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Abstract. Stochastic convex optimization, by which the objective is the expectation of a
random convex function, is an important and widely used method with numerous ap-
plications in machine learning, statistics, operations research, and other areas. We study
the complexity of stochastic convex optimization given only statistical query (SQ) access to
the objective function. We show that well-known and popular first-order iterativemethods
can be implemented using only statistical queries. For many cases of interest, we derive
nearly matching upper and lower bounds on the estimation (sample) complexity, in-
cluding linear optimization in the most general setting. We then present several conse-
quences for machine learning, differential privacy, and proving concrete lower bounds on
the power of convex optimization–based methods. The key ingredient of our work is SQ
algorithms and lower bounds for estimating the mean vector of a distribution over vectors
supported on a convex body in Rd. This natural problem has not been previously studied,
and we show that our solutions can be used to get substantially improved SQ versions of
Perceptron and other online algorithms for learning halfspaces.
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1. Introduction
Statistical query (SQ) algorithms, defined by Kearns [58] in the context of probably approximately
correct (PAC) learning and by Feldman et al. [40] for general problems on inputs sampled independently and
identically from distributions (i.i.d.), are algorithms that can be implemented using estimates of the expec-
tation of any given function on a sample drawn randomly from the input distribution D instead of direct
access to random samples. Such access is abstracted using a statistical query oracle that, given a query function
φ : W→[−1, 1], returns an estimate of Ew[φ(w)] within some tolerance τ (possibly dependent on φ). We
refer to the number of samples sufficient to estimate the expectation of each query of a SQ algorithm
with some fixed constant confidence as its estimation complexity (often 1/τ2) and the number of queries as its
query complexity.

Statistical query access to data was introduced as a means to derive noise-tolerant algorithms in the PAC
model of learning (Kearns [58]). Subsequently, it was realized that reducing data access to estimation of simple
expectations has a wide variety of additional useful properties. It plays a key role in the development of the
notion of differential privacy (Blum et al. [12], Dinur and Nissim [26], Dwork et al [31]) and is the subject of
intense subsequent research in differential privacy1 (see Dwork and Roth [30] for a literature review). It has
important applications in a large number of other theoretical and practical contexts, such as distributed data
access (Chu et al. [20], Roy et al. [78], Sujeeth et al. [90]), evolvability (Feldman [35, 36], Valiant [92]), and
memory-/communication-limited machine learning (Balcan et al. [4], Steinhardt et al. [87]). Most recently, in a
line of work initiated by Dwork et al. [32], SQs are used as a basis for understanding generalization in
adaptive data analysis (Bassily et al [7], Dwork et al. [32, 33], Hardt and Ullman [49], Steinke and Ullman [88]).

Here, we consider the complexity of solving stochastic convex minimization problems by SQ algorithms.
In stochastic convex optimization, the goal is to minimize a convex function F(x) � Ew[ f (x,w)] over a convex
set K ⊂ Rd, where w is a random variable distributed according to some distribution D over domain W and
each f (x,w) is convex in x. The optimization is based on i.i.d. samples w1,w2, . . . ,wn of w. Numerous central
problems in machine learning and statistics are special cases of this general setting with a vast literature

912

Vol. 46, No. 3, August 2021, pp. 912–945

http://pubsonline.informs.org/journal/moor
mailto:vitaly@post.harvard.edu
mailto:crguzman@mat.uc.cl
https://orcid.org/0000-0002-1498-2055
https://orcid.org/0000-0002-1498-2055
mailto:vempala@gatech.edu
https://doi.org/10.1287/moor.2020.1111


devoted to techniques for solving variants of this problem (e.g., Shalev-Shwartz and Ben-David [81], Srebro and
Tewari [86]). It is usually assumed that K is “known” to the algorithm (or, in some cases, given via a
sufficiently strong oracle), and the key challenge is understanding how to cope with estimation errors arising
from the stochastic nature of information about F(x).

To the best of our knowledge, prior to this work, the complexity of this fundamental class of problems has
not been studied in the SQ model. This is in contrast to the rich and nuanced understanding of the sample and
computational complexity of solving such problems given unrestricted access to samples as well as in a wide
variety of other oracle models.

The second important property of statistical algorithms is that it is possible to prove information-theoretic
lower bounds on the complexity of any statistical algorithm that solves a given problem. The first one is
shown by Kearns [58] who proves that parity functions cannot be learned efficiently using SQs. Subsequent
work develops several techniques for proving such lower bounds (e.g., Blum et al. [14], Feldman et al. [39, 40],
Simon [85]), establishes relationships to other complexity measures (e.g., Kallweit and Simon [55], Sherstov [83]),
and provides lower bounds for many important problems in learning theory (e.g., Blum et al. [14],
Feldman et al. [38], Klivans and Sherstov [60]) and beyond (Bresler et al. [16], Feldman et al. [39, 40], Wang
et al. [94]).

From this perspective, statistical algorithms for stochastic convex optimization have another important role.
For many problems in machine learning and computer science, convex optimization gives state-of-the-art
results, and therefore, lower bounds against such techniques are a subject of significant research interest.
Indeed, in recent years, this area has been particularly active with major progress made on several long-
standing problems (e.g., Fiorini et al. [41], Lee et al. [61], Meka et al. [67], Rothvoß [77]). As shown in Feldman
et al. [39], it is possible to convert SQ lower bounds into purely structural lower bounds on convex relaxations—in
other words, lower bounds that hold without assumptions on the algorithm that is used to solve the problem
(in particular, not just SQ algorithms). From this point of view, each SQ implementation of a convex opti-
mization algorithm is a new lower bound against the corresponding convex relaxation of the problem.

1.1. Overview of Results
We focus on iterative first-order methods, namely, techniques that rely on updating the current point xt using
only the (sub)gradient of F at xt. These are among the most widely used approaches for solving convex
programs in theory and practice. It can be immediately observed that, for every x, ∇F(x) � Ew[∇f (x,w)], and
hence, it is sufficient to estimate expected gradients to some sufficiently high accuracy in order to implement
such algorithms (we are only seeking an approximate optimum anyway). The accuracy corresponds to the
number of samples (or estimation complexity) and is the key measure of complexity for SQ algorithms.
However, to the best of our knowledge, the estimation complexity for specific SQ implementations of first-
order methods has never been formally addressed.

We start with the case of linear optimization; namely, ∇F(x) is the same over the whole body K. It turns out
that, in this case, global approximation of the gradient (that is, one for which the linear approximation of F
given by the estimated gradient is ε close to the true linear approximation of F) is sufficient. This means that
the question becomes that of estimating the mean vector of a distribution over vectors in Rd in some norm that
depends on the geometry of K. This is a basic question (indeed, central to many high-dimensional problems),
but it has not been carefully addressed even for the simplest norms, such as �2. We examine it in detail and
provide an essentially complete picture for all �q norms with q ∈ [1,∞]. We also briefly examine the case of
general convex bodies (and corresponding norms) and provide some universal bounds.

The analysis of the preceding linear case gives us the basis for tackling first-order optimization methods for
Lipschitz convex functions. That is, we can now obtain an estimate of the expected gradient at each iteration.
However, we still need to determine whether the global approximation is needed or a local one would suffice
and also to ensure that estimation errors from different iterations do not accumulate. Luckily, for this, we can
build on the study of the performance of first-order methods with inexact first-order oracles. Methods of this
type have a long history (e.g., Poljak [72], Shor [84]); however, some of our methods of choice have only been
studied recently. We give SQ algorithms for implementing the global and local oracles and then systematically
study several traditional setups of convex optimization: nonsmooth, smooth, and strongly convex. Although
that is not the most exciting task in itself, it serves to show the generality of our approach. Remarkably, in all
of these common setups, we achieve the same estimation complexity as that known to be achievable
with samples.

All of the previous results require that the optimized functions are Lipschitz; that is, the gradients are
bounded in the appropriate norm (and the complexity depends polynomially on the bound). Addressing
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non-Lipschitz optimization seems particularly challenging in the stochastic case and SQ model, in particular.
Indeed, direct SQ implementation of some techniques would require queries of exponentially high accuracy.
We give two approaches for dealing with this problem that require only that the convex functions in the
support of distribution have a bounded range. The first one avoids gradients altogether by only using es-
timates of function values. It is based on the random walk techniques of Kalai and Vempala [54] and Lovász
and Vempala [64]. The second one is based on a new analysis of the classic center-of-gravity method. There,
we show that there exists a local norm, specifically that given by the inertial ellipsoid, that allows us to
obtain a global approximation relatively cheaply. Interestingly, these very different methods have the same
estimation complexity, which is also within a factor of d of our lower bound.

Finally, we highlight some theoretical applications of our results. First, we describe a high-level meth-
odology of obtaining a lower bound for convex relaxations from our results and give an example for
constraint-satisfaction problems. We then show that our mean estimation algorithms can greatly improve the
estimation complexity of the SQ version of the classic Perceptron algorithm and several related algorithms.
Finally, we give corollaries for two problems in differential privacy: (a) new algorithms for solving convex
programs with the stringent local differential privacy and (b) strengthening and generalization of algorithms
for answering sequences of convex minimization queries differentially privately given by Ullman [91].

1.2. Linear Optimization and Mean Estimation
We start with the linear optimization case, which is a natural special case and also the basis of our
implementations of first-order methods. In this setting, W ⊆ Rd and f (x,w) � 〈x,w〉. Hence, F(x) � 〈x, w̄〉, where
w̄ � Ew[w]. This reduces the problem to finding a sufficiently accurate estimate of w̄. Specifically, for a given
error parameter ε, it is sufficient to find a vector w̃, such that, for every x ∈ K, |〈x, w̄〉 − 〈x, w̃〉| ≤ ε. Given such
an estimate w̃, we can solve the original problem with error of at most 2ε by solving minx∈K 〈x, w̃〉 (see
Observation 1).

An obvious way to estimate the high-dimensional mean using SQs is to simply estimate each of the co-
ordinates of the mean vector using a separate SQ: that is, E[wi/Bi], where [−Bi,Bi] is the range of wi. Un-
fortunately, even in the most standard setting, in which both K and W are �2 unit balls, this method requires
accuracy that scales with 1/

̅̅
d

√
(or estimation complexity that scales linearly with d). In contrast, bounds

obtained using samples are dimension-independent, making this SQ implementation unsuitable for high-
dimensional applications. Estimation of high-dimensional means for various distributions is an even more
basic question than stochastic optimization, yet we are not aware of any prior analysis of its statistical query
complexity. In particular, SQ implementation of all algorithms for learning halfspaces (including the most
basic Perceptron) require estimation of high-dimensional means, but known analyses rely on inefficient
coordinate-wise estimation (e.g., Balcan and Feldman [3], Blum et al. [13], Bylander [17]).

The seemingly simple question we would like to answer is whether the SQ estimation complexity is
different from the sample complexity of the problem. The first challenge here is that even the sample
complexity of mean estimation depends in an involved way on the geometry of K and W (cf. Pisier [71]). Also,
some of the general techniques for proving upper bounds on sample complexity (see Appendix B) appeal
directly to high-dimensional concentration and do not seem to extend to the intrinsically one-dimensional SQ
model. We, therefore, focus our attention on the much more benign and well-studied �p/�q setting. That is, K
is a unit ball in �p norm, W is the unit ball in �q norm for p ∈ [1,∞], and 1/p + 1/q � 1 (general radii can be
reduced to this setting by scaling). This is equivalent to requiring that ‖w̃ − w̄‖q ≤ ε for a random variable w
supported on the unit �q ball, and we refer to it as the �q mean estimation. Even in this standard setting, the
picture is not so clear in the regime when q ∈ [1, 2), where the sample complexity of �q mean estimation
depends on both q and the relationship between d and ε.

In a nutshell, we give tight (up to a polylogarithmic in d factor) bounds on the SQ complexity of �q mean
estimation for all q ∈ [1,∞]. These bounds match (up to a polylogarithmic in d factor) the sample complexity of
the problem. The upper bounds are based on several different algorithms.

• For q � ∞, straightforward coordinate-wise estimation gives the desired guarantees.
• For q � 2, we demonstrate that Kashin’s representation of vectors introduced by Lyubarskii and Vershynin [66]

gives a set of 2d measurements that allow us to recover the mean with estimation complexity of O(1/ε2).
We also give a randomized algorithm based on estimating the truncated coefficients of the mean on a
randomly rotated basis. The algorithm has slightly worse O(log(1/ε)/ε2) estimation complexity, but its
analysis is simpler and self-contained.
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• For q ∈ (2,∞), we use decomposition of the samples into log d “rings” in which nonzero coefficients have
low dynamic range. For each ring, we combine �2 and �∞ estimation to ensure low error in �q and nearly
optimal estimation complexity.

• For q ∈ [1, 2), substantially more delicate analysis is necessary. For large ε, we first, again, use a de-
composition into rings of low dynamic range. For each ring, we use coordinate-wise estimation and then
sparsify the estimate by removing small coefficients. The analysis requires using statistical queries in which
accuracy takes into account the variance of the random variable (modeled by the VSTAT oracle from Feldman
et al. [40]). For small ε, a better upper bound can be obtained via a reduction to the �2 case.

The nearly tight lower bounds are proved using the technique recently introduced in Feldman et al. [39].
The lower bound also holds for the (potentially simpler) linear optimization problem. We remark that lower
bounds on sample complexity do not imply lower bounds on estimation complexity because an SQ algorithm
can use many queries.

We summarize the bounds in Table 1 and compare them with those achievable using samples (we provide
the proof for these in Appendix B because we are not aware of a good reference for q ∈ [1, 2)).

We then briefly consider the case of general K with W � conv(K∗,−K∗) (which corresponds to normalizing
the range of linear functions in the support of the distribution). Here, we show that, for any polytope W, the
estimation complexity is still O(1/ε2), but the number of queries grows linearly with the number of faces. More
generally, the estimation complexity of O(d/ε2) can be achieved for any K. The algorithm relies on knowing
John’s [52] ellipsoid for W and, therefore, depends on K. Designing a single algorithm that, given a sufficiently
strong oracle for K (such as a separation oracle), can achieve the same estimation complexity for all K is an
interesting open problem (see Conclusions for a list of additional open problems). This upper bound is nearly
tight because, even for W being the �1 ball, we give a lower bound of Ω̃(d/ε2).

1.3. The Gradient Descent Family
The linear case gives us the basis for the study of the traditional setups of convex optimization for Lipschitz
functions: nonsmooth, smooth, and strongly convex. In this setting, we assume that, for each w in the support
of the distribution D and x ∈ K, ‖∂f (x,w)‖q ≤ L0, and the radius of K is bounded by R in the �p norm. The
smooth and strongly convex settings correspond to second-order assumptions on F itself. For the first two
classes of problems, our algorithms use global approximation of the gradient on K, which, as we know, is
already necessary in the linear case. However, for the strongly convex case, we can show that an oracle
introduced by Devolder et al. [25] only requires local approximation of the gradient, which leads to improved
estimation complexity bounds.

For the nonsmooth case, we analyze and apply the classic mirror-descent method (Nemirovsky and Yudin [68]);
for the smooth case, we rely on the analysis by d’Aspremont [23] of an inexact variant of Nesterov’s [69]
accelerated method; and for the strongly convex case, we use recent results by Devolder et al. [24] on the
inexact dual gradient method. We summarize our results for the �2 norm in Table 2. Our results for the mirror-
descent and Nesterov’s [69] algorithm apply in more general settings (e.g., �p norms): we refer the reader to
Section 4 for the detailed statement of results. In Section 4.3, we also demonstrate and discuss the implications
of our results for the well-studied generalized linear regression problems.

It is important to note that, unlike in the linear case, the SQ algorithms for optimization of general convex
functions are adaptive. In other words, the SQs being asked at step t of the iterative algorithm depend on the
answers to queries in previous steps. This means that the number of samples that would be necessary to im-
plement such SQ algorithms is no longer easy to determine. In particular, as demonstrated by Dwork et al. [32],
the number of samples needed for estimation of adaptive SQs using empirical means might scale linearly with

Table 1. Bounds on �q mean estimation and linear optimization over �p ball. Statistical query upper bounds use at most
3d log d (nonadaptive) queries. Lower bounds apply to all algorithms using poly(d/ε) queries. Sample complexity is for
algorithms with access to i.i.d. samples.

q

SQ estimation complexity
Sample

Upper bound Lower bound complexity

[1, 2) O(min{d2q−1ε2 ,
( log d

ε2

)q Ω̃(min{d2q−1ε2 , 1
εp}) Θ(min{d2q−1ε2 , 1

εp})
2 O(1/ε2) Ω(1/ε2) Θ(1/ε2)
(2,∞) O((log d/ε)2) Ω(1/ε2) Θ(1/ε2)
∞ O(1/ε2) Ω(1/ε2) Θ(log d/ε2)
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the query complexity. Although better bounds can be easily achieved in our case (logarithmic as opposed to
linear in dimension), they are still worse than the sample complexity. We are not aware of a way to bridge this
intriguing gap or prove that it is not possible to answer the SQ queries of these algorithms with the same
sample complexity.

Nevertheless, estimation complexity is a key parameter even in the adaptive case. There are many other
settings in which one might be interested in implementing answers to SQs, and in some of those, the
complexity of the implementation depends on the estimation complexity and query complexity in other ways
(for example, differential privacy). In a number of lower bounds for the SQ algorithm (including those in
Section 3.2), there is a threshold phenomenon in which, as one goes below a certain estimation complexity,
the query complexity lower bound grows from polynomial to exponential very quickly (e.g., Feldman
et al. [39, 40]). For such lower bounds, only the estimation complexity matters as long as the query complexity
of the algorithm is polynomial.

1.4. Non-Lipschitz Optimization
The estimation complexity bounds obtained for gradient descent–based methods depend polynomially on the
Lipschitz constant L0 and the radius R (unless F is strongly convex). In some cases, such bounds are too large,
and we only have a bound on the range of f (x,w) for all w ∈ W and x ∈ K (note that a bound of L0R on the
range is also implicit in the Lipschitz setting). This is a natural setting for stochastic optimization (and
statistical algorithms in particular) because even estimating the value of a given solution x with high
probability and any desired accuracy from samples requires some assumptions about the range of
most functions.

For simplicity, we assume | f (x,w)| ≤ B � 1 although our results can be extended to the setting in which only
the variance of f (x,w) is bounded by B2 using the technique from Feldman [37]. Now, for every x ∈ K, a single
SQ for function f (x,w) with tolerance τ gives a value F̃(x) such that |F(x) − F̃(x)| ≤ τ. This, as first observed by
Valiant [93], gives a τ-approximate value (or zero-order) oracle for F(x). It is proved by Nemirovsky and
Yudin [68] and also by Grötschel et al. [45] (who refer to such oracle as a weak evaluation oracle) that a
τ-approximate value oracle suffices to ε-minimize F(x) over K with running time and 1/τ being polynomial
in d, 1/ε, log(R1/R0), where Bd

2 (R0) ⊆ K ⊆ Bd
2 (R1). The analysis in Nemirovsky and Yudin [68] and Grötschel

et al. [45] is relatively involved and does not provide explicit bounds on τ.
Here, we substantially sharpen the understanding of optimization with the approximate value oracle.

Specifically, we show that an (ε/d)-approximate value oracle for F(x) suffices to ε-optimize in polynomial time.

Theorem 1. There is an algorithm that, with probability at least 2/3, given any convex program minx∈K F(x) in Rd, where
∀x ∈ K, |F(x)| ≤ 1 and K is given by a membership oracle with the guarantee that Bd

2 (R0) ⊆ K ⊆ Bd
2 (R1), outputs an

ε-optimal solution in time poly(d, 1ε , log (R1/R0)) using poly(d, 1ε) queries to Ω(ε/d)-approximate value oracle.

We outline a proof of this theorem, which is based on an extension of the random walk approach of Kalai
and Vempala [54] and Lovász and Vempala [64]. This result is also independently obtained in a recent work
by Belloni et al. [8], who provide a detailed analysis of the running time and query complexity.

It turns out that the dependence on d in the tolerance parameter of this result cannot be removed al-
together: Nemirovsky and Yudin [68] prove that even linear optimization over an �2 ball of radius one
with a τ-approximate value oracle requires τ � Ω̃(ε/ ̅̅d√ ) for any polynomial-time algorithm. This result
also highlights the difference between SQs and the approximate value oracle because the problem can be
solved using the SQs of tolerance τ � O(ε). Optimization with the value oracle is also substantially more
challenging algorithmically.

Table 2. Upper bounds for inexact gradient methods in the stochastic �2-setup. Here, R is the Euclidean radius of the domain,
L0 is the Lipschitz constant of all functions in the support of the distribution. L1 is the Lipschitz constant of the gradient, and κ is
the strong convexity parameter for the expected objective.

Objective Inexact gradient method Query complexity Estimation complexity

Nonsmooth Mirror-descent O(d · (L0Rε )2) O((L0Rε )2)
Smooth Nesterov O(d ·

̅̅̅̅̅
L1R2

ε

√
) O((L0Rε )2)

Strongly convex nonsmooth Dual gradient O(d · L20εκ log(L0Rε )) O(L20εκ)
Strongly convex smooth Dual gradient O(d · L1κ log(L1Rε )) O(L20εκ)
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Luckily, SQs are not constrained to the value information, and we give a substantially simpler and more
efficient algorithm for this setting. Our algorithm is based on the classic center-of-gravity method with a
crucial new observation: in every iteration, the inertial ellipsoid, whose center is the center of gravity of the
current body, can be used to define a (local) norm in which the gradients can be efficiently approximated
globally. The exact center of gravity and inertial ellipsoid cannot be found efficiently, and the efficiently
implementable ellipsoid method does not have the desired local norm. However, we show that the ap-
proximate center-of-gravity method introduced by Bertsimas and Vempala [11] and approximate computation
of the inertial ellipsoid (Lovász and Vempala [65]) suffice for our purposes.

Theorem 2 (Informal). Let K ⊆ Rd be a convex body given by a membership oracle Bd
2 (R0) ⊆ K ⊆ Bd

2 (R1) and assume that,
for all w ∈ W, x ∈ K, | f (x,w)| ≤ 1. Then, there is a randomized algorithm that, for every distribution D over W, outputs an
ε-optimal solution using O(d2 log(1/ε)) statistical queries with toleranceΩ(ε/d) and runs in poly(d, 1/ε, log(R1/R0)) time.

Closing the gap between the tolerance of ε/
̅̅
d

√
in the lower bound (already for the linear case) and the

tolerance of ε/d in the upper bound is an interesting open problem. Remarkably, as Theorem 1 and the lower
bound in Nemirovsky and Yudin [68] show, the same intriguing gap is also present for the approximate
value oracle.

1.5. Applications
We now highlight several applications of our results. Additional results can be easily derived in a variety of
other contexts that rely on statistical queries, such as evolvability (Valiant [92]), adaptive data analysis (Dwork
et al. [32]), and distributed data analysis (Chu et al. [20]).

1.5.1. Lower Bounds. The statistical query framework provides a natural way to convert algorithms into lower
bounds. For many problems over distributions, it is possible to prove information-theoretic lower bounds
against statistical algorithms that are much stronger than known computational lower bounds for the
problem. A classical example of such a problem is learning of parity functions with noise (or, equivalently,
finding an assignment that maximizes the fraction of satisfied XOR constraints). This implies that any al-
gorithm that can be implemented using statistical queries with complexity below the lower bound cannot
solve the problem. If the algorithm relies solely on some structural property of the problem, such as ap-
proximation of functions by polynomials or computation by a certain type of circuit, then we can immediately
conclude a lower bound for that structural property. This indirect argument exploits the power of the al-
gorithm and, hence, can lead to results that are harder to derive directly.

One inspiring example of this approach comes from using the statistical query algorithm for learning
halfspaces (Blum et al. [13]). The structural property on which it relies is linear separability. Combined with
the exponential lower bound for learning parities (Kearns [58]), it immediately implies that there is no
mapping from {−1, 1}d to RN , which makes parity functions linearly separable for any N ≤ N0 � 2Ω(d). Sub-
sequently, and apparently unaware of this technique, Forster [42] proved a 2Ω(d) lower bound on the sign-rank
(also known as the dimension complexity) of the Hadamard matrix, which is exactly the same result (in
Sherstov [83], the connection between these two results is stated explicitly). His proof relies on a sophisticated
and nonalgorithmic technique and is considered a major breakthrough in proving lower bounds on the sign-
rank of explicit matrices.

Convex optimization algorithms rely on the existence of convex relaxations for problem instances
that (approximately) preserve the value of the solution. Therefore, given an SQ lower bound for a problem, our
algorithmic results can be directly translated into lower bounds for convex relaxations of the problem. We now
focus on a concrete example that is easily implied by our algorithm and a lower bound for planted constraint
satisfaction problems from Feldman et al. [39]. Consider the task of distinguishing a random satisfiable k-SAT
formula over n variables of length m from a randomly and uniformly drawn k-SAT formula of length m. This is
the refutation problem studied extensively over the past few decades (e.g., Feige [34]). Now, consider the
following common approach to the problem: define a convex domain K and map every k-clause C (or of k
distinct variables or their negations) to a convex function fC over K scaled to the range [−1, 1]. Then, given a
formula φ consisting of clauses C1, . . . ,Cm, find x that minimizes Fφ(x) � 1

m
∑

i fCi(x), which roughly measures
the fraction of unsatisfied clauses. (If fC’s are linear, then one can also maximize F(x), in which case one can
also think of the problem as satisfying the largest fraction of clauses.) The goal of such a relaxation is to ensure
that, for every satisfiable φ, we have that minx∈K Fφ(x) ≤ α for some fixed α. At the same time, for a randomly
chosen φ, we want to have, with high probability, minx∈K Fφ(x) ≥ α + ε. Ideally, one would hope to get ε ≈ 2−k
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because, for sufficiently large m, every Boolean assignment leaves at least ≈ 2−k fraction of the constraints
unsatisfied. But the relaxation can reduce the difference to a smaller value.

We now plug in our algorithm for the �p/�q setting to get the following broad class of corollaries.

Corollary 1. For p ∈ {1, 2}, letK ⊆ Bd
p be a convex body and F p � { f (·) | ∀x ∈ K, ‖∇f (x)‖q ≤ 1}. Assume that there exists a

mapping that maps each k-clause C to a convex function fC ∈ F p. Further assume that, for some ε > 0, if φ � C1, . . . ,Cm is
satisfiable, then

min
x∈K

1
m

∑
i
fCi x( )

{ }
≤ 0.

Yet, for the uniform distribution Uk over all the k-clauses,

min
x∈K E

C∼Uk

[ fC x( )]
{ }

> ε.

Then, d � 2Ω̃(n·ε2/k).
Note that the second condition is equivalent to applying the relaxation to the formula that includes all the

k-clauses. Also for every m, it is implied by the condition

E
C1,...,Cm∼Uk

min
x∈K

1
m

∑
i
fCi x( )

{ }[ ]
> ε.

As long as k is a constant and ε � Ωk(1), we get a lower bound of 2Ω(n) on the dimension of any convex
relaxation (for which the radius and the Lipschitz constant are at most one). We are not aware of any existing
techniques that imply comparable lower bounds. More importantly, our results imply that Corollary 1 extends
to a very broad class of general state-of-the-art approaches to stochastic convex optimization.

Current research focuses on the linear case and restricted Ks that are obtained through various hierarchies of
linear/semidefinite programming (LP/SDP) relaxations or extended formulations (e.g., Schoenebeck [79]). The
primary difference between the relaxations used in this line of work and our approach is that our approach
only rules out relaxations for which the resulting stochastic convex program can be solved by a statistical
algorithm. On the other hand, stochastic convex programs that arise from LP/SDP hierarchies and extended
formulations cannot, in general, be solved given the available number of samples (each constraint is a sample).
As a result, the use of such relaxations can lead to overfitting, and this is the reason why these relaxations fail.
This difference makes our lower bounds incomparable and, in a way, complementary to existing work on
lower bounds for specific hierarchies of convex relaxations. For a more detailed discussion of SQ lower
bounds, we refer the reader to Feldman et al. [39].

1.5.2. Online Learning of Halfspaces Using SQs. Our high-dimensional mean estimation algorithms allow us to
revisit SQ implementations of online algorithms for learning halfspaces, such as the classic Perceptron and
Winnow algorithms. These algorithms are based on updating the weight vector iteratively using incorrectly
classified examples. The convergence analysis of such algorithms relies on some notion of margin by which
positive examples can be separated from the negative ones.

A natural way to implement such an algorithm using SQs is to use the mean vector of all positive (or
negative) counterexamples to update the weight vector. By linearity of expectation, the true mean vector is
still a positive (or, correspondingly, negative) counterexample, and it still satisfies the same margin condition.
This approach was used by Bylander [17] and Blum et al. [13] to obtain algorithms tolerant to random
classification noise for learning halfspaces and by Blum et al. [12] to obtain a private version of Perceptron. The
analyses in these results use the simple coordinate-wise estimation of the mean and incur an additional factor
d in their sample complexity. It is easy to see that, to approximately preserve the margin γ, it suffices to
estimate the mean of some distribution over an �q ball with �q error of γ/2. We can, therefore, plug our mean
estimation algorithms to eliminate the dependence on the dimension from these implementations (or, in some
cases, have only logarithmic dependence). In particular, the estimation complexity of our algorithms is es-
sentially the same as the sample complexity of PAC versions of these online algorithms. Note that such
improvement is particularly important because Perceptron is usually used with a kernel (or in other high-
dimensional space) and Winnow’s main property is the logarithmic dependence of its sample complexity on
the dimension.
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We note that a variant of the Perceptron algorithm referred to as margin Perceptron outputs a halfspace that
approximately maximizes the margin (Balcan and Blum [2]). This allows it to be used in place of the support
vector machine (SVM) algorithm. Our SQ implementation of this algorithm gives an SVM-like algorithm with
estimation complexity of O(1/γ2), where γ is the (normalized) margin. This is the same as the sample
complexity of SVM (cf. Shalev-Shwartz and Ben-David [81]). Further details of this application are given in
Section 5.2.

1.5.3. Differential Privacy. In local or randomized-response differential privacy, the users provide the analyst with
differentially private versions of their data points. Any analysis performed on such data are differentially
private, so in effect, the data analyst need not be trusted. Such algorithms have been studied and applied for
privacy preservation since at least the work of Warner [95] and have more recently been adopted in products
by Google and Apple. Although there exists a large and growing literature on mean estimation and con-
vex optimization with (global) differential privacy (e.g., Bassily et al. [6], Chaudhuri et al. [19], Dwork and
Roth [30]), these questions have been only recently and partially addressed for the more stringent local
privacy. Using simple estimation of statistical queries with local differential privacy by Kasiviswanathan
et al. [57], we directly obtain a variety of corollaries for locally differentially private mean estimation and
optimization. Some of them, including mean estimation for �2 and �∞ norms and their implications for
gradient and mirror descent algorithms, are known via specialized arguments (Duchi et al. [27, 28]). Our
corollaries for mean estimation achieve the same bounds up to logarithmic in d factors. We also obtain
corollaries for more general mean estimation problems and results for optimization that, to the best of our
knowledge, were not previously known.

An additional implication in the context of differentially private data analysis is on the problem of releasing
answers to multiple queries over a single data set. A long line of research has considered this question for
linear or counting queries, which, for a data set S ⊆ Wn and function φ : W→[0, 1], output an estimate of
1
n
∑

w∈S φ(w) (see Dwork and Roth [30] for an overview). In particular, it is known that an exponential in n
number of such queries can be answered differentially privately even when the queries are chosen adaptively
(Hardt and Rothblum [48], Roth and Roughgarden [76]) (albeit the running time is linear in |W|). Recently,
Ullman [91] considered the question of answering convex minimization queries that ask for an approximate
minimum of a convex program taking a data point as an input averaged over the data set. For several convex
minimization problems, he gives algorithms that can answer an exponential number of convex minimization
queries. It is easy to see that the problem considered by Ullman [91] is a special case of our problem by taking
the input distribution to be uniform over the points in S. A statistical query for this distribution is equivalent
to a counting query, and hence, our algorithms effectively reduce the answering of convex minimization
queries to the answering of counting queries. As a corollary, we strengthen and substantially generalize the
results in Ullman [91].

Details of these applications appear in Sections 5.3 and 5.4.

1.6. Related Work
There is a long history of research on the complexity of convex optimization with access to some type of oracle
(e.g., Braun et al. [15], Guzmán and Nemirovski [47], Nemirovsky and Yudin [68]) with a lot of renewed
interest because of applications in machine learning (e.g., Agarwal et al. [1], Raginsky and Rakhlin [73]). In
particular, a number of works study robustness of optimization methods to errors by considering oracles that
provide approximate information about F and its (sub)gradients (d’Aspremont [23], Devolder et al. [25]). Our
approach to getting statistical query algorithms for stochastic convex optimization is based on both estab-
lishing bridges to that literature and also on improving the state of the art for such oracles in the non-
Lipschitz case.

A common way to model stochastic optimization is via a stochastic oracle for the objective function
(Nemirovsky and Yudin [68]). Such an oracle is assumed to return a random variable whose expectation is
equal to the exact value of the function and/or its gradient. (Most commonly, the random variable is Gaussian
or has bounded variance.) Analyses of such algorithms (most notably stochastic gradient descent (SGD)) are
rather different from ours although, in both cases, linearity and robustness properties of first-order methods
are exploited. In most settings we consider, estimation complexity of our SQ agorithms is comparable to the
sample complexity of solving the same problem using an appropriate version of SGD (which is, in turn, often
known to be optimal). On the other hand, lower bounds for stochastic oracles (e.g., Agarwal et al. [1]) have a
very different nature, and it is impossible to obtain superpolynomial lower bounds on the number of oracle
calls (such as those we prove in Section 3.2).
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SQ access is known to be equivalent (up to polynomial factors) to the setting in which the amount of
information extracted from (or communicated about) each sample is limited (Ben-David and Dichterman [9],
Feldman et al. [39, 40]). In a recent (and independent) work, Steinhardt et al. [87] establish a number of
additional relationships between learning with SQs and learning with several types of restrictions on memory
and communication. Among other results, they prove an unexpected upper bound on memory-bounded
sparse least-squares regression by giving an SQ algorithm for the problem. Their analysis2 is related to the one
we give for inexact mirror-descent over the �1 ball. Note that, in optimization over the �1 ball, the
straightforward coordinate-wise �∞ estimation of gradients suffices. Together with their framework, our
results can be easily used to derive low-memory algorithms for other learning problems.

2. Preliminaries
For integer n ≥ 1, let [n] �. {1, . . . , n}. Typically, d denotes the ambient space dimension, and n denotes number
of samples. Random variables are denoted by bold letters, for example, w, U. We denote the indicator function
of an event A (i.e., the function taking value zero outside of A and one on A) by 1A. For i ∈ [d], we denote by ei
the ith basis vector in Rd. The Õ(·) and Ω̃(·) notation omits factors polylogarithmic in the argument.

2.1. Convex Bodies and Norms
Given a norm ‖ · ‖ on Rd, we denote the ball of radius R > 0 by Bd

‖·‖(R) and the unit ball by Bd
‖·‖. We also recall

the definition of the norm dual to ‖ · ‖, ‖w‖∗ �. sup‖x‖≤1〈w, x〉, where 〈·, ·〉 is the standard inner product of Rd.
For a convex body (i.e., compact convex set with nonempty interior) K ⊆ Rd, we define its polar as

K∗ � {w ∈ Rd : 〈w, x〉 ≤ 1 ∀x ∈ K}, and we have that (K∗)∗ � K. Any origin-symmetric convex body K ⊂ Rd

(i.e., K � −K) defines a norm ‖ · ‖K as follows: ‖x‖K � infα>0{α | x/α ∈ K}, and K is the unit ball of ‖ · ‖K. It is easy
to see that the norm dual to ‖ · ‖K is ‖ · ‖K∗ .

Our primary case of interest corresponds to �p setups. Given 1 ≤ p ≤ ∞, we consider the normed space
�dp �. (Rd, ‖ · ‖p), where, for a vector x ∈ Rd, ‖x‖p �. (∑i∈[d] |xi|p)1/p. For R ≥ 0, we denote Bd

p(R) � Bd
‖·‖p(R) and

similarly, for the unit ball, Bd
p � Bd

p(1). We denote the conjugate exponent of p as q, meaning that 1/p + 1/q � 1;
with this, the norm dual to ‖ · ‖p is the norm ‖ · ‖q. In all definitions, when clear from context, we omit the
dependence on d.

2.2. Stochastic Optimization
We consider problems of the form

F∗ �. min
x∈K

{
F x( ) �. Ew f x,w( )[ ]}

, (1)

where K is a convex body in Rd; w is a random variable defined over some domain W; and for each w ∈ W,
f (·,w) is convex and subdifferentiable on K. For an approximation parameter ε > 0, the goal is to find x ∈ K
such that F(x) ≤ F∗ + ε, and we call any such x an ε-optimal solution. We denote the probability distribution of w
by D and refer to it as the input distribution. For convenience, we also assume that K contains the origin.

2.3. Statistical Queries
The algorithms we consider here have access to a statistical query oracle for the input distribution. For most of
our results, a basic oracle introduced by Kearns [58] that gives an estimate of the mean with fixed tolerance
suffices. We also rely on a stronger oracle from Feldman et al. [40] that takes into the account the variance of
the query function and faithfully captures the estimation of the mean of a random variable from samples.

Definition 1. Let D be a distribution over a domain W, τ > 0, and n be an integer. A statistical query oracle
STATD(τ) is an oracle that, given as input any function φ : W → [−1, 1], returns some value v such that
|v − Ew∼D[φ(w)]| ≤ τ. A statistical query oracle VSTATD(n) is an oracle that, given as input any function

φ : W → [0, 1], returns some value v such that |v − p| ≤ max{1n ,
̅̅̅̅̅̅̅
p(1−p)

n

√
}, where p�. Ew∼D[φ(w)]. We say that an

algorithm is an SQ if it does not have direct access to n samples from the input distribution D and, instead, makes
calls to a statistical query oracle for the input distribution.

Clearly VSTATD(n) is at least as strong as STATD(1/ ̅̅n√ ) (but no stronger than STATD(1/n)). Query
complexity of a statistical algorithm is the number of queries it uses. The estimation complexity of a statistical
query algorithm using VSTATD(n) is the value n, and for an algorithm using STAT(τ), it is n � 1/τ2.
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Remark 1. To illustrate the notion of estimation complexity, consider the problem of implementing an SQ oracle
using i.i.d. samples from the target distribution. Given samples w1, . . . ,wn, it is natural to use the empirical mean
v � 1

n
∑n

i�1 φ(wi) to estimate the true mean μ � Ew∼D[φ(w)]. Let us now see what is the number of samples sufficient
for ensuring that the empirical mean satisfies the accuracy guarantees of the oracles defined.

• STAT: If φ : W → [−1, 1], then, by Hoeffding’s inequality,

Pr
w1,...,wn( )∼Dn

⃒⃒⃒⃒
⃒ 1n∑ni�1 φ wi( ) − μ

⃒⃒⃒⃒
⃒ > τ

[ ]
≤ 2 exp − nτ2

2

{ }
. (2)

This way, choosing n � 4/τ2, we have that the empirical mean v � 1
n
∑n

i�1 φ(wi) satisfies |v − μ| ≤ τ with
probability 1/2.

• VSTAT: If φ : W → [0, 1], then, by Bernstein’s inequality,

Pr
w1,...,wn( )∼Dn

⃒⃒⃒⃒
⃒ 1n∑ni�1 φ wi( ) − μ

⃒⃒⃒⃒
⃒ > τ

[ ]
≤ exp − nτ2/2

μ 1 − μ
( ) + 1

3 τ

{ }
, (3)

where we directly upper bound the variance with the Bhatia–Davis inequality Var[w1] ≤ (1 − μ)(μ − 0).
Suppose now that we choose the error τ � max{1n ,

̅̅̅̅̅̅̅
μ(1−μ)

n

√
}; then, we have two cases:

1. Case τ � 1/n. Then, the probability of deviation is upper bounded by e−3/8.
2. Case τ � ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μ(1 − μ)/n√
. Then, the probability of deviation is upper bounded by

exp − 1

2 1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/ 3nμ 1 − μ

( )( )√[ ]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ≤ e−1/4,

where we have used that
̅̅̅̅̅̅̅̅̅̅̅̅̅
nμ(1 − μ)√ ≥ 1.

Hence, the “estimation complexity” corresponds to the number of i.i.d. samples sufficient to simulate the
oracle for a single query with constant success probability. Note that constant probability of success can be
amplified to 1 − δ probability of success using n that is log(1/δ) times larger than the estimation complexity.

Note that a statistical query algorithm may ask many queries, and it not necessarily true that valid answers
to all the queries can be simulated using a number of samples that corresponds to the estimation complexity
of a single query. If the m queries asked by the algorithm are nonadaptive (that is, do not depend on answers
to previously asked queries), then O(logm · n) samples suffice to answer all the queries correctly with some
positive constant success probability (this follows from applying the union bound to the concentration in-
equalities discussed in Remark 1). However, if the algorithm queries depend on previous answers, the best
known bounds require O( ̅̅̅m√ · n) samples (see Dwork et al. [32] for a detailed discussion). This also implies
that a lower bound on the sample complexity of solving a problem does not directly imply lower bounds on
the estimation complexity of an SQ algorithm for the problem.

Whenever that does not make a difference for our upper bounds on estimation complexity, we state the
results for STAT to ensure consistency with prior work in the SQ model. All our lower bounds are stated for
the stronger VSTAT oracle. One useful property of VSTAT is that it only pays linearly when estimating
expectations of functions conditioned on a rare event:

Lemma 1. For any function φ : W → [0, 1], input distribution D and condition A : W → {0, 1} such that pA �.
Prw∼D[A(w) � 1] ≥ α and let p�. Ew∼D[φ(w) · A(w)]. Then, query φ(w) · A(w) to VSTAT(n/α) returns a value v such
that |v − p| ≤ pA̅̅

n
√ .

The value v returned by VSTAT(n/α) on query φ(w) · A(w) satisfies |v − p| ≤ max{αn ,
̅̅̅̅̅̅̅̅
p(1−p)α

n

√
}. Note that p�

E[φ(w)A(w)] ≤Pr[A(w) � 1] � pA. Hence, |v − p| ≤ pA̅̅
n

√ .
Note that one would need to use STAT(α/ ̅̅n√ ) to obtain a value v with the same accuracy as pA̅̅

n
√ (because pA

can be as low as α). This corresponds to the estimation complexity of n/α2 versus n/α for VSTAT.

3. Stochastic Linear Optimization and Vector Mean Estimation
We start by considering stochastic linear optimization, that is, instances of the problem

min
x∈K

{
E
w

f x,w( )[ ]}
in which f (x,w) � 〈x,w〉. From now on, we use the notation w̄�. Ew[w].

921
Feldman, Guzmán, and Vempala: Statistical-Query Stochastic Convex Optimization

Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 912–945, © 2021 INFORMS



For normalization purposes, we assume that the random variable w is supported on W � {w | ∀x ∈ K,
|〈x,w〉| ≤ 1}. Note that W � conv(K∗,−K∗), and if K is origin-symmetric, then W � K∗. More generally, if w is
supported on W and B�. supx∈K,w∈W{|〈x,w〉|}, then optimization with error ε can be reduced to optimization
with error ε/B over the normalized setting by scaling.

We first observe that, for an origin-symmetric K, stochastic linear optimization with error ε can be solved by
estimating the mean vector E[w] with error ε/2 measured in K∗-norm and then optimizing a determinis-
tic objective.

Observation 1. Let W be an origin-symmetric convex body, and K ⊆ W∗. Let minx∈K{F(x) �. E[〈x,w〉]} be an
instance of stochastic linear optimization for w supported on W. Let w̃ be a vector such that ‖w̃ − w̄‖W ≤ ε/2. Let
x̃ ∈ K be such that 〈 x̃, w̃〉 ≤ minx∈K 〈x, w̃〉 + ξ. Then, for all x ∈ K, F( x̃ ) ≤ F(x) + ε + ξ.

Proof. Note that F(x) � 〈x, w̄〉 and let x̄ � argminx∈K〈x, w̄〉. The condition ‖w̃ − w̄‖W ≤ ε/2 implies that, for every
x ∈ W∗, |〈x, w̃ − w̄〉| ≤ ε/2. Therefore, for every x ∈ K,

F x̃( ) � 〈 x̃, w̄〉 ≤ 〈 x̃, w̃〉 + ε/2 ≤ 〈x̄, w̃〉 + ε/2 + ξ ≤ 〈x̄, w̄〉 + ε + ξ ≤ 〈x, w̄〉 + ε + ξ � F x( ) + ε + ξ.

□

The mean estimation problem over W in norm ‖ · ‖ is the problem in which, given an error parameter ε and
access to a distribution D supported over W, the goal is to find a vector w̃ such that ‖Ew∼D[w] − w̃‖ ≤ ε. We are
concerned primarily with the case in which W is the unit ball of ‖ · ‖, in which case we refer to it as ‖ · ‖ mean
estimation or mean estimation over W.

We also make a simple observation that, if a norm ‖ · ‖A can be embedded via a linear map into a norm ‖ · ‖B
(possibly with some distortion), then we can reduce mean estimation in ‖ · ‖A to mean estimation in ‖ · ‖B.
Lemma 2. Let ‖ · ‖A be a norm over Rd1 and ‖ · ‖B be a norm over Rd2 such that there exists a linear map T : Rd1 → Rd2 and
a, b > 0 that satisfy ∀w ∈ Rd1 , a‖Tw‖B ≤ ‖w‖A ≤ b‖Tw‖B. Then, mean estimation in ‖ · ‖A with error ε reduces to mean
estimation in ‖ · ‖B with error a

2b ε (or error a
b ε when d1 � d2).

Proof. Suppose there exists a statistical algorithm A that, for any input distribution supported on B‖·‖B , computes
z̃ ∈ Rd2 satisfying ‖ z̃ − Ez[z]‖B ≤ a

2b ε.
Let D be the target distribution on Rd1 , which is supported on B‖·‖A . We useA on the image of D by T multiplied

by a. That is, we replace each query φ : Rd2 → R of A with query φ′(w) � φ(aTw). Notice that, by our assumption,
‖aTw‖B ≤ ‖w‖A ≤ 1. Let ỹ be the output ofA divided by a. By linearity, we have that ‖ ỹ − Tw̄‖B ≤ 1

2b ε. Let w̃ be any
vector such that ‖ ỹ − Tw̃‖B ≤ 1

2b ε. Then,

‖w̃ − w̄‖A ≤ b‖Tw̃ − Tw̄‖B ≤ b‖ ỹ − Tw̃‖B + b‖ ỹ − Tw̄‖B ≤ ε.

Note that, if d1 � d2, then T is invertible, and we can use w̃ � T−1ỹ. □

Remark 2. The reduction of Lemma 2 is computationally efficient when the following two tasks can be performed
efficiently: computing Tw for any input w and, given z ∈ Rd2 such that there exists w′ ∈ Rd1 with ‖z − Tw′‖B ≤ δ,
computing w such that ‖z − Tw‖B ≤ δ + ξ for some precision ξ � O(δ).

An immediate implication of this is that, if the Banach–Mazur distance between unit balls of two norms W1
and W2 is r (or, equivalently, two norms are within a factor r of each other), then mean estimation over W1
with error ε can be reduced to mean estimation over W2 with error ε/r.

3.1. �q Mean Estimation
We now consider stochastic linear optimization over Bd

p and the corresponding �q mean estimation problem.
We first observe that, for q � ∞, the problem can be solved by directly using coordinate-wise statistical queries
with tolerance ε. This is true because each coordinate has range [−1, 1], and for an estimate w̃ obtained in this
way, we have ‖w̃ − w̄‖∞ � maxi{|w̃i − E[wi]} ≤ ε. This gives the following result.

Theorem 3. The �∞ mean estimation problem with error ε can be efficiently solved using d queries to STAT(ε).
A simple application of Theorem 3 is to obtain an algorithm for �1 mean estimation. Assume that d is a

power of two and let H be the orthonormal Hadamard transform matrix.3 (We refer the reader to Hedayat and
Wallis [50] for more information on Hadamard matrices.) Then, it is easy to verify that, for every w ∈ Rd,
‖Hw‖∞ ≤ ‖w‖1 ≤

̅̅
d

√ ‖Hw‖∞. By Lemma 2, this directly implies the following algorithm:
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Theorem 4. The �1 mean estimation problem with error ε can be efficiently solved using 2d queries to STAT(ε/ ̅̅̅̅2d√ ).
We next deal with an important case of �2 mean estimation. It is not hard to see that using statistical queries

for direct coordinate-wise estimation requires an estimation complexity of Ω(d/ε2). We describe two algo-
rithms for this problem with (nearly) optimal estimation complexity. The first one is a simpler but slightly
suboptimal algorithm based on truncating coordinate-wise estimation in a randomly rotated basis. The second
algorithm is optimal and relies on the so-called Kashin’s representations introduced by Lyubarskii and
Vershynin [66].

3.1.1. �2 Mean Estimation Using a Random Basis. We present a simple to analyze a randomized algorithm that
achieves dimension-independent estimation complexity for �2 mean estimation. The algorithm uses
coordinate-wise estimation on a randomly and uniformly chosen basis. We show that, for such a basis, simply
truncating coefficients that are too large, with high probability, has only a small effect on the estimation error.

More formally, we define the truncation operation as follows. For a real value z and a ∈ R+, let

ma z( ) :�
z if |z| ≤ a
a if z > a
−a if z < −a.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

For a vector w ∈ Rd, we define ma(w) as the coordinate-wise application of ma to w. For a d × d matrix U, we
define mU,a(w) �. U−1ma(Uw) and define rU,a(w) �. w −mU,a(w). The key step of the analysis is the follow-
ing lemma:

Lemma 3. Let U be an orthogonal matrix chosen uniformly at random, and a > 0. For every w, with ‖w‖2 � 1,
E[‖rU,a(w)‖22] ≤ 4e−da2/2.

Proof. Notice that ‖rU,a(w)‖2 � ‖Uw −ma(Uw)‖2. It is, therefore, sufficient to analyze ‖u −ma(u)‖2 for u, a random
uniform vector of length one. Let r�. u −ma(u). For each i,

E r2i
[ ] � ∫ ∞

0
2tPr |ri| > t[ ] dt �

∫ ∞

0
2t Pr ri > t[ ] + Pr ri < −t[ ]{ } dt

�
∫ ∞

0
4tPr ri > t[ ] dt �

∫ ∞

0
4tPr ui − a > t[ ] dt

� 4
∫ ∞

0
t + a( )Pr ui > t + a[ ] dt − a

∫ ∞

0
Pr ui > t + a[ ] dt

{ }
≤ 4

e−da2/2

d
,

where we have used the symmetry of ri and concentration on the unit sphere. From this, we obtain E[‖r‖22] ≤
4e−da2/2 as claimed. □

From this lemma, is easy to obtain the following algorithm.

Theorem 5. There is an efficient randomized algorithm that solves the �2 mean estimation problem with error ε and success
probability 1 − δ using O(d log(1/δ)) queries to STAT(Ω(ε/ log(1/ε))).
Proof. Letw be a random variable supported on Bd

2 . For an orthonormal d × dmatrixU and for i ∈ [d], let φU,i(w) �(ma(Uw))i/a (for some a to be fixed later). Let vi be the output of STAT(ε/[2 ̅̅d√ a]) for query φU,i : W → [−1, 1]
multiplied by a. Now, let w̃U,a �. U−1v and let w̄U,a �. E[mU,a(w)]. This way,

‖w̄ − w̃U,a‖2 ≤ ‖w̄ − w̄U,a‖2 + ‖w̄U,a − w̃U,a‖2
≤ ‖w̄ − w̄U,a‖2 + ‖E ma Uw( )[ ] − v‖2
≤ ‖w̄ − w̄U,a‖2 + ε/2.

Let us now bound the norm of v�. w̄ − w̄U,a, where U is a randomly and uniformly chosen orthonormal d × d
matrix. By Chebyshev’s inequality,

Pr ‖v‖2 ≥ ε/2[ ] ≤ 4
E ‖v‖22
[ ]
ε2

≤ 16 exp −da2/2( )
ε2

.
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Notice that, to bound the probability by δ, we may choose a � ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ln(16/(δε2))/d√

. Therefore, the queries require
querying STAT(ε/[2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅2 ln(16/δε2)√ ]), and they guarantee to solve the �2 mean estimation problem with
probability at least 1 − δ.

Finally, we can remove the dependence on δ in STAT queries by confidence boosting. Let ε′ � ε/3 and δ′ � 1/8
and run the algorithm with error ε′ and success probability 1 − δ′ for U1, . . . ,Uk i.i.d. random orthogonal matrices.
If we define w̃1, . . . , w̃k as the outputs of the algorithm, we can compute the (high-dimensional) median w̃, namely,
the point w̃j whose median �2 distance to all the other points is the smallest. It is easy to see that (e.g., Hsu and
Sabato [51], Nemirovsky and Yudin [68])

Pr ‖w̃ − w̄‖2 > ε[ ] ≤ e−Ck,

where C > 0 is an absolute constant.
Hence, as claimed, it suffices to choose k � O(log(1/δ)), which means using O(d log(1/δ)) queries to

STAT(Ω(ε/ log(1/ε)) to obtain success probability 1 − δ. □

3.1.2. �2 Mean Estimation via Kashin’s Representation. A Kashin’s representation is a representation of a vector
in an overcomplete linear system such that the magnitude of each coefficient is small (more precisely, within a
constant of the optimum) (Lyubarskii and Vershynin [66]). Such representations, also referred to as “dem-
ocratic,” have a variety of applications, including vector quantization and peak-to-average power ratio re-
duction in communication systems (cf. Studer et al. [89]). We show that the existence of such a representation
leads directly to SQ algorithms for �2 mean estimation.

We start with some requisite definitions (following Lyubarskii and Vershynin [66]).

Definition 2. A sequence (uj)Nj�1 ⊆ Rd is a frame4 if, for all w ∈ Rd,

‖w‖22 �
∑N
j�1

|〈w, uj〉|2.

The redundancy of a frame is defined as λ�. N/d ≥ 1.

An easy-to-prove property of a tight frame (see Lyubarskii and Vershynin [66, observation 2.1]) is that, for
every frame representation w � ∑N

j�1 ajuj, it holds that
∑N

j�1 a2j ≤ ‖w‖22.
Definition 3. Consider a sequence (uj)Nj�1 ⊆ Rd and w ∈ Rd. An expansion w � ∑N

j�1 ajuj such that ‖a‖∞ ≤ K̅
N̅

√ ‖w‖2 is
referred to as a Kashin’s representation of w with level K.

Theorem 6 (Lyubarskii and Vershynin [66]). For all λ � N/d > 1, there exists a tight frame (uj)Nj�1 ⊆ Rd in which every
w ∈ Rd has a Kashin’s representation of w with level K for some constant K depending only on λ. Moreover, such a frame can
be computed in (randomized) polynomial time.

The existence of such frames follows from Kashin’s [56] theorem. Lyubarskii and Vershynin [66] show that
any frame that satisfies a certain uncertainty principle (which itself is implied by the well-studied restricted
isometry property) yields a Kashin’s representation for all w ∈ Rd. In particular, various random choices of uj’s
have this property with high probability. Given a vector w, a Kashin’s representation of w for level K can be
computed efficiently (whenever it exists) by solving a convex program. For frames that satisfy the afore-
mentioned uncertainty principle, a Kashin’s representation can also be found using a simple algorithm that
involves log(N) multiplications of a vector by each of the uj’s. Other algorithms for the task are discussed in
Studer et al. [89].

Theorem7. For every d, there is an efficient algorithm that solves the �2 mean estimation problem (overBd
2 ) with error ε using

2d queries to STAT(Ω(ε)).
Proof. For N � 2d, let (uj)Nj�1 ⊆ Rd be a frame in which every w ∈ Rd has a Kashin’s representation of w with level
K � O(1) (as implied by Theorem 6). For a vector w ∈ Rd, let a(w) ∈ RN denote the coefficient vector of some specific
Kashin’s representation of w (e.g., that computed by the algorithm in Lyubarskii and Vershynin [66]). Let w be a
random variable supported on Bd

2 and let āj �. E[a(w)j]. By linearity of expectation, w̄ � E[w] � ∑N
j�1 ājuj.

For each j ∈ [N], let φj(w) �.
̅̅
N

√
K · a(w)j. Let ãj denote the answer of STAT(ε/K) to query φj multiplied by K̅

N̅
√ . By the

definition of Kashin’s representation with level K, the range of φj is [−1, 1], and by the definition of STAT(ε/K), we
have that |āj − ãj| ≤ ε̅

N̅
√ for every j ∈ [N]. Let w̃�. ∑N

j�1 ãjuj.
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Then, by the property of tight frames,

‖w̄ − w̃‖2 �
∑N
j�1

āj − ãj
( )

uj

⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦
2

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
j�1

āj − ãj
( )2√√

≤ ε. □

Remark 3 (�2 Mean Estimation for Unbounded Distributions). In the mean estimation problem, we assume a uniform
bound on the norm of vectors in the support of the input distribution D. However, in high-dimensional mean
estimation with i.i.d. samples, this assumption is unnecessary, and it suffices to have a bound on the second
moment of the norm of the vectors (in fact, the proof used in Appendix B can be easily extended to this situation).
For SQs, the same setting and (almost) the same estimation complexity can be obtained using recent results from
Feldman [37]. The results show that VSTAT allows estimation of expectation of any unbounded function φ of w
within εσ using 1/ε2 queries of estimation complexity Õ(1/ε2), where σ is the standard deviation of φ(w). As shown in
Feldman [37], this implies that �2 mean estimation can donewith the uniform upper bound replaced by an upper bound
on the second moment of the norm.

3.1.3. �q Mean Estimation for q > 2. We now demonstrate that, by using the results for �∞ and �2 mean esti-
mation, we can get algorithms for �q mean estimation with nearly optimal estimation complexity.

The idea behind our approach is to decompose each point into a sum of at most log d points, each of which
has a small “dynamic range” of nonzero coordinates. This property ensures a very tight relationship between
the �∞, �2, and �q norms of these points, allowing us to estimate their mean with nearly optimal estimation
complexity. More formally, we rely on the following simple lemma.

Lemma 4. For any x ∈ Rd and any two 0 < p < r,
1. ‖x‖r ≤ ‖x‖1−p/r∞ · ‖x‖p/rp .
2. Let a � mini∈[d]{xi | xi �� 0}. Then, ‖x‖p ≤ a1−r/p · ‖x‖r/pr .

Proof. 1.

‖x‖rr �
∑d
i�1

|xi|r ≤
∑d
i�1

‖x‖r−p∞ · |xi|p � ‖x‖r−p∞ · ‖x‖pp.

2.

‖x‖rr �
∑d
i�1

|xi|r ≥
∑d
i�1

ar−p · |xi|p � ar−p · ‖x‖pp. □

Theorem 8. For any q ∈ (2,∞) and ε > 0, �q mean estimation with error ε can be solved using 3d log d queries
to STAT(ε/ log(d)).
Proof. Let k�. �log(d)/q� − 2. For w ∈ Rd and j � 0, . . . , k, we define

Rj w( ) �. ∑d
i�1

eiwi1{2− j+1( )<|wi |≤2−j},

and R∞(w) �. ∑d
i�1 eiwi1{|wi |≤2−(k+1)}. It is easy to see that, if w ∈ Bq, then w � ∑k

j�0 Rj(w) + R∞(w). Further-
more, observe that ‖Rj(w)‖∞ ≤ 2−j, and by Lemma 4, ‖Rj(w)‖2 ≤ 2−( j+1)(1−q/2). Finally, let w̄j � E[Rj(w)]
and w̄∞ � E[R∞(w)].

Let ε′ �. 22/q−3ε/(k + 1). For each level j � 0, . . . , k, we perform the following queries:
• By using 2d queries to STAT(Ω(ε′)), we obtain a vector w̃2,j such that ‖w̃2,j − w̄j‖2 ≤ 2(

q
2−1)( j+1)ε′. For this,

simply observe that Rj(w)/[2(q2−1)( j+1)] is supported on Bd
2 , so our claim follows from Theorem 7.

• By using d queries to STAT(ε′), we obtain a vector w̃∞,j such that ‖w̃∞,j − w̄ j‖∞ ≤ 2−jε′. For this, notice that
Rj(w)/[2−j] is supported on Bd∞ and appeals to Theorem 3.

We consider the following feasibility problem, which is always solvable (e.g., by w̄j):

‖w̃∞,j − w‖∞ ≤ 2−jε′, ‖w̃2,j − w‖2 ≤ 2
q
2−1( ) j+1( )ε′.
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Notice that this problem can be solved easily (we can minimize �2 distance to w̃2,j with the preceding �∞
constraint, and this minimization problem can be solved coordinate-wise), so let w̃j be a solution. By the
triangle inequality, w̃j satisfies ‖w̃j − w̄j‖∞ ≤ 2−j(2ε′), and ‖w̃j − w̄j‖2 ≤ 2(

q
2−1)(j+1)(2ε′).

By Lemma 4, ⃦⃦
w̃j − w̄j

⃦⃦
q ≤
⃦⃦
w̃j − w̄j

⃦⃦2/q
2 · ⃦⃦w̃j − w̄j

⃦⃦1−2/q
∞ ≤ 2 1−2/q( ) j+1( ) 2−j 1−2/q( ) 2ε′( ) � ε/ 2 k + 1( )[ ].

Next, we estimate w̄∞. Because 2−(k+1) � 2−�ln d/q�+1 ≤ 4d−1/q, by using d queries to STAT(ε/8), we can estimate
each coordinate of w̄∞ with accuracy ε/[2d1/q] and obtain w̃∞ satisfying ‖w̃∞ − w̄∞‖q ≤ d1/q‖w̃∞ − w̄∞‖∞ ≤ ε/2.
Let now w̃ � [∑k

j�0 w̃j] + w̃∞. We have

⃦⃦
w̃ − w̄

⃦⃦
q ≤ ∑k

j�0

⃦⃦
w̃j − w̄j⃦⃦

q +
⃦⃦
w̃∞ − w̄∞⃦⃦

q ≤ k + 1( ) ε

2 k + 1( ) +
ε

2
� ε.

□

3.1.4. �q Mean Estimation for q ∈ (1, 2). Finally, we consider the case in which q ∈ (1, 2). Here, we get the nearly
optimal estimation complexity via two bounds.

The first bound follows from the simple fact that, for all w ∈ Rd, ‖w‖2 ≤ ‖w‖q ≤ d1/q−1/2‖w‖2. Therefore, we can
reduce �q mean estimation with error ε to �2 mean estimation with error ε/d1/q−1/2 (this is a special case of
Lemma 2 with the identity embedding). Using Theorem 7, we then get the following theorem.

Theorem 9. For q ∈ (1, 2) and every d, there is an efficient algorithm that solves the �q mean estimation problem with error ε
using 2d queries to STAT(Ω(d1/2−1/qε)).

It turns out that, for large ε, better sample complexity can be achieved using a different algorithm.
Achieving (nearly) optimal estimation complexity in this case requires the use of the VSTAT oracle. (The
estimation complexity for STAT is quadratically worse. That still gives an improvement over Theorem 9 for
some range of values of ε.) In in the case of q > 2, our algorithm decomposes each point into a sum of at most
log d points, each of which has a small dynamic range of nonzero coordinates. For each component, we can
then use coordinate-wise estimation with an additional zeroing of coordinates that are too small. Such zeroing
ensures that the estimate does not accumulate large error from the coordinates in which the mean of the
component itself is close to zero.

Theorem 10. For any q ∈ (1, 2) and ε > 0, the �q mean estimation problem can be solved with error ε using 2d log d queries
to VSTAT((16 log(d)/ε)p).
Proof. Given w ∈ Bq, we consider its positive and negative parts: w � w+ − w−, where w+ �. ∑d

i�1 eiwi1{wi≥0}, and
w− �. −∑d

i�1 eiwi1{wi<0}. We again rely on the decomposition of w into rings of dynamic range two but now for its
positive and negative parts. Namely, w � ∑k

j�0[Rj(w+) − Rj(w−)] + [R∞(w+) − R∞(w−)], where k�. �log(d)/q� − 2,
Rj(w) �. ∑d

i�1 eiwi1{2−(j+1)<|wi |≤2−j}, and R∞(w) �. ∑d
i�1 eiwi1{|wi |≤2−k−1}.

Letw be a random variable supported on Bd
q . Let ε

′ �. ε/(2k + 3). For each level j � 0, . . . , k, we now describe how
to estimate w+,j � E[Rj(w+)]with accuracy ε′. The estimation is essentially just coordinate-wise use of VSTAT with
zeroing of coordinates that are too small. Let v′i be the value returned by VSTAT(n) for query φi(w) � 2j · (Rj(w+))i,
where n � (ε′/8)−p ≤ (16 log(d)/ε)p. Note that 2j · (Rj(w+))i ∈ [0, 1] for all w and j. Further, let vi � v′i · 1{|v′i |≥2/n}. We
start by proving the following decomposition of the error of v.

Lemma 5. Let u�. 2j · w+,j and z�. u − v. Then, ‖z‖qq ≤ ‖u<‖qq + n−q/2 · ‖u>‖q/2q/2, where u<i � ui · 1{ui<4/n} and u>i � ui ·
1{ui≥1/n} for all i.

Proof. For every index i ∈ [d], we consider two cases. The first case is when vi � 0. By the definition of vi, we know
that v′i < 2/n. This implies that ui � 2jE[(Rj(w+))i] < 4/n. This is true because, otherwise (when ui ≥ 4/n), by the
guarantees of VSTAT(n), we would have |v′i − ui| ≤

̅̅ui
n

√
and v′i ≥ ui −

̅̅ui
n

√ ≥ 2/n. Therefore, in this case, ui � u<i and
zi � ui − vi � u<i .

In the second case, vi �� 0. In this case, we have that v′i ≥ 2/n. This implies that ui ≥ 1/n. This is true because,
otherwise (when ui < 1/n), by the guarantees of VSTAT(n), we would have |v′i − ui| ≤

̅̅ui
n

√
and v′i ≤ ui + 1

n < 2/n.

Therefore, in this case, ui � u>i and zi � ui − v′i . By the guarantees of VSTAT(n), |zi| � |u>i − v′i | ≤ max{1n ,
̅̅̅
u>i
n

√
} �

̅̅̅
u>i
n

√
.
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The claim now follows because, by combining these two cases, we get |zi|q ≤ (u<i )q + (u>in )q/2. □

We next observe that, by Lemma 4, for every w ∈ B d
q ,

‖Rj w+( )⃦⃦1 ≤ 2−j−1
( )1−q⃦⃦Rj w+( )‖qq ≤ 2−j−1

( )1−q
.

This implies that

‖u‖1 � 2j · ‖w+,j‖1 � 2j · E[Rj(w+)]⃦⃦ ⃦⃦
1 ≤ 2j · 2−j−1

( )1−q� 2(j+1)q−1. (4)
Now, by Lemma 4 and Equation (4), we have

⃦⃦
u<
⃦⃦q
q ≤

4
n

( )q−1
· ‖u<‖1 � n1−q · 2(j+3)q−3. (5)

Also by Lemma 4 and Equation (4), we have

⃦⃦
u>
⃦⃦q/2
q/2 ≤

1
n

( )q/2−1
· ‖u>‖1 ≤ n1−q/2 · 2(j+1)q−1. (6)

Substituting Equations (5) and (6) into Lemma 5, we get

‖z‖qq ≤ ‖u<‖qq + n−q/2 · ‖u>‖q/2q/2 ≤ n1−q · 2 j+3( )q−3 + 2 j+1( )q−1( )
≤ n1−q · 2 j+3( )q.

Let w̃+,j �. 2−jv. We have

‖w+,j − 2−jv‖q � 2−j · ‖z‖q ≤ 23 · n1/q−1 � ε′.

We obtain an estimate of w−,j in an analogous way. Finally, to estimate, w̄∞ �. E[R∞(w)], we observe that
2−k−1 ≤ 21−�log(d)/q� ≤ 4d−1/q. Now, using VSTAT(1/(4ε′)2), we can obtain an estimate of each coordinate of w̄∞
with accuracy ε′ · d−1/q. In particular, the estimate w̃∞ obtained in this way satisfies ‖w̄∞ − w̃∞‖q ≤ ε′.

Now, let w̃ � ∑k
j�0(w̃+,j − w̃−,j) + w̃∞. Each of the estimates has an �q error of at most ε′ � ε/(2k + 3), and

therefore, the total error is at most ε. □

3.1.5. General ConvexBodies. Next, we consider mean estimation and stochastic linear optimization for convex
bodies beyond �p balls. A first observation is that Theorem 3 can be easily generalized to origin-symmetric
polytopes. The easiest way to see the result is to use the standard embedding of the origin-symmetric polytope
norm into �∞ and appeal to Lemma 2.

Corollary 2. Let W be an origin-symmetric polytope with 2m facets. Then, mean estimation over W with error ε can be
efficiently solved using m queries to STAT(ε/2).

In the case of an arbitrary origin-symmetric convex body W ⊆ Rd, we can reduce mean estimation over W
to �2 mean estimation using the John ellipsoid. Such an ellipsoid E satisfies the inclusions 1̅̅

d
√ E ⊆ W ⊆ E, and

any ellipsoid is linearly isomorphic to a unit �2 ball. Therefore, appealing to Lemma 2 and Theorem 7, we have
the following.

Proposition 1. Let W ⊆ Rd, an origin-symmetric convex body. Then, the mean estimation problem over W can be solved
using 2d queries to STAT(Ω(ε/ ̅̅d√ )).

By Observation 1, for an arbitrary convex body K, the stochastic linear optimization problem over K reduces
to a mean estimation over W �. conv(K∗,−K∗). This leads to a nearly optimal (in terms of worst-case dimension
dependence) estimation complexity. A matching lower bound for this task is proved in Corollary 4.

A drawback of this approach is that it depends on knowledge of the John ellipsoid for W, which, in general,
cannot be computed efficiently (e.g., Ben-Tal and Nemirovski [10]). However, if K is a polytope with a poly-
nomial number of facets, then W is an origin-symmetric polytope with a polynomial number of vertices, and the
John ellipsoid can be computed in polynomial time (Khachiyan [59]). From this, we conclude the following.

Corollary 3. There exists an efficient algorithm that, given as input the vertices of an origin-symmetric polytope W ⊆ Rd,
solves the mean estimation problem over W using 2d queries to STAT(Ω(ε/ ̅̅d√ )). The algorithm runs in polynomial time in
the number of vertices.
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3.2. Lower Bounds
We now prove lower bounds for stochastic linear optimization over the �p unit ball and, consequently, also for
�q mean estimation. We do this using the technique from Feldman et al. [39] that is based on bounding the
statistical dimension with discrimination norm. The discrimination norm of a finite set of distributions D′
relative to a distribution D is denoted by κ2(D′,D) and defined as follows:

κ2 D′,D( ) �. max
h:X→R,‖h‖D�1

{
E

D′∼D′

[⃒⃒
E
D′ h[ ] − E

D
h[ ]|]},

where the norm of h over D is ‖h‖D � ̅̅̅̅̅̅̅̅̅
ED[h2]
√

and D′ ∼ D′ refers to choosing D′ randomly and uniformly from
the set D′.

Let X be the domain in which all distributions of interest are supported. Let B(D,D) denote the decision
problem in which, given samples from an unknown input distribution D′ ∈ D ∪ {D}, the goal is to output one
if D′ ∈ D and zero if D′ � D.

Definition 4 (Feldman et al. [40]). For κ > 0, domain X, and a decision problem B(D,D), let t be the largest integer
such that there exists a finite set of distributions DD ⊆ D with the following property: for any subset D′ ⊆ DD,
where |D′| ≥ |DD|/t, κ2(D′,D) ≤ κ. The statistical dimensionwith discrimination norm κ ofB(D,D) is t and is denoted
by SDN(B(D,D), κ).

The statistical dimension with discrimination norm κ of a problem over distributions gives a lower bound
on the complexity of any statistical algorithm.

Theorem 11 (Feldman et al. [40]). Let X be a domain and B(D,D) be a decision problem over a class of distributionsD on X
and reference distribution D. For κ > 0, let t � SDN(B(D,D), κ). Any randomized statistical algorithm that solves B(D,D)
with probability ≥ 2/3 requires t/3 calls to VSTAT(1/(3 · κ2)).

We now reduce a simple decision problem to stochastic linear optimization over the �p unit ball. Let
E � {ei | i ∈ [d]} ∪ {−ei | i ∈ [d]}. Let the reference distribution D be the uniform distribution over E. For a vector
v ∈ [−1, 1]d, let Dv denote the following distribution: pick i ∈ [d] randomly and uniformly and then pick b ∈
{−1, 1} randomly subject to the expectation being equal to vi and output b · ei. By definition, Ew∼Dv[w] � 1

d v.
Further Dv is supported on E ⊂ Bd

q .
For q ∈ [1, 2], α ∈ [0, 1], and every v ∈ {−1, 1}d, d1/q−1 · v ∈ Bd

p and 〈d1/q−1v,Ew∼Dαv[w]〉 � α · d1/q−1. At the same
time, for the reference distribution D and every x ∈ Bd

p, we have that 〈x,Ew∼D[w]〉 � 0. Therefore, to optimize
with accuracy ε � αd1/q−1/2, it is necessary to distinguish every distribution in Dα from D—in other words, to
solve the decision problem B(Dα,D).
Lemma 6. For any r > 0, 2Ω(r) queries to VSTAT(d/(rα2)) are necessary to solve the decision problem B(Dα,D)with success
probability at least 2/3.

We first observe that, for any function h : Bd
1 → R,

E
Dαv

[h] − E
D
[h] � α

2d

∑
i∈[d]

vi · (h(ei) − h(−ei)). (7)

Let β �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i∈[d](h(ei) − h(−ei))2
√

. By Hoeffding’s inequality, we have that, for every r > 0,

Pr
v∼{−1,1}d

∑
i∈ d[ ]

vi · h ei( ) − h −ei( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≥ r · β

[ ]
≤ 2e−r

2/2.

This implies that, for every set V ⊆ {−1, 1}d such that |V| ≥ 2d/t, we have that

Pr
v∼V

∑
i∈ d[ ]

vi · h ei( ) − h −ei( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≥ r · β

[ ]
≤ t · 2e−r2/2.

From here, a simple manipulation (see Shalev-Shwartz and Ben-David [81, Lemma A.4]) implies that

E
v∼V

∑
i∈ d[ ]

vi · h ei( ) − h −ei( )( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
≤ ̅̅

2
√

2 + ̅̅̅̅̅
ln t

√( )
· β ≤ ̅̅̅̅̅̅̅̅

2 log t
√ · β.
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Note that

β ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i∈ d[ ]

2h ei( )2 + 2h −ei( )2
√

� ̅̅̅̅
2d

√ · ‖h‖D.

For a set of distributions D′ ⊆ Dα of size at least 2d/t, let V ⊆ {−1, 1}d be the set of vectors in {−1, 1}d associated
with D′. By Equation (7), we have that

E
D′∼D′ E

D′ [h] − E
D
[h]

⃒⃒⃒ ⃒⃒⃒[ ]
� α

2d
E
v∼V

∑
i∈[d]

vi · (h(ei) − h(−ei))
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
≤ α

2d
2
̅̅̅̅̅̅̅̅
d log t
√ · ‖h‖D � α

̅̅̅̅̅̅̅̅̅
log t/d
√ · ‖h‖D.

By Definition 4, this implies that, for every t > 0, SDN(B(Dα,D), α ̅̅̅̅̅̅̅̅̅̅
log t/d
√ ) ≥ t. By Theorem 11, for any r > 0,

2Ω(r) queries to VSTAT(d/(rα2)) are necessary to solve the decision problem B(Dα,D) with success probability
at least 2/3.

To apply this lemma with our reduction, we set α � 2εd1−1/q. Note that α must be in the range [0, 1], so this is
possible only if ε < d1/q−1/2. Hence, the lemma gives the following corollary:

Corollary 4. For any ε ≤ d1/q−1/2 and r > 0, 2Ω(r) queries to VSTAT(d2/q−1/(rε2)) are necessary to find an ε-optimal
solution to the stochastic linear optimization problem overBd

p with success probability at least 2/3. The same lower bound holds
for �q mean estimation with error ε.

Observe that this lemma does not cover the regime when q > 1 and ε ≥ d1/q−1/2 � d−1/p/2. We analyze this
case via a simple observation that, for every d′ ∈ [d], Bd′

p and Bd′
q can be embedded into Bd

p and Bd
q , respectively,

in a trivial way: by adding d − d′ zero coordinates. Also, the mean of the distribution supported on such an
embedding of Bd′

q certainly lies inside the embedding. In particular, a d-dimensional solution x can be
converted back to a d′-dimensional solution x′ without increasing the value achieved by the solution. Hence,
lower bounds for optimization over Bd′

p imply lower bounds for optimization over Bd
p. Therefore, for any

ε ≥ d−1/p/2, let d′ � (2ε)−p (ignoring for simplicity the minor issues with rounding). Now, Corollary 4 applied
to d′ implies that 2Ω(r) queries to VSTAT((d′)2/q−1/(rε2)) are necessary for stochastic linear optimization.
Substituting the value of d′ � (2ε)−p, we get (d′)2/q−1/(rε2) � 22−p/(rεp), and hence, we get the following corollary.

Corollary 5. For any q > 1, ε ≥ d1/q−1/2, and r > 0, 2Ω(r) queries to VSTAT(1/(rεp)) are necessary to find an ε-optimal
solution to the stochastic linear optimization problem overBd

p with success probability at least 2/3. The same lower bound holds
for �q mean estimation with error ε.

These lower bounds are not tight when q > 2. In this case, a lower bound of Ω(1/ε2) (irrespective of the
number of queries) follows from a basic property of VSTAT: no query to VSTAT(n) can distinguish between
two input distributions D1 and D2 if the total variation distance between Dn

1 and Dn
2 is smaller than

some (universal) positive constant (Feldman et al. [40].

4. The Gradient Descent Family
We now describe approaches for solving convex programs by SQ algorithms that are based on the broad
literature of inexact gradient methods. We show that some of the standard oracles proposed in these works
can be implemented by SQs, more precisely, by estimation of the mean gradient. This reduces the task of
solving a stochastic convex program to a polynomial number of calls to the algorithms for mean estimation
from Section 3.

For the rest of the section, we use the following notation. Let K be a convex body in a normed space
(Rd, ‖ · ‖), and let W be a parameter space (notice we make no assumptions on this set). Unless we explicitly
state it, K is not assumed to be origin-symmetric. Let R�. maxx,y∈K ‖x − y‖/2, which is the ‖ · ‖-radius of K. For
a random variable w supported on W, we consider the stochastic convex optimization problem
minx∈K{F(x) �. Ew[ f (x,w)]}, where, for all w ∈ W, f (·,w) is convex and subdifferentiable on K. Given x ∈ K, we
denote ∇f (x,w) ∈ ∂f (x,w), an arbitrary selection of a subgradient;5 similarly, for F, ∇F(x) ∈ ∂F(x) is arbitrary.

Let us make a brief reminder of some important classes of convex functions. We say a subdifferentiable
convex function f : K → R is in the class

• F (K,B) of B-bounded-range functions if, for all x ∈ K, | f (x)| ≤ B.
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• F 0
‖·‖(K,L0) of L0-Lipschitz continuous functions with respect to (w.r.t.) ‖ · ‖ if, for all x, y ∈ K, | f (x) − f (y)| ≤

L0‖x − y‖; this implies

f y
( ) ≤ f x( ) + 〈∇f x( ), y − x〉 + L0‖y − x‖. (8)

• F 1
‖·‖(K,L1) of functions with L1-Lipschitz continuous gradient w.r.t. ‖ · ‖ if, for all x, y ∈ K, ‖∇f (x) −

∇f (y)‖∗ ≤ L1‖x − y‖; this implies

f y
( ) ≤ f x( ) + 〈∇f x( ), y − x〉 + L1

2
‖y − x‖2. (9)

• S‖·‖(K, κ) of κ-strongly convex functions w.r.t. ‖ · ‖ if, for all x, y ∈ K,

f y
( ) ≥ f x( ) + 〈∇f x( ), y − x〉 + κ

2
‖y − x‖2. (10)

4.1. SQ Implementation of Approximate Gradient Oracles
Here, we present two classes of oracles previously studied in the literature together with SQ algorithms for
implementing them.

Definition 5 (Global Approximate Gradient, d’Aspremont [23]). Let F : K → R be a convex subdifferentiable function.
We say that g̃ : K → Rd is an η-approximate gradient of F over K if, for all u, x, y ∈ K,

|〈 g̃ x( ) − ∇F x( ), y − u〉| ≤ η. (11)

Observation 2. Let ‖ · ‖ be a norm such that K ⊆ B‖·‖(0,R) for some R > 0. If F(x) � Ew[ f (x,w)] satisfies for all
w ∈ W, f (·,w) ∈ F 0

‖·‖(K,L0), then implementing an η-approximate gradient oracle reduces to a mean estimation
problem in ‖ · ‖∗ with error η/[2RL0]. Indeed, we consider the estimation problem of a random linear function
∇f (x,w)/L0, which is a random variable supported in B‖·‖∗ , and if we solve this problem with error η/[2RL0],

|〈∇F x( ) − g̃ x( ), y − u〉| ≤ ‖∇F x( ) − g̃ x( )‖ ∗ ‖y − u‖ ≤ ‖∇F x( ) − g̃ x( )‖ ∗ 2R( ) ≤ η.

Definition 6 (Inexact Oracle, Devolder et al. [24, 25]). Let F : K → R be a convex subdifferentiable function. We say
that (F̃(·), g̃(·)) : K → R × Rd is a first-order (η,M, μ)-oracle of F over K if, for all x, y ∈ K,

μ

2
‖y − x‖2 ≤ F y

( ) − F̃ x( ) − 〈 g̃ x( ), y − x〉[ ] ≤ M
2
‖y − x‖2 + η. (12)

An important feature of this oracle is that the error for approximating the gradient is independent of the radius.
This observation is established by Devolder et al. [24], and the consequences for statistical algorithms are made
precise in the following lemma.

Lemma 7. Let η > 0, 0 < κ ≤ L1 and assume that, for all w ∈ W, f (·,w) ∈ F (K,B) ∩F 0
‖·‖(K,L0) and F(·) � Ew[ f (·,w)] ∈

S‖·‖(K, κ) ∩F 1
‖·‖(K,L1). Then, implementing a first-order (η,M, μ)-oracle (where μ � κ/2 and M � 2L1) for F reduces to

mean estimation in ‖ · ‖∗ with error
̅̅̅̅
ηκ

√
/[2L0] plus a single query to STAT(Ω(η/B)). Furthermore, for a first-order method

that does not require values of F, the latter query can be omitted.

If we remove the assumption F ∈ F 1
‖·‖(K,L1), we can instead use the upper bound M � 2L20/η.

We first observe that we can obtain an approximate zero-order oracle for F with error η by a single query to
STAT(Ω(η/B)). In particular, we can obtain a value F̂(x) such that |F̂(x) − F(x)| ≤ η/4 and then use as
approximation

F̃ x( ) � F̂ x( ) − η/2.

This way, |F(x) − F̃(x)| ≤ |F(x) − F̂(x)| + |F̂(x) − F̃(x)| ≤ 3η/4, and also F(x) − F̃(x) � F(x) − F̂(x) + η/2 ≥ η/4. Finally,
observe that, for any gradient method that does not require access to the function value, we can skip the
estimation of F̃(x) and simply replace it by F(x) − η/2 in what comes next.
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Next, we prove that an approximate gradient g̃(x) satisfying
‖∇F x( ) − g̃ x( )‖∗ ≤ ̅̅̅̅

ηκ
√

/2 ≤ ̅̅̅̅̅
ηL1
√

/2, (13)
suffices for a (η, μ,M)-oracle, where μ � κ/2, M � 2L1. For convenience, we refer to the first inequality in (12) as
the lower bound and the second as the upper bound.

4.1.1. Lower Bound. Because F is κ-strongly convex, and by the lower bound on F(x) − F̃(x),
F y
( ) ≥ F x( ) + 〈∇F x( ), y − x〉 + κ

2
‖x − y‖2

≥ F̃ x( ) + η/4 + 〈 g̃ x( ), y − x〉 + 〈∇F x( ) − g̃ x( ), y − x〉 + κ

2
‖x − y‖2.

Thus, to obtain the lower bound, it suffices prove that, for all y ∈ Rd,

η

4
+ 〈∇F x( ) − g̃ x( ), y − x〉 + μ

2
‖x − y‖2 ≥ 0.

In order to prove this inequality, notice that, among all y’s such that ‖y − x‖ � t, the minimum of the expression
is attained when 〈∇F(x) − g̃(x), y − x〉 � −t‖∇F(x) − g̃(x)‖∗. This leads to the one-dimensional inequality

η

4
− t‖∇F x( ) − g̃ x( )‖∗ + μ

2
t2 ≥ 0,

whose minimum is attained at t � ‖∇F(x) − g̃(x)‖∗
μ

and, thus,

has minimum valueη/4 − ‖∇F(x) − g̃(x)‖2∗/(2μ).
Finally, this value is nonnegative by assumption, proving the lower bound.

4.1.2. Upper Bound. Because F has an L1-Lipschitz continuous gradient and by the bound on |F(x) − F̃(x)|,
F y
( ) ≤ F x( ) + 〈∇F x( ), y − x〉 + L1

2
‖y − x‖2

≤ F̃ x( ) + 3η
4
+ 〈 g̃ x( ), y − x〉 + 〈∇F x( ) − g̃ x( ), y − x〉 + L1

2
‖x − y‖2.

Now, we show that, for all y ∈ Rd,
L1
2
‖y − x‖2 − 〈∇F x( ) − g̃ x( ), y − x〉 + η

4
≥ 0.

Indeed, minimizing the expression in y shows that it suffices to have ‖∇F(x) − g̃(x)‖2∗ ≤ ηL1/2, which is true
by assumption.

Finally, combining the two bounds we get that, for all y ∈ K,

F y
( ) ≤ F̃ x( ) + 〈g̃ x( ), y − x〉[ ] +M

2
‖y − x‖2 + η,

which is precisely the upper bound.
As a conclusion, we prove that, in order to obtain g̃ for a (η,M, μ)-oracle, it suffices to obtain an approximate

gradient satisfying (13). Obtaining g̃ reduces to a mean estimation problem in ‖ · ‖∗ with error
̅̅̅̅
ηκ

√
/[2L0]; more

precisely, we consider the mean estimation problem for the random linear function ∇f (x,w)/L0 (whose
distribution is supported in B‖·‖∗ ) with accuracy

̅̅̅̅
ηκ

√
/[2L0]. This, together with our analysis of the zero-order

oracle, proves the result.
Finally, if we remove the assumption F ∈ F 1

‖·‖(K,L1), then, from (8), we can prove that, for all x, y ∈ K,

F y
( ) − F x( ) + 〈∇F x( ), y − x〉[ ] ≤ L20

η
‖x − y‖2 + η

4
,

and thus, we can use M � 2L20/η. This is sufficient for carrying out the proof, and the result follows.
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4.2. Classes of Convex Minimization Problems
We now use known inexact convex minimization algorithms together with our SQ implementation of ap-
proximate gradient oracles to solve several classes of stochastic optimization problems. We see that, in terms
of estimation complexity, there is no significant gain from the nonsmooth to the smooth case; however, we can
significantly reduce the number of queries by acceleration techniques. On the other hand, strong convexity
leads to improved estimation complexity bounds: the key insight here is that only a local approximation of the
gradient around the current query point suffices for methods as a first order (η,M, μ)-oracle is robust to crude
approximation of the gradient at far away points from the query (see Lemma 7). We note that both smoothness
and strong convexity are required only for the objective function and not for each function in the support of
the distribution. This opens up the possibility of applying this algorithm without the need of adding a strongly
convex term almost surely—for example, in regularized linear regression—as long as the expectation is
strongly convex.

4.2.1. Nonsmooth Case: The Mirror-Descent Method. Before presenting the mirror-descent method, we give
some necessary background on prox-functions. We assume the existence of a subdifferentiable r-uniformly
convex function (in which 2 ≤ r < ∞) Ψ : K → R+ w.r.t. the norm ‖ · ‖, that is, that satisfies,6 for all x, y ∈ K,

Ψ y
( ) ≥ Ψ x( ) + 〈∇Ψ x( ), y − x〉 + 1

r
‖y − x‖r. (14)

We assume without loss of generality that infx∈K Ψ(x) � 0.
The existence of r-uniformly convex functions holds in rather general situations (Pisier [71]), and in par-

ticular, for finite-dimensional �dp spaces, we have explicit constructions for r � min{2, p} (see Appendix A for
details). Let DΨ(K) �. supx∈K Ψ(x) be the prox-diameter of K w.r.t. Ψ.

We define the prox-function (a.k.a. Bregman distance) at x ∈ int(K) as Vx(y) � Ψ(y) −Ψ(x) − 〈∇Ψ(x), y − x〉.
In this case, we say the prox-function is based on Ψ proximal setup. Finally, notice that, by (14), we
have Vx(y) ≥ 1

r ‖y − x‖r.
For the first-order methods in this section, we assume K is such that, for any vector x ∈ K and g ∈ Rd, the

proximal problem min{〈g, y − x〉 + Vx(y) : y ∈ K} can be solved efficiently. For the case Ψ(·) � ‖ · ‖22, this corre-
sponds to Euclidean projection, but this type of problem can be efficiently solved in more general situations
(Nemirovsky and Yudin [68]).

The first class of functions we study is F 0
‖·‖(K,L0). We propose to solve problems in this class by the mirror-

descent method (Nemirovsky and Yudin [68]). This is a classic method for minimization of nonsmooth
functions with various applications to stochastic and online learning. Although simple and folklore, we are not
aware of a reference on the analysis of the inexact version with proximal setup based on an r-uniformly convex
function. Therefore, we include its analysis here.

Mirror-descent uses a prox-function Vx(·) based on Ψ proximal setup. The method starts querying a gradient
at point x0 � argminx∈K Ψ(x), and given a response g̃t �. g̃(xt) to the gradient query at point xt, it computes its
next query point as

xt+1 � argmin
y∈K α〈 g̃t, y − xt〉 + Vxt y

( ){ }
, (15)

which corresponds to a proximal problem. The output of the method is the average of iterates x̄T �. 1
T
∑T

t�1 xt.

Proposition 2. Let F ∈ F 0
‖·‖(K,L0) and Ψ : K → R be an r-uniformly convex function. Then, the inexact mirror-descent

method with Ψ proximal setup, step size α � 1
L0
[rDΨ(K)/T]1−1/r, and an η-approximate gradient for F over K guarantees

after T steps an accuracy

F x̄T
( ) − F∗ ≤ L0

rDΨ K( )
T

( )1/r
+ η.

Proof. We first state without proof the following identity for prox-functions (for example, see Ben-Tal and
Nemirovski [10, 5.3.20]): for all x, x′, and u in K,

Vx(u) − Vx′ (u) − Vx(x′) � 〈∇Vx(x′), u − x′〉.
On the other hand, the optimality conditions of problem (15) are〈

αg̃t + ∇Vxt(xt+1),u − xt+1
〉
≥ 0, ∀u ∈ K.
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Let u ∈ K be an arbitrary vector and let s be such that 1/r + 1/s � 1. Because g̃t is an η-approximate gradient,

α[F(xt) − F(u)] ≤ α
〈
∇F(xt), xt − u

〉
≤ α
〈
g̃t, xt − u

〉 + αη

� α
〈
g̃t, xt − xt+1

〉
+ α
〈
g̃t, xt+1 − u

〉
+ αη

≤ α
〈
g̃t, xt − xt+1

〉
−
〈
∇Vxt

(
xt+1
)
, xt+1 − u

〉
+ αη

� α
〈
g̃t, xt − xt+1

〉
+ Vxt(u) − Vxt+1(u) − Vxt

(
xt+1
) + αη

≤
[
α
〈
g̃t, xt − xt+1

〉
− 1
r

⃒⃒⃒
xt − xt+1

⃒⃒⃒r] + Vxt(u) − Vxt+1(u) + αη

≤ 1
s

⃒⃒
αg̃t
⃒⃒s∗ + Vxt(u) − Vxt+1(u) + αη,

where we have used all the observations, and the last step holds by Fenchel’s inequality.
Let us choose u such that F(u) � F∗; thus, by definition of x̄T and by convexity of f ,

αT
[
F(x̄T) − F∗

]
≤∑T

t�1
α
[
F(xt) − F∗] ≤ (αL0)s

s
T +DΨ(K) + αTη.

Because α � 1
L0
(rDΨ(K)

T )1/s, we obtain F(x̄T) − F∗ ≤ L0(rDΨ(K)
T )1/r + η. □

We can readily apply the result to stochastic convex programs in nonsmooth �p settings.

Definition 7 (�p-Setup). Let 1 ≤ p ≤ ∞, L0,R > 0, and K ⊆ Bd
p (R) be a convex body. We define as the (nonsmooth)

�p-setup the family of problems minx∈K{F(x) �. Ew[ f (x,w)]}, where, for all w ∈ W, f (·,w) ∈ F 0
‖·‖p(K,L0).

In the smooth �p-setup, we additionally assume that F ∈ F 1
‖·‖p(K, L1).

From constructions of r-uniformly convex functions for �p spaces, with r � min{2, p} (see Appendix A), we
know that there exists an efficiently computable prox-function Ψ (i.e., whose value and gradient can be
computed exactly, and thus, Problem (15) is solvable for simple enough K). This result, in combination with
Lemma 7 and Theorem 2 gives precise estimation complexity results that are summarized in the following
corollary and proved in Appendix C.

Corollary 6. The stochastic optimization problem in the nonsmooth �p-setup can be solved with accuracy ε by
• If p � 1, using O(d log d · (L0Rε )2) queries to STAT( ε

4L0R
).

• If 1 < p < 2, using O(d log d · 1
(p−1) (L0Rε )2) queries to STAT(Ω( ε

[log d]L0R)).
• If p � 2, using O(d · (L0Rε )2) queries to STAT(Ω( ε

L0R
)).

• If 2 < p < ∞, using O(d log d · 4p(L0Rε )p) queries to VSTAT((64L0R log d
ε )p).

4.2.2. Smooth Case: Nesterov Accelerated Method. Now, we focus on the class of functions whose expectation
has Lipschitz continuous gradient. For simplicity, we restrict the analysis to the case in which the prox-
function is obtained from a strongly convex function, that is r-uniform convexity with r � 2. We utilize a
known inexact variant of Nesterov’s [69] accelerated method.

Proposition 3 (d’Aspremont [23]). Let F ∈ F 1
‖·‖(K,L1) and letΨ : K → R+ be a one-strongly convex function w.r.t. ‖ · ‖. Let

(xt, yt, zt) be the iterates of the accelerated method with Ψ proximal setup and in which the algorithm has access to an
η-approximate gradient oracle for F over K. Then,

F yT
( ) − F∗ ≤ L1DΨ K( )

T2 + 3η.

The consequences for the smooth �p-setup, which are straightforward from the theorem and Observation 2, are
summarized as follows and proved in Appendix D.

Corollary 7. Any stochastic convex optimization problem in the smooth �p-setup can be solved with accuracy ε by

• If p � 1, using O(d ̅̅̅̅̅̅̅log d
√ ·

̅̅̅̅̅
L1R2

ε

√
) queries to STAT( ε

12L0R
).

• If 1 < p < 2, using O(d log d · 1̅̅ ̅̅
p−1

√
̅̅̅̅̅
L1R2

ε

√
) queries to STAT(Ω( ε

[log d]L0R)).
• If p � 2, using O(d ·

̅̅̅̅̅
L1R2

ε

√
) queries to STAT(Ω( ε

L0R
)).
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4.2.3. Strongly Convex Case. Finally, we consider the class S‖·‖(K, κ) of strongly convex functions. We further
restrict our attention to the Euclidean case, that is, ‖ · ‖ � ‖ · ‖2. There are two main advantages of having a
strongly convex objective: on the one hand, gradient methods in this case achieve a linear convergence rate; on
the other hand, we see that estimation complexity is independent of the radius. Let us first make precise the
first statement: it turns out that, with a (η,M, μ)-oracle, we can implement the inexact dual gradient method
(Devolder et al. [24]), achieving a linear convergence rate. The result is as follows:

Theorem 12 (Devolder et al. [24]). Let F : K → R be a subdifferentiable convex function endowed with a (η,M, μ)-oracle
over K. Let yt be the sequence of averages of the inexact dual gradient method. Then,

F yT
( ) − F∗ ≤ MR2

2
exp − μ

M
T + 1( )

( )
+ η.

The results in Devolder et al. [24] indicate that the accelerated method can also be applied in this situation, and
it does not suffer from noise accumulation. However, the accuracy requirement is more restrictive than for the
'primal and dual gradient methods. In fact, the required accuracy for the approximate gradient is η � O(ε ̅̅̅̅̅̅̅μ/M

√ );
although this is still independent of the radius, it makes estimation complexity much more sensitive to
condition number, which is undesirable.

An important observation of the dual gradient algorithm is that it does not require function values (as
opposed to its primal version). This together with Lemma 7 leads to the following result.

Corollary 8. The stochastic convex optimization problemminx∈K{F(x) �. Ew[ f (x,w)]}, where F ∈ S‖·‖2(K, κ) ∩F 1
‖·‖2(K,L1)

and, for all w ∈ W, f (·,w) ∈ F 0
‖·‖2(K,L0), can be solved to accuracy ε > 0 using O(d · L1κ log(L1Rε )) queries to

STAT(Ω( ̅̅̅̅εκ√
/L0)).

Without the assumption F ∈ F 1
‖·‖2(K,L1), the problem can be solved to accuracy ε > 0 by using O(d · L20εκ log(L0Rε ))

queries to STAT(Ω( ̅̅̅̅εκ√
/L0)).

4.3. Applications to Generalized Linear Regression
We provide a comparison of the bounds obtained by statistical query inexact first-order methods with some
state-of-the-art error bounds for linear regression problems. To be precise, we compare sample complexity of
obtaining excess error ε (with constant success probability or in expectation) with the estimation complexity of
the SQ oracle for achieving ε accuracy. It is worth noticing though that these two quantities are not directly
comparable as an SQ algorithm performs a (polynomial) number of queries to the oracle. However, this
comparison shows that our results roughly match what can be achieved via samples.

We consider the generalized linear regression problem: given a normed space (Rd, ‖ · ‖), let W ⊆ Rd be the input
space and R be the output space. Let (w, z) ∼ D, where D is an unknown target distribution supported on
W × R. The objective is to obtain a linear predictor x ∈ K that predicts the outputs as a function of the inputs
coming from D. Typically, K is prescribed by desirable structural properties of the predictor, for example,
sparsity or low norm. The parameters determining complexity are given by bounds on the predictor and input
space: K ⊆ B‖·‖(R) and W ⊆ B‖·‖∗(W). Under these assumptions, we may restrict the output space to [−M,M],
where M � RW.

The prediction error is measured using a loss function. For a function � : R × R → R+, letting f (x, (w, z)) �
�(〈w, x〉, z), we seek to solve the stochastic convex program minx∈K{F(x) � E(w,z)∼D[ f (x, (w, z))]}. We assume that
�(·, z) is convex for every z in the support of D. A common example of this problem is the (random design) least
squares linear regression, in which �(z′, z) � (z′ − z)2.

4.3.1. NonsmoothCase. We assume that, for every z in the support of D, �(·, z) ∈ F 0
|·|([−M,M],L�,0). To make the

discussion concrete, let us consider the �p-setup, that is, ‖ · ‖ � ‖ · ‖p. Hence, the Lipschitz constant of our
stochastic objective f (·, (w, z)) � �(〈w, ·〉, z) can be upper bounded as L0 ≤ L�,0 ·W. For this setting, Kakade
et al. [53] show that the sample complexity of achieving excess error ε > 0 with constant success probability is
n � O((L�,0WR

ε )2 ln d) when p � 1, and n � O((L�,0WR
ε )2(q − 1)) for 1 < p ≤ 2. Using Corollary 6, we obtain that the

estimation complexity of solving this problem using our SQ implementation of the mirror-descent method
gives the same up to (at most) a logarithmic in d factor.

Kakade et al. [53] do not provide sample complexity bounds for p > 2; however, because their approach is
based on Rademacher complexity (see Appendix B for the precise bounds), the bounds in this case should be
similar to ours as well.
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4.3.2. Strongly Convex Case. Let us now consider a generalized linear regression with regularization. Here,

f (x, (w, z)) � �(〈w, x〉, z) + λ ·Φ(x),
where Φ : K → R is a one-strongly convex function and λ > 0. This model has a variety of applications in
machine learning, such as ridge regression and soft-margin SVM. For the nonsmooth linear regression in
�2-setup (as described), Shalev-Shwartz et al. [82] provide a sample complexity bound of O((L�,0W)2

λε ) (with
constant success probability). Note that the expected objective is 2λ-strongly convex, and therefore, applying
Corollary 8, we get the same (up to constant factors) bounds on estimation complexity of solving this problem
by SQ algorithms.

5. Applications
In this section, we describe several applications of our results. We start by showing that our algorithms,
together with lower bounds for SQ algorithms, give lower bounds against convex programs. We then give
several easy examples of using upper bounds in other contexts: (1) new SQ implementation of algorithms for
learning halfspaces that eliminate the linear dependence on the dimension in previous work, (2) algorithms for
high-dimensional mean estimation with local differential privacy that rederive and generalize existing bounds
(we also give the first algorithm for solving general stochastic convex programs with local differential pri-
vacy), and (3) strengthening and generalization of algorithms for answering sequences of convex minimization
queries differentially privately given in Ullman [91].

Additional applications in settings in which SQ algorithms are used can be derived easily. For example, our
results immediately imply that an algorithm for answering a sequence of adaptively chosen SQs (such as those
given in Bassily et al. [7] and Dwork et al. [32, 33]) can be used to solve a sequence of adaptively chosen
stochastic convex minimization problems. This question has been recently studied by Bassily et al. [7], and our
bounds can be easily seen to strengthen and generalize some of their results (see Section 5.4 for an analo-
gous comparison).

5.1. Lower Bounds
We describe a generic approach to combining SQ algorithms for stochastic convex optimization with lower
bounds against SQ algorithms to obtain lower bounds against certain type of convex programs. These lower
bounds are for problems in which we are given a set of cost functions (vi)mi�1 from some collection of functions
V over a set of “solutions” Z, and the goal is to (approximately) minimize or maximize 1

m
∑

i∈[m] vi(z) for z ∈ Z.
Here, either Z is nonconvex or functions in V are nonconvex (or both). Naturally, this captures loss (or error)
of a model in machine learning and also the number of (un)satisfied constraints in constraint satisfaction
problems (CSPs). For example, in the MAX-CUT problem, z ∈ {0, 1}n represents a subset of vertices and V
consists of (n2) “zi �� zj” predicates.

A standard approach to such nonconvex problems is to map Z to a convex body K ⊆ Rd and map V to
convex functions over K in such a way that the resulting convex optimization problem can be solved effi-
ciently and the solution allows one to recover a “good” solution to the original problem, for example, by
ensuring that the mappings M : Z → K and T : V → F satisfy, for all z and v, v(z) � (T(v))(M(z)) and, for all
instances of the problem (vi)mi�1,

min
z∈Z

1
m

∑
i∈[m]

vi(z) −min
x∈K

1
m

∑
i∈[m]

(T(vi))(x) < ε. (16)

(Approximation is also often stated in terms of the ratio between the original and relaxed values and referred
to as the integrality gap. This distinction is not essential for our discussion.) The goal of lower bounds against
such approaches is to show that specific mappings (or classes of mappings) do not allow solving the original
problem via this approach, for example, have a large integrality gap.

The class of convex relaxations for which our approach gives lower bounds are those that are “easy” for SQ
algorithms. Accordingly, we define the following measure of complexity of convex optimization problems.

Definition 8. For an SQ oracle O, t > 0, and a problem P over distributions, we say that P ∈ Stat(O, t) if P can be
solved using at most t queries toO for the input distribution. For a convex setK, a setF of convex functions overK,
and ε > 0, we denote by Opt(K,F , ε) the problem of finding, for every distribution D over F , x∗ such that
F(x∗) ≤ minx∈K F(x) + ε, where F(x) �. Ef∼D[ f (x)].
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For simplicity, let’s focus on the decision problem7 in which the input distribution D belongs to
D � D+ ∪D−. Let P(D+,D−) denote the problem of deciding whether the input distribution is in D+ or D−. This
is a distributional version of a promise problem in which an instance can be of two types (for example,
completely satisfiable and one in which at most half of the constraints can be simultaneously satisfied).
Statistical query complexity upper bounds are preserved under pointwise mappings of the domain elements,
and therefore, an upper bound on the SQ complexity of a stochastic optimization problem implies an upper
bound on any problem that can be reduced pointwise to the stochastic optimization problem.

Theorem 13. Let D+ and D− be two sets of distributions over a collection of functions V on the domain Z. Assume that, for
some K and F , there exists a mapping T : V → F such that, for all D ∈ D+, minx∈K Ev∼D[(T(v))(x)] > α, and for all
D ∈ D−,minx∈K Ev∼D[(T(v))(x)] ≤ 0. Then, if, for an SQ oracleO and t, we have a lower bound P(D+,D−) /∈ Stat(O, t), then
we obtain that Opt(K,F , α/2) /∈ Stat(O, t).

The conclusion of this theorem, namely Opt(K,F , α/2) /∈ Stat(O, t), together with upper bounds from
previous sections, can be translated into a variety of concrete lower bounds on the dimension, radius,
smoothness, and other properties of convex relaxations to which one can map (pointwise) instances of
P(D+,D−). We also emphasize that the resulting lower bounds are structural and do not assume that the
convex program is solved in some specific way, for example, using an SQ oracle efficiently.

Note that the assumptions on the mapping in Theorem 13 are stated for the expected value minx∈K Ev∼D[(T(v))(x)]
rather than for averages over given relaxed cost functions as in Equation (16). However, for a sufficiently large
number of samples m, for every x, the average over random samples 1

m
∑

i∈[m](T(vi))(x) is close to the expectation
Ev∼D[(T(v))(x)]. Therefore, the condition can be equivalently reformulated in terms of the average over a
sufficiently large number of samples drawn i.i.d. from D.

5.1.1. Lower Bounds for Planted CSPs. We now describe an instantiation of this approach using lower bounds
for constraint satisfaction problems established in Feldman et al. [39]. Feldman et al. [39] describe implications
of their lower bounds for convex relaxations using results for more general (non-Lipschitz) stochastic convex
optimization and discuss their relationship to those for lift-and-project hierarchies (Sherali-Adams, Lovász-
Schrijver, Lasserre) of canonical LP/SDP formulations. Here, we give examples of implications of our results
for the Lipschitz case.

Let Z � {−1, 1}n be the set of assignments to n Boolean variables. A distributional k-CSP problem is defined
by a set D of distributions over Boolean k-ary predicates. One way to obtain a distribution over constraints is
to first pick some assignment z and then generate random constraints that are consistent with z (or depend on
z in some other predetermined way). In this way, we can obtain a family of distributions D parameterized by a
“planted” assignment z. Two standard examples of such instances are planted k-SAT (e.g., Coja-Oghlan et al. [21])
and the pseudorandom generator based on Goldreich’s [44] proposal for one-way functions. Associated with
every family created in this way is a complexity parameter r which, as shown in Feldman et al. [39],
characterizes the SQ complexity of finding the planted assignment z or even distinguishing between a
distribution in D and a uniform distribution over the same type of k-ary constraints. This is not crucial for
discussion here, but roughly, the parameter r is the largest value r for which the generated distribution over
variables in the constraint is (r − 1)-wise independent. In particular, random and uniform k-XOR constraints
(consistent with an assignment) have complexity k. The lower bound in Feldman et al. [39] can be (somewhat
informally) restated as follows.

Theorem 14 (Feldman et al. [39]). LetD � {Dz}z∈{−1,1}n be a set of planted distributions over k-ary constraints of complexity
r and let Uk be the uniform distribution on (the same) k-ary constraints. Then, any SQ algorithm that, given access to a
distribution D ∈ D ∪ {Uk}, decides correctly whether D � Dz or D � Uk needs Ω(t) calls to VSTAT( nr

(log t)r) for any t ≥ 1.

Combining this with Theorem 13, we get the following general statement:

Theorem 15. Let D � {Dz}z∈{−1,1}n be a set of planted distributions over k-ary constraints of complexity r and let Uk be the
uniform distribution on (the same) k-ary constraints. Assume that there exists a mapping T that maps each constraint C to a
convex function fC ∈ F over some convex d-dimensional set K such that, for all z ∈ {−1, 1}n, minx∈K EC∼Dz[ fC(x)] ≤ 0 and
minx∈K EC∼Uk [ fC(x)] > α. Then, for every t ≥ 1, Opt(K,F , α/2) /∈ Stat(VSTAT( nr

(log t)r), 
 (t)).
Note that, in the context of convex minimization that we consider here, it is more natural to think of the

relaxation as minimizing the number of unsatisfied constraints (although, if the objective function is linear,
then the claim also applies to maximization over K). We now instantiate this statement for solving the k-SAT
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problem via a convex program in the class F 0
‖·‖p(Bd

p, 1) (see Section 4). Let Ck denote the set of all k-clauses (or of
k distinct variables or their negations). Let Uk be the uniform distribution over Ck.

Corollary 9. There exists a family of distributionsD � {Dz}z∈{−1,1}n over Ck such that the support of Dz is satisfied by z with
the following property: for every p ∈ [[1, 2]], if there exists a mapping T : Ck → F 0

‖·‖p(Bd
p, 1) such that, for all z,minx∈Bd

p
EC∼

Dz[(T(C))(x)] ≤ 0 and minx∈Bd
p
EC∼Uk [(T(C))(x)] > ε, then d � 2Ω̃(nk/(k+2)·ε2/(k+2)). For p ∈ {1, 2}, we get a slightly stronger

lower bound of d � 2Ω̃(nI·ε2/k).
This lower bound excludes embeddings in exponentially high (e.g., 2n

1/4
) dimensions for which the lowest

value of the program for unsatisfiable instances differs from that for satisfiable instances by more than n−k/4.
(Note that the range of functions in F 0

‖·‖p(Bd
p, 1) can be as large as [−1, 1], so this is a normalized additive gap.)

For comparison, in the original problem, the values of these two types of instances are one and ≈ 1 − 2−k. In
particular, this implies that the integrality gap is 1/(1 − 2−k) − o(1) (which is optimal).

We note that the problem described in Corollary 9 is easier than the distributional k-SAT refutation problem,
in which D contains all distributions with satisfiable support. Therefore, the assumptions of Corollary 1 that
we stated in the introduction imply the assumptions of Corollary 9.

Similarly, we can use the results of Section 5 to obtain the following lower bound on the dimension of any
convex relaxation:

Corollary 10. There exists a family of distributionsD � {Dz}z∈{−1,1}n over Ck such that the support of Dz is satisfied by z with
the following property: for every convex body K ⊆ Rd, if there exists a mapping T : Ck → F (K, 1) such that, for all z,
minx∈K EC∼Dz[(T(C))(x)] ≤ 0 and minx∈K EC∼Uk [(T(C))(x)] > ε, then d � Ω̃(nk/2 · ε).

5.2. Learning Halfspaces
We now use our high-dimensional mean estimation algorithms to address the efficiency of SQ versions of
online algorithms for learning halfspaces (also known as linear threshold functions). A linear threshold
function is a Boolean function over Rd described by a weight vector w ∈ Rd together with a threshold θ ∈ R

and defined as fw,θ(x) �. sign(〈w, x〉 − θ).

5.2.1. Margin Perceptron. We start with the classic Perceptron algorithm (Novikoff [70], Rosenblatt [75]). For
simplicity and without loss of generality, we only consider the case of θ � 0. We describe a slightly more
general version of the Perceptron algorithm that approximately maximizes the margin and is referred to as
margin Perceptron (Balcan and Blum [2]). The margin Perceptron with parameter η works as follows. Initialize
the weights w0 � 0d. At around t ≥ 1, given a vector xt and correct prediction yt ∈ {−1, 1}, if yt · 〈wt−1, xt〉 ≥ η,
then we let wt � wt−1. Otherwise, we update wt � wt−1 + ytxt. The Perceptron algorithm corresponds to using
this algorithm with η � 0. This update rule has the following guarantee:

Theorem 16 (Balcan and Blum [2]). Let (x1, y1), . . . , (xt, yt) be any sequence of examples in Bd
2 (R) × {−1, 1} and assume that

there exists a vector w∗ ∈ Bd
2 (W) such that, for all t, yt〈w∗, xt〉 ≥ γ > 0. Let M be the number of rounds in which the margin

Perceptron with parameter η updates the weights on this sequence of examples. Then, M ≤ R2W2/(γ − η)2.
The advantage of this version over the standard Perceptron is that it can be used to ensure that the final

vector wt separates the positive examples from the negative ones with margin η (as opposed to the plain
Perceptron, which does not guarantee any margin). For example, by choosing η � γ/2, one can approximately
maximize the margin while only paying a factor four in the upper bound on the number of updates. This
means that the halfspace produced by the margin Perceptron has essentially the same properties as that
produced by the SVM algorithm. In PAC learning of halfspaces with margin assumption, we are given
random examples from a distribution D over Bd

2 (R) × {−1, 1}. The distribution is assumed to be supported only
on examples (x, y) that, for some vector w∗ satisfy y〈w∗, x〉 ≥ γ. It has long been observed that a natural way to
convert the Perceptron algorithm to the SQ setting is to use the mean vector of all counterexamples with
Perceptron updates (Blum et al. [13], Bylander [17]). Namely, update using the example (x̄t, 1), where
x̄t � E(x,y)∼D[y · x |y〈wt−1, x〉 < η]. Naturally, by linearity of the expectation, we have that 〈wt−1, x̄t〉 < η and
〈w∗, x̄t〉 ≥ γ and also, by convexity, that x̄t ∈ Bd

2 (R). This implies that exactly the same analysis can be used for
updates based on the mean counterexample vector. Naturally, we can only estimate x̄t, and hence, our goal is
to find an estimate that still allows the analysis to go through. In other words, we need to use statistical
queries to find a vector x̃ that satisfies these conditions (at least approximately). The main difficulty here is
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preserving the condition 〈w∗, x̃〉 ≥ γ because we do not know w∗. However, by finding a vector x̃ such that
‖x̃ − x̄t‖2 ≤ γ/(3W), we can ensure that

〈w∗, x̃〉 � 〈w∗, x̄t〉 − 〈w∗, x̄t − x̃〉 ≥ γ − ‖x̃ − x̄t‖2 · ‖w∗‖2 ≥ 2γ/3.

We next note that conditions 〈wt−1, x̃〉 < η and x̃ ∈ Bd
2 (R) are easy to preserve. These are known and convex

constraints so we can always project x̃ to the (convex) intersection of these two closed convex sets. This can
only decrease the distance to x̄t. This implies that, given an estimate x̃, such that ‖x̃ − x̄t‖2 ≤ γ/(3W), we can
use Theorem 16 with γ′ � 2γ/3 to obtain an upper bound of M ≤ R2W2/(2γ/3 − η)2 on the number of updates.

Now, by definition,

E
(x,y)∼D

[y · x | y〈wt−1, x〉 < η] � E(x,y)∼D[y · x · 1{y〈wt−1,x〉<η}]
Pr(x,y)∼D[y〈wt−1, x〉 < η] .

In PAC learning with error ε, we can assume that α�. Pr(x,y)∼D[y〈wt−1, x〉 < η] ≥ ε because, otherwise, the
halfspace fwt−1 is a sufficiently accurate hypothesis (that is, classifies at least a 1 − ε fraction of examples with
margin at least η). This implies that it is sufficient to find a vector z̃ such that ‖z̃ − z̄‖2 ≤ αγ/(3W),
where z̄ � E(x,y)∼D[y · x · 1{y〈wt−1,x〉<η}].

Now, the distribution on y · x · 1{y〈wt−1,x〉<η} is supported on Bd
2 (R), and therefore, using Theorem 7, we can get

the desired estimate using 2d queries to STAT(Ω(εγ/(RW))). In other words, the estimation complexity of this
implementation of margin Perceptron is O([RW/(εγ)]2). We make a further observation that the dependence of
estimation complexity on ε can be reduced from 1/ε2 to 1/ε by using VSTAT in place of STAT. This follows
from Lemma 1, which implies that we need to pay only linearly for conditioning on 1{y〈wt−1,x〉<η}. Altogether, we
get the following result, which we, for simplicity, state for η � γ/2:

Theorem 17. There exists an efficient algorithm margin-Perceptron-SQ that, for every ε > 0 and distribution D over Bd
2 (R) ×{−1, 1} that is supported on examples (x, y) such that, for some vector w∗ ∈ Bd

2 (W), satisfy y〈w∗, x〉 ≥ γ, outputs a halfspace
w such that Pr(x,y)∼D[y〈w, x〉 < γ/2] ≤ ε. Margin-Perceptron-SQ uses O(d(WR/γ)2) queries to VSTAT(O((WR/γ)2/ε)).

The estimation complexity of our algorithm is the same as the sample complexity of the PAC learning
algorithm for learning large-margin halfspaces obtained via a standard online-to-batch conversion (e.g.,
Cesa-Bianchi et al. [18]). SQ implementations of Perceptron were used to establish learnability of large-margin
halfspaces with random classification noise (Bylander [17]) and to give a private version of Perceptron (Blum
et al. [12]). Perceptron is also the basis of SQ algorithms for learning halfspaces that do not require a margin
assumption (Blum et al. [13], Dunagan and Vempala [29]). All previous analyses that we are aware of used
coordinate-wise estimation of x̄ and resulted in an estimation complexity bound of O(d(WR/(γε)2). Perceptron
and SVM algorithms are most commonly applied over a very large number of variables (such as when using a
kernel), and the dependence of estimation complexity on d would be prohibitive in such settings.

5.2.2. Online p-Norm Algorithms. The Perceptron algorithm can be seen as a member in the family of online
p-norm algorithms (Grove et al. [46]) with p � 2. The other famous member of this family is the Winnow
algorithm (Littlestone [63]), which corresponds to p � ∞. For p ∈ [2,∞], a p-norm algorithm is based on a
p-margin assumption: there exists w∗ ∈ Bd

q (R) such that, for each example (x, y) ∈ Bd
p (R) × {−1, 1}, we have

y〈w∗, x〉 ≥ γ. Under this assumption, the upper bound on the number of updates is O((WR/γ)2) for p ∈ [2,∞)
and O(log d · (WR/γ)2) for p � ∞. Our �p mean estimation algorithms can be used in exactly the same way to
(approximately) preserve the margin, in this case giving us the following extension of Theorem 17.

Theorem 18. For every p ∈ [2,∞], there exists an efficient algorithm p-norm-SQ that, for every ε > 0 and distribution D
over Bd

p (R) × {−1, 1} that is supported on examples (x, y) that, for some vector w∗ ∈ Bd
q (W), satisfy y〈w∗, x〉 ≥ γ, outputs

a halfspace w such that Pr(x,y)∼D[y〈w, x〉 < 0] ≤ ε. For p ∈ [2,∞), p-norm-SQ uses O(d log d(WR/γ)2) queries to
VSTAT(O(log d(WR/γ)2/ε)), and for p � ∞, p-norm-SQ uses O(d log d(WR/γ)2) queries to VSTAT(O((WR/γ)2/ε)).

It is not hard to prove that a margin can also be approximately maximized for these more general al-
gorithms, but we are not aware of an explicit statement of this in the literature. We remark that, to implement
the Winnow algorithm, the update vector can be estimated via straightforward coordinate-wise statisti-
cal queries.

Many variants of the Perceptron and Winnow algorithms have been studied in the literature and applied
in a variety of settings (e.g., Dasgupta et al. [22], Freund and Schapire [43], Servedio [80]). The analysis
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inevitably relies on a margin assumption (and its relaxations) and, hence, we believe, can be implemented
using SQs in a similar manner.

5.3. Local Differential Privacy
We now exploit the simulation of SQ algorithms by locally differentially private (LDP) algorithms
(Kasiviswanathan et al. [57]) to obtain new LDP mean estimation and optimization algorithms. We first recall
the definition of local differential privacy. In this model, it is assumed that each data sample obtained by an
analyst is randomized in a differentially private way.

Definition 9. An α-local randomizer R : W → Z is a randomized algorithm that satisfies ∀w ∈ W and z1, z2 ∈ Z,
Pr[R(w) � z1] ≤ eαPr[R(w) � z2]. An LRD oracle for distribution D over W takes as an input a local randomizer R
and outputs a random value z obtained by first choosing a random sample w fromD and then outputting R(w). An
algorithm is α-local if it uses access only to the LRD oracle. Further, if the algorithm uses n samples such that sample
i is obtained from αi-randomizer Ri, then

∑
i∈[n] αi ≤ α.

The composition properties of differential privacy imply that an α-local algorithm is α-differentially private
(Dwork et al. [31]).

Kasiviswanathan et al. [57] show that one can simulate a STATD(τ) oracle with success probability 1 − δ by
an α-local algorithm using n � O(log(1/δ)/(ατ)2) samples from the LRD oracle. This has the following im-
plication for simulating SQ algorithms.

Theorem 19 (Kasiviswanathan et al. [57]). Let ASQ be an algorithm that makes at most t queries to STATD(τ). Then, for
every α > 0 and δ > 0, there is an α-local algorithm A that uses n � O(t log(t/δ)/(ατ2)) samples from the LRD oracle and
produces the same output as ASQ (for some answers of STATD(τ)) with probability at least 1 − δ.

Kasiviswanathan et al. [57] also prove a converse of this theorem that uses n queries to STAT(Θ(e2αδ/n)) to
simulate n samples of an α-local algorithm with probability 1 − δ. The high accuracy requirement of this
simulation implies that it is unlikely to give a useful SQ algorithm from an LDP algorithm.

5.3.1. MeanEstimation. Duchi et al. [27] give α-local algorithms for �2 mean estimation using O(d/(εα)2) sample
�∞ mean estimation using O(d log d/(εα)2) samples (their bounds are for the expected error ε, but we can
equivalently treat them as ensuring error ε with probability at least 2/3). They also prove that these bounds are
tight. We observe that a direct combination of Theorem 19 with our mean estimation algorithms implies
algorithms with nearly the same sample complexity (up to constants for q � ∞ and up to a O(log d) factor for
q � 2). In addition, we can as easily obtain mean estimation results for other norms. For example, we can fill
the q ∈ (2,∞) regime easily.

Corollary 11. For every α and q ∈ [2,∞], there is an α-local algorithm for �q mean estimation with error ε and success
probability of at least 2/3 that uses n samples from LRD, where

• For q � 2 and q � ∞, n � O(d log d/(αε)2).
• For q ∈ (2,∞), n � O(d log2 d/(αε)2).

5.3.2. Convex Optimization. Duchi et al. [28] give locally private versions of the mirror-descent algorithm for
the �1-setup and gradient descent for the �2-setup. Their algorithms achieve the guarantees of the (nonprivate)
stochastic versions of these algorithms at the expense of using O(d/α2) times more samples. For example, for
the mirror-descent over the Bd

1 , the bound is O(d log d(RW/εα)2) samples. α-local simulation of our algorithms
from Section 4 can be used to obtain α-local algorithms for these problems. However, such simulation leads to
an additional factor corresponding to the number of iterations of the algorithm. For example, for mirror-
descent in the �1-setup, we obtain an O(d log d/α2 · (RW/ε)4) bound. At the same time, our results in Sections 4
and 5 are substantially more general. In particular, our center-of-gravity-based algorithm (Theorem 15) gives
the first α-local algorithm for a non-Lipschitz setting.

Corollary 12. Let α > 0, ε > 0. There is an α-local algorithm that, for any convex bodyK given by a membership oracle with
the guarantee that Bd

2 (R0) ⊆ K ⊆ Bd
2 (R1) and any convex program minx∈K Ew∼D[ f (x,w)] in Rd, where ∀w, f (·,w) ∈

F (K,B), with probability at least 2/3, outputs an ε-optimal solution to the program in time poly(d, B
αε , log (R1/R0)) and

using n � Õ(d4B2/(ε2α2)) samples from LRD.

We note that a closely related application is also discussed in Belloni et al. [8]. It relies on the random walk-
based approximate value oracle optimization algorithm similar to the one we outlined in Section 5.1. Known
optimization algorithms that use only the approximate value oracle require a substantially larger number of
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queries than our algorithm in Theorem 15 and, hence, need a substantially larger number of samples to
implement. (Specifically, for the setting in Corollary 12, n � Õ(d6.5B2/(ε2α2)) is implied by the algorithm given
in Belloni et al. [8].)

5.4. Differentially Private Answering of Convex Minimization Queries
An additional implication in the context of differentially private data analysis is for the problem of releasing
answers to convex minimization queries over a single data set that was recently studied by Ullman [91]. For
a data set S � (wi)ni�1 ∈ Wn, a convex set K ⊆ Rd, and a family of convex functions F � { f (·,w)}w∈W over K, let
qf (S) �. argminx∈K

1
n
∑

i∈[n] f (x,wi). Ullman [91] considers the question of how to answer sequences of such queries
ε-approximately (that is, by a point x̃ such that 1

n
∑

i∈[n] f (x̃,wi) ≤ qf (S) + ε). We make a simple observation that
our algorithms can be used to reduce answering of such queries to answering of counting queries. A
counting query for a data set S, query function φ : W→[0, 1], and accuracy τ returns a value v such that
|v − 1

n
∑

i∈[n] φ(wi)| ≤ τ. A long line of research in differential privacy has considered the question of answering
counting queries (see Dwork and Roth [30] for an overview). In particular, Hardt and Rothblum [48] prove
that, given a data set of size n ≥ n0 � O( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅log(|W|) log(1/β)√

. · log t/(ατ2), it is possible to (α, β)-differentially
privately answer any sequence of t counting queries with accuracy τ (and success probability ≥ 2/3).
Note that a convex minimization query is equivalent to a stochastic optimization problem when D is the
uniform distribution over the elements of S (denote it by US). Further, a τ-accurate counting query is exactly a
statistical query for D � US. Therefore, our SQ algorithms can be seen as reductions from convex minimization
queries to counting queries. Thus, to answer t convex minimization queries with accuracy ε, we can use the
algorithm for answering t′ � tm(ε) counting queries with accuracy τ(ε), where m(ε) is the number of queries
to STAT(τ(ε)) needed to solve the corresponding stochastic convex minimization problems with accuracy ε.
The sample complexity of the algorithm for answering counting queries in Hardt and Rothblum [48] depends
only logarithmically on t. As a result, the additional price for such implementation is relatively small because
such algorithms are usually considered in the setting in which t is large and log |W| � Θ(d). Hence, the
counting query algorithm in Hardt and Rothblum [48] together with the results in Corollary 6 immediately
imply an algorithm for answering such queries that strengthens quantitatively and generalizes the results
in Ullman [91].

Corollary 13. Let p ∈ [1, 2], L0,R > 0, K ⊆ Bd
p(R) be a convex body and let F � { f (·,w)}w∈W ⊂ F 0

‖·‖p(K,L0) be a finite
family of convex functions. LetQF be the set of convex minimization queries corresponding to F . For any α, β, ε, δ > 0, there
exists an (α, β)-differentially private algorithm that, with probability at least 1 − δ, answers any sequence of t queries fromQF

with accuracy ε on data sets of size n for

n ≥ n0 � Õ
(L0R)2

̅̅̅̅̅̅̅̅̅̅̅̅
log(|W|)√ · log t
ε2α

· polylog d
βδ

( )( )
.

For comparison, the results in Ullman [91] only consider the p � 2 case, and the stated upper bound is

n ≥ n0 � Õ
(L0R)2

̅̅̅̅̅̅̅̅̅̅̅̅
log(|W|)√ ·max{log t, ̅̅d√ }

ε2α
· polylog 1

βδ

( )( )
.

Our bound is a significant generalization and an improvement by a factor of at least Õ( ̅̅d√ / log t). Ullman [91]
also shows that, for generalized linear regression, one can replace the

̅̅
d

√
in the maximum by L0R/ε. The

bound in Corollary 13 also subsumes this improved bound (in most parameter regimes of interest).

Finally, in the κ-strongly convex case (with p � 2), plugging our bounds from Corollary 8 into the algorithm
in Hardt and Rothblum [48], we obtain that it suffices to use a data set of size

n ≥ n0 � Õ
L20
̅̅̅̅̅̅̅̅̅̅̅̅
log(|W|)√ · log(t · d · logR)

εακ
· polylog 1

βδ

( )( )
.

The bound obtained by Ullman [91] for the same function class is

n0 � Õ
L20R

̅̅̅̅̅̅̅̅̅̅̅̅
log(|W|)√
εα

·max

̅̅
d

√̅̅̅̅
κε

√ ,
R log t

ε

{ }
polylog

1
βδ

( )( )
.
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Here, our improvement over Ullman [91] is two-fold: we eliminate the
̅̅
d

√
factor, and we essentially eliminate

the dependence on R (as in the nonprivate setting). We remark that our bound might appear incomparable to
that in Ullman [91], but it is, in fact, stronger because it can be assumed that κ ≥ ε/R2 (otherwise, bounds that
do not rely on strong convexity are better).

6. Conclusions
In this work, we give the first treatment of two basic problems in the SQ query model: high-dimensional mean
estimation and stochastic convex optimization. In the process, we demonstrate new connections of our
questions to concepts and tools from convex geometry, optimization with approximate oracles, and com-
pressed sensing. Our results provide detailed (but by no means exhaustive) answers to some of the most basic
questions about these problems. At a high level, our findings can be summarized as “estimation complexity of
polynomial-time SQ algorithms behaves like sample complexity” for many natural settings of those problems.
This correspondence should not, however, be taken for granted. In many cases, the SQ version requires a
completely different algorithm, and for some problems, we have not been able to provide upper bounds that
match the sample complexity (see the following).

Given the fundamental role that the SQ model plays in a variety of settings, our primary motivation and
focus is understanding the SQ complexity of these basic tasks for its own sake. At the same time our results
lead to numerous applications, among which are new strong lower bounds for convex relaxations and results
that subsume and improve on recent work that requires substantial technical effort.

As usual when exploring uncharted territory, some of the most useful results can be proven relatively easily
given the wealth of existing literature on related topics. Still, for many questions, new insights and analyses
are necessary (such as the characterization of the complexity of mean estimation for all q ∈ [1,∞)), and we
believe that those will prove useful in further research on the SQ model and its applications. There are also
many interesting questions that we encountered but were not able to answer. We list some of those here:

1. How many samples are necessary and sufficient for answering the queries of our adaptive algorithms,
such as those based on the inexact mirror descent? The answer to this question should shed new light on the
power of adaptivity in statistical data analysis (Dwork et al. [32]).

2. Is there an SQ equivalent of upper bounds on sample complexity of mean estimation for uniformly
smooth norms (see Appendix B for details)? Such a result would give a purely geometric characterization of
estimation complexity of mean estimation.

3. In the absence of a general technique, such as the preceding one, there are still many important norms we
have not addressed. Most notably, we do not know what is the estimation complexity of mean estimation in
the spectral norm of a matrix (or other Schatten norms).

4. Is there an efficient algorithm for mean estimation (or at least linear optimization) with estimation
complexity of O(d/ε2) for which a membership oracle for K suffices? (Our current algorithm is efficient only
for a fixed K as it assumes knowledge of John’s ellipsoid for K.)

Subsequent work by Li et al. [62] partially resolved question 2 and completely resolved question 3 raised
here. Namely, they extend our optimal mean estimation algorithms to arbitrary symmetric norms (i.e., invariant
under permutations of coordinates and sign flips) of type 2 and show polynomial in d lower bounds for mean
estimation in Schatten norms when p �� 2. This shows, in particular, that uniform smoothness alone does not
lead to (nearly) dimension-independent SQ mean estimation.
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Appendix A. Uniform Convexity, Uniform Smoothness and Consequences
A space (E, ‖ · ‖) is r-uniformly convex if there exists constant 0 < δ ≤ 1 such that, for all x, y ∈ E,

‖x‖r + δ‖y‖r ≤ ‖x + y‖r + ‖x − y‖r
2

. (A.1)

From classical inequalities (see, e.g., Ball et al. [5]) it is known that �dp for 1 < p < ∞ is r-uniformly convex for r � max{2, p}.
Furthermore,
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• When p � 1, the function Ψ(x) � 1
2(p(d)−1) ‖x‖2p(d) (with p(d) � 1 + 1/ ln d) is two-uniformly convex w.r.t. ‖ · ‖1.

• When 1 < p ≤ 2, the function Ψ(x) � 1
2(p−1) ‖x‖2p is two-uniformly convex w.r.t. ‖ · ‖p.

• When 2 < p < ∞, the function Ψ(x) � 1
p ‖x‖pp is p-uniformly convex w.r.t. ‖ · ‖p.

By duality, a Banach space (E, ‖ · ‖) being r-uniformly convex is equivalent to the dual space (E∗, ‖ · ‖∗) being s-uniformly
smooth, where 1/r + 1/s � 1. This means there exists a constant C ≥ 1 such that, for all w, z ∈ E∗,

‖w + z‖s∗ + ‖w − z‖s∗
2

≤ ‖w‖s∗ + C‖z‖s∗. (A.2)

In the case of �dp space, we obtain that its dual �dq is s-uniformly smooth for s � min{2, q}. Furthermore, when 1 < q ≤ 2, the
norm ‖ · ‖q satisfies (A.2) with s � q and C � 1; when 2 ≤ q < ∞, the norm ‖ · ‖q satisfies (A.2) with s � 2 and C � q − 1.
Finally, observe that, for �d∞, we can use the equivalent norm ‖ · ‖q(d) with q(d) � ln d + 1:

‖x‖∞ ≤ ‖x‖q(d) ≤ e ‖x‖∞,

and this equivalent norm satisfies (A.2) with s � 2 and C � q(d) − 1 � ln d that grows only moderately with dimension.

Appendix B. Sample Complexity of Mean Estimation
The following is a standard analysis based on Rademacher complexity and uniform convexity (see, e.g., Pisier [71]). Let
(E, ‖ · ‖) be an r-uniformly convex space. We are interested in the convergence of the empirical mean to the true mean in the
dual norm (to the one in which we optimize). By Observation 1, this is sufficient to bound the error of optimization using
the empirical estimate of the gradient on K�. B‖·‖.

Let (wj)nj�1 be i.i.d. samples of a random variable w with mean w̄ and let w̄n �. 1
n
∑n

j�1 wj be the empirical mean estimator.
Notice that

‖w̄n − w̄‖∗ � sup
x∈K

〈w̄n − w̄, x〉| |.

Let (σj)nj�1 be i.i.d. Rademacher random variables (independent of (wj)j). By a standard symmetrization argument, we have

E
w1 ,...,wn

sup
x∈K

1
n

∑n
j�1

wj, x

〈 〉
− w̄, x〈 〉

⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ 2 E

σ1 ,...,σn
E

w1 ,...,wn
sup
x∈K

∑n
j�1

σj〈wj, x〉
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒.

For simplicity, we denote ‖K‖ �. supx∈K ‖x‖ the ‖ · ‖ radius of K. Now, by the Fenchel inequality,

E
σ1 ,...,σn

sup
x∈K

∑n
j�1

σj〈wj, x〉
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ inf

λ>0
E

σ1 ,...,σn

1
rλ

sup
x∈K

‖x‖r + 1
sλ

⃦⃦⃦⃦
λ

n

∑n
j�1

σjwj
⃦⃦⃦⃦s
∗

{ }

≤ inf
λ>0

E
σ1 ,...,σn−1

1
rλ

‖K‖r + λs−1

sns
1
2

⃦⃦⃦⃦∑n−1
j�1

σjwj + σnwn
⃦⃦⃦⃦s
∗
+
⃦⃦⃦⃦∑n−1

j�1
σjwj − σnwn

⃦⃦⃦⃦s
∗

[ ]{ }

≤ inf
λ>0

E
σ1 ,...,σn−1

1
rλ

‖K‖r + λs−1

sns

⃦⃦⃦⃦∑n−1
j�1

σjwj
⃦⃦⃦⃦s
∗
+ C
⃦⃦
wn
⃦⃦s∗

[ ]{ }
,

where the last inequality holds from the s-uniform smoothness of (E∗, ‖ · ‖∗). Proceeding inductively, we obtain

E
σ1 ,...,σn

sup
x∈K

∑n
j�1

σj〈wj, x〉
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ inf

λ>0

1
rλ

‖K‖r + Cλs−1

sns
∑n
j�1

‖wj‖s∗
{ }

.

It is a straightforward computation to obtain the optimal λ̄ � ‖K‖r−1n
C1/s(∑j ‖wj‖s∗)1/s, which gives an upper bound

E
σ1 ,...,σn

sup
x∈K

∑n
j�1

σj〈wj, x〉
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ 1

n1/r
C1/s sup

x∈K
‖x‖ 1

n

∑n
j�1

‖wj‖s∗
( )1/s

.

By simply upper bounding the quantity by ε > 0, we get a sample complexity bound for achieving ε accuracy in
expectation, n � �Cr/s/εr�, where C ≥ 1 is any constant satisfying (A.2). For the standard �dp-setup, that is, where (E, ‖ · ‖) �
(Rd, ‖ · ‖p) by the parameters of uniform convexity and uniform smoothness provided in Appendix A, we obtain the
following bounds on sample complexity:
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i. For p � 1, we have r � s � 2 and C � ln d by using the equivalent norm ‖ · ‖p(d). This implies that n � O(ln dε2 ) sam-
ples suffice.

ii. For 1 < p ≤ 2, we have r � s � 2 and C � q − 1. This implies that n � �q−1ε2 � samples suffice.
iii. For 2 < p < ∞, we have r � p, s � q, and C � 1. This implies that n � � 1εp� samples suffice.

Appendix C. Proof of Corollary 6
Note that, by Proposition 2, in order to obtain an ε-optimal solution to a nonsmooth convex optimization problem, it
suffices to choose η � ε/2 and T � �r2rLr0DΨ(K)/εr�. Because K ⊆ Bp(R), to satisfy (11), it is sufficient to have, for
all y ∈ Bp(R),

〈∇F x( ) − g̃ x( ), y〉 ≤ η/2.

Maximizing the left-hand side on y, we get a sufficient condition: ‖∇F(x) − g̃(x)‖qR ≤ η/2. We can satisfy this condition by
solving the mean estimation problem in the �q-norm with error η/[2L0R] � ε/[4L0R] (recall that f (·,w) is L0 Lipschitz w.r.t.
‖ · ‖p). Next, using the uniformly convex functions for �p from Appendix A, together with the bound on the number of
queries and error for the mean estimation problems in �q-norm from Section 3.1, we obtain that the total number of queries
and the type of queries we need for stochastic optimization in the nonsmooth �p-setup are

• p � 1: We have r � 2 and DΨ(K) � e2 ln d
2 R2. As a consequence, solving the convex program amounts to using O(d ·

(L0Rε )2 ln d) queries to STAT( ε
4L0R

).
• 1 < p < 2: We have r � 2 andDΨ(K) � 1

2(p−1)R
2. As a consequence, solving the convex program amounts to usingO(d log d ·

1
(p−1) (L0Rε )2) queries to STAT(Ω( ε

[log d]L0R)).
• p � 2: We have r � 2 andDΨ(K) � R2. As a consequence, solving the convex program amounts to usingO(d · (L0Rε )2) queries

to STAT(Ω( ε
L0R

)).
• 2 < p < ∞: We may choose r � p, DΨ(K) � 2p−2

p Rp. As a consequence, solving the convex program amounts to using
O(d log d · 22p−2(L0Rε )p) queries to VSTAT((64L0R log d

ε )p).
□

Appendix D. Proof of Corollary 7
Similarly to in Appendix C, given x ∈ K, we can obtain g̃(x) by the mean estimation problem in �q-norm with error
ε/[12L0R]. (Notice that we have chosen η � ε/6.)

Now, by Proposition 3, in order to obtain an ε-optimal solution, it suffices to run the accelerated method for T �
� ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅2L1DΨ(K)/ε√ � iterations, each of them requiring g̃ as defined earlier. By using the two-uniformly convex functions for �p
with 1 ≤ p ≤ 2 from Appendix A, together with the bound on the number of queries and error for the mean estimation
problems in the �q-norm from Section 3.1, we obtain that the total number of queries and the type of queries we need for
stochastic optimization in the smooth �p-setup is

• p � 1: We have r � 2 and DΨ(K) � e2 ln d
2 R2. As a consequence, solving the convex program amounts to using O(d ·̅̅̅̅̅̅̅̅̅̅̅̅

ln d · L1R2

ε

√
) queries to STAT( ε

12L0R
).

• 1 < p < 2: We have r � 2 andDΨ(K) � 1
2(p−1)R

2. As a consequence, solving the convex program amounts to usingO(d log d ·̅̅̅̅̅̅̅̅̅̅̅̅
1

(p−1) · L1R
2

ε

√
) queries to STAT(Ω( ε

[log d]L0R)).
• p � 2: We have r � 2 andDΨ(K) � R2. As a consequence, solving the convex program amounts to usingO(d ·

̅̅̅̅̅
L1R2

ε

√
) queries

to STAT(Ω( ε
L0R

)).
□

Endnotes
1 In this context, an “empirical” version of SQ is used, which is referred to as counting or linear queries. It is now known that empirical values are
close to expectations when differential privacy is preserved (Dwork et al. [32]).
2The analysis and bounds they give are inaccurate, but a similar conclusion follows from the bounds we give in Corollary 6.
3 If d is not a power of two, we can first pad the input distribution to Rd′ , where d′ � 2�log d� ≤ 2d.
4 In Lyubarskii and Vershynin [66], complex vector spaces are considered, but the results also hold in the real case.
5We omit some necessary technical conditions, for example, measurability, for the gradient selection in the stochastic setting.We refer the reader
to Rockafellar [74] for a detailed discussion.
6We have normalized the function so that the constant of r-uniform convexity is one.
7 Indeed, hardness results for optimization are commonly obtained via hardness results for appropriately chosen decision problems.
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