution vectors are acquired by executing a
random walk process on these neighborhood graphs that are de-
veloped through distinctive neighbor sizes. Finally, outlier scores
are derived over a novel designed scoring function established
upon various change patterns of the corresponding values in the
stationary distribution vectors.

Moreover, in [28], Wang et al. again, by integrating the local
information with the latent associations in the graph rendering
of the genuine dataset, propose a modern graph-based method
called Virtual Outlier Score (VOS). In VOS, at the start, a similarity
graph is initiated through employing the top-k analogous neigh-
bors of each individual object; furthermore, a k-virtual graph is
determined using the new concepts of virtual nodes and groups
of virtual edges, which captures both local and global information
among objects within the dataset. Then, by applying a well-suited
version of the Markov random walk process on the highly asso-
ciated virtual graph, under the fact that for accessing the likely
anomalies in data, they should obtain more weight by the random
walker than the other inliers, the algorithm reaches equilibrium
or a stationary distribution in its operation. Finally, the virtual
outlier ranks will be inferred from this stationary situation. Amil
et al. [29] propose two methods that begin with a graph structure
and are more useful for anomaly detection in high-dimensional
data. Both methods depend on a reliable definition for the dis-
tance between pairs of data elements; thus, they can deal with

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

n
r
t
s
o
d
s
a

2

a
b
c
s
s
w
t
o

o
H
a
A
d
d
p
m
t
t
t
a
p
b
l
q
s
i
s
p
i
o

2

t

u
t
t
a
p
M
c
s

on-specific data types. The nodes and weighted edges in the rep-
esenting graph correspond to data objects and distances among
hem, respectively. In the first method, an anomaly degree is
pecified for each item concerning the graph fragmentation. The
ther method employs the famous non-linear dimensionality re-
uction approach named IsoMap [62] and defines the anomaly
cores regarding the variations between the geodesic distances
nd the distances in the acquired subspace.

.7. Information-theoretic methods

Information-theoretic methods could be particularly deemed
t almost the same level as distance-based and other deviation-
ased models. The only exception is that in such methods, a fixed
oncept of deviation is determined at first, and then, anomaly
cores are established through evaluating the model size for this
pecific type of deviation; unlike the other usual approaches, in
hich a fixed model is determined initially and employing that,
he anomaly scores are obtained by means of measuring the size
f the deviation from such model [42].
Wu and Wang [18] propose a single-parameter method for

utlier detection in categorical data using a new concept of
oloentropy, and by utilizing that, a formal definition of outliers
nd an optimization model for outlier detection is presented.
ccording to this model, a function for the outlier factor is
efined, which is solely based on the object itself, not the entire
ata, and it could be updated efficiently. There are two pro-
osed greedy Information-Theory-Based (ITB) algorithms for this
ethod, namely ITB-SP (Single Pass) and ITB-SS (Step-by-Step),

hat essentially can operate only on nominal space. However,
he authors claim that they can be adapted to numerical space
hrough either the extension of holoentropy or employing a suit-
ble and viable discretization approach. Moreover, Dang et al. [19]
ropose an information-theoretic method named LODI in which
esides identifying local outliers in continuous data, the anoma-
ousness reason for any of them is presented too. In LODI, the
uadratic entropy is investigated in an appropriate manner to
elect a neighboring set per each point. Then, following a learn-
ng method based on matrix eigen-decomposition, an optimal
ubspace is defined in which an outlier candidate is as much as
ossible isolated from its neighborhood. The revealed features
n the corresponding subspace are critical to interpreting the
utstanding characteristics of outliers.

.8. Isolation-based methods

Isolation-based methods were firstly introduced in [63,64] and
he authors named their novel method iForest. The main idea
behind iForest was elicited from a well-known ensemble method
called Random Forests [65], which is mostly employed in classi-
fication problems. In this approach, firstly, it is essential to build
an ensemble of isolation trees (iTrees) for the input dataset, then
outliers are those objects with a short average path length on
the corresponding trees. For making every iTree, after acquiring a
random sub-sample of the entire data, it is recursively partitioned
by randomly choosing an attribute and then randomly specifying
a split value among the interval of minimum and maximum
values of the chosen attribute. Since this type of partitioning
can be expressed by utilizing a tree structure, thus the number
of times required to partition the data for isolating an object is
equal to the path length from the starting node to the ending
node in the respective iTree. In such a situation, the tree branches
which bear outliers have a remarkably lower depth because these
outlying points fairly deviate from the normal conduct in data.
Therefore, data instances that possess substantially shorter paths

from the root in various iTrees are more potential to be outliers.

5

One chief issue about using such an isolation-based method
is that with the increase in the number of dimensions, if an
incorrect attribute choice for the splitting matter is made at
the higher levels of the iTree, then the probability of detection
outcomes getting misled, grows potentially. Nevertheless, the
advantage of iForest is that by considering the idea of isolation,
it can utilize the sub-sampling in a more sophisticated way than
the existing methods and provide an algorithm with a low linear
time complexity and a low memory requirement [43]. Moreover,
in [66,67], an enhanced version of iForest, named iNNE is pro-
posed, which tries to overcome some drawbacks of the primary
method, including the incapability of efficiently detecting local
anomalies, anomalies with a low amount of pertinent attributes,
global anomalies that are disguised through axis-parallel pro-
jections, and finally anomalies in a dataset containing various
modals.

Discussion

Almost all of the mentioned studies here for outlier identifi-
cation assume the input data as static, centralized, and memory-
resident. Therefore, they incur an expensive computational cost
for large-scale datasets; i.e., they cannot simply scale well to
massive data.

Extreme value analysis is commonly applied to some specific
cases, where outliers are acknowledged to be existing at the
margins, not the sparse internal areas of the dataset; hence, it
is not employed for local outlier identification in typical KDD
applications [43]. OCSVM is a semi-supervised outlier model and
is mostly utilized in ‘‘novelty detection’’ applications, where the
input data contains only good (normal) samples, and the primary
purpose is to investigate whether new incoming observations
— maybe through a stream — match the existing model. Fur-
thermore, there are some cases for OCSVM in which the training
data is contaminated with some abnormal instances (anomalies)
to evaluate the algorithm robustness with regard to a regu-
larization parameter meaningfully greater than the anticipated
outliers portion [44]. However, this does not change the origi-
nal method essence and its crucial difference with unsupervised
models — which are of our main interest here — where there is
no need for any information about object labels, and the input
data may contain outliers that require to be identified. This study
focuses on ‘‘outlier detection’’ in static numerical applications
where the outlier labels are only employed while assessing the
final detection outcomes.

Information-theoretic techniques are generally established
upon analyzing the individual data attributes and the correspond-
ing correlations between pairs of them to build the detection
model; this leads to expensive computations as in the best case,
the associated computational complexity is O (np), a multiplica-
tion of the cardinality by the dimensionality of the data, or even
higher [68]. Hence, such approaches mostly fail at processing
huge datasets unless they are exerted through a sophisticated
manner to cope with massive scales.

Distance-, density-, and clustering-based methods all fall un-
der the proximity-based outlier models. In such methods, the key
idea is to recognize outliers as specific points far away from the
rest of the data. This causes the critical complexity stress be on
the nearest neighbors calculations which may require O

(
n2

)
time,

nless an indexing strategy is exerted to expedite the computa-
ions and reduce the complexity to, e.g., O (n log (n)) [43]. Never-
heless, even indexing approaches degenerate in high dimensions,
nd the situation can become aggravated if the underpinning data
atterns are not in support of effective pruning rules [51,52].
oreover, for the graph-based methods, as they rely on the
omputation of nearest neighbors for each data object, too, the
ame scenario is repeated.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

t
b

As a density-based technique, ODRA has specifically a com-
plexity equal to the product of cardinality and dimensionality,
which is not suitable for large scales. Cluster-analysis-based work
in [22] is introduced as a computer-intensive algorithm, hence
not apt for processing huge data sizes. Furthermore, the time
complexity of [20] is outlined by the authors as linear with solely
the dataset cardinality; however, the first step of the proposed
clustering-based algorithm — named FindCBLOF — is merely ap-
plying the Squeezer clustering approach [69] to the data, with
a computational complexity being linear with the number of
points, the number of dimensions, and the final count of clusters.
Consequently, FindCBLOF suffers frommuch more complexity and
thus cannot scale favorably with the problem size. Moreover,
the distributed works in [34–36] require multiple resources for
execution; thus, they are out of our concern in this study as we
are concentrating on operating on a single processing unit.

Isolation-based methods enjoy a linear time complexity with
a low constant while requiring a minimal amount of memory.
However, they are out of the context of the proximity-based
models as being solely based upon isolating instances without
employing any distance or density gauge to calculate the anomaly
scores; hence, they do not fit in our experimental analysis. ORCA,
DOLPHIN, and Sp are among the enhanced distance-based tech-
niques for large-scale and disk-resident data that, while requir-
ing a relatively small portion of memory space, claim compet-
ing linear arithmetical complicacies. Here, we present a scalable
proximity-based algorithm to function on massive data that en-
joys a low linear time complexity and operates reasonably well
over a restricted memory space.

Remarks

Remark 1. According to the fact that during scalable clustering,
we use the Mahalanobis distance measure to assign each object
to a minicluster, and besides, the size of temporary clusters is
much smaller than that of original clusters, it would be worth
mentioning an important matter here. Concerning [41,70–72],
in the case of high-dimensional data, classical approaches based
on the Mahalanobis distance are usually not applicable. Because
when the cardinality of a cluster is less than or equal to its di-
mensionality, the sample covariance matrix will become singular
and not invertible [73]; hence, the corresponding Mahalanobis
distance will no longer be reliable.

Therefore, to overcome such a problem, we need to resort
to dimensionality reduction approaches in a preprocessing step.
However, due to the serious dependence of some dimensionality
reduction methods like PCA [74] to the original attributes and the
consequent high computational load because of the huge volume
of the input data, we need to look for alternative methods to
determine a basis for data projection.

A simple and computationally inexpensive alternative is the
exercise of random basis projections [75–77]. The main charac-
teristic of these types of methods is that they will approximately
preserve pairwise Euclidean distances between data points; in
addition, the dimension of the transformed space is independent
of the original dimension and only relies logarithmically on the
number of data points. Finally, after such a preprocessing step, we
can be optimistic that the singularity problem will not be present
during the clustering procedures; in the event of happening, we
would have a suitable mechanism to handle it.

Remark 2. As stated earlier, our proposed approach is inspired by
BFR. However, BFR, by default, uses the K-means algorithm [78]
in almost all of its clustering procedures. In addition to this
drawback of the K-means algorithm, which is being enormously
 s

6

dependent on foreknowing the actual number of original clusters,
in the case of outliers presence, K-means performs poorly; there-
fore, we need to resort to a clustering approach that is resistant
to anomalies in data. Here in this paper, we prefer to employ
the density-based clustering method, DBSCAN [79].1 Other noise-
tolerant clustering algorithms [54,80–94] could be utilized as
a substitute option, too, but definitely with their own specific
configurations.

However, DBSCAN is strongly reliant upon the choice of its
parameters, namely the minimal number of neighbors including
itself, MinPts, within the range Eps — with a random distance
measure, which herein is chosen as the Euclidean distance. Thus,
we are forced to utilize, e.g., some heuristic or optimization algo-
rithm to find the optimal values for these parameters. Here, we
prefer to use an evidence-based approach proposed firstly in the
DBSCAN original paper, or a combination of this approach with
the Particle Swarm Optimization (PSO) algorithm [95] to locate
the optimal parameters. More details can be found in Appendix A.

Remark 3. Another important difference between the proposed
method and BFR concerns the volume of structural information,
which they need to store for clustering procedures. As the pro-
posed method, differently from BFR, can handle Gaussian clusters
with correlated attributes too, thus the covariance matrix will
not always be diagonal and could have many non-zero elements.
Therefore, the proposed method will consume more space than
BFR for building the clustering structures.

Since the Mahalanobis distance criterion is crucially based
on the covariance matrix, this matrix will be literally the most
prominent property of each subcluster. However, according to
the high computational expense of computing the Mahalanobis
distance in high-dimension spaces, as in [70,96], we will use
the properties of Principal Components (PCs) in the transformed
space. Therefore, the covariance matrix of each minicluster will
become diagonal, and by transforming each object to the new
space of the minicluster, like BFR, we can calculate the Maha-
lanobis distance without the need to use matrix inversion.

According to [97], when the covariance matrix is diagonal, the
corresponding Mahalanobis distance becomes the same normal-
ized Euclidean distance. Moreover, we can establish a threshold
value for defining the Mahalanobis radius. If the value of this
threshold is, e.g., 4, it means that all points on this radius are as far
as four standard deviations from the mean; if we just denote the
number of dimensions by p, the size of this Mahalanobis radius
is equal to 4

√
p.

3. Proposed approach

The proposed method consists of three major phases. In the
first phase, a preliminary random sampling is conducted in order
to obtain the main premises on which the algorithm works,
i.e., some information on the original clusters and some parame-
ters useful for the progressive clustering. In the second phase, a
scalable density-based clustering approach is carried out in order
to recognize dense areas on the basis of the currently loaded
chunk of data points in the memory. Clusters built incrementally
in this way are called miniclusters or subclusters, and they form
the temporary clustering model. In more detail, after loading
each chunk of data, according to the points already loaded in the
memory and those undecided from the previous chunks, and by
employing the Mahalanobis distance measure and in respect to

1 However, we will demonstrate that sometimes throughout scalable clus-
ering, even DBSCAN may produce some miniclusters that cannot abide outliers
ecause of some data assignment restraints; hence, we will be forced to use the
ame K-means algorithm to fix the issue.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

t
c
e

e
a
e
u
i
r
a
t
T
m
‘
w
o

f
w
o
r
M
s

Fig. 1. Software architecture of the proposed approach.

he density-based clustering criteria, we update the temporary
lustering model, which consists of making some changes to the
xisting miniclusters or adding new subclusters.
Note that, in the whole scalable clustering procedure, our

ndeavor aims not to let outliers participate actively in forming
nd updating any minicluster, and thus, after processing the
ntire chunks, there will be some objects in the buffer remained
ndecided. Some of these data are true outliers, while others are
nliers, which, due to constraints, have failed to play an influential
ole in forming a subcluster. Finally, all these undecided points
re cleared from the buffer, while only the structural informa-
ion of the temporary clusters is maintained in the memory.
hen, at the last part of scalable clustering, depending on the
iniclusters associated with each initial minicluster out of the

‘Sampling’’ stage, we combine them to obtain the final clusters,
hich their structure will be approximately the same as of the
riginal clusters.
At last, in the third phase of the proposed approach, w.r.t. the

inal clustering model gained out of the second phase, once again,
e process the entire dataset in chunks to give each object an
utlying score, according to the same Mahalanobis distance crite-
ion. Fig. 1 illustrates the software architecture of the approach.
oreover, in Table 1, the main notations used in the paper are
ummarized.
7

Table 1
Major notations.
Notation Description
[X]n×p Input dataset X with n objects and p dimensions
x ∈ X An instance in X
S ⊂ X A random sample of X
X ⊂ X A set of some points in the buffer
Y ⊂ X A chunk of data
� A partition of some data points in the memory into

some miniclusters as {X1, . . . ,Xk}

nC Number of objects in Y
{0}8×L Information array of temporary clusters with 8

properties for each minicluster
{0i}8×1 ∈ 0 Information standing for the i-th minicluster in

0, 1 ≤ i ≤ L
Xi Minicluster points associated with 0i , which are

removed from the buffer
ℜ Retained set of objects in the RAM buffer
ℜi The i-th minicluster of retained points in the buffer,

discovered through DBSCAN
ℜζ Retained set of objects in the buffer introduced as noise

by DBSCAN
0 List of indices to recently created or updated

miniclusters associated with 0, to be checked on for
membership

γ ′ Temporary list of indices to recently created or updated
miniclusters associated with 0, to be checked on for
membership

m Current number of objects associated with 0i
p′ Current Number of superior components associated with

0i
ei The i-th PC coefficient
λi The i-th PC variance
L Current number of temporary clusters associated with 0
k Number of miniclusters which are about to be added to

the temporary clustering model
K K-means parameter for the number of clusters
K′ Number of obtained subclusters out of the retained set,

discovered through DBSCAN
K′′ Number of obtained subdivided subclusters out of the

retained set, discovered through K-means
T True number of original clusters in X
ν ∈ {1, . . . ,T } Index to the nearest initial minicluster for a newly

discovered subcluster
η Random sampling rate
3 PC total variance ratio for temporary clusters
α Membership threshold for temporary clusters
β Pruning threshold for final clusters
Eps DBSCAN parameter for neighborhood radius
MinPts DBSCAN parameter for minimum number of neighbors

involving the query point itself
µX Mean location of cluster X
ΣX Covariance structure of cluster X
SX Scatter matrix of cluster X
AX Transformation matrix of cluster X
z Object x in the space of eigenvectors
µ′X Mean location of cluster X in the space of eigenvectors
MD (x, X) Mahalanobis distance of object x from cluster X
SingCheck (ΣX) A function that checks on the singularity of ΣX , and

outputs 1 in case of being singular and 0 otherwise
CohrCheck (X) A function that checks on the coherence of the input

data X , so that it checks whether only one dense cluster
will be discovered through DBSCAN. Its output is 1 in
case of being coherent, and 0 otherwise

detΣX Covariance determinant of cluster X
δ⃗ Vector of maximum covariance determinant condition

for miniclusters discovered through scalable clustering
{𭟋}2×T Information array of the final clustering model with 2

properties for each final cluster
Mi The i-th final cluster, comprising of the associated

temporary clusters
µf Mean location of a final cluster
6f Covariance structure of a final cluster
U A set of regenerated points
|·| Cardinality of a set of objects
8 The empty set
κ A low constant near zero

The framework of the proposed approach is presented in Algo-
rithm 1, which consists of three main phases, including: (1) Sam-
pling; (2) Scalable Clustering; and (3) Scoring. All these phases
will be described in detail in the next subsections.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

d
c
c
o
p
a
m
b
p

3

a
e
r
o
h
i
t
i
d

o
t

m
r
h
p

b
a

Algorithm 1: Framework of SDCOR
Input : [X]n×p - The n by p input dataset X ; η - Random sampling

rate; Λ - PC total variance ratio; α - Membership threshold; β
- Pruning threshold

Output: Outlying scores for every object in X

1 Phase 1 — Sampling:

2 Step 1. Take a random sample S from X according to the sampling rate
η

3 Step 2. Find the optimal values for the DBSCAN parameters, Eps and
MinPts, required for clustering S, w.r.t. Appendix A

4 Step 3. Run DBSCAN on S using the obtained optimal parameters, and
reserve the count of discovered miniclusters as T , as the true number
of the original clusters in data

5 Step 4. Build the very first array of miniclusters information (temporary
clustering model) out of the result of step 3, w.r.t. Algorithm 2

6 Step 5. Reserve the covariance determinant values of the initial
subclusters as the vector δ⃗ = [δ1, · · · , δT], for the maximum covariance
determinant condition

7 Step 6. Clear S from RAM and maintain the initial temporary clustering
model in the buffer

8 Phase 2 — Scalable Clustering:

9 Prepare the input data to be processed chunk by chunk so that each
chunk could be fit and processed in the RAM buffer at the same time

10 Step 1. Load the next available chunk of data into RAM
11 Step 2. Update the temporary model of clustering over the contents of

the buffer, w.r.t. Algorithm 3
12 Step 3. If there is any available unprocessed chunk, go to step 1
13 Step 4. Build the final clustering model, w.r.t. Algorithm 7, using the

temporary clustering model acquired out of the previous steps

14 Phase 3 — Scoring:

15 According to the final clustering model, for each data point x ∈ X ,
employ the Mahalanobis distance criterion to find the closest final
cluster, and lastly, assign x to that cluster and use the criterion value as
the object outlierness score

3.1. Sampling

In this phase, we generate a random sample of the entire
ataset. As it might initially seem simple, but in actuality, it
ould be a complicated task since it is not guaranteed that in
ertain massive databases, records are not following a specific
rder in some attribute; this could lead to costly scans of the com-
lete dataset to build an efficient sampling. Above all, without
practical random sampling, the modeled clustering structure
ay not represent the original one; after that, outliers could
e misclassified over scalable clustering. In the following, the
ercentage of the sampled data is indicated as η.

.1.1. Clustering the sampled data
After obtaining the sampled data, we conduct the DBSCAN

lgorithm to cluster themw.r.t. the calculated optimal parameters
xplained in detail in Appendix A. Here, as we apply ‘‘uniform
andom sampling’’ — also known as ‘‘simple random sampling’’
r ‘‘random sampling without replacement’’ — on the entire data,
ence there is equal probability for every individual point to be
ncorporated in the sample [98]; for this reason, we assume that
he number of sampled clusters through this sampling scheme
s the same as the number of original clusters, T , in the main
ataset.2 Most of all, this is an accepted truth as also observed

in [37,51,53,63,64,66,67,99–101]. Besides, we presume that the
location (centroid) and the shape (covariance structure) of such
subclusters are so close to the original ones. In Section 5, we
will show that even by using a low rate of random sampling, the
mentioned properties of a sampled cluster could be quite similar

2 We reserve T for later use.
 t

8

to those of the original one.3 The idea behind making these
primary subclusters — that are so similar to the original clusters
in the input dataset in terms of the basic characteristics — is that
we intend to determine a Mahalanobis radius, which collapses a
specific percentage of objects belonging to every original cluster
and let other subclusters be created around this folding area
during successive memory loads of points. Ultimately, by merging
these miniclusters, we will obtain the approximate structure of
the original clusters.

3.1.2. Building the initial clustering model
To build the initial clustering model, we need to extract some

information from the sampled clusters obtained through DBSCAN
and store them in a special array. As stated earlier about the
benefit of using the properties of principal components for high-
dimensional data, we need to find those PCs that give higher
contributions to the cluster representation. To this aim, we sort
the PCs on the basis of their corresponding variances in descend-
ing order, and then we choose the topmost PCs having a share of
the total variance at least equal to Λ percent. We call these PCs
superior components and denote their number as p′. Let x be an
bject among the total n objects in the dataset [X]n×p, belonging
o the temporary cluster [Xi]m×p, then the information about this
subcluster as {Γi}8×1, in the array of temporary clustering model
{Γ }8×L, is as follows:

1. Mean vector in the original space, µXi =
1
m

∑
x∈Xi

x
2. Scatter matrix in the original space, SXi =

∑
x∈Xi

(x −
µXi)

t (x− µXi)
3. p′ superior components,

[
e1, . . . , ep′

]
, derived from the co-

variance matrix
∑

Xi
=

1
m−1SXi , which form the columns

of the transformation matrix AXi

4. Mean vector in the transformed space, µ′Xi
= µXiAXi

5. Square root of the top p′ PC variances,
[√
λ1, . . . ,

√
λp′

]
6. Size of the minicluster, m
7. Value of p′
8. Index to the nearest initial minicluster, ν ∈ {1, . . . , T }

Algorithm 2 demonstrates the process of obtaining and adding
this information per each minicluster attained through either of
the ‘‘Sampling’’ or ‘‘Scalable Clustering’’ stages to the temporary
clustering model. As for the eighth property of the information
array, for every sampled cluster, it is set as the corresponding
original cluster number, and for any of the subclusters achieved
out of scalable clustering, it is set as the corresponding index to
the nearest initial subcluster.4

3.1.3. Establishing the scalable clustering criteria
Regarding the major deviation between the sampling and orig-

inal distributions, DBSCAN cannot be applied to both situations
with the same setting. Hence, as it is detailed in Appendix A,
w.r.t. the insignificant effect of the MinPts parameter on the final
clustering results, we use the same value for it in both sampling
and original conditions; however, Eps is far more alert to small
changes, and thus as it is experimentally justified, we decide to

3 As we are working in massive scale, there is no need to be worried about
inuscule clusters in data which may not have enough sampled points to

epresent a relatively similar structure to the genuine one; this case generally
appens with not very large datasets. Besides, in most cases, tiny bunches of
oints tend to be outlier classes that should not be able to initiate a cluster.
4 It is clear that all those sampled points, which the initial clustering model is
uilt upon them, will be met again throughout scalable clustering. Nevertheless,
s they are randomly sampled, it could be asserted that they will not impair
he final clustering model structure.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

s
c
s
c
t

s

b
c

Algorithm 2: [Γ] = MiniClustMake(Γ ,Ω,Λ, ν)
Input : Γ - Current array of miniclusters information;

Ω = {X1, · · · ,Xk} - A partition of some data points in the
memory into some miniclusters; Λ - PC share of the total
variance; ν - Index to the nearest initial minicluster

Output: Γ - Updated temporary clustering model

1 c ← L
2 foreach minicluster Xi, 1 ≤ i ≤ k do
3 Apply PCA on Xi and obtain its PC coefficients and variances. Then

choose p′ as the number of those top PC variances for which their
share of the total variance is at least Λ percent

4 Γ {1, c + i} ← Mean vector of Xi
5 Γ {2, c + i} ← Scatter matrix of Xi
6 Γ {3, c + i} ← Top p′ PC coefficients corresponding to the top p′ PC

variances
7 Γ {4, c + i} ← Transformed mean vector, as Γ {1, c + i} · Γ {3, c + i}
8 Γ {5, c + i} ← Square root of the top p′ PC variances
9 Γ {6, c + i} ← Number of objects in Xi

10 Γ {7, c + i} ← Value of p′
11 if c ≡ 0 then /* ‘‘Sampling’’ stage */
12 Γ {8, c + i} ← i
13 else /* ‘‘Scalable Clustering’’ stage */
14 Γ {8, c + i} ← ν

15 end
16 end

use half of the utilized quantity in the sampling case for the
original one during scalable clustering.

Moreover, according to [102,103], when a multivariate Gaus-
ian distribution is contaminated with some outliers, then the
orresponding covariance determinant is no longer robust and is
ignificantly more than that of the main cluster. Following this
ontamination, the corresponding (classical) Mahalanobis con-
our line5 will also become broader than that of the pure cluster
(robust one), as it contains also abnormal data. So, it makes
sense that there is a direct relationship between the value of
covariance determinant of an arbitrary cluster and the wideness
of its tolerance ellipse, which could also be referred to as the
spatial volume of the cluster. Moreover, by being contaminated,
this volume could increase and become harmful.

Since during scalable clustering, new objects are coming over
time, and miniclusters are growing gradually, so, it is possible
for a minicluster with an irregular shape to accept some outliers.
Then, the following covariance matrix will no longer be robust,
and the corresponding Mahalanobis contour line will keep get-
ting wider too, which could cause the absorption of many other
outliers. Therefore, to impede the creation process of these vo-
luminous non-convex subclusters, which could be contaminated
with myriad outliers, we have to put a limit on the covariance
determinant of every subcluster, which is discovered through
scalable clustering. Here, we follow a heuristic approach and em-
ploy the covariance determinant of the nearest initial subcluster
obtained out of the ‘‘Sampling’’ stage as the limit.

This problem that outliers, through a detection procedure,
could be included in normal clusters and no longer be identified is
called the ‘‘masking effect’’. Note that we are using the mentioned
constraints only when subclusters are created for the first time,
not while growing over time. The justification is that while an ob-
ject is about to be assigned to a minicluster, the other constraint
on the Mahalanobis radius, within reason, is hindering outliers
from being accepted as a member. In other words, when the
Mahalanobis distance of an outlier is more than the predefined
radius threshold, it cannot be assigned to the subcluster, if and
only if that threshold is set to a fair value.6 Hence, we do not

5 Since the terms ‘‘Mahalanobis contour line’’ and ‘‘tolerance ellipse’’ are the
ame in essence, thus we will use them indifferently in this paper.
6 The three-sigma rule of thumb or the same empirical 68-95-99.7 rule can
e taken into account to determine the requisite reasonable thresholds.
 b

9

check on the covariance determinant of subclusters while they
are growing.

Here, the first phase of the proposed approach is finished, and
we need to clear the RAM buffer of any sampled data and only
maintain the very initial information obtained about the existing
original clusters.

3.2. Scalable clustering

During this phase, we have to process the entire dataset
chunk-by-chunk, as for each chunk, there is enough space in the
memory for both loading and processing it all at the same time.
After loading each chunk, we update the temporary clustering
model according to the data points currently loaded in the mem-
ory from the present chunk or retained from the other previously
loaded chunks. Finally, after processing the entire chunks, the
final clustering model is built out of the temporary clustering
model. A detailed description of this phase is provided as follows.

3.2.1. Updating the temporary clustering model w.r.t. the contents of
the buffer

After loading each chunk into the memory, the temporary
clustering model is updated upon the objects belonging to the
currently loaded chunk and other ones sustained from the for-
merly loaded data. First of all, the algorithm checks for the possi-
ble membership of each point of the present chunk to any existing
minicluster in the temporary clustering model.7

Then, after the probable assignments of the current chunk
points, some primary and secondary information of the modified
subclusters shall be updated. After this update, the structure of
the altered subclusters will change, and thus they might still be
capable of absorbing more inliers. Therefore, the algorithm checks
again for the likely memberships of sustained points in the mem-
ory to the updated subclusters. This updating and assignment
checking cycle will keep going until there is not any retained
point that could be assigned to an updated minicluster.

When the membership evaluation of the present chunk and
retained objects is carried out, the algorithm tries to cluster
the remaining sustained objects in the memory, regarding the
density-based clustering criteria, which have been constituted at
the ‘‘Sampling’’ phase. After the new miniclusters were created
out of the last retained points, there is this probability that some
sustained inliers in the buffer might not be capable of actively
participating in forming new subclusters because of the density-
based clustering standards, though could be assigned to them,
considering the firstly settled membership measures. Hence, the
algorithm goes another time in the cycle of assignment and
updating procedure, like what was done in the earlier steps.

Algorithm 3 demonstrates the steps necessary for updating
the temporary clustering model, w.r.t. an already loaded chunk
of data and other undecided objects retained in the memory from
before. The following subsections will explain the details of this
algorithm.

3.2.1.1. Trying to assign each tuple of the chunk to a minicluster.
After loading each chunk of data into the buffer, we need to use
the properties of PCs for each minicluster and transform each data
tuple into the new space of that minicluster; then, like BFR, we
calculate the Mahalanobis distance using the mean vector and the
square root of variances, but in the space of eigenvectors. That is,

MD(x, Xi) =
p′∑
j=1

(
zj − µ′j√

λj
)2 (1)

7 After this step, the unassigned objects of the lastly and previously loaded
hunks will be altogether considered as the retained or sustained objects in the
uffer.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

m
t
t
v
s
a
t
d
i
p
n

m
M
f
u

Algorithm 3: [Γ ,ℜ] = MemoProcess(Y,Γ , α,ℜ, δ⃗,Λ)
Input : Y - A chunk of data; Γ - Current array of miniclusters

information; α - Membership threshold; ℜ - Retained set; δ⃗ -
Covariance determinant threshold; Λ - PC share of the total
variance

Output: Γ - Updated temporary clustering model; ℜ - Modified
retained set

/* Trying to assign each tuple of a chunk to a minicluster */
1 γ ← {1, · · · ,L}
2 [Γ , γ ,ℜ] = MiniClustUpdate(Y,Γ , γ , α,ℜ)

/* Checking out the retained set */
3 if |ℜ| ̸= 0 then

/* Checking on the retained set membership for the recently updated
miniclusters */

4 [Γ ,ℜ] = RetSetMemb(ℜ,Γ , γ , α)
/* Clustering the retained set */

5 if |ℜ| ̸= 0 then
6 l← L

7 [Γ ,ℜ] = RetSetClust(ℜ,Γ , δ⃗,Λ)
8 γ ← {l+ 1, · · · ,L}

/* Checking on the retained set membership for the recently
created miniclusters */

9 if |ℜ| ̸= 0 then
10 [Γ ,ℜ] = RetSetMemb(ℜ,Γ , γ , α)
11 end
12 end
13 end

Fig. 2. Assigning retained objects in the buffer to the newly updated subclusters.

Where MD(x, Xi) is the Mahalanobis distance of object x from
inicluster Xi; z = xAXi is the object in the eigenvector space of

he minicluster, and zj is its j-th component; µ′j and λj are respec-
ively the j-th components of the mean vector and the variance
ector in the space of eigenvectors; finally, p′ is the number of
uperior components associated with the minicluster. As stated
bove, in this style, the amount of computations is sensibly less
han if we would have used matrix inversion to calculate the
istance. Moreover, w.r.t. [97], the accepted Mahalanobis radius
n the eigenvector space of the relevant subcluster will be the
roduct of the membership threshold and the square root of the
umber of dimensions in the transformed space, as α

√
p′.

For each data point, w.r.t. Eq. (1), we need to find the closest
inicluster and check whether or not it falls in the accepted
ahalanobis threshold of that minicluster; if it does, some in-

ormation connected to the corresponding subcluster shall be
pdated.
10
Algorithm 4:
[
Γ , γ ′,ℜ

]
= MiniClustUpdate(X,Γ , γ , α,ℜ)

Input : X - A set of some points in the buffer; Γ - Current array of
miniclusters information; γ - List of indices to the recently
created or updated miniclusters associated with Γ , to be
checked on for membership; α - Membership threshold; ℜ -
Retained set

Output: Γ - Updated temporary clustering model; γ ′ ⊆ γ - Modified
list of indices to the recently updated miniclusters; ℜ -
Modified retained set

/* Updating the primary information of subclusters */
1 foreach x ∈ X do
2 b← argmini∈γ MD(x, Xi)
3 if MD(x, Xb) ≤ α

√
Γb {7} then

4 Γb {2} ← Γb {2} + x′x
5 Γb {6} ← Γb {6} + 1
6 Remove x from the RAM buffer
7 else
8 ℜ ← ℜ∪ x
9 end

10 end
/* Updating the secondary information of subclusters */

11 γ ′ ← Φ

12 foreach Xi, i ∈ γ do
13 if Xi has accepted any new members then
14 Obtain its updated covariance matrix

∑
Xi
, through normalizing

its updated scatter matrix, w.r.t. the current size of the
minicluster as

(
1

Γi{6}−1

)
· Γi {2}

15 Apply PCA on
∑

Xi
to acquire its eigenvalues and eigenvectors,

and then, update Γi as follows:
16 Γi {7} ← Value of p′ as the updated number of superior

components
17 Γi {3} ← Updated superior coefficients
18 Γi {4} ← Updated transformed mean vector, as Γi {1} ·Γi {3}
19 Γi {5} ← Square root of the updated superior variances
20 γ ′ ← γ ′ ∪ i
21 end
22 end

3.2.1.2. Updating primary and secondary information of the modi-
fied temporary clusters. For every subcluster that any new objects
have been assigned to it, there are two types of information that
need to be updated; primary and secondary. Primary information
comprises the scatter matrix of the subcluster and its cardinality,
which should be updated after each individual assignment. To
update the scatter matrix, the outer product of the belonged
data point with itself is added to the current scatter matrix; for
the cardinality, the number of objects assigned to the subcluster
is increased by one. Every object, after joining a subcluster, is
removed from the buffer; otherwise, it will be retained to be
decided on later.

After checking on the membership of all points and updating
the primary information of the modified subclusters, for each
minicluster that has accepted any new members, its PC prop-
erties, which are considered as its secondary information, must
be updated too. For this purpose, according to the minicluster
size, we normalize its scatter matrix in an unbiased manner to
acquire its covariance matrix. Then, by applying PCA on this
matrix, we update the transformation matrix, the mean vector
in the space of eigenvectors, and the superior PC variances of
the minicluster. Algorithm 4 demonstrates the required steps for
finding the closest subcluster per every query point w.r.t. the
relevant limitations, and updating the essential information of
every modified subcluster.

3.2.1.3. Trying to assign retained objects in the buffer to the newly
updated miniclusters. After updating the secondary information
of each altered subcluster, the corresponding tolerance ellipse
will rotate and might also become skewed a bit around the
centroid; in other words, the following accepted Mahalanobis

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

i
m
c
a
s
p
l

Fig. 3. Breaking a non-convex minicluster with a very wide tolerance ellipse into smaller pieces by the K-means algorithm.8 .
1
a
a
c

Algorithm 5: [Γ ,ℜ] = RetSetMemb(ℜ,Γ , γ , α)

Input : ℜ - Retained set; Γ - Current array of miniclusters
information; γ - List of indices to the recently created or
updated miniclusters associated with Γ , to be checked on for
membership; α - Membership threshold

Output: Γ - Updated temporary clustering model; ℜ - Modified
retained set

1 if |γ | ̸= 0 then
2 while true do
3 [Γ , γ ,ℜ] = MiniClustUpdate(ℜ,Γ , γ , α,Φ)
4 if |γ | ≡ 0 then
5 break
6 end
7 end
8 end

neighborhood is modified. Hence, w.r.t. Algorithm 5, it would
be necessary to check on the objects retained in the buffer,
i.e., whether they can belong to a modified minicluster; and if
it is so, the corresponding minicluster information needs to be
updated, w.r.t. Algorithm 4. Nevertheless, this is not the end; by
keeping up this cycle of membership checking and minicluster
updating, more and more objects could be assigned to mini-
clusters and then be discarded. In this iterative manner, after
each iteration, memory contents should be evaluated using only
the updated subclusters from the last iteration; thus, the list of
updated miniclusters will be shrinking over time until it becomes
an empty list. This means that there is not any other sustained
object in the buffer, which falls in the accepted Mahalanobis
threshold of any of the updated miniclusters, or every retained
object has been eventually assigned to an updated minicluster.
Here, by employing this procedure, it seems that the tolerance
ellipses of miniclusters are sweeping inliers through the cycle of
assignment and updating.

Fig. 2 shows the scenario in which, after updating the core
nformation of a subcluster, its Mahalanobis neighborhood is
odified; some objects which were not able to belong to this sub-
luster now are capable of being assigned to it. Black circle points
nd the black dashed line tolerance ellipse respectively repre-
ent a subcluster and its Mahalanobis neighborhood. Red circle
oints represent objects assigned to the subcluster during the
ast memory process, as they reside in its accepted neighborhood.
 p

11
The red dashed line represents the updated tolerance ellipse of
the updated subcluster. Moreover, blue triangle points represent
objects which could be assigned to the updated subcluster if they
would lie in its updated Mahalanobis radius.

3.2.1.4. Clustering retained objects in the buffer. Here, after check-
ing on the membership of every data tuple stored in the memory,
we afford to cluster retained objects in the RAM buffer, using
the DBSCAN algorithm again. However, as emphasized at the
‘‘Sampling’’ stage, according to the significant difference in the
density of the sampled and original data, we have to employ a
specific configuration for each situation.

Furthermore, as it was described before, it is possible that
some miniclusters could be discovered during scalable clustering
by DBSCAN, which are suffering from the singularity problem.
Thus, for handling such a situation, there are some ways. One is
to use the pseudoinverse of the covariance structure, but it is not
totally accurate. The better way is to disregard such minicluster
and let its points still be in the memory, to be resolved later,
among other coming points. Therefore, for every discovered sub-
cluster, we shall check on its covariance matrix, whether or not
it is singular; in case of singularity, we disregard that subcluster.

Now, w.r.t. this prementioned matter that, we have to put
a limit on the boundaries of the miniclusters which are being
created throughout scalable clustering, we are going to demon-
strate with an intuitive example that if a minicluster with a
non-convex shape is formed, how outliers could be absorbed to
such irregular minicluster and cause severe damage to the final
clustering results.

Fig. 3a illustrates the structure of an original cluster rep-
resented with red dots, with a newly discovered non-convex
subcluster shown with blue dots, and a black square and a black
dashed line as its centroid and accepted tolerance ellipse re-
spectively. The irregular minicluster is formed around the initial
minicluster, while its centroid and accepted Mahalanobis radius
are denoted as a black triangle and a solid black line, respectively.

8 Regarding the three-sigma rule of thumb, the Mahalanobis radii equal to
and 2, in order, cover roughly 68 and 95 percent of the total objects in
Gaussian distribution. For convex-shaped clusters of other distributions, the
mount of coverage might vary, but for non-convex-shaped clusters, it could
ontain objects not belonging to the distribution. Here, in all subfigures, the
resented radius is equal to 1.5.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

T
w

o
o
t
e
t
p
c
l
c
w
c
s

a
i

s
a

here are also some local outliers around the original cluster,
hich are illustrated with magenta pentagons.9
As it is evident, the irregular minicluster can absorb some local

utliers, as its tolerance ellipse is covering a remarkable space
ut of the containment area by the original cluster. Moreover,
he covariance determinant value for the irregular minicluster is
qual to 15.15, which is almost twice that of the initial miniclus-
er equal to 7.88. Thus, to fix this concern, by considering the
roportion between the covariance determinant of an arbitrary
luster and its spatial volume, we decide to divide the irregu-
ar minicluster into smaller coherent pieces, with more minor
ovariance determinants and more limited Mahalanobis radii as
ell. Therefore, we heuristically set the threshold value for the
ovariance determinant of any newly discovered subcluster or
ubdivided subcluster, as that of the nearest initial minicluster.10
For the division process of an irregular subcluster, we prefer to

dopt the K-means algorithm. However, K-means can cause some
ncoherent subdivided subclusters in such cases,11 as shown in
Fig. 3b. In Fig. 3b, two smaller miniclusters, produced as the K-
means result, are represented in different colors, with covariance
determinants of 1.63 and 7.71 for the coherent blue and incoher-
ent red miniclusters, respectively. The associated centroids and
tolerance ellipses are denoted as black crosses and black solid
lines, respectively. It is clear that even incoherent subdivided sub-
clusters, with a covariance determinant less than or equal to the
predefined threshold though, could be hazardous as non-convex
subclusters with a high value of covariance determinant, as their
tolerance ellipses could get out of the scope of the following main
cluster, and suck outliers in.12

An alternative for this is to use hierarchical clustering al-
gorithms, which typically present a higher computational load
than K-means. For this matter, we decide to adopt a K-means
variant, which, for every subdivided subcluster obtained through
K-means, we apply DBSCAN again to verify its cohesion. Finally,
we increase the value of K for K-means, from 2 till a value for
which,13 three conditions for every subdivided subcluster are
met: to be coherent, not to be singular, and having a covariance
determinant less than or equal to δi.

Fig. 3c illustrates a scenario in which three smaller miniclus-
ters are represented as the K-means output in different colors;
centroids and tolerance ellipses are shown as in Fig. 3b. The
covariance determinant values are equal to 0.12, 1.02, and 0.10
for respectively the green, red and blue subdivided subclusters.
As it is obvious, all subdivided subclusters are coherent and not
singular, with much smaller determinants than the threshold and
much tighter spatial volumes as such. Ultimately, after attain-
ing acceptable subclusters, it is time to update the temporary
clustering model w.r.t. them, in regard to Algorithm 2.

9 Here, for challenging the performance of our method, we are taking outliers
o close to the original cluster. However, in reality, it is not usually like that,
nd outliers often have a significant distance from every normal cluster in data.
10 This threshold is denoted as δi, 1 ≤ i ≤ T , for any subcluster discovered
near the i-th initial minicluster, through scalable clustering. The proximity
measure for this nearness is the Mahalanobis distance of the newly discovered
subcluster centroid from the initial miniclusters. We assume any subcluster with
a covariance determinant greater than such threshold, as a candidate for a non-
convex subcluster, whose spatial volume could cover some significant space out
of the scope of the related original cluster.
11 As K-means focuses solely on finding the best locations for the means and
does not consider the cohesion of the output clusters.
12 However, the divided minicluster could be significantly smaller in size and
determinant, though because of the lack of coherency, some PC variances could
be substantially larger than others; therefore, the regarding tolerance ellipse will
be more stretched in those PCs, and thus harmful.
13 Here, the upper bound for K is ⌊|ℜi| /(p+ 1)⌋, to avoid the singularity
problem for every subdivided subcluster of retained objects. |ℜi| stands for the
cardinality of the i-th minicluster of retained points.
12
Algorithm 6 shows all the steps required to cluster the data
elements retained in the memory buffer. First, DBSCAN is applied
to the retained set with the optimal parameters concerning the
original distribution; some miniclusters, maybe along with some
noisy points, will be identified. Then for every detected miniclus-
ter out of the sustained objects, we evaluate whether it qualifies
for being considered as a valid minicluster conforming with the
three conditions of being coherent, not being singular, and not
exceeding the determinant threshold. At first, the singularity term
is checked out, and in the case of being singular, the related
minicluster points are discarded; otherwise, the closest initial
minicluster will be found through Mahalanobis distance, and
the corresponding covariance determinant will be exerted as the
required constraining threshold.

If the determinant limitation is not violated, then such mini-
cluster is qualified for being added to the temporary clustering
model, and thereafter, its points in the memory will be obviated.
Conversely, in the instance of determinant violation, the K-means
variant is utilized for the division strategy, as for every subdivided
subcluster, the mentioned three indispensable conditions shall
be met. In case that K-means fails, the correspondent unbroken
minicluster is discarded; oppositely, if K-means succeeds, the
authentic subdivided subclusters are appended to the temporary
clustering model. At last, the initial retained set passed to Algo-
rithm 6 is replaced with the entire undecided objects after the
described procedure.

Algorithm 6: [Γ ,ℜ] = RetSetClust(ℜ,Γ , δ⃗,Λ)
Input : ℜ - Retained set; Γ - Current array of miniclusters

information; δ⃗ - Covariance determinant threshold; Λ - PC
share of the total variance

Output: Γ - Updated temporary clustering model; ℜ - Modified
retained set

1 Apply the DBSCAN algorithm to ℜ concerning the optimum parameters
for the original distribution explained in Appendix A. Consider the
result of such clustering as {ℜ1, · · · ,ℜK′ } ∪ ℜζ
/* Adding the information of the newly discovered miniclusters to the

temporary clustering model */
2 foreach ℜi, 1 ≤ i ≤ K′ do
3 if SingCheck

(
Σℜi

)
≡ 1 then /* Singularity check */

4 ℜζ ← ℜζ ∪ ℜi
5 continue
6 end
7 ν ← argminh∈{1,···,T }MD(µℜi , Xh)
8 if det∑

ℜi
> δ⃗ (ν) then /* Irregular minicluster */

9 Apply K-means with the number of clusters
2 ≤ K′′ ≤ ⌊|ℜi| /(p+ 1)⌋ to ℜi . Find the minimum value for K′′ ,
as by which for every subdivided subcluster ℜi,j, 1 ≤ j ≤ K′′ ,
we have CohrCheck

(
ℜi,j

)
≡ 1, SingCheck

(
Σℜi,j

)
≡ 0 and

det∑
ℜi,j
≤ δ⃗ (ν)

10 if such K′′ is not found then
11 ℜζ ← ℜζ ∪ ℜi
12 continue
13 end
14 [Γ] = MiniClustMake(Γ ,

{
ℜi,1, · · · ,ℜi,K′′

}
,Λ, ν)

15 Remove
{
ℜi,1, · · · ,ℜi,K′′

}
from the RAM buffer

16 else /* Regular minicluster */
17 [Γ] = MiniClustMake(Γ ,ℜi,Λ, ν)
18 Remove ℜi from the RAM buffer
19 end
20 end

/* Setting the unresolved points as the retained set */
21 ℜ ← ℜζ

3.2.1.5. Trying to assign retained objects in the buffer to the newly
created miniclusters. After checking on retained objects in the
buffer in case of being capable of forming a new minicluster,
it would be necessary to examine the remaining retained ob-
jects once more, w.r.t. Algorithm 5; i.e., it ought to be inspected
whether or not they could be assigned to the newly created

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

Σ

Fig. 4. Assigning retained objects in the buffer to the newly created subclusters.

miniclusters, in the same cycle of membership checking and
minicluster updating, like what was done in Section 3.2.1.3. The
reason for this concern is that, due to limitations connected to the
utilized density-based clustering algorithm, such objects may not
have been capable of being an active member of any of the newly
created subclusters, even though they lie in the associated ac-
cepted Mahalanobis radius. Hence, it becomes essential to check
again the assignment of these latter retained objects.

Fig. 4 demonstrates an intuitive example of such a situation in
which some objects according to the density restrictions cannot
be assigned to a cluster, even though they lie in the accepted
Mahalanobis radius of that cluster. Objects that have had the
competence to form a cluster are shown with solid black circles;
those that are not a part of the cluster, but reside in its accepted
Mahalanobis radius represented by a solid blue line, are denoted
as red triangles.

Thus, if retained objects could belong to a newly created
subcluster, the corresponding information of that subcluster will
be modified w.r.t. Algorithm 4; otherwise, such data will be still
retained in the buffer for further process. However, if it were the
last chunk that was processed, all these retained objects would be
marked as temporary outliers. But, all of these temporary outliers
are not true outlying points; as stated earlier, some of them are
normal objects that have not found the competence of forming a
minicluster or being assigned to one due to applied restrictions.
Anyway, at last, all of these true and untrue anomalies which are
maintained in the buffer will be discarded, and this is only the
temporary clustering model which is remained after all.

3.2.2. Building the final clustering model
Here, at the end part of scalable clustering, we follow Al-

gorithm 7 to construct the final clustering model or the same
approximate structure of T original clusters, w.r.t. the temporary
clustering model with L miniclusters.

For every individual minicluster in the temporary clustering
model, we have already realized to which original cluster in the
main distribution it belongs; thus, to obtain the final clustering
model, we just need to merge the information of the relevant
miniclusters to each of the original clusters to acquire the final
clusters. Here, we presume that the core information of each final
cluster only consists of a centroid µf , and a covariance matrix

f . Hence, w.r.t. Algorithm 7, if a final cluster contains only one
temporary cluster, then the final centroid and the final covariance

matrix will be the same as for the temporary cluster. Otherwise,

13
Algorithm 7: [𭟋] = FinalClustBuild(Γ , η, β)

Input : Γ - Current array of miniclusters information; η - Random
sampling rate; β - Pruning threshold

Output: 𭟋 - Final clustering model

1 Consider the arrangement of the entire temporary clusters
Xj ’s, 1 ≤ j ≤ L w.r.t. the original clusters in the main distribution as
{M1, · · · ,MT }; Mi, 1 ≤ i ≤ T stands for the i-th final cluster,
consisting of the associated temporary clusters as every temporary
cluster possesses a property declaring the original cluster it belongs to

2 𭟋← Φ

3 foreach Mi, 1 ≤ i ≤ T do
4 if |Mi| ≡ 1 then /* Isolated minicluster */
5 Use the same mean location and covariance structure of the

isolated subcluster, as for those of the final cluster
6 else /* Group of miniclusters */

/* Calculating the final mean location */

7 µf ←

∑
j:Xj∈Mi [Γj{6}·Γj{1}]∑

j:Xj∈Mi
Γj{6}

/* Calculating the final covariance structure */
8 U ← Φ

9 foreach Xj ∈Mi do
10 Regenerate η · Γj {6} number of fresh data points, with

Gaussian distribution, with regard to Γj {1} as the

temporary mean and
(

1
Γj{6}−1

)
· Γj {2} as the temporary

covariance matrix
11 Add these regenerated points to U
12 end
13 Calculate the Mahalanobis distance of the points in U based

upon the sample mean µU , and the sample covariance matrix
ΣU

14 Prune U by discarding those points with a Mahalanobis
distance more than β

√
p, and recalculate ΣU

15 Σf ← ΣU
16 Remove U from the buffer

/* Adding information to the final clustering model */
17 𭟋 {1, i} ← µf
18 𭟋 {2, i} ← Σf

19 end
20 end

in the case of containing more than one temporary cluster, we
utilize the sizes and centroids of the associated miniclusters to
obtain the final mean.

For acquiring the final covariance matrix of a final cluster com-
prised of multiple temporary clusters, for each of the associated
miniclusters and w.r.t. its centroid and covariance structure, we
afford to regenerate a specific amount of fresh data points with
Gaussian distribution. We define the regeneration size of each
minicluster equal to the product of the sampling rate — which
was used at the ‘‘Sampling’’ stage — and the cardinality of that
minicluster, as η

⏐⏐Xj
⏐⏐; this is necessary for saving some free space

in the memory while regenerating the approximate structure of
an original cluster. We consider all regenerated objects of all
subclusters belonging to a final cluster as a unique and coherent
cluster and afford to obtain the final covariance structure out of
it.

But before using the covariance matrix of such regenerated
cluster, we need to mitigate the effect of some generated outliers,
which could be created unavoidably during the regeneration pro-
cess, and can potentially prejudice the final accuracy outcomes.
For this purpose, we need to prune this transient final cluster,
according to the Mahalanobis threshold β , obtained through the
user. Thus, regenerated objects having a Mahalanobis distance of
more than β

√
p from the regenerated cluster will be obviated.

Now, we can compute the ultimate covariance matrix out of
such pruned regenerated cluster and then remove this transient
cluster. This procedure is conducted in sequence for every final
cluster, consisting of more than one temporary cluster.

Fig. 5a demonstrates a dataset consisting of two dense Gaus-
sian clusters with some local outliers around them. This figure

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

i
t
c
m
p
b
c
f
a
d

p
s
w
t

3

s
T
w
c
l
o
t
o
D

3

a
C
D
c
a

a
t
t
o
w
w

s
t
b
t

c
n
r
p

l
p
w

t
w
a

c
m
t
v
m
t
O
m
t
t
s

4

o
f
p
p
d
o
r
a
s
t
o
a

s, in fact, a sketch of what the proposed method looks like at
he final steps of scalable clustering and before building the final
lustering model. Green dots are normal objects belonged to a
inicluster, and red dots are temporary outliers; magenta square
oints represent the temporary centroids. Fig. 5b demonstrates
oth temporary means and final means, represented by solid
ircles and triangles respectively, with a different color for each
inal cluster. Fig. 5c colorfully demonstrates the pruned regener-
ted data points for every final cluster besides the final means,
enoted as dots and triangles, respectively.
Now, after obtaining the final clustering model, the second

hase of the proposed approach is finished. In the following
ubsection, the third phase, named ‘‘Scoring’’ is presented, and we
ill describe how to give every object a score of outlierness, w.r.t.
he final clustering model obtained out of scalable clustering.

.3. Scoring

In this phase, w.r.t. the final clustering model obtained through
calable clustering, we give each data point an outlying rank.
herefore, like phase two, once more, we need to process the
hole dataset in chunks and use the same Mahalanobis distance
riterion to find the closest final cluster to each object. This
ocal Mahalanobis distance [42] is assigned to the object as its
utlying score; the higher the distance, the more likely it is that
he object is an outlier. Here, we name such score obtained out
f our proposed approach, SDCOR, which stands for ‘‘Scalable
ensity-based Clustering Outlierness Ratio’’.14

.4. Algorithm complexity

Here, at first, we analyze the time complexity of the proposed
pproach. For the first two phases, ‘‘Sampling’’ and ‘‘Scalable
lustering’’, the most expensive operations are the application of
BSCAN to the objects residing in the memory after loading each
hunk, and the application of PCA to each minicluster to obtain
nd update its secondary information.
Let nC be the number of data points contained in a chunk.

Considering the three-sigma rule of thumb, in every memory
load of points, the majority of these points lies in the accepted
Mahalanobis neighborhood of the current temporary clusters and
is being assigned to them — and this will escalate over time by
the increasing number of subclusters, which are being created
during every memory process — and also, by utilizing an indexing
structure for the kNN queries, the time complexity of the DBSCAN
lgorithm will be O (κnC log (nC)); where κ is a low constant close
o zero. Note that exercising an indexing structure to decrease
he computational complexity of answering the kNN queries is
nly applicable in lower dimensions; for high-dimensional data,
e need some sort of sequential scans to handle the kNN queries,
hich leads to average time complexity of O

(
κn2

C

)
for DBSCAN.

Applying PCA on miniclusters is O
(
min

(
p3, n3

C

))
[103], as p

tands for the dimensionality of the input dataset. But according
o our necessary assumption that p < nC, thus applying PCA will
e O

(
p3

)
. Hence, the first two phases of the algorithm will totally

ake O
(
max

(
κn2

C, p
3
))
.

The last phase of the algorithm, w.r.t. this concern that only
onsists of calculating the Mahalanobis distance of the total
objects in the input dataset to T final clusters, is O (nT);

egarding that T ≪ n, hence, the time complexity of this
hase will be O (n). The overall time complexity is thus at most

14 Due to the high computational load associated with calculating the Maha-
anobis distance in high dimensions, one can still gain the benefit of using the
roperties of principal components for computing the outlying scores, like what
as done during scalable clustering.
14
O
(
max

(
κn2

C, p
3
)
+ n

)
. However, in addition to κ being a truly

iny constant, it is evident that both p and nC values are negligible
.r.t. n; therefore, we can state that the time complexity of our
lgorithm is linear.
Analysis of the algorithm space complexity is twofold. First, we

onsider the stored information in the memory for the clustering
odels, and second, the amount of space required for processing

he resident data in RAM. Concerning the fact that the most
oluminous parts of the temporary and of the final clustering
odels are the scatter and covariance matrices, respectively, and

hat L ≫ T , thus, the space complexity of the first part will be(
Lp2

)
. For the second part, according to this matter that in each

emory load of points, the most expensive operations belong to
he clustering algorithms, DBSCAN and K-means, and regarding
he linear space complexity of these methods, hence, the overall
pace complexity will be O

(
nC + Lp2

)
.

. Experimental evaluation

This section supplies details on the efficacy, efficiency, and
ther specific tests employed in our experiments. For the ef-
ectiveness test, we analyze the accuracy and stability of the
roposed method on some real-life and synthetic datasets, com-
ared to some other state-of-the-art and well-known distance-,
ensity-, and clustering-based methods, which are all subsets
f the proximity-based methods for outlier identification. The
epresentative competing strategies are namely ORCA, DOLPHIN,
nd Sp as the distance-based methods; LOF, LoOP, and an en-
emble version of LOF (introduced in [67]) called EnLOF15 as
he density-based techniques; and finally, a fast K-means variant
ptimized for clustering large-scale data, named X-means [105]
s the only clustering-based approach in our analysis,16 for which

we will report a special benchmarking against SDCOR w.r.t. some
exclusive clustering robustness criteria.

Moreover, for the competing methods that are based on some
sort of random sampling and present non-deterministic results
over various iterations — namely Sp, EnLOF, and SDCOR — we pro-
vide some statistical significance test to find differences among
them across several attempts. Consequently, for the efficiency
test, experimentation is conducted on some artificial datasets to
assess how the final accuracy varies when the number of outliers
increases. Besides, more investigations are carried out to appraise
the scalability of the proposed algorithm and the effect of random
sampling rate on the final detection validness.

All the experiments were executed on a laptop having a
2.5 GHz Intel Core i5 processor, 6 GB of memory, and a Windows
7 Ultimate (Service Pack 1) operating system. Furthermore, in
what follows, first of all, we explain in detail the utilized eval-
uation metrics and the analyzed real-world and artificial datasets
in our analysis. Moreover, we provide some ins and outs on the
algorithms implementations and the user-defined parameters for
all contending methods.

15 It should be noted that another ensemble version of LOF has been presented
by Zimek et al. [104], though with different parameterization. However, this
approach produces similar outputs to EnLOF, it is empirically proven in [67] that
this peculiar assembly adaptation of LOF suffers from a much higher arithmetical
cost, even in most cases in comparison with the original LOF method.
16 Actually, X-means is not an anomaly recognition technique in essence as
it assumes the input data free of noise. Therefore, after obtaining the final
clustering outcome through this method, the Euclidean distance of every object
to its closest centroid is assigned to it as an outlier score; hence, the following
assessment measures could be calculated.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

4

4

t
m
a
c
a
t
o
i
t
A
i
A
i
m
a
t

T

m
o
i
f
c

Fig. 5. Proposed method appearance at the last steps of scalable clustering.
.1. Evaluation metrics

.1.1. General-purpose metrics
We evaluate the functionality of the competing outlier de-

ection algorithms in general by cross-checking two widely-used
etrics in this area [44,106]. One is the Receiver Operating Char-
cteristic, also the Receiver Operating Curve (ROC), or the same
urve of detection rate and false alarm rate (true positive rate
gainst false positive rate), calculated concerning Eqs. (2) and (3);
he other is the Precision–Recall (PR) curve, computed in respect
f Eqs. (2) and (4). In both metrics, the positive class (class of
nterest) stands for the outliers, while the negative class typifies
he normal samples. The examination is then established on the
rea Under the Curve (AUC) for both metrics, which are called,
n order, AUROC (Area Under Receiver Operating Curve) and
UPRC (Area Under Precision–Recall Curve); more importantly,
t should be pointed out that throughout the literature, AUROC is
uch more common and popular than AUPRC for comparing the
nomaly identification tasks. The related equations for computing
he referred measures are as follows:

PR (Recall) =
true positives

true positives+ false negatives
(2)

FPR =
false positives

false positives+ true negatives
(3)

Precision =
true positives

true positives+ false positives
(4)

4.1.2. Clustering validity metrics
Besides the above-mentioned two popular assessment mea-

sures for unsupervised outlier detection methodologies, as the
proposed method is essentially founded upon the cluster anal-
ysis, and also, X-means is the only clustering-based competing
method in our experiments, hence we desire to compare these
two techniques, in particular, utilizing some external clustering
validity measures employed in [107,108].17

Here, we exert five specific measures: Purity [109], the Mirkin
metric [110], F-measure [111], Entropy [112], and Variation of
Information (VI) [113] to weigh up the difference among the clus-
tering results of SDCOR and X-means. These measures are divided
into two separate collections. In one category — containing Purity,
the Mirkin metric, and F-measure — it depends on computing

17 The distinction between the internal and the external clustering validity
etrics is that the internal indices assess the inherent unification/separation
f the output clusters, while the external indices appraise the similar-
ty/dissimilarity between the clustering solution out of a peculiar clustering
unction and the expected results or the same ‘‘ground truth’’ of the
orresponding dataset.
15
the number of pairs of points on which two clustering outcomes
coincide/collide with each other. The other category — including
Entropy and VI — is information-reliant, and more precisely,
it is the homogeneity of a clustering solution that goes under
evaluation. Furthermore, each one of these measures happens at
a certain value as its best condition; some fall into a minimum
equal to 0, and some drive into a maximum equal to 1 in the ideal
case. Consider that dataset X with n objects composes, in reality,
of classes D = (D1, . . . ,Dl), and the result of applying an arbitrary
clustering approach on X is as C = (C1, . . . , Ck); in both the real
situation and the clustering output, anomalies, like a group of
normal objects, are categorized as a single group of elements18.
More details on the noted external clustering accuracy metrics
are presented in the following.

4.1.2.1. Purity. Every output cluster Cr , 1 ≤ r ≤ k may include
elements associated with multiple target classes. The Purity of an
arbitrary cluster is the ratio of the size of the domineering class
in the cluster to the cluster cardinality, delineated as follows:

Purity (Cr) =
1
|Cr |

max
s=1,...,l

|Cr ∩ Ds| , 1 ≤ r ≤ k (5)

The Purity value of a single cluster always falls in the interval[1
l , 1

]
; higher Purity rates denote that the relevant cluster is

a more ‘‘pure’’ version of the domineering class. The Purity of
the entire assortment of the detected clusters is computed as a
weighted aggregation of the respective clusters purities, defined
as follows:

Purity (C) =
k∑

r=1

|Cr |

n
Purity (Cr) =

1
n

k∑
r=1

max
s=1,...,l

|Cr ∩ Ds|

(6)

In the best condition, Purity is equal to 1. Greater values for
this measure imply that the equivalent clustering result is more
accurate; terrible clusterings possess Purity values near 0. How-
ever, Purity is not totally dependable for the accuracy evaluation
of a clustering method, as a deficient result cannot absolutely lead
to the inefficacy of the related method.

18 SDCOR and X-means both provide anomaly scores for all the normal and
abnormal elements in the input data, and even anomalies are finally assigned
to a discovered cluster. Therefore, for distinctly defining the resultant outliers
cluster, we utilize the existing ground truth on the actual number of outliers (o)
in the correspondent dataset; scores are sorted in descending order, and then
the top-o indices will be separated as the anomaly cluster.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

4

m
(

i
F

f
f
t
t
c

4
b
m

m

i
c
E
t
o

4
i
i
g
V
t

s

4

i
f
s
u

4

t
O
p
e

.1.2.2. Mirkin metric. The Mirkin metric is computed as follows:

M (C,D) =
1
n2

(k∑
r=1

|Cr |
2
+

l∑
s=1

|Ds|
2

−2
k∑

r=1

l∑
s=1

|Cr ∩ Ds|
2
) (7)

Concerning this formula, the Mirkin metric is limited to the
range of [0, 1], and in the best case where the clustering solution
and the ground truth are identical, it is equal to 0.

4.1.2.3. F-measure. F-measure is a widely-used measure in the
clustering accuracy appraisal tasks, which is intrinsically depen-
dent on the information-retrieval concepts. For comparing two
partitions of clusters and classes through this metric, an easy way
would be calculating the Precision (P), Recall (R), F-value (F), and
ultimately the consequent F-measure for every cluster w.r.t. the
regular classes, and at last, we just need to compute the total F-
measure for the entire clusters collection. The formulation of this
metric is as follows:

P (Cr ,Ds) =
|Cr ∩ Ds|

|Cr |
, 1 ≤ r ≤ k, 1 ≤ s ≤ l (8)

R (Cr ,Ds) =
|Cr ∩ Ds|

|Ds|
, 1 ≤ r ≤ k, 1 ≤ s ≤ l (9)

Concerning the already-mentioned formulas, it can be under-
stood that Precision and Recall describe, in order, how homo-
geneous and complete the cluster Cr is with regard to the class
Ds. After computing the Precision and Recall values for a specific
cluster with reference to various classes, the correspondent F-
values will be the harmonic mean of the respective Precisions and
Recalls, in the following terms:

F (Cr ,Ds) =

(1
P(Cr ,Ds)

+
1

R(Cr ,Ds)

2

)−1
=

2P (Cr ,Ds) R (Cr ,Ds)

P (Cr ,Ds)+ R (Cr ,Ds)
, 1 ≤ r ≤ k, 1 ≤ s ≤ l

(10)

The succeeding F-measure19 quantity for the cluster Cr is the
aximal F-value attained at the whole category of classes D =

D1, . . . ,Dl). That is:

F1 (Cr) = max
s=1,...,l

F (Cr ,Ds) , 1 ≤ r ≤ k (11)

Finally, the F-measure value for the entire clusters collection
s calculated as the weighted sum of the distinctive clusters
-measures, denoted in this way:

F1 (C) =
k∑

r=1

|Cr |

n
F1 (Cr) (12)

F-measure is always positive, and at the worst condition, it
alls into 0; it happens at 1 as its best case, and high values
or it connote better clusterings. This measure has an essen-
ial superiority over the Purity and the Entropy criteria, as it
akes into account both the homogeneity (conformity) and the
ompleteness (integrity) of the clustering solution.

.1.2.4. Entropy. The Entropy metric is an information-theoretic
enchmark, and particularly, it is more reliable than the Purity
etric. The Entropy of the cluster Cr is defined as follows:

E (Cr) = −
1

log (l)

l∑
s=1

|Cr ∩ Ds|

|Cr |
log

(
|Cr ∩ Ds|

|Cr |

)
,

1 ≤ r ≤ k

(13)

19 Here as we employ the traditional form of F-measure which is the harmonic
ean of Precision and Recall, we denote it as F .
1 a

16
Table 2
Properties of the datasets used in the efficacy experiments.

Dataset #n #p #o %o

Real
datasets

Mammography 11,183 6 260 2.32
Adult 38,323 6 1,168 3.05
Shuttle 49,097 9 3,511 7.15
Smtp 95,156 3 30 0.03
Skin 199,283 3 5,085 2.55
CreditCardFraud 284,807 29 492 0.17
ForestCover 286,048 10 2,747 0.96
Http 567,498 3 2,211 0.39
Hepc 2,003,171 7 5,123 0.26

Synth.
datasets

Data1 500,000 30 5,000 1.00
Data2 1,000,000 40 10,000 1.00
Data3 1,500,000 50 15,000 1.00
Data4 2,000,000 60 20,000 1.00

Note that for conditions that x equals 0 in x log (x), we consider
the result as 0. Furthermore, as it was remarked, Entropy is a
more all-embracing measure than Purity because it considers
the distribution of the entire classes in a certain cluster. The
precedent term in Eq. (13), − 1

log(l) , is a normalization term to
restrict the Entropy values to the interval [0, 1]; however, the
Entropy of a random cluster is contrary to its Purity, as a Purity
of 1 indicates that the cluster is identical to the respective class,
but for Entropy, it is reversed. Finally, the global Entropy of the
corresponding clustering product is computed as below:

E (C) =
k∑

r=1

|Cr |

n
E (Cr) (14)

The global Entropy quantities also fall in the range of [0, 1]. As
t is obvious, a flawless clustering is the one in which every single
luster incorporates elements from only a unique class; the global
ntropy in such an ideal condition is equivalent to 0. Generally,
he lower the value of Entropy, the more unerring the clustering
utcome is.

.1.2.5. Variation of Information (VI). This measure is another
nformation-theoretic-based tool like Entropy to evaluate cluster-
ng solutions. VI appraises the proportion of information that one
ains and loses while transferring from one partition to another.
I is delineated in the literature in various forms, though we use
he following formula:

VI (C,D) =

1
n log (n)

k∑
r=1

l∑
s=1

|Cr ∩ Ds| log
(
|Cr | |Ds|

|Cr ∩ Ds|
2

)
(15)

The maximum value of VI relies on n, although in the optimum
tate, it comes to 0.

.2. Datasets description

Our evaluation employs various real-world and artificial data
n diverse situations. These data collections range in cardinality
rom about 11,000 to more than 2,000,000 points and in dimen-
ionality from 3 to 60 features. In the following, all of the datasets
tilized in our analysis are explained in detail.

.2.1. Real-life datasets
Some public and large-scale real benchmark datasets, mostly

aken from the UCI repository [114], and some others from the
penML [115] and Kaggle [116] libraries are used in our ex-
eriments; they are representatives of different domains in sci-
nce, society, and humanities. The upper part of Table 2 gives
summary of the properties of these real-world data series.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

T
d
a
s
p
c

h
a
b
a
t
r
t

S
o
o
t
s
q
f
a
t
t
f
e
i
i

4

l
b
s
o
h
b
e
o
o
c
t

U

W
o
K
a

b
a
p
m

t[

t
l
N

his table shows the characteristics of all the important test
atasets, namely the numbers of objects (#n), attributes (#p),
nd outliers (#o); in addition, for outliers in each dataset, their
hare of total objects in the corresponding dataset is reported in
ercentage terms (%o). Among the noted nine real datasets, ex-
ept forMammography and CreditCardFraudwhich can be attained
through OpenML and Kaggle respectively, the other seven can be
directly reached through UCI.20 Moreover,Mammography, Shuttle,
Smtp, ForestCover, and Http are preprocessed and labeled by ODDS
library [117]; the other 4 have been curated under our reflections
which will be clarified in subsequent.

The Adult dataset is extracted out of the 1994 Census database,
and the prediction problem is to define whether a person earns
over $50 thousand a year. This dataset contains 14 attributes in
total which we consider the six continuous ones here to represent
the data; the >$50 K class is down-sampled to 10% to exemplify
the outlier class.

The ‘‘Skin Segmentation Data Set’’, which herein is referred
to as the Skin dataset, is collected out of various face images of
diverse age and race groups, and different genders. Two classes
are available, namely skin and non-skin, in which the skin class
is down-sampled to 10% to typify the anomaly class.

The ‘‘Credit Card Fraud Detection’’ data collection21 which
ere is denoted as the CreditCardFraud dataset, comprises trans-
ctions made in two days under credit cards in September 2013
y European cardholders. The dataset is exceedingly unbalanced,
nd the anomaly class (frauds) stands for 0.17% of all transac-
ions; furthermore, we have discarded the first attribute, which
epresents the time of the transaction occurrence w.r.t. the first
ransaction in the dataset.

The ‘‘Individual household electric power consumption Data
et’’ which herein appears as the Hepc dataset, holds mensuration
f some electrical equipment in a house beside the date and time
f the measurement. The dataset consists of 9 features, including
he two temporal ones, which we omit here; about 1.25% of the
amples suffer from missing values which are discarded conse-
uently. This dataset does not possess any labeling; hence we
ollow a subtle heuristic as employed in [104] to label data objects
s inliers/outliers. For an arbitrary dataset with p dimensions,
he Mahalanobis distances of all points in each cluster w.r.t.
he corresponding sample mean and sample covariance matrix,
ollow a χ2 distribution with p degrees of freedom. The points
xhibiting a distance more than the theoretical 0.975 quantile are
ndicated as candidate outliers; then, the nominated outliers pack
s down-sampled to 10% to represent the anomaly class.

.2.2. Synthetic datasets
Various experiments have been conducted on variant simu-

ated datasets in our study. All of these artificial data series have
een created under an ideal setting and follow the strong as-
umptions of our algorithm, including the one that the structure
f existing clusters should be Gaussian due to the use of the Ma-
alanobis distance measure, and also, the meaningful proportion
etween the dimensionality and cardinality of every dataset to
vade the singularity problem throughout the clustering course
f action. Moreover, the generated outliers are typically more
utstanding than those in the real data, and the outliers ‘‘truth’’
an be utilized to evaluate whether an outlier algorithm is eligible
o locate them.

20 Smtp and Http are derived from the KDD Cup 1999 dataset, available on
CI.
21 The dataset has been gathered and evaluated over a research teamwork of
orldline and the Machine Learning Group of ULB (Université Libre de Bruxelles)
n big data mining and fraud detection. It can be directly acquired through the
aggle library, although the original source is this link: www.ulb.ac.be/di/map/
dalpozz/data/creditcard.Rdata.
17
In more detail, for each dataset having p dimensions, we
uild Gaussian clusters with arbitrary mean vectors so that they
re quite far away from each other to hinder possible overlap-
ings among the multidimensional clusters. As for the covariance
atrix, first, we create a matrix [A]p×p, whose elements are

uniformly distributed in the interval [0,1]. Then, we randomly
select half the elements in A and make them negative. Finally,
he corresponding covariance matrix is obtained in the form of∑]

p×p = ATA. Now, w.r.t. the mean vector (location) of each
cluster and its covariance matrix (shape of the cluster), we can
generate an arbitrary number of data points from a p-variate
Gaussian distribution. Moreover, to eliminate marginal noisy ob-
jects in each cluster, we can exploit the Mahalanobis distance
criterion and eliminate those objects outside the Mahalanobis
radius, set to, e.g., 1.

For injecting local outliers to each cluster, first, we consider a
hypercube covering the boundaries of the corresponding cluster
in every dimension, with the same centroid as of the cluster
and having a specific amount of vacant space around it. Then,
we randomly generate records in this space and accept them as
local outliers if and only if they fall in the accepted Mahalanobis
distance interval of the cluster, e.g.,

[
4
√
p, 6
√
p
]
. Since the hy-

percube volume increases so rapidly by p for high dimensions,
we need to extend the accepted interval for generated points to
save time. Therefore, some of the synthesized outliers in this way
could be global. However, as mentioned earlier, the concept of
local outliers covers global ones; hence, each global outlier could
be presumed as a local outlier too, but not vice versa.

4.3. Algorithms implementations and parameters

Except for ORCA, DOLPHIN, and X-means which are imple-
mented by the genuine authors in C/C++, we have implemented
all of the other five competing methods, including the proposed
method, in MATLAB R2016b (version 9.1).22 In what follows, for
every method in our analysis, some essential matters on the
parameter setting are presented.

4.3.1. ORCA
In ORCA, the parameter k denotes the number of nearest

neighbors, which by using higher values for that, the execution
time will also increase. Here, the suggested value for k, equal to
5, is utilized in all of our experiments. The parameter N specifies
the maximum number of anomalies to be reported. If N is set to a
small value, then ORCA increases the running cut-off quickly, and
therefore, more searches will be pruned off, which will result in a
much faster runtime. Hence, as the correct number of anomalies
is not assumed to be foreknown in the algorithm, we set N =
n
8 , as a reasonable value, where n stands for the cardinality of
he input data; in the case of the efficiency test where the out-
iers proportion is foreknown as much higher than usual, we set
=

n
2 .

However, ORCA does not report an anomaly score for the
rest of the data, and this is as long as for computing the AUC
values, there is an indispensable need to report an anomaly score
for every instance; thus, we set a score equal to zero for other
non-anomaly reported objects.

22 For the sake of reproducibility, our code is published on GitHub: https:
//github.com/sana33/SDCOR. Moreover, we were cautious about the efficient
array-based implementation techniques in MATLAB, especially in the case of the
FOR/WHILE loops, to avoid excessive execution runtimes; in such a case, it could
be meaningfully compared to other fast and cost-effective implementations like
C/C++ or Java.

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata
https://github.com/sana33/SDCOR
https://github.com/sana33/SDCOR

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

4

n
a
a
R
c
T
g
t
n
c
d

d

t
p
o
q
a

l
l
i

s
t
p
c
r

.3.2. DOLPHIN
For executing the DOLPHIN method on any query data, we

eed two distinct input parameters specialized for every dataset
nd two other general parameters that could be established glob-
lly in all experiments. The two specific parameters are, namely,
, the neighborhood radius, and k, the minimum neighborhood
ardinality required for an object to be identified as an inlier.
he other two general parameters are viz pinliers, the fraction of
ranted inliers to be maintained in the indexing structure, and h,
he number of histogram bins used to approximate the nearest
eighbors distribution for every point; these parameters are in
onnection to the pruning rules employed by the method and are
etermined equal to 0.05 and 16, respectively.
To define k under each dataset, we have set it to 1% of the

ataset size. However, for R, we followed the DolphinParamEstim
procedure stipulated in the original paper. Concerning this proce-
dure, the parameter R directly correlates with the expected ratio
of outliers, alpha, which is anticipated to be detected by DOLPHIN.

It should be noted that DOLPHIN is the only method in our
evaluations that does not provide any anomaly scores for the
data elements, and its output is all and solely the definite list
of potential outliers. In such a case, the ROC and PR curves will
not be appealingly smooth, and the following AUC values will
not be very reliable either,23 For this reason, we decided to
run the method by various R values, which are in accordance
with different alpha values24 and rank the detected outliers in
the entire iterations w.r.t. the sum of their appearance times in
diverse iterations. This heuristic strategy would lead to some sort
of outlier ranking, in which every potential outlier gains a positive
integer score with a direct relationship to its anomalousness
degree, while non-outlier objects attain a score of zero.

4.3.3. Sp
Sp is the simplest distance-based method in our analysis and

only requires one single parameter, which even with its default
value proposed by the authors, promising outcomes could be
achieved over multiple datasets. For this reason, we follow the
same procedure as suggested in the original paper and set the
sample size, s, equal to 20 in our experiments.

4.3.4. LOF and LoOP
These two traditional state-of-the-art density-based methods

follow a unique structure to build the premise of their calcula-
tions. The first thing they need to compute the outlier scores is
the materialization matrix, which contains the kNN category for
every data instance and the associated distances.25

For LOF, there are two input parameters determining the lower
and upper proximity bounds in kNN evaluation. As stated by the
authors, unfortunately, the LOF values attained over variant k val-
ues do not demonstrate a fixed and predictable behavior; i.e., LOF
neither rises nor falls monotonically under the neighborhood

23 In fact, in more convenient computational conditions, DOLPHIN mostly leads
o non-promising detection results. On the other hand, in more compelling
arameter settings, i.e., lower values for R and greater values for k, in spite
f higher data-processing costs, the DOLPHIN algorithm outputs incline to be
uite deterministic and auspicious in all cases; thus, the subsequent detection
ccuracy outcomes will be more dependable.
24 In all assessments, alpha takes ten different values; 1 to 10 with the step
ength of 1 for the effectiveness experimentation, and 5 to 50 with the step
ength of 5 in the case of the efficiency test where the outliers ratio in the
nput data is much higher than usual.
25 It better be noted that while working with LOF and LoOP, for the sake of
aving time and space, we decided to omit ties among the nearest neighbors;
ies or the same overlapping neighbors, are those with a distance from the query
oint equal to the kth smallest distance. Only one from such category will be
hosen as the kth nearest neighbor. Usually, this does not hurt the final detection
esults too much.
18
parameter. Therefore, in all experiments, we follow the implied
manner in the original article and set these two parameters as
MinPtsLB = 10 and MinPtsUB = 50.

For LoOP, as it is inspired by LOF, there is solely one proximity
parameter which we consider here equal to 30, as the average
value of the LOF related lower and upper vicinity limits. There
is another input parameter, λ, which is in accordance with the
empirical 68-95-99.7 rule and specifies the strictness level on
defining anomalies; we set it equal to 3, as suggested.

4.3.5. EnLOF
EnLOF is an ensemble derivative of LOF, which is mainly

influenced by the nearest neighbor of every object among the
sampled instances. This method, like iNNE, is essentially inspired
by the iForest method and thus enjoys an adequate number of
subsamples (t) with a specific size (ψ) to determine the anomaly
scores for every object. Here, we follow the same premise as
iForest and set the two parameters as suggested, i.e., t = 100
and ψ = 256.

4.3.6. X-means
For X-means, the minimum and the maximum number of

clusters are set to 1 and 15, respectively; the number of times to
split a cluster and the maximum number of iterations are set to
6 and 50, respectively, as well. The other interesting parameters
for building the KD-tree data structure are max_leaf_size and
min_box_width that are set as suggested by the authors; for the
datasets with a cardinality less than 100 thousand points, values
equal to 40 and 0.03 are employed, respectively, and for those
with greater size, in order, 80 and 0.1 are utilized.

4.3.7. SDCOR
SDCOR enjoys a small number of input parameters that could

be either set as recommended or meaningfully acquired through
simple operations. For the DBSCAN parameters, in Appendix A, it
is explained well in detail how to practically obtain the optimum
values for the Eps and MinPts parameters through two different
approaches; one, heuristic, and the other, evolutionary.

More importantly, as long as we are trying not to let outliers
take part in the process of forming and updating miniclusters
during scalable clustering, two of the input parameters of the
proposed algorithm are more critical, listed in the following. The
random sampling rate, η, which influences the parameter δ⃗, the
boundary on the volume of miniclusters at the time of creation;
the membership threshold, α, which is useful to restrain, again,
the volume of miniclusters, but while they are progressively
growing over time.

Note that the sampling rate should not be set too low, as by
which the singularity problem might happen during the ‘‘Sam-
pling’’ phase, or even some original clusters may not take the
initial density-based form, for the lack of enough data points.
Hence, one can state that there is a linear relationship between
the random sampling rate and the actual number of original
clusters in data. In other words, for datasets with a high fre-
quency and variety of clusters, we are forced to take higher
ratios of random sampling to avoid both problems of singularity
and misclustering in the ‘‘Sampling’’ stage. Here, regarding our
preknowledge about the real and synthetic data, we have set η
to 0.5%, unless specified otherwise; e.g., the Adult dataset was an
exception as its inherent manifold forced us to exercise a larger
ratio for random sampling equal to 3%, because, for the lower
rates, the singularity issue was bothering us while processing
various individual runs.26

26 The random sampling rate could be much greater and equal to, e.g., the
chunk size. Nonetheless, in the present report, to substantiate the excellent and
stable performance of our proposed method, we decided to set it to minimal
values.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

c
a
s

t
l

5

5

v
a
a

l
a
a
b
r
S
i
r

c

b
t
c
p
w

s
c

w
d

w
r
a
F
p
s
o

The same problem concerns α, as a too low value could bring
to the problem that the number of subclusters created over
scalable clustering will become too large, leading to a much
higher computational load. In addition, a too high value for α
brings the risk of outliers getting joined to normal subclusters,
and it gets worse when this misclassification escalates over time,
subsequently increasing the ‘‘False Negative’’ rate. Herein, for all
experiments, α is set to 2.27 Moreover, the pruning threshold, β ,
ould be determined the same as α, and as observed over our
nalysis, modifying it in the range of meaningful values does not
ignificantly affect the final output quality.
Finally, for Λ, the PC share of total energy (variance), we

decided to exert the full capacity in the case of real datasets, as
none of them are, in essence, high-dimensional.28 However, for
he synthetic datasets, in the case of more than 30 dimensions,
ower quantities like 90% or 80% were employed.

. Experimental results

.1. Accuracy and stability analysis

Here, the evaluation results of the experiments conducted on
arious real-life and synthetic datasets, with a diversity of size
nd dimensionality, are presented in order to demonstrate the
ccuracy and stability of the proposed approach.
For SDCOR, every dataset is divided into ten chunks to simu-

ate the algorithm capability for scalable processing. Furthermore,
s we know the true structural characteristics of all the real
nd synthetic data, we compute the accurate anomaly score,
ased on the Mahalanobis distance criterion, for each object and
eport the following optimal AUC next to the attained result by
DCOR. Moreover, for the algorithms that have random elements,
ncluding Sp, EnLOF, and the proposed method, their detection
esults are reported in the format of µ± σ , over 40 independent
runs, as µ and σ stand for the average and the standard deviation
of the correspondent AUC values.

The AUROC and AUPRC results, and the subsequent runtimes
of different methods are summarized in Tables 3, 4, and 5, re-
spectively. Every bold-faced AUC and runtime denote the best
method for a specific dataset.

5.1.1. Real datasets
As for the real datasets, Tables 3 and 4 show that in terms

of both AUROC and AUPRC, SDCOR is more accurate than all the
other competing methods. Further elaborated, in terms of AUROC,
SDCOR outperforms ORCA, DOLPHIN, Sp, and X-means in seven
out of the nine real datasets, and compares favorably with them
in the other two viz Adult and Smtp; for LOF, LoOP, and EnLOF,
SDCOR excels them in eight out of the nine real-life data, and
only in the case of the Smtp dataset, it falls behind these three
density-based methods, though not with a remarkable difference.
In terms of AUPRC, SDCOR surpasses all the other techniques in
all datasets, except for ORCA in Mammography, Adult, and Smtp;
for DOLPHIN in Mammography and Adult; for Sp in Adult, Smtp,
and Skin; for EnLOF in only ForestCover; for X-means in Adult
and Smtp. However, the superior methods over SDCOR concern-
ing AUPRC have either a quite equivalence or an insignificant
difference with it in all the superiority cases.

27 However, with the expense of higher arithmetical stress, one can be more
onservative and set α to a lower value, e.g., 1, which is reasonable too.
28 Besides, the distribution of variance among the real attributes may not
e fair enough, which could cause some unexpected results if fewer PCs are
aken into account; furthermore, it is not easy to notice as it requires intensive
omputing, especially in the case of large-scale data. Therefore, it would be more
rudent to avoid opting for lower shares of the total variance while working
ith not very high dimensions.
19
Moreover, it is obvious that in the context of AUROC, the
attained results by the proposed approach are almost the same as
the optimal ones. However, in the case of AUPRC, the deviation
from the optimum case is not trivial in most cases,29 but it is
atisfactory as SDCOR generally stays at the top w.r.t. the other
ontending methods. Additionally, the CreditCardFraud dataset
is an exception concerning the optimal AUC levels, in which
both the AUROC and AUPRC outcomes outstrip the corresponding
ideal conditions; for AUROC, the distinction is superficial, though,
for AUPRC, it is considerable. Such an unusual condition could
be caused by some adopted suboptimal clustering parameters;
moreover, sometimes, it could come off because of the closeness
of some outliers to the original normal clusters in certain real sit-
uations, along with the slight variations in the acquired ultimate
Mahalanobis contour lines on account of the minor randomness
in the functionality of the proposed method.

In addition, the average lines indicate that SDCOR performs
overall much better than all the other methods. More impor-
tantly, SDCOR is effective on the largest datasets, Http and Hepc,
ith rather perfect results. In addition, by considering the stan-
ard deviations of AUC values for Sp, EnLOF, and SDCOR, it is

evident that SDCOR is much more stable than the other two
random-based outlier identification methods,30 except for EnLOF
in terms of AUPRC, which suffers somewhat from a lower average
variance than SDCOR. For Sp, it should be pointed out that the out-
standing values of standard deviation for it are due to using only
one tiny sample in every execution, which causes the algorithm
to go through large variations on the final accuracy.

Besides, Table 5 reveals that SDCOR performs much better
than the other competing methods in terms of execution time,
except for Sp that accomplishes the tasks slightly faster than
the proposed algorithm. Although Sp is the fastest among the
compared algorithms, as it was noted, its AUC results suffer
from large variations, and overall is lower than SDCOR. Moreover,
w.r.t. the two conventional and one novel density-based methods,
it is evident that there is a huge difference in the consuming
time between SDCOR and these counterparts from the density
realm; it is due to the fact that differently from LOF and LoOP,
in SDCOR, it is not required to compute the pairwise distances
of the total objects in a dataset, and in contrast to EnLOF, SDCOR
is not established on some ensemble calculations which despite
being efficient in certain aspects, could incur high computational
expenses.

Finally, it is worthwhile to mention some valuable comments
here. As stated earlier at the beginning of this paper, the strong
assumption of SDCOR is on the structure of existing clusters in
the input dataset, which should have Gaussian distribution. In
practice, though, w.r.t. [119], with appreciation to the Central

29 Despite this inescapable deviation, it is crystal clear that even the optimum
values for AUPRC are in general far away from the perfect state, and this is quite
natural while analyzing anomaly identification approaches. Further detailed,
anomalies are typically in the minority, thus making the correspondent dataset
highly-skewed in the class distribution; i.e., the number of negative elements
(inliers) substantially outmatches the number of positive elements (outliers). On
the other hand, w.r.t. the ROC and PR formulations, the impact of the number
of false positives is inferior in the ROC analysis, though gains great superiority
while estimating PR; such distinction mainly originates in the incorporated
Precision criterion by PR. As a result, the referred data imbalance could incur,
as a rule, considerably lower values for AUPRC than the related AUROC [118].
30 In the context of AUROC which is more prevalent than AUPRC for analyzing
anomaly detection approaches, the Mammography and Adult datasets come down
ith further variances, and this is as a consequence of the adopted low sampling
ates for them. These two data series have the smallest cardinality among
ll, and thus the utilized sampling ratios are not effective in the best way.
urthermore, as stipulated earlier, we do this to manifest the capability of the
roposed method to operate fairly well even with shallow levels of random
ampling; however, for higher sampling ratios, more consistent results were
bserved.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

L
t
w
t
c
a
L
P

s
P

Table 3
AUROC results for SDCOR and its competitors on the real and synthetic datasets.

Dataset ORCA DOLPHIN Sp LOF LoOP EnLOF X-means SDCOR (Optimal)

Real
datasets

Mammography 0.703 0.723 0.818 ± 0.040 0.772 0.741 0.775 ± 0.018 0.803 0.820 ± 0.037 (0.879)
Adult 0.625 0.622 0.644 ± 0.029 0.557 0.566 0.509 ± 0.016 0.642 0.590 ± 0.036 (0.665)
Shuttle 0.606 0.721 0.877 ± 0.095 0.614 0.568 0.703 ± 0.053 0.780 0.969 ± 0.009 (0.994)
Smtp 0.860 0.847 0.864 ± 0.025 0.881 0.939 0.835 ± 0.031 0.884 0.779 ± 0.008 (0.815)
Skin 0.692 0.659 0.881 ± 0.065 0.798 0.060 0.136 ± 0.083 0.862 0.882 ± 0.009 (0.889)
CreditCardFraud 0.855 0.809 0.822 ± 0.025 0.731 0.695 0.940 ± 0.006 0.824 0.960 ± 0.001 (0.958)
ForestCover 0.743 0.471 0.568 ± 0.111 0.598 0.557 0.912 ± 0.017 0.779 0.935 ± 0.006 (0.950)
Http 0.459 0.989 0.924 ± 0.255 0.066 0.259 0.771 ± 0.028 0.055 0.999 ± 0.001 (0.999)
Hepc 0.975 0.961 0.964 ± 0.011 0.830 0.816 0.805 ± 0.033 0.971 0.989 ± 0.003 (0.997)

Real AVG 0.724 0.756 0.818 ± 0.073 0.650 0.578 0.710 ± 0.032 0.733 0.880 ± 0.012 (0.905)

Synth.
datasets

Data1 1.000 1.000 1.000 ± 0.000 0.992 0.984 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data2 1.000 1.000 1.000 ± 0.000 0.997 0.993 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data3 1.000 0.996 1.000 ± 0.000 1.000 0.999 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data4 1.000 1.000 1.000 ± 0.000 1.000 1.000 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)

Synth. AVG 1.000 0.999 1.000 ± 0.000 0.997 0.994 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Table 4
AUPRC results for SDCOR and its competitors on the real and synthetic datasets.

Dataset ORCA DOLPHIN Sp LOF LoOP EnLOF X-means SDCOR (Optimal)

Real
datasets

Mammography 0.149 0.151 0.148 ± 0.056 0.136 0.093 0.095 ± 0.013 0.123 0.148 ± 0.067 (0.277)
Adult 0.099 0.083 0.110 ± 0.018 0.038 0.037 0.033 ± 0.002 0.109 0.073 ± 0.020 (0.230)
Shuttle 0.178 0.314 0.608 ± 0.182 0.132 0.115 0.251 ± 0.035 0.328 0.617 ± 0.049 (0.942)
Smtp 0.353 0.001 0.496 ± 0.076 0.054 0.013 0.001 ± 0.001 0.293 0.245 ± 0.083 (0.252)
Skin 0.073 0.063 0.115 ± 0.043 0.060 0.037 0.014 ± 0.001 0.083 0.096 ± 0.007 (0.100)
CreditCardFraud 0.044 0.010 0.006 ± 0.001 0.016 0.033 0.035 ± 0.018 0.007 0.708 ± 0.003 (0.489)
ForestCover 0.067 0.007 0.011 ± 0.003 0.019 0.015 0.090 ± 0.027 0.020 0.089 ± 0.009 (0.109)
Http 0.006 0.100 0.231 ± 0.084 0.002 0.002 0.008 ± 0.001 0.003 0.463 ± 0.063 (0.500)
Hepc 0.249 0.251 0.370 ± 0.081 0.016 0.018 0.032 ± 0.018 0.322 0.426 ± 0.070 (0.658)

Real AVG 0.136 0.109 0.233 ± 0.060 0.053 0.040 0.062 ± 0.013 0.143 0.318 ± 0.041 (0.395)

Synth.
datasets

Data1 1.000 0.426 1.000 ± 0.000 0.939 0.874 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data2 1.000 0.000 1.000 ± 0.000 0.966 0.888 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data3 1.000 0.390 1.000 ± 0.000 0.992 0.871 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Data4 1.000 0.000 1.000 ± 0.000 1.000 0.999 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)

Synth. AVG 1.000 0.204 1.000 ± 0.000 0.974 0.908 1.000 ± 0.000 1.000 1.000 ± 0.000 (1.000)
Table 5
Execution time (secs) results for SDCOR and its competitors on the real and synthetic datasets.

Dataset ORCA DOLPHINa Sp LOF LoOP EnLOF X-means SDCORb

Real
datasets

Mammography 5.909 2.750 0.020 0.972 0.423 1.956 1.141 0.701
Adult 33.860 90.010 0.050 6.087 4.507 11.007 6.926 0.855
Shuttle 80.367 99.670 0.061 10.058 7.836 15.277 7.385 0.907
Smtp 142.526 162.410 0.110 6.225 1.927 8.448 38.663 0.895
Skin 405.904 673.170 0.209 14.625 5.165 12.915 8.564 1.307
CreditCardFraud 5,396.614 1,281.840 0.528 539.153 524.688 169.969 374.642 7.811
ForestCover 3,618.686 3,557.930 0.489 22.865 9.577 40.152 22.246 1.643
Http 5,570.813 5,879.130 0.686 55.660 25.305 56.319 793.285 1.848
Hepc 92,882.000 243,583.580 3.247 45,098.631 37,145.707 643.060 7,078.436 17.632

Real AVG 12,015.187 28,370.054 0.600 5,083.808 72.428 106.567 925.698 3.733

Synth.
datasets

Data1 18,838.446 55,411.820 0.918 5,924.641 5,458.474 324.351 461.955 12.863
Data2 101,361.263 262,633.230 2.075 33,806.998 32,672.413 856.039 1,641.932 41.162
Data3 224,559.345 647,534.410 3.479 83,647.072 82,139.098 1,520.316 3,528.569 89.455
Data4 389,826.856 1,210,724.637 4.997 133,835.315 132,388.373 2,267.934 5,952.274 161.932

Synth. AVG 183,646.478 544,076.024 2.867 64,303.506 63,164.590 1,242.160 2,896.183 76.353

aThe reported quantity is the highest execution time over various DOLPHIN runs w.r.t. different R values.
bThe required time for finding the optimal parameters of DBSCAN is not taken into account as a part of the total runtime.
imit Theorem, a fair amount of the real-world data follows
he Gaussian distribution. Furthermore, w.r.t. [120–122], even
hen the original variables are not Normal (Gaussian), employing
he properties of PCs for detecting outliers is possible, and the
orresponding results will be reliable. Since, given that the PCs
re linear functions of p random variables, a call for the Central
imit Theorem may vindicate the approximate Normality for the
Cs, even in the cases that the original variables are not Normal.
Regarding this concern, it is plausible to set up more official

tatistical tests for outliers based on the PCs, supposing that the
Cs have Gaussian distributions. Moreover, the exercise of the
20
Mahalanobis distance criterion for outlier detection is only viable
for the convex-shaped clusters. Otherwise, outliers could be as-
signed to an irregular (density-based) cluster under the masking
effect, thus will be misclassified.

5.1.2. Synthetic datasets
The experiments are carried out on four artificial datasets

with specific details presented in the lower part of Table 2; each
dataset consists of 6 Gaussian clusters, and the outliers take up 1
percent of its volume.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

T
F
o

d
c
T
t
i
d
a

o
i
a

o
f
a

i
t

able 6
riedman test results for the real datasets, on the AUROC and AUPRC outputs
ut of the Sp , EnLOF, and SDCOR methods.

Dataset AUROC AUPRC

Sp EnLOF SDCOR Sp EnLOF SDCOR

Mammography 0.818 0.775 0.820 0.148 0.095 0.148
Adult 0.644 0.509 0.590 0.110 0.033 0.073
Shuttle 0.877 0.703 0.969 0.608 0.251 0.617
Smtp 0.864 0.835 0.779 0.496 0.001 0.245
Skin 0.881 0.136 0.882 0.115 0.014 0.096
CreditCardFraud 0.822 0.940 0.960 0.006 0.035 0.708
ForestCover 0.568 0.912 0.935 0.011 0.090 0.089
Http 0.924 0.771 0.999 0.231 0.008 0.463
Hepc 0.964 0.805 0.989 0.370 0.032 0.426

The excellent results in Tables 3 and 4 verify that the synthetic
atasets are overall too simple for SDCOR and also for all the other
ompeting methods except for DOLPHIN in the case of AUPRC.
he chief reason for this almost-common ideal performance is
hat, as stipulated beforehand, in our dedicated setting for build-
ng these synthetic data collections, normal objects are in very
ense areas, and outliers reside in very sparse zones far enough
way from the normal clusters.
However, despite the absolute functioning of most of the

ther rivaling techniques, regarding the time consumption results
n Table 5, apart from Sp, the other runtimes are remarkably
nd incompetently higher than SDCOR. Besides, for Sp, which

is performing slightly quicker than our proposed method, first,
considering all runtime results, its distinction from SDCOR is not
significant, and second, its accuracy in the real situations, which is
the most challenging contest, is still quite far away from SDCOR.

5.2. Significance analysis

As it was clarified beforehand, through our assessment, some
of the compared methods are non-deterministic, namely Sp,
EnLOF, and SDCOR; i.e., they present different results over di-
verse executions, even if the same input parameters are exerted
globally. Therefore, in this subsection, we perform a significance
analysis to realize whether there are major differences in the
erratic results out of these three random-based methods. Here,
we adopt the Friedman test [123,124] for such statistical analysis.

The Friedman test is a distribution-free statistical hypothesis
examination that arranges the significance of the compared algo-
rithms w.r.t. every dataset independently; as it is free of any input
parameters, it is also called a non-parametric randomized black
analysis of variance. The null hypothesis of this test is that all
of the populations of the experimental results — each population
corresponding to the application of one of the analyzed methods
in different repetitions — have the same median value. Once
the Friedman test rejects the null hypothesis, a post-hoc test is
required to make pairwise comparisons and detect the couples
of significantly distinctive methods.

A critical value obtained from a chi-squared distribution with
two degrees of freedom and a significance level of 5% is used
for this test. Furthermore, the p-value was adjusted by using
the Holm methodology [125], and also, as for the post-hoc test,
to verify the differences between each couple of methods, the
Nemenyi test [124] was adopted.

The Friedman test results for the real-life data series, over the
AUROC and AUPRC measurements, are reported in Table 6.31 In

31 It should be noted that for this statistical appraisal, the same results out
f the 40 iterative runs mentioned in Section 5.1 are exerted. Furthermore, the
ollowing stipulated average AUC ranks in this subsection are utilized in Table 6
s representatives for the non-deterministic methods on different datasets.
21
particular, in every row, if only one method is reported in bold,
t is determined as the significantly best method among all w.r.t.
he corresponding dataset; if two values are reported in bold, it
means that there is no significant difference between the related
methods, though both of them are performing better than the
remaining one. Moreover, for the four synthetic datasets in the
efficacy experimentation, all of the acquired results out of the
three random-based methods are perfect; thus, there is no place
for more evaluation.

It is evident that in terms of AUROC, SDCOR is the only winner
in 4, the co-winner along with Sp and EnLOF among respectively 2
and 1, out of the nine real-life datasets; hence, SDCOR is the only
winner or is amid the winners in 7 out of the total. However,
Sp is the sole winner only in the case of the Adult dataset,
while EnLOF never stands in the first place without any rivals.
In terms of AUPRC, SDCOR conquers others only in two datasets,
viz CreditCardFraud and Http, and in the other 6 instances, it is
among the conquerors mostly along with Sp and exclusively with
EnLOF just in the case of the ForestCover dataset; Sp excels others
only in Smtp, whereas EnLOF never gains the absolute superiority.
Overall, it is apparent that SDCOR is the conqueror and the most
precise technique among all non-deterministic methods in our
analysis.

5.3. SDCOR vs. X-means

The evaluation results over the real-world data collections
for the two clustering-based techniques, SDCOR and X-means,
obtained out of the five external clustering validity measures,
namely Purity, the Mirkin metric, F-measure, Entropy, and VI,
along with the following averages are presented in Table 7. More-
over, for every metric, concerning its ideal condition mentioned
beneath the metric name, the best method(s) among two for a
particular dataset is/are indicated in bold-faced print. Besides,
for the four synthetic datasets in the effectiveness evaluations, as
both SDCOR and X-means attain perfect results, we omit demon-
strating them here.

It is perceptible from Table 7 that in all comparison cases,
SDCOR is either the undoubted winner or compares favorably
well with X-means. In the case of Purity and Entropy, SDCOR
fails to conquer X-means overall, although with a negligible dif-
ference. However, for the Mirkin metric, F-measure, and VI, the
superiority is achieved by SDCOR.

More detailed, it was noticed that in contrast to Purity and
Entropy, which alone consider the conformity of the output, F-
measure enjoys an essential advantage over them, as it takes
into account both the conformity and integrity of the clustering
solution. Now w.r.t. the X-means fundamentals in which there
is no noise taken for granted beforehand, and more crucial, it is
tried to split the input data to multiple clusters until it reaches
a reasonable quantity for the frequency of the clusters, hence an
arbitrary original cluster (class), as well as the outliers pack, can
be eventually divided into several subclusters; this is the exact
point which makes the major deviation between X-means and
our proposed approach in which the number of output clusters
is the same as the ground truth.

Concerning the conformity and integrity concepts, when a
cluster contains objects solely from a unique class but does not
wholly encompass it, we will have perfect conformity though
imperfect integrity as output. A similar conception is intelligently
embedded in the Mirkin metric and VI mathematical formulas.
In the Mirkin metric, the term corresponding to the intersection
of the related clusters and classes will be shallow in the case
of high-conformity/low-integrity, thus producing Mirkin values
more distant from 0, the optimal condition; this makes the Mirkin
metric quite the same as F-measure in quality. On the other hand,

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

a
a
e
d
q
o
c
s
p
i
c
m
a
h
b
a
d
n
c
s
f
m

5

c
t
e
n
t
t
i
o
w
t
s
t
M
a
e

i

Table 7
Results of the clustering validity measures for SDCOR and X-means on the real datasets.
Dataset Purity Mirkin F-measure Entropy VI

(max = 1) (min = 0) (max = 1) (min = 0) (min = 0)

SDCOR X-means SDCOR X-means SDCOR X-means SDCOR X-means SDCOR X-means

Mammography 0.977 0.978 0.071 0.784 0.963 0.299 0.149 0.107 0.022 0.223
Adult 0.970 0.970 0.105 0.836 0.945 0.207 0.195 0.169 0.026 0.232
Shuttle 0.954 0.976 0.088 0.091 0.954 0.918 0.221 0.076 0.028 0.027
Smtp 1.000 1.000 0.001 0.894 1.000 0.190 0.002 0.002 0.000 0.207
Skin 0.974 0.975 0.097 0.831 0.950 0.232 0.170 0.073 0.019 0.188
CreditCardFraud 0.999 0.998 0.001 0.654 0.999 0.473 0.006 0.018 0.001 0.116
ForestCover 0.990 0.990 0.036 0.906 0.982 0.144 0.078 0.061 0.009 0.212
Http 0.999 1.000 0.002 0.814 0.999 0.305 0.009 0.001 0.001 0.133
Hepc 0.997 0.997 0.005 0.901 0.997 0.173 0.017 0.014 0.002 0.172

Real AVG 0.984 0.987 0.045 0.746 0.977 0.327 0.094 0.058 0.012 0.168
in VI, as an enhanced version of Entropy, it is stipulated that
the gained/lost portion of information while moving from one
partition to another is computed. More precisely, the input to
the logarithm term, which in the ideal state equals 1, will tend
to greater values in non-paradigmatic conditions. This causes the
following measured quantity for VI to become farther away from
the optimum case equal to 0. Such quality of VI addresses both
the conformity and integrity concepts.

Finally, for the real case of the evaluated data series, as in
ll instances, there is merely a normal cluster and some outliers
round it, X-means, w.r.t. the employed parameter setting, in-
vitably breaks the normal cluster along with the outliers pack
own to various subclusters; however, as stated earlier, as re-
uired in our analysis, identified outliers, despite being scattered
ver various subclusters, are after all distinguished as a single
luster, and this is carried out by sorting the related outlier
cores and cutting off the topmost indices. This cluster chopping
rocedure done by X-means leads us to the high-conformity/low-
ntegrity situation, and the following deficiencies in the final
lustering cogency evaluations through the Mirkin metric, F-
easure, and VI; for Purity and Entropy though, as the outliers
re separated well from the inliers in the final clustering solution,
ence the acquired measurements for these two conformity-
ased metrics are generally satisfactory. However, for the four
rtificial datasets, each of them containing 6 clusters and some
istant anomalies dispersedly in the space, it is lucky that the
ormal clusters are not broken into smaller pieces, and it has oc-
urred just for the outliers pack due to their much greater disper-
ion; therefore, regarding the flawless anomaly detection results
or these synthetic datasets, the following clustering validness
easures are all perfect too.

.4. Tolerance to a high number of outliers

To analyze the accuracy when the number of outliers is in-
reased, we follow the same procedure used to generate the syn-
hetic datasets, described in detail in Section 4.2.2. More precisely,
very dataset is established upon a fixed manifold concerning the
ormal elements, comprising 4 pruned Gaussian clusters with a
otal of 20,000 objects, in a predefined dimensionality of 2. For
he sake of adding noise, the percentage of injected outliers is
ncreased from 50 to 150 percent of the volume of the normal
bjects, with a step length of 10 percent; alternatively stated,
ith a fixed number of 20,000 normal elements in every dataset,
he number of outliers is raised from 10,000 to 30,000 with the
tep length of 2,000. Moreover, as we observe this presumption
hat these data series hold very high rates of noise, sizeable
inPts values for finding the DBSCAN optimum parameterization,
long with a random sampling rate equal to 10% in all tests, are
xerted.
Fig. 6 reveals that, in terms of both AUROC and AUPRC, SDCOR

s noise-tolerant, as by increasing the percentage of outliers,
22
always perfect AUC results are achieved out of our method. Con-
cerning the other methods, their behavior under both AUROC and
AUPRC is somewhat the same. ORCA and DOLPHIN are the closest
rivals to the proposed method; Sp and X-means generally perform
at a lower level but are relatively good. However, for LOF, LoOP,
and EnLOF, they are entirely misclassifying outliers in all complex
conditions.32

The reason for the favorable functionality of SDCOR in bearing
much noise is that the basis for forming miniclusters during
scalable clustering is the fulfillment of the DBSCAN requirements,
which are obtained out of the ‘‘Sampling’’ stage. Simply put, as all
of the normal objects follow a Gaussian distribution and outliers
are injected using a continuous uniform distribution, hence the
local density of the normal points is much higher than that of
the outliers; therefore, the acquired optimal parameters for the
density-based clustering are obtained proportional to the dense
regions containing only the sampled inliers. For this reason, in ev-
ery memory process, the probability of a subcluster being formed
by the outliers is much lesser than that of the normal objects, and
thus, our approach based on DBSCAN obtains very satisfactory
results.

Fig. 7 shows the DBSCAN result on the sampled data from the
test dataset with 150 percent of injected outliers. Four discovered
Gaussian clusters and noises are represented with dots in differ-
ent colors and empty red circles, respectively. As it is evident,
even in this highly noisy situation, outliers cannot satisfy DBSCAN
constraints on forming a minicluster.

Here, it is worth remarking that w.r.t. our non-reported eval-
uations on other efficiency tests, when the numbers of normal
objects and attributes are increasing (like what we did in the
‘‘percentage of outliers’’ test), under the strong assumptions of
the proposed method, one can still anticipate significant detection
results out of SDCOR. However, for some of the methods in the
contest, w.r.t. their corresponding high computational load, it
would be a tedious task to obtain the accuracy results out of them
for the very large datasets employed in our experiments.

5.5. Scalability

To assess the scalability of the proposed method, we measure
the time consumption with the increasing number of objects.
For this purpose, first, a synthetic dataset containing 4 Gaussian
clusters with 200,000 elements in 10 dimensions is generated.
Then, we conduct random sampling with the rates of 10 to 100

32 Actually, except for EnLOF which is predefined to work with only the
nearest neighbor of every object, for the other two state-of-the-art density-
based techniques, such deficient outcomes are quite related to the lack of the
optimal parameters. More detailed, it was noted beforehand that in LOF and
LoOP, locating the optimum values for the proximity options is not easy and
demands a high amount of trial and error w.r.t. the existing outliers ground
truth, which is not fair concerning our analytical context.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

l
o
r
s
n
—
i
l

Fig. 6. Robustness results out of the competing methods, over the AUROC and AUPRC measures.
Fig. 7. DBSCAN result with the optimal parameters on the high-noisy sampled
data.

percent with a step length of 10 percent to build ten datasets
for the scalability test; for each resulting dataset, we inject 200
outliers into it. In other words, we want to analyze the execution
time using datasets having very similar essential characteristics,
namely the location (centroid) and the shape (covariance matrix).
Moreover, in all experiments, parameters were set as suggested,
and the following detection results were all perfect.

Fig. 8 demonstrates that the run time of SDCOR is close to a
inear function of the number of objects; this is a confirmation
f the result of the analysis conducted in Section 3.4 on the algo-
ithm complexity. In particular, for the dataset with the minimum
ize equal to 20,200, the run time is 0.678 s. However, when the
umber of objects reaches the maximum value equal to 200,200
i.e., about ten times the minimum value — the processing time

ncreases by only 2.4 times to 1.628 s. Accordingly, SDCOR has a
ow constant in its runtime complexity, and hence, is scalable.
23
Fig. 8. Scalability test result for SDCOR.

5.6. Effect of sampling rate

Here, we examine the variation of the covariance determinant
belonging to the sampled data from a unique cluster per various
random sampling rates. Therefore, first of all, we create an ar-
bitrary Gaussian cluster with 10,000 objects and two attributes.
Then, we start sampling with the rate of 0.5 percent and proceed
to 100 percent with the step length of 0.5 percent; subsequently,
for each of these resulting sampled clusters, we calculate the
corresponding covariance determinant to be incorporated in our
analysis.

As Fig. 9a displays, with the increase in the random sampling
rate, the corresponding covariance determinant is approaching
that of the original cluster. However, as it is evident, even covari-
ance determinants associated with very shallow sampling rates
are quite close to that of the main cluster. For example, for
the lowest sampling rate equal to 0.5 percent, the correspond-
ing covariance determinant is approximately 300, which is close
enough to that of the original cluster, roughly equal to 220.

Now, if we plot the tolerance ellipses for both the main cluster
and the sampled cluster with the sampling rate of 0.5 percent, we
observe that they are so similar to each other. Fig. 9b illustrates
such a situation, in which the objects belonging to the original
cluster and those associated with the sampled one are illustrated
with blue dots and red squares, respectively. Moreover, tolerance
ellipses of the main and sampled clusters are shown, in order, in
red and black.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

6

p
w
a
b
m
i
l
a
a
e
l

s
S
b
t
a
r
r
i
a
c
i
r
p
n

C

c
w
R
c
S

D

c
t

Fig. 9. Covariance determinant and tolerance ellipses variation per random sampling rate.
. Conclusion

In this paper, a new scalable density-based clustering ap-
roach for local outlier detection in massive data is proposed,
hich processes the input data in chunks. First of all, by obtaining
random sample of the entire dataset and applying a density-
ased clustering algorithm to it, the initial temporary clustering
odel is built, which contains the rough information of the orig-

nal clusters in data. Then, this model is progressively updated by
oading successive chunks of data into the memory. Ultimately,
fter processing the whole chunks, the final clustering model is
cquired, which w.r.t. that and conducting another scan of the
ntire dataset, each object is given an outlying score equal to its
ocal Mahalanobis distance.

A complete evaluation, conducted on both real-world and
ynthetic datasets, demonstrates the appealing performance of
DCOR in comparison with different state-of-the-art density-
ased outlier algorithms, which need the data to be resident in
he memory; and also, with some other rapid distance-based
nomaly detection methods, which can operate well on the disk-
esident data. Moreover, the efficiency outcomes confirm the
obustness of the proposed method comparing to other methods
n very noisy conditions. In addition, the experiments substanti-
te that the algorithm has a linear time complexity with a low
onstant and that, even with a meager rate of random sampling,
t is still able to satisfactorily approximate the shape of the
eal clusters. For future work, we would like to enhance our
roposed approach to be able to cope also with the density-based
on-convex clusters having various distributions.

RediT authorship contribution statement

Sayyed Ahmad Naghavi Nozad: Project administration, Con-
eptualization of this study, Investigation, Methodology, Soft-
are, Data curation, Formal analysis, Validation, Visualization,
esources, Writing - original draft. Maryam Amir Haeri: Initial
onceptualization, Data curation, Validation. Gianluigi Folino:
upervision, Formal analysis, Validation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
24
Acknowledgments

Special thanks to Dr. Victoria J. Hodge (University of York, UK)
for her clever advice on the title of this paper, and Dr. Mohammad
Mehdi Ebadzadeh (Amirkabir University of Technology, Iran), for
his valuable comments on some of the algorithms. Moreover, we
are grateful to Dr. Fabrizio Angiulli (University of Calabria) and Dr.
Dan Pelleg (Yahoo Labs) for providing us with the DOLPHIN and
X-means implementation codes, respectively. We also appreciate
Dr. Ali-Mohammad Saghiri and Dr. Ehsan Nazerfard (Amirkabir
University of Technology, Iran) for their generous review of the
paper before submission.

Appendix A. DBSCAN optimal parameters

This Appendix describes the ways employed in this paper to
determine the optimal values for the DBSCAN parameters to be
applied throughout the ‘‘Sampling’’ and the ‘‘Scalable Clustering’’
phases.

A.1. k-distance graph

The first approach is a heuristic suggested by the original
paper of DBSCAN [79, Section 4.2], the sorted k-dist or the same
k-distance graph, which is a mapping from the corresponding
dataset to the distance of every point to its kth nearest neighbor
plotted in descending order. Alternatively stated, in this manner,
we fix the MinPts parameter, as it is more convenient than the
Eps parameter to be established, and its main purpose is to polish
the density estimation; its variation often has an insignificant
influence on the clustering outcomes as they ‘‘do not substantially
conflict with each other’’ [79,126]. For most of datasets, one can
keep this parameter at the predetermined value of MinPts =
4 [79] — which is mostly recommended for two-dimensional
data — or MinPts = ⌊ln (n)⌋ [127] which is in accordance with
the size of the corresponding input data; furthermore, Sander
et al. [128] suggest to set it to double the number of dimensions,
i.e., MinPts = 2p. Besides, it would be wiser, more considerate,
and helpful to set this parameter to much higher values to acquire
improved results while working on datasets that are very noisy,
or large-scale, or high-dimensional, or suffer from many duplicate
values; any of the mentioned special conditions or more than one
can be enough reason to employ a large value for MinPts [126].

Finally, after determining the MinPts value, the best value
for Eps is in consonance with the maximal k-dist value in the
‘‘thinnest’’ cluster — the cluster with the lowest density. For iden-
tifying this threshold, we need to visually locate the first point
in the first ‘‘valley’’ — ‘‘knee’’ or ‘‘elbow’’ — in the related sorted
k-distance graph. By utilizing this quantity as the distribution

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

t
t
p
r
a

e
d
o
h
A
u
t
s
f
b
t
s
o
b
f
g

c
b
k
w
t
t
d
i
n
r
a

c
s
o
t

p
t

Fig. 10. Sampling and original sorted k-distance plots for the Shuttle dataset with k = 17 (MinPts = 2× 9 = 18) and k = 99 (MinPts = 100).
hreshold, every point with a higher k-dist value that stands at
he left of the threshold will be considered as noise or a marginal
oint; on the contrary, every point with a lower k-dist value
esiding at the right of the threshold will be a core point, thus
ttributed to some cluster.
Besides the challenges behind selecting the optimal param-

ter values for DBSCAN, it ought to be contemplated that the
istribution of the sampled data is different from the original
ne, and much more critical, DBSCAN shall be applied on both;
ence, it will be required to set distinct values for each situation.
s MinPts is a less sensitive parameter than Eps, we decide to
tilize the same quantity for it concerning both the sampled and
he original distributions. However, about Eps, sometimes even
light variations could incur significant ups and downs in the
inal results. One exact point is that after sampling, the distance
etween every point and its kth nearest neighbor expands, and
his is a sufficient cause to say that the optimal Eps value for the
ampled data is meaningfully larger than the required one for the
riginal distribution. Now, if we plot the sorted k-distance plot for
oth the sampled and original data, it could be observed that the
irst valley for the sampling k-dist plot happens earlier and with a
reater value than the corresponding valley for the original plot.
Fig. 10 illustrates the zoomed-in views of the k-distance plots

oncerning several sampling rates for the Shuttle dataset; the
lue, red, yellow, and violet lines indicate, in order, the sampling
-dist plots for the sampling rates equal to 0.5%, 2%, 5%, and 10%,
hile the green line denotes the correspondent k-dist graph for
he original distribution. Two distinct quantities for MinPts w.r.t.
he above heuristics are supposed as one in Fig. 10a, equal to
ouble the Shuttle dimensionality (2 × 9 = 18), and the other
n Fig. 10b, established as a much higher value (100) to evade the
oise33 — as Shuttle contains the most ratio of outliers among
eal and artificial datasets exerted in our accuracy and stability
nalysis.
As it is discerned from the illustration, for both MinPts spe-

ific values, the sampling k-dist plots are following almost the
ame pattern and can be easily distinguished from the relevant
riginal plot; furthermore, in both situations, the first valley for
he sampling plots occurs at a higher value than the original one.

33 The proximity parameter, k, in the kNN search does not include the subject
oint, but the range query search employed in DBSCAN considers the point itself
oo for the density evaluation; thus, k, here, complies with MinPts = k+ 1.
25
In Fig. 10a, for MinPts = 18, it seems most proper to define the
cut around 24 for the sampled distribution, and about half of this
value for the original one34; in Fig. 10b, for MinPts = 100, the
best cuts for the sampling and the primary data appears to be
approximately 50 and 25, respectively35 As a consequence, as it
is not possible to attain the original k-dist graph in the usual case
because of the following computational expenses, we prefer to set
the correspondent Eps value for the original distribution during
scalable clustering to half of the optimal cut for the sampled data.

A.2. PSO evolutionary algorithm

Despite the advantages connected to utilizing the k-distance
graph for finding the DBSCAN optimum parameters, sometimes,
it is not that easy to interactively locate the first valley position
in the related sorted k-dist graph as it might be very smooth and
without any visual steps (artifacts); furthermore, in some cases,
setting the most suitable value for MinPts requires a high amount
of trial and error. Therefore, one can resort to an optimization al-
gorithm like PSO to conquer the mentioned difficulties. PSO looks
for the optimal cases in a search space having a dimensionality on
a par with the number of demanded parameters by the particu-
lar problem; Eps and MinPts are the required parameters here,
and their lower and upper bounds need to be determined for
building the search zone employed by the PSO algorithm while
being applied to the sampled data. For the original distribution
requisite parameters, regarding the impossibility of putting PSO
into practice for the original massive data, the same scenario
will be followed as in the k-distance graph strategy; half of the
acquired sampling optimum Eps for the primary data during the
batch-wise clustering, and the same MinPts for both situations.

Inspired by the approximate analogousness of the plots in
Fig. 10, and that the optimal quantity for Eps lies between the
minimum and maximum of any of these plots — which are almost
the same in various sampling conditions, and also the original
graph — we decide to establish the lower and upper survey
bounds for the Eps parameter as the minimum and maximum

34 To avoid the singularity problem while operating on diverse iterations of
the proposed method, it is more discreet to set the sampling cut a bit greater,
as different random samplings could have slightly different distributions, thus
demanding varying requisites.
35 Higher integers for MinPts, naturally incur larger values for Eps to satisfy
the range query search carried out by DBSCAN.

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256

v
p
h
—
—
t
s

f
t
c
l
v
n
d

v
t
p

alues of the k-dist graph associated with the corresponding sam-
led data. For the MinPts parameter, w.r.t. the already mentioned
euristics, we prefer to set the lower search bound to ⌊ln (n)⌋
as it is a dynamic number according to every certain dataset
and the subsequent upper bound could be asked through

he user as a high-enough integer to avoid anomalies; the most
uitable MinPts value will be lying in this range. In the following,
an explanation of the PSO algorithm and the peculiar evaluating
manner for its optimization plan exerted in this study will be
provided.

PSO is an evolutionary population-based algorithm oriented
rom the corporate behavior of some animal gatherings, in par-
icular, flocks and shoals; it is totally founded upon mathematical
oncepts and can solve intricate arithmetical optimization prob-
ems [129,130]. One of the greatest virtues of utilizing PSO among
arious optimization strategies is its dependence on a fewer
umber of parameters; besides, the requisite ones are extensively
ebated in the scientific literature.
Here, we laconically explain the classical or the same inertial

ersion of the algorithm. Like any optimization problem, the
arget is to figure out a variable vector — also known as the
osition vector — represented as X = (x1, . . . , xn) which is

about to minimize or maximize a specific optimization function
denoted as f (X) — also called the fitness, the objective or the
cost function. X is an n-dimensional vector which stands for the n
distinct unknown variables in the intended problem,36 and f (X)
is a multi-criteria evaluation metric that appraises the reliability
of a particular condition specified by the position vector X . If
we consider a swarm with P particles, there would be a posi-
tion vector along with a velocity vector for each particle; every
position vector is a capable solution to the objective function
and is updated through successive iterations according to the
knowledge of the particle itself and other participating ones in
the group. We illustrate particle i at iteration t of the solving
procedure as X t

i = (xi1, . . . , xin), and the corresponding velocity
vector as V t

i = (vi1, . . . , vin). Each particle is bounded in a distinct
interval, which in total, all of these intervals build the search
space required for resolving the optimization function. At each
iteration, the velocity and position vectors for particle i at the j-th
dimension are updated as follows:

V t+1
ij = wV t

ij + c1r t1
(
pbestij − X t

ij

)
+c2r t2

(
gbestj − X t

ij

) (16)

X t+1
ij = X t

ij + V t+1
ij (17)

where i = 1, . . . , P and j = 1, . . . , n.
Regarding Eq. (16), the updating formula of the velocity vector

in every dimension, three different terms contribute to a particle
motion over any iteration. In the first term, parameter w is the
inertia weight constant with a positive value. This parameter
handles the balance between the global search (exploration) and
the local search (exploitation) of the algorithm. The second and
the third terms are, in order, the individual perception term and
the collective learning term. The individual perception term takes
into account the difference between the particle’s own previous
best location (pbesti) and its current position (X t

i); in contrast,
the collective learning term addresses the inclination towards
the previous best-identified location among all of the involved
particles (gbest). Parameters c1 and c2 are acceleration constants
that weigh the personal and social understanding of every parti-
cle, respectively. Parameters r1 and r2 are two random quantities
in the range of [0, 1] which help the optimization problem not
to fall early in a local optimum resolution; these random values

36 The related variables for DBSCAN are its two input parameters, Eps and
MinPts, as it was already discussed.
26
are reset at every iteration. Finally, the corresponding position of
every particle in each dimension will be updated w.r.t. Eq. (17),
and in the case that it is out of the specified searching limits, it
will get the equivalent violated bound quantity.

PSO consists of two separate sections, one initialization part,
and one iterative component. In the initialization section, firstly,
the position and velocity vectors for every particle get primary
values, and then after evaluating the alignment of the existing
positions through the fitness function, the associated best local
and global positions are established. Consequently, in the itera-
tive section, at every repetition, the velocity and position vectors
are updated in all of their dimensions according to Eqs. (16) and
(17); then, by employing the objective function again, the related
best local and global locations are modified until a termination
condition is satisfied.

For the PSO cost function in our experiments, we have utilized
the aggregation of two internal clustering validity indices [131],
namely the Davies–Bouldin index [132] and the CS index [133,
134], along with the ratio of detected outliers [135], which re-
quires to be minimized. To be noted, the CS index incurs a high
calculational load, especially on large datasets, yet it was very
fruitful for our analysis. By the way, other indices with various
arithmetic expenses — including but not limited to the Dunn
index [136], the Silhouette index [137], the Banfield–Raftery in-
dex [138], and the Maulik–Bandyopadhyay index (Index I) [139]
— could be employed too, although it is not guaranteed that
better outcomes will undoubtedly be achieved by applying a
more computationally expensive index and vice versa.

Moreover, we have defined three special conditions for the
cost function as the infinite value to evade them. One is when
after applying DBSCAN to the sampled data with the specific
parameters out of a particular particle, no cluster is detected,
and, i.e., every object is introduced as noise; such parameters
are out of order w.r.t. the accepted sampling terms. The other
condition is when every sampled point is assigned to some cluster
without any noise being identified; this is against our presump-
tion that the input data always contains some outliers that need
to be separated. Finally, there is another unacceptable situation
that happens when at least one of the discovered sampled clus-
ters through DBSCAN is suffering from the singularity problem;
with the optimum parameters in a condition conforming with
the proposed method strong assumptions, there should not be
any detected sampled cluster with the singularity issue. Besides,
while we are applying internal cluster validation indices to a clus-
tering result out of a particle parameters, detected noisy objects
are assumed as a unique cluster, too, as they should play an active
role in the arrangement evaluation of the DBSCAN outcome [140].

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.knosys.2021.107256.

References

[1] V. Hodge, J. Austin, A survey of outlier detection methodologies, Artif.
Intell. Rev. 22 (2) (2004) 85–126.

[2] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, ACM
Comput. Surv. 41 (3) (2009) 15.

[3] A. Zimek, E. Schubert, H.-P. Kriegel, A survey on unsupervised outlier
detection in high-dimensional numerical data, Stat. Anal. Data Min. ASA
Data Sci. J. 5 (5) (2012) 363–387.

[4] H. Wang, M.J. Bah, M. Hammad, Progress in outlier detection techniques:
A survey, IEEE Access 7 (2019) 107964–108000.

[5] M. Agyemang, K. Barker, R. Alhajj, A comprehensive survey of numeric
and symbolic outlier mining techniques, Intell. Data Anal. 10 (6) (2006)
521–538.

[6] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier,
2011.

https://doi.org/10.1016/j.knosys.2021.107256
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb1
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb2
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb3
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb4
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb5
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb6
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb6
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb6

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256
[7] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying
density-based local outliers, in: ACM Sigmod Record, ACM, 2000, pp.
93–104.

[8] T. De Vries, S. Chawla, M.E. Houle, Finding local anomalies in very
high dimensional space, in: 2010 IEEE International Conference on Data
Mining, IEEE, 2010, pp. 128–137.

[9] K. Zhang, M. Hutter, H. Jin, A new local distance-based outlier detection
approach for scattered real-world data, in: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, 2009, pp. 813–822.

[10] H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek, LoOP: local outlier proba-
bilities, in: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, ACM, 2009, pp. 1649–1652.

[11] W. Jin, A.K. Tung, J. Han, W. Wang, Ranking outliers using symmetric
neighborhood relationship, in: Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Springer, 2006, pp. 577–593.

[12] B. Tang, H. He, A local density-based approach for outlier detection,
Neurocomputing 241 (2017) 171–180.

[13] J. Huang, Q. Zhu, L. Yang, J. Feng, A non-parameter outlier detection
algorithm based on Natural Neighbor, Knowl.-Based Syst. 92 (2016)
71–77.

[14] A. Wahid, A.C.S. Rao, RKDOS: A relative kernel density-based outlier score,
IETE Tech. Rev. (2019) 1–12.

[15] A. Wahid, A.C.S. Rao, ODRA: an outlier detection algorithm based on
relevant attribute analysis method, Cluster Comput. (2020) 1–17.

[16] A. Wahid, C.S.R. Annavarapu, NaNOD: A natural neighbour-based outlier
detection algorithm, Neural Comput. Appl. (2020) 1–17.

[17] J. Xie, Z. Xiong, Q. Dai, X. Wang, Y. Zhang, A local-gravitation-based
method for the detection of outliers and boundary points, Knowl.-Based
Syst. 192 (2020) 105331.

[18] S. Wu, S. Wang, Information-theoretic outlier detection for large-scale
categorical data, IEEE Trans. Knowl. Data Eng. 25 (3) (2011) 589–602.

[19] X.H. Dang, B. Micenková, I. Assent, R.T. Ng, Local outlier detection with
interpretation, in: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2013, pp. 304–320.

[20] Z. He, X. Xu, S. Deng, Discovering cluster-based local outliers, Pattern
Recognit. Lett. 24 (9–10) (2003) 1641–1650.

[21] L. Duan, L. Xu, Y. Liu, J. Lee, Cluster-based outlier detection, Ann. Oper.
Res. 168 (1) (2009) 151–168.

[22] J.M. Jobe, M. Pokojovy, A cluster-based outlier detection scheme for
multivariate data, J. Amer. Statist. Assoc. 110 (512) (2015) 1543–1551.

[23] J. Huang, Q. Zhu, L. Yang, D. Cheng, Q. Wu, A novel outlier cluster
detection algorithm without top-n parameter, Knowl.-Based Syst. 121
(2017) 32–40.

[24] H. Moonesignhe, P.-N. Tan, Outlier detection using random walks,
in: 2006 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’06), IEEE, 2006, pp. 532–539.

[25] H. Moonesinghe, P.-N. Tan, Outrank: a graph-based outlier detection
framework using random walk, Int. J. Artif. Intell. Tools 17 (01) (2008)
19–36.

[26] C. Wang, H. Gao, Z. Liu, Y. Fu, A new outlier detection model us-
ing random walk on local information graph, IEEE Access 6 (2018)
75531–75544.

[27] C. Wang, H. Gao, Z. Liu, Y. Fu, Outlier detection using diverse
neighborhood graphs, in: 2018 15th International Computer Confer-
ence on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), IEEE, 2018, pp. 58–62.

[28] C. Wang, Z. Liu, H. Gao, Y. Fu, VOS: A new outlier detection model using
virtual graph, Knowl.-Based Syst. 185 (2019) 104907.

[29] P. Amil Marletti, N. Almeira, C. Masoller Alonso, Outlier mining methods
based on graph structure analysis, Front. Phys. 7 (2019) 1–11.

[30] L. Zeng, L. Li, L. Duan, K. Lu, Z. Shi, M. Wang, W. Wu, P. Luo, Distributed
data mining: a survey, Inf. Technol. Manag. 13 (4) (2012) 403–409.

[31] E. Januzaj, H.-P. Kriegel, M. Pfeifle, Scalable density-based distributed
clustering, in: European Conference on Principles of Data Mining and
Knowledge Discovery, Springer, 2004, pp. 231–244.

[32] F. Angiulli, S. Basta, S. Lodi, C. Sartori, Distributed strategies for mining
outliers in large data sets, IEEE Trans. Knowl. Data Eng. 25 (7) (2012)
1520–1532.

[33] J. Mao, P. Sun, C. Jin, A. Zhou, Outlier detection over distributed trajectory
streams, in: Proceedings of the 2018 SIAM International Conference on
Data Mining, SIAM, 2018, pp. 64–72.

[34] J. Chen, E.S. Azer, Q. Zhang, A practical algorithm for distributed clustering
and outlier detection, 2018, arXiv preprint arXiv:1805.09495.

[35] Y. Yan, L. Cao, C. Kulhman, E. Rundensteiner, Distributed local outlier
detection in big data, in: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2017, pp.
1225–1234.
27
[36] Y. Yan, L. Cao, E.A. Rundensteiner, Distributed Top-N local outlier detec-
tion in big data, in: 2017 IEEE International Conference on Big Data (Big
Data), IEEE, 2017, pp. 827–836.

[37] P.S. Bradley, U.M. Fayyad, C. Reina, et al., Scaling clustering algorithms to
large databases, in: KDD, vol. 98, 1998, pp. 9–15.

[38] J. Yin, Q. Ho, E.P. Xing, A scalable approach to probabilistic latent space
inference of large-scale networks, in: Advances in Neural Information
Processing Systems, 2013, pp. 422–430.

[39] S.-H. Teng, et al., Scalable algorithms for data and network analysis,
Found. Trends R⃝ Theoret. Comput. Sci. 12 (1–2) (2016) 1–274.

[40] P.C. Mahalanobis, On the Generalized Distance in Statistics, National
Institute of Science of India, 1936.

[41] K. Ro, C. Zou, Z. Wang, G. Yin, Outlier detection for high-dimensional
data, Biometrika 102 (3) (2015) 589–599.

[42] C.C. Aggarwal, Data Mining: The Textbook, Springer, 2015.
[43] C.C. Aggarwal, Outlier analysis, in: Data Mining, Springer, 2015, pp.

237–263.
[44] R. Domingues, M. Filippone, P. Michiardi, J. Zouaoui, A comparative

evaluation of outlier detection algorithms: Experiments and analyses,
Pattern Recognit. 74 (2018) 406–421.

[45] X. Wang, X. Wang, M. Wilkes, New Developments in Unsupervised Outlier
Detection, Springer Singapore, 2021.

[46] S. Cabras, J. Morales, Extreme value analysis within a parametric out-
lier detection framework, Appl. Stoch. Models Bus. Ind. 23 (2) (2007)
157–164.

[47] B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Es-
timating the support of a high-dimensional distribution, Neural Comput.
13 (7) (2001) 1443–1471.

[48] D.M. Tax, R.P. Duin, Support vector domain description, Pattern Recognit.
Lett. 20 (11–13) (1999) 1191–1199.

[49] E.M. Knox, R.T. Ng, Algorithms for mining distancebased outliers in large
datasets, in: Proceedings of the International Conference on Very Large
Data Bases, Citeseer, 1998, pp. 392–403.

[50] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining
outliers from large data sets, in: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, 2000, pp. 427–438.

[51] F. Angiulli, F. Fassetti, Dolphin: An efficient algorithm for mining distance-
based outliers in very large datasets, ACM Trans. Knowl. Discov. Data
(TKDD) 3 (1) (2009) 1–57.

[52] S.D. Bay, M. Schwabacher, Mining distance-based outliers in near linear
time with randomization and a simple pruning rule, in: Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2003, pp. 29–38.

[53] M. Sugiyama, K. Borgwardt, Rapid distance-based outlier detection via
sampling, in: Advances in Neural Information Processing Systems, 2013,
pp. 467–475.

[54] M.A. Rahman, K.L.-M. Ang, K.P. Seng, Unique neighborhood set parameter
independent density-based clustering with outlier detection, IEEE Access
6 (2018) 44707–44717.

[55] J.L. Bentley, Multidimensional binary search trees used for associative
searching, Commun. ACM 18 (9) (1975) 509–517.

[56] I. Newton, Mathematical Principles of Natural Philosophy, A. Strahan,
1802.

[57] P.J. Rousseeuw, K.V. Driessen, A fast algorithm for the minimum
covariance determinant estimator, Technometrics 41 (3) (1999) 212–223.

[58] D.J. Cook, L.B. Holder, Graph-based data mining, IEEE Intell. Syst. Appl.
15 (2) (2000) 32–41.

[59] L. Akoglu, H. Tong, D. Koutra, Graph based anomaly detection and
description: a survey, Data Min. Knowl. Discov. 29 (3) (2015) 626–688.

[60] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, N.F. Samatova,
Anomaly detection in dynamic networks: a survey, Wiley Interdiscip. Rev.
Comput. Stat. 7 (3) (2015) 223–247.

[61] R. Yu, H. Qiu, Z. Wen, C. Lin, Y. Liu, A survey on social media anomaly
detection, ACM SIGKDD Explor. Newsl. 18 (1) (2016) 1–14.

[62] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric frame-
work for nonlinear dimensionality reduction, Science 290 (5500) (2000)
2319–2323.

[63] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth IEEE
International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[64] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection, ACM
Trans. Knowl. Discov. Data (TKDD) 6 (1) (2012) 1–39.

[65] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[66] T.R. Bandaragoda, K.M. Ting, D. Albrecht, F.T. Liu, J.R. Wells, Efficient

anomaly detection by isolation using nearest neighbour ensemble, in:
2014 IEEE International Conference on Data Mining Workshop, IEEE,

2014, pp. 698–705.

http://refhub.elsevier.com/S0950-7051(21)00518-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb7
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb8
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb9
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb10
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb11
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb12
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb12
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb12
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb13
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb14
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb15
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb16
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb17
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb18
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb19
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb20
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb21
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb22
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb23
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb24
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb25
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb26
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb27
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb28
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb29
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb30
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb31
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb32
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb33
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb33
http://arxiv.org/abs/1805.09495
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb36
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb37
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb38
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb39
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb40
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb41
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb42
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb43
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb44
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb45
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb46
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb47
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb48
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb49
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb51
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb53
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb54
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb55
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb56
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb57
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb58
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb58
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb58
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb59
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb59
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb59
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb60
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb60
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb60
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb60
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb60
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb61
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb61
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb61
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb62
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb62
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb62
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb62
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb62
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb63
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb63
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb63
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb64
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb64
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb64
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb65
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb66

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256
[67] T.R. Bandaragoda, K.M. Ting, D. Albrecht, F.T. Liu, Y. Zhu, J.R. Wells,
Isolation-based anomaly detection using nearest-neighbor ensembles,
Comput. Intell. 34 (4) (2018) 968–998.

[68] T.M. Cover, Elements of Information Theory, John Wiley & Sons, 1999.
[69] Z. He, X. Xu, S. Deng, Squeezer: an efficient algorithm for clustering

categorical data, J. Comput. Sci. Tech. 17 (5) (2002) 611–624.
[70] P. Filzmoser, R. Maronna, M. Werner, Outlier identification in high

dimensions, Comput. Statist. Data Anal. 52 (3) (2008) 1694–1711.
[71] M. Hubert, P.J. Rousseeuw, K. Vanden Branden, ROBPCA: a new approach

to robust principal component analysis, Technometrics 47 (1) (2005)
64–79.

[72] E. Ayyıldız, V. Purutçuoglu, E. Wit, A short note on resolving singularity
problems in covariance matrices, Int. J. Stat. Probab. 1 (2) (2012) 113–118.

[73] O. Ledoit, M. Wolf, Honey, I shrunk the sample covariance matrix, J.
Portfolio Manag. 30 (4) (2004) 110–119.

[74] K. Pearson, LIII. On lines and planes of closest fit to systems of points in
space, Lond. Edinb. Dublin Phil. Mag. J. Sci. 2 (11) (1901) 559–572.

[75] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a
Hilbert space, Contemp. Math. 26 (189–206) (1984) 1.

[76] S. Dasgupta, A. Gupta, An elementary proof of the Johnson-Lindenstrauss
lemma, Int. Comput. Sci. Inst. Tech. Rep. 22 (1) (1999) 1–5.

[77] D. Achlioptas, Database-friendly random projections, in: Proceedings of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ACM, 2001, pp. 274–281.

[78] E. Forgey, Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classification, Biometrics 21 (3) (1965) 768–769.

[79] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm
for discovering clusters in large spatial databases with noise, in: Kdd,
1996, pp. 226–231.

[80] A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks,
Science 344 (6191) (2014) 1492–1496.

[81] M.A. Rahman, L.-M. Ang, K.P. Seng, Clustering biomedical and gene
expression datasets with kernel density and unique neighborhood set
based vein detection, Inf. Syst. 91 (2020) 101490.

[82] A. Bryant, K. Cios, RNN-DBSCAN: A density-based clustering algorithm
using reverse nearest neighbor density estimates, IEEE Trans. Knowl. Data
Eng. 30 (6) (2017) 1109–1121.

[83] A. Lotfi, P. Moradi, H. Beigy, Density peaks clustering based on density
backbone and fuzzy neighborhood, Pattern Recognit. 107 (2020) 107449.

[84] R. Liu, H. Wang, X. Yu, Shared-nearest-neighbor-based clustering by fast
search and find of density peaks, Inform. Sci. 450 (2018) 200–226.

[85] J. Xie, H. Gao, W. Xie, X. Liu, P.W. Grant, Robust clustering by detecting
density peaks and assigning points based on fuzzy weighted K-nearest
neighbors, Inform. Sci. 354 (2016) 19–40.

[86] R. Mehmood, G. Zhang, R. Bie, H. Dawood, H. Ahmad, Clustering by fast
search and find of density peaks via heat diffusion, Neurocomputing 208
(2016) 210–217.

[87] R. Liu, W. Huang, Z. Fei, K. Wang, J. Liang, Constraint-based clustering
by fast search and find of density peaks, Neurocomputing 330 (2019)
223–237.

[88] T. Liu, H. Li, X. Zhao, Clustering by search in descending order and
automatic find of density peaks, IEEE Access 7 (2019) 133772–133780.

[89] R. Bie, R. Mehmood, S. Ruan, Y. Sun, H. Dawood, Adaptive fuzzy clustering
by fast search and find of density peaks, Pers. Ubiquitous Comput. 20 (5)
(2016) 785–793.

[90] X. Chen, W. Liu, H. Qiu, J. Lai, APSCAN: A parameter free algorithm for
clustering, Pattern Recognit. Lett. 32 (7) (2011) 973–986.

[91] Z. Zhou, G. Si, Y. Zhang, K. Zheng, Robust clustering by identifying the
veins of clusters based on kernel density estimation, Knowl.-Based Syst.
159 (2018) 309–320.

[92] M. Pavan, M. Pelillo, Dominant sets and pairwise clustering, IEEE Trans.
Pattern Anal. Mach. Intell. 29 (1) (2006) 167–172.

[93] J. Hou, H. Gao, X. Li, DSets-DBSCAN: A parameter-free clustering
algorithm, IEEE Trans. Image Process. 25 (7) (2016) 3182–3193.

[94] J. Hou, W. Liu, A parameter-independent clustering framework, IEEE
Trans. Ind. Inf. 13 (4) (2017) 1825–1832.

[95] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of
ICNN’95-International Conference on Neural Networks, vol. 4, IEEE, 1995,
pp. 1942–1948.

[96] R.A. Maronna, R.H. Zamar, Robust estimates of location and dispersion
for high-dimensional datasets, Technometrics 44 (4) (2002) 307–317.

[97] J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of Massive Datasets,
Cambridge university press, 2014.

[98] S. Thompson, Sampling, A Wiley-Inter-Science Publication, John Wiley &
Sons, Inc., New York, 1992.

[99] C.R. Palmer, C. Faloutsos, Density biased sampling: An improved method
for data mining and clustering, in: Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, 2000, pp. 82–92.

28
[100] G. Kollios, D. Gunopulos, N. Koudas, S. Berchtold, Efficient biased sampling
for approximate clustering and outlier detection in large data sets, IEEE
Trans. Knowl. Data Eng. 15 (5) (2003) 1170–1187.

[101] M. Wu, C. Jermaine, Outlier detection by sampling with accuracy guaran-
tees, in: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006, pp. 767–772.

[102] M. Hubert, M. Debruyne, Minimum covariance determinant, Wiley
Interdiscip. Rev. Comput. Stat. 2 (1) (2010) 36–43.

[103] I.M. Johnstone, A.Y. Lu, Sparse principal components analysis, 2009, arXiv
preprint arXiv:0901.4392.

[104] A. Zimek, M. Gaudet, R.J. Campello, J. Sander, Subsampling for efficient
and effective unsupervised outlier detection ensembles, in: Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2013, pp. 428–436.

[105] D. Pelleg, A.W. Moore, et al., X-means: Extending k-means with efficient
estimation of the number of clusters, in: Icml, vol. 1, 2000, pp. 727–734.

[106] G.O. Campos, A. Zimek, J. Sander, R.J. Campello, B. Micenková, E. Schubert,
I. Assent, M.E. Houle, On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study, Data Min. Knowl. Discov. 30
(4) (2016) 891–927.

[107] R.M. Aliguliyev, Performance evaluation of density-based clustering
methods, Inform. Sci. 179 (20) (2009) 3583–3602.

[108] R. Alguliyev, R. Aliguliyev, L. Sukhostat, Anomaly detection in big data
based on clustering, Stat. Optim. Inf. Comput. 5 (4) (2017) 325–340.

[109] A.M. Rubinov, N. Soukhorokova, J. Ugon, Classes and clusters in data
analysis, European J. Oper. Res. 173 (3) (2006) 849–865.

[110] B. Mirkin, Mathematical Classification and Clustering, vol. 11, Springer
Science & Business Media, 1996.

[111] C.J. Van Rijsbergen, The Geometry of Information Retrieval, Cambridge
University Press, 2004.

[112] F. Boutin, M. Hascoët, Cluster validity indices for graph partition-
ing, in: Proceedings. Eighth International Conference on Information
Visualisation, 2004. IV 2004, IEEE, 2004, pp. 376–381.

[113] M. Meilă, Comparing clusterings by the variation of information, in:
Learning Theory and Kernel Machines, Springer, 2003, pp. 173–187.

[114] D. Dua, C. Graff, UCI machine learning repository, 2017, URL: http:
//archive.ics.uci.edu/ml.

[115] J. Vanschoren, J.N. Van Rijn, B. Bischl, L. Torgo, OpenML: networked
science in machine learning, ACM SIGKDD Explor. Newsl. 15 (2) (2014)
49–60.

[116] A. Goldbloom, B. Hamner, Kaggle data science company, 2010, URL:
https://www.kaggle.com.

[117] S. Rayana, ODDS library, 2016, URL: http://odds.cs.stonybrook.edu.
[118] J. Davis, M. Goadrich, The relationship between precision-recall and ROC

curves, in: Proceedings of the 23rd International Conference on Machine
Learning, 2006, pp. 233–240.

[119] J. Shlens, A tutorial on principal component analysis, 2014, arXiv preprint
arXiv:1404.1100.

[120] I. Jolliffe, Principal Component Analysis, Springer, 2011.
[121] D.M. Hawkins, Identification of Outliers, vol. 11, Springer, 1980.
[122] V. Barnett, T. Lewis, Outliers in Statistical Data, Wiley, 1974.
[123] M. Friedman, The use of ranks to avoid the assumption of normality

implicit in the analysis of variance, J. Amer. Statist. Assoc. 32 (200) (1937)
675–701.

[124] J. Demsar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[125] S. García, F. Herrera, An extension on "statistical comparisons of classifiers
over multiple data sets" for all pairwise comparisons, J. Mach. Learn. Res.
9 (2009) 2677–2694.

[126] E. Schubert, J. Sander, M. Ester, H.P. Kriegel, X. Xu, DBSCAN revisited,
revisited: why and how you should (still) use DBSCAN, ACM Trans.
Database Syst. 42 (3) (2017) 1–21.

[127] D. Birant, A. Kut, ST-DBSCAN: An algorithm for clustering spatial–
temporal data, Data Knowl. Eng. 60 (1) (2007) 208–221.

[128] J. Sander, M. Ester, H.-P. Kriegel, X. Xu, Density-based clustering in spatial
databases: The algorithm gdbscan and its applications, Data Min. Knowl.
Discov. 2 (2) (1998) 169–194.

[129] A. Nickabadi, M.M. Ebadzadeh, R. Safabakhsh, A novel particle swarm
optimization algorithm with adaptive inertia weight, Appl. Soft Comput.
11 (4) (2011) 3658–3670.

[130] B.S.G. de Almeida, V.C. Leite, Particle swarm optimization: A powerful
technique for solving engineering problems, in: Swarm Intelligence-
Recent Advances, New Perspectives and Applications, IntechOpen,
2019.

[131] B. Desgraupes, Clustering indices, Univ. Paris Ouest-Lab Modal’X 1 (2013)
34.

[132] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans.

Pattern Anal. Mach. Intell. (2) (1979) 224–227.

http://refhub.elsevier.com/S0950-7051(21)00518-9/sb67
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb67
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb67
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb67
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb67
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb68
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb69
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb69
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb69
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb70
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb70
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb70
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb71
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb71
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb71
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb71
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb71
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb72
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb72
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb72
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb73
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb73
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb73
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb74
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb74
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb74
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb75
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb75
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb75
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb76
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb76
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb76
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb77
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb77
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb77
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb77
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb77
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb78
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb78
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb78
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb79
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb79
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb79
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb79
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb79
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb80
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb80
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb80
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb81
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb81
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb81
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb81
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb81
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb82
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb82
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb82
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb82
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb82
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb83
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb83
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb83
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb84
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb84
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb84
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb85
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb85
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb85
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb85
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb85
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb86
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb86
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb86
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb86
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb86
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb87
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb87
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb87
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb87
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb87
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb88
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb88
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb88
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb89
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb89
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb89
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb89
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb89
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb90
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb90
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb90
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb91
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb91
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb91
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb91
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb91
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb92
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb92
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb92
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb93
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb93
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb93
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb94
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb94
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb94
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb95
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb95
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb95
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb95
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb95
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb96
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb96
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb96
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb97
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb97
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb97
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb98
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb98
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb98
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb102
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb102
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb102
http://arxiv.org/abs/0901.4392
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb105
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb105
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb105
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb106
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb107
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb107
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb107
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb108
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb108
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb108
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb109
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb109
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb109
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb110
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb110
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb110
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb111
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb111
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb111
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb112
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb112
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb112
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb112
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb112
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb113
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb113
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb113
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb115
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb115
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb115
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb115
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb115
https://www.kaggle.com
http://odds.cs.stonybrook.edu
http://arxiv.org/abs/1404.1100
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb120
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb121
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb122
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb123
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb123
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb123
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb123
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb123
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb124
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb124
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb124
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb125
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb125
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb125
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb125
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb125
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb126
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb126
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb126
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb126
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb126
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb127
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb127
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb127
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb128
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb128
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb128
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb128
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb128
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb129
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb129
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb129
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb129
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb129
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb130
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb131
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb131
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb131
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb132
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb132
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb132

S.A. Naghavi Nozad, M. Amir Haeri and G. Folino Knowledge-Based Systems 228 (2021) 107256
[133] C.-H. Chou, M.-C. Su, E. Lai, A new cluster validity measure for clus-
ters with different densities, in: IASTED International Conference on
Intelligent Systems and Control, 2003, pp. 276–281.

[134] C.-H. Chou, M.-C. Su, E. Lai, A new cluster validity measure and its
application to image compression, Pattern Anal. Appl. 7 (2) (2004)
205–220.

[135] C. Guan, K.K.F. Yuen, F. Coenen, Particle swarm optimized density-
based clustering and classification: Supervised and unsupervised learning
approaches, Swarm Evol. Comput. 44 (2019) 876–896.

[136] J.C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. Cybern.
4 (1) (1974) 95–104.

[137] P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53–65.

[138] J.D. Banfield, A.E. Raftery, Model-based Gaussian and non-Gaussian
clustering, Biometrics (1993) 803–821.

[139] U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering
algorithms and validity indices, IEEE Trans. Pattern Anal. Mach. Intell. 24
(12) (2002) 1650–1654.

[140] S. Saitta, B. Raphael, I.F. Smith, A bounded index for cluster validity, in:
International Workshop on Machine Learning and Data Mining in Pattern
Recognition, Springer, 2007, pp. 174–187.

Sayyed Ahmad Naghavi Nozad was born in Ghaen,
South Khorasan Province, Iran, in 1988. He received the
B.Sc. degree in Software Engineering from the Payame
Noor University, Ghaen, Iran, in 2015, and the M.Sc.
degree in Artificial Intelligence from the Amirkabir
University of Technology, Tehran, Iran, in 2018. His
research interests include but are not limited to Outlier
Detection, Cluster Analysis, Community Detection, Nov-
elty Detection, Information Theory, Image Processing,
and Deep Learning.
29
Maryam Amir Haeri received her bachelor’s degree
in Software Engineering in 2007 and her master’s
degree in Information Technology in 2009, both from
Sharif University of Technology, Tehran, Iran. She also
received her doctorate in Artificial Intelligence from
the Amirkabir University of Technology, Tehran, Iran, in
2014. She served as an assistant professor in the Com-
puter Engineering Department, Amirkabir University of
Technology, from September 2015 to January 2019. In
addition, she was a research fellow at the Algorithm
Accountability Lab at the University of Kaiserslautern,

Germany, from February 2019 to October 2020. Since November 2020, she
has been an assistant professor at the Learning, Data-Analytics and Technology
Department, University of Twente, the Netherlands. Her research interests
include Machine Learning, Big Data Analytics, Fairness in Machine Learning, and
Complex Networks Analysis.

Gianluigi Folino holds a Ph.D. in Physics, Mathematics,
and Computer Science (Radboud University, Nijmegen,
Holland, 2010). Since 2001, he works as a senior
researcher at ICAR-CNR (the Institute of High Per-
formance Computing and Networking of the Italian
National Research Council). He is also a lecturer at
the University of Calabria and the University Magna
Graecia of Catanzaro. His research interests focus on
applications of distributed computing in the area of
data mining, bio-inspired algorithms (particularly ge-
netic programming and swarm intelligence), big data,

and bioinformatics. Within ICAR-CNR, he has been a contributor to several
national and international research/industrial projects, and since 2013, he has
been the coordinator of the project ‘‘Cyber Security – Digital and electronic
payment services protection’’. In addition, he was a visiting researcher at the
University of Nottingham (United Kingdom) in 2007 and 2009, at Radboud
University, Nijmegen (Netherlands), in 2008 and 2009, and finally at the
University of California (UCLA), Los Angeles, in 2013.

http://refhub.elsevier.com/S0950-7051(21)00518-9/sb134
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb134
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb134
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb134
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb134
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb135
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb135
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb135
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb135
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb135
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb136
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb136
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb136
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb137
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb137
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb137
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb138
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb138
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb138
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb139
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb139
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb139
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb139
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb139
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb140
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb140
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb140
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb140
http://refhub.elsevier.com/S0950-7051(21)00518-9/sb140

	SDCOR: Scalable density-based clustering for local outlier detection in massive-scale datasets
	Introduction
	Motivation
	Contribution

	Related work
	Extreme value analysis
	Probabilistic methods
	Distance-based methods
	Density-based methods
	Clustering-based methods
	Graph-based methods
	Information-theoretic methods
	Isolation-based methods
	Discussion
	Remarks

	Proposed approach
	Sampling
	Clustering the sampled data
	Building the initial clustering model
	Establishing the scalable clustering criteria

	Scalable clustering
	Updating the temporary clustering model w.r.t. the contents of the buffer
	Building the final clustering model

	Scoring
	Algorithm complexity

	Experimental evaluation
	Evaluation metrics
	General-purpose metrics
	Clustering validity metrics

	Datasets description
	Real-life datasets
	Synthetic datasets

	Algorithms implementations and parameters
	ORCA
	DOLPHIN
	Sp
	LOF and LoOP
	EnLOF
	X-means
	SDCOR

	Experimental results
	Accuracy and stability analysis
	Real datasets
	Synthetic datasets

	Significance analysis
	SDCOR vs. X-means
	Tolerance to a high number of outliers
	Scalability
	Effect of sampling rate

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. DBSCAN optimal parameters
	k-distance graph
	PSO evolutionary algorithm

	Appendix B. Supplementary data
	References

