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Introduction

Statistical estimation problems require to reconstruct an unknown parameter of interest
given data. The general setting can be expressed in terms of a parameter space © and
a dataset D,, of n > 1 random variables whose distributions are parametrized by the
model D, |0 ~ Pgn), (}P’én) : 0 € ©). This incorporates the idea that the information on the
parameter can be (partially) inferred from the law of the observations.

This thesis consists of three chapters that investigate the theoretical properties of dif-
ferent approaches for benchmark estimation problems. They study many desirable features
of estimation procedures, providing both positive and negative results. We introduce below
the relevant terminology, starting from the different interpretations of randomness itself.

The frequentist approach assumes there exists some objective random process generating
the observations, and that the experiment can be repeated (in principle) multiple times.
That is, the dataset is distributed according to ]P’gol) for some ‘true’ parameter of interest
0y € ©. The parameter of interest 0y is viewed as some deterministic entity that can be
inferred by a suitable estimator, which is a function of the random dataset. Maximum
likelihood is a famous example, but frequentist methods are not restricted to be based on
the likelihood.

The Bayesian interpretation assigns a prior probability distribution 7 to the whole
parameter space O, in order to model a priori information. The prior distribution might be
intended as an objective or a subjective belief, but the purpose is the same. Even though
the observations might be the result of a random process, they are treated as given known
quantities, and they are employed into the computation of the posterior distribution through
Bayes’ theorem. The posterior is the conditional distribution of the parameter 6, given the
dataset D,, and the prior 7, and is the sole tool that a Bayesian has (and needs) to make
statements about estimation and uncertainty.

In this thesis, Bayesian methods are evaluated under the frequentist paradigm. This
means that it is always assumed that the observations follow some unknown (but fixed)
distribution Péz) for some 6y € ©. The hope is that the posterior distribution contracts,
that is, assigns most of its mass, to a small neighbourhood of 6y, with high probability
or in expectation (with respect to IP’g;)). In all these cases, the posterior density will be
proportional to the product between the likelihood of the sample and the prior, and this
makes posterior contraction a likelihood-based method.

A statistical model (IP’én) : 0 € O) can be classified depending on the size of the parameter
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space 0, in the following sense. The model is parametric if © is embedded in some Euclidean
space R%. The model is semiparametric if the indexing parameter is actually a pair (6,7)
of a Euclidean parameter § and an infinite-dimensional nuisance parameter 7. For our
purposes, this means that the latter belongs to either an infinite-dimensional vector space,
some subset of real-valued functions or some subset of probability measures on the real line.
The model is nonparametric if © itself is infinite-dimensional. The main difference between
semiparametric and nonparametric models is that, in the former, the parameter of interest
0y € O is always finite-dimensional. Lastly, we say that the model is high-dimensional if
the number of parameters grows with the number of observations.

Among the many desirable properties that a good estimation method might satisfy,
the bare minimum is consistency. This is an asymptotic property, thus only depends on
the limiting behavior as the sample size n tends to infinity. A frequentist estimator é\n is
consistent if it converges, in a suitable sense, to the parameter of interest 6y. Similarly,
a Bayesian posterior distribution is consistent if it converges to the point mass at 6.
Consistency can be quantified by convergence rates, which measure the speed of convergence
to 0p. They are usually given as decreasing sequences r, depending of the sample size n,
and possibly some other model-related parameters.

Fast rates make a procedure more appealing from a practical point of view, more so if it
can be easily implemented. Even when this is not the case, the effort of recovering optimal
convergence rates usually provides insights into the specific problem at hand. For example,
it is known that the minimax rate of estimation (in supremum norm) in the nonparametric
regression problem depends on the smoothness of the regression function. Another example
is the sparse linear regression problem, where the minimax rates (in L' or L? norm) depend
on the sparsity level, that is, the number of non-zero components of the regression vector.

In situations where the optimal rates depend on an underlying hyperparameter, it might
be difficult to obtain fast rates when no prior information is available. To overcome this
issue, the concept of adaptivity has been introduced. An estimator is adaptive if it can
achieve optimal contraction rates without requiring knowledge of the hyperparameter. A
well-established technique in the Bayes literature to deal with adaptivity involves hierar-
chical priors: one puts first a hyperprior on the hyperparameters and then, given a fixed
hyperparameter, a prior on the corresponding parameter space. If optimal rates can be
achieved when the true hyperparameter is known, and the prior is carefully selected, then
the posterior will be adaptive. On the frequentist side, there is no general approach and
each problem has to be tackled on its own. In the sparse linear regression setting, one can
employ for instance a Lepski-type procedure as in [9], and show that the Lasso estimator
in [79] achieves adaptivity with respect to the sparsity level.

A more refined property for an estimator @\n with rates 7, is the asymptotic shape
of the rescaled r,, 1(§n — 6p). In parametric models, the frequentist statistician aims to
find asymptotically efficient estimators, for which the sequence \/ﬁ(é\n — 6p) converges in
distribution to the normal N (0, I, ) where Iy, denotes the Fisher information matrix at

p. This is true for the maximum likelihood estimator (MLE) if the model is regular. The
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Bayesian statistician aims to invoke the parametric Bernstein-von Mises (BvM) theorem,
see Theorem 10.1 in [81], which states that, under weak conditions on the model and the
prior 8y ~ m, the posterior distribution of \/ﬁ(é\n — fy) also converges to N (0, I, DA
remarkable feature of this result is that the contribution of the prior washes out in the
limit. The major implication is that the posterior distribution is a valid inference tool from
a frequentist perspective.

The situation is dramatically different for high-dimensional models, where the prior
choice becomes crucial in determining the asymptotic properties of the posterior. Semi-
parametric BvM theorems have been obtained in [12, (19, 23], [70]. It has been observed that
there can be a large bias in the posterior limit, for example in [I8, 23] [75], and it is unclear
whether the bias is due to the specific choice of prior or whether this is a fundamental limi-
tation of the Bayesian method. The nonparametric BvM phenomenon has been studied for
Gaussian regression models in [21], 22], whereas the non-asymptotic accuracy of the normal
approximation of the posterior has been the focus of a recent effort in [77].

Another valuable property of an estimation principle, such as Bayes or maximum like-
lihood, is the ability to deal with observations that are non-i.i.d. as a result of the com-
bination of different datasets or the contamination by outliers. In these models, a fraction
of the observations is informative, that is, it behaves as an i.i.d. sample of the true under-
lying distribution; the remaining fraction can instead be only slightly informative or even
adversarial. A method that can lead to fast rates under contaminated datasets is said to be
robust. A frequentist statistician has an advantage in this situation because it is sometimes
possible to discard part of the data and reduce the fraction of contaminated observations.
An example of a robust frequentist estimator for the mean of a heavy-tailed variable is the
median-of-means in [37, Section 4.1]. On the other hand, a purely Bayesian approach does
not allow to assign a prior after having looked at the data, and so the whole dataset should
be used instead. In the Bayesian framework, the concept of robustness can also refer to
the sensitivity of the posterior with respect to different choices of prior. If the posterior is
well-behaved for large families of prior, then the procedure is robust.

With the terminology introduced so far, we can briefly synthesize the three chapters of
the thesis in the next table. This is meant as a broad overview to compare their different

facets.
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Chapter |1 Chapter |2 Chapter |3
Interpretation Bayesian Bayesian frequentist
Dimension semiparametric nonparametric nonparametric
Model Gaussian sequence regression regression
Observations indep. Gaussian ii.d. i.i.d. with outliers

Gaussian noise

heavy-tailed noise

Param. of interest

model variance

regression function

regression function

noise variance

Hyperparam.

underlying structure

smoothness index

sparsity level

Nuisance param.

vector of means

noise distribution

Principle posterior contraction | posterior contraction median-of-means
Consistency fails in general yes unknown in general
holds in special case holds in linear case
Type of rates asymptotic asymptotic non-asymptotic
Optimal rates yes yes yes and maybe
Asymptotic shape yes
Adaptivity yes yes
Robustness (data) mild adversarial
Robustness (prior) no no

Chapter [I} Bernstein-von Mises for a non-standard semipara-

metric model

In the first chapter, we consider the following semiparametric experiment. For given 0 <

a < 1, one observes n independent and normally distributed random variables

X; ~ N (p1(i > na),0*?), i=1,...,n

The parameters in the model are {u} : ¢ > na} and ¢* > 0. The goal is to estimate
the variance ¢*? while treating the mean vector p* := (,u"[‘mw ..., ) as nuisance. We
approach the problem from a Bayesian perspective, by studying the asymptotic properties
of the posterior distribution arising from different priors on the parameters.

The observations can be divided into two sets, one with |na] i.i.d. normal variables
N(0,0*?%) and the other with n— |n«a| independent normal variables N'(p}, 0*?). The statis-
tician knows which fraction of the dataset has mean zero and which fraction is corrupted,
but the contamination is not adversarial, that is, both fractions of the sample share the
same variance o*2. This might be the result of combining datasets coming from different
experiments measuring the same physical quantity.

The family of models taken into consideration generalizes the Neymann-Scott model

in [70], which has been labelled ‘disturbing’ by L. Le Cam [54] since it naturally leads
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to inconsistent MLE. A frequentist approach would allow throwing away the fraction of
the sample that is contaminated by the non-zero means, and this would yield consistent
estimates. It is easy to show that the MLE obtained using all the data points converges to
ac*?, it therefore underestimates the true variance by the factor o.. One could dismiss the
issue by multiplying the MLE by the factor o~ !.

We investigate whether a Bayesian methods is robust enough to deal with the combined
dataset by itself. This approach to the problem is more involved and requires a suitable
choice of priors for the pair (*2, u*). Since the posterior assigns more mass to regions with
large likelihood, it is not clear whether the Bayesian method is able to correct for the flaws
of the MLE. Such a correction has been observed before in some irregular models, see for
example [26], 40} [75].

In the first part of the chapter, we investigate whether the posterior is consistent when
the nuisances are modelled as i.i.d. variables. Surprisingly, the answer is negative in a very
general sense. Whenever the nuisances are independently drawn from a proper distribution,
the posterior does not contract around the true variance. Thus the Bayesian method fails
to correct the flaws of the MLE for a large class of natural priors. We can show this by
means of lower bounds on the logarithm of the posterior density. Our arguments heavily
rely on the specifics of the Gaussian sequence model, but they do not require any decay
condition on the tails of the prior.

The lack of structure on the nuisance parameter would suggest that a correlated prior
on the means should perform worse, but it turns out that this is not the case. In the
second part of the chapter we construct a Gaussian mixture prior for which the posterior is
consistent and contracts with parametric rate. For this prior, the limit distribution in the
BvM sense is derived and it is shown that it is non-Gaussian in the case of small means.
It remains open whether a similar behavior carries over to more general prior choices or
whether this is a fortuitous feature of the Gaussian mixture.

Another counter-intuitive fact is the non-Gaussianity of the asymptotic shape in the case
of small means. This is motivated by the fact that the posterior does not throw away the
non-zero mean observations, and a simulation study shows that the maximum a posteriori
(MAP) estimate based on the limit distribution has better frequentist properties than the

adjusted MLE that only uses the observations with zero mean.

Chapter [2: deep Gaussian process priors

In the second chapter we consider the multivariate nonparametric regression model with
random design supported on [—1, 1]¢, where we observe n i.i.d. pairs (X;,Y;) € [-1,1]¢ x R,

i=1,...,n, with
E:f*(Xl)+5za i1=1,...,n

and ¢; independent and standard normal random variables that are independent of the

design vectors (Xy,...,X,). The problem is tackled from a Bayesian perspective, under

5



Introduction

an additional structural assumption that includes important cases such as (generalized)
additive models.

We assume that the regression function f* can be represented as the composition of
q* + 1 functions, that is, f* = hj. o hy._y o---hj o hg. Each component h; is §;-Hélder
and maps R% to R%+1, thus taking in input d; > 1 variables. We allow i} to only depend
on a number ¢ < df of variables, which we call effective dimension. This results in a
hyperparameter (A*,3*) consisting of a graph A* and a vector of smoothness indices 3*.
We are interested in recovering the regression function f* only, while being adaptive with
respect to the unknown composition graph and smoothness index.

This particular setting is inspired by deep learning methods [44], which are most success-
ful when performing tasks that involve some underlying modular structure, that is, when
complex objects have to be built using a small number of simpler features. A prototypical
example is writing. The page of a book can be assembled using a small number sentences,
each sentence using a small number of words, and each word using a small number of letters.
In [76] it has been shown that sparsely connected deep neural networks are able to pick up
the underlying composition structure and achieve near minimax estimation rates. On the
contrary, wavelet thresholding methods are shown to be unable to adapt to the underlying
structure resulting in potentially much slower convergence rates.

Gaussian process (GP) priors are a natural choice in the classical Bayesian nonparamet-
ric regression setting. Posterior contraction rates have been established in [41], Section 11]
and are known to be optimal in certain cases. Gaussian processes priors are also widely used
in machine learning [73]. This motivates the study of priors induced by the composition of
GPs, which are known as deep Gaussian processes (DGPs) in the literature [33] 32] and are
the Bayesian analogue of deep networks.

In this chapter we derive posterior contraction rates for DGPs, by extending the theory
of GP priors. We implement a hierarchical procedure, where a hyperprior is assigned to the
possible composition structures and then, given a composition structure, a suitable DGP
prior is assigned to the corresponding function class. For such a DGP prior construction
we show that the posterior contraction rate matches nearly the minimax estimation rate.
In particular, if there is some low-dimensional structure in the composition, the posterior
will not suffer from the curse of dimensionality.

The main tool of our analysis is an extension of the concentration function for Gaussian
processes introduced in [82]. Furthermore, our proving strategy requires some regularization
in the construction of the DGP prior. For a fully Bayesian approach, stability is enforced by
conditioning each individual Gaussian process to be in a set of ’stable’ paths. Specifically,
these sets are obtained by inflating Holder balls and, to achieve near optimal contraction
rates, the size of the inflations has to be carefully selected and depends on the optimal
contraction rate itself. It is not clear whether this regularization is indeed necessary, but it
has the same flavor of other stabilization enhancing methods that improve the performance

of deep learning, such as dropout and batch normalization [44].
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Chapter [3} median-of-means for robust inference in least-

squares regression

In the third chapter we consider the setting of nonparametric least-squares regression. Let
Y be an unknown square-integrable real variable and let X be some explanatory variable
on a measurable space X and law Px. The statistician is given a (closed) convex function
class F C L?(Px) and some dataset of observations D,, = (X,Y5)i=1,..n. The goal is to

provide a frequentist estimator for the oracle pair (f*,o*) given by

D=

fr=argminE[(Y — f(X))?], o* =E[(Y — f1(X))*]2,
feF
and this estimator should have as good as possible non-asymptotic guarantees.

The additional complication is that the dataset D,, may be contaminated by a subset
Do = (X;,Yi)ico of |O] < n/2 arbitrary outliers. One expects to be able to solve the
problem at hand as long as the number of outliers is not too large and the remaining
informative observations in Dz = D,, \ Do are i.i.d. as (X,Y’), which satisfy Y = f*(X) + ¢
with residual ¢ :=Y — f*(X) that may be heavy-tailed and not independent of X.

A frequentist nonparametric method to recover the unknown regression function f* is

the regularized empirical risk minimizer

FRERM . avo min {1 Zn:(n X))+ qu(f)}

n
feF i—1

for some tuning parameter A > 0 and a penalty functional ¥ on F. The penalty functional
reduces overfitting by assigning a large value to functions that are too big, in some sense.
This method has two drawbacks: on one hand, if the residuals are heavy-tailed this leads
to suboptimal non-asymptotic properties; on the other, the empirical average involves all
the observations in the dataset and can be strongly influenced by the presence of even one
outlier.

The method introduced in [60, 55] makes the RERM robust by replacing the empirical
averages by the median-of-means (MOM) over a number K of blocks: one partitions of
the dataset into K blocks, computes the empirical average relative to each block, and then
takes the median of all these empirical averages. The resulting object is robust to K /2
outliers and has good performance even when the underlying distribution has no second
moment [37, Section 4.1]. This results in a robust MOM-K estimator ]?,\ Kk with penalization
parameter A > 0, for which non-asymptotic guarantees are obtained in high probability.

In the sparse linear case, this problem is equivalent to estimating B* in the model
Y = XT3* 4 ¢ for the function space Fo = {x — x73 : 8 € R%, |B|op < s*} for some
sparsity level s* > 0 and |3]p the number of non-zero components of 3. In this case, the
MOM method outlined above yields a robust version of the Lasso estimator [7} [8, [9], which
is minimax optimal but its optimal penalization parameter has to be proportional to ¢*. In

a special instance, the Lasso has the following Bayesian interpretation: it is the maximum
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a posteriori (MAP) estimate arising from the model Y|X, 3 ~ N(X "3, 0%I) and 3 drawn
from a Laplace prior.

In the third chapter we extend the scope of the MOM approach to the case of unknown
noise standard deviation ¢*. A new method is proposed that yields, in the sparse linear
case, a robust version of the square-root Lasso [10] [35], which is minimax optimal and its
penalization parameter does not depend on ¢*. The square-root Lasso is a scale-invariant
method [43] Section 5] that modifies the Lasso in order to achieve adaptivity, but the
modifications have no obvious Bayesian interpretation.

We also show that, in the high-dimensional sparse linear regression setting with unknown
o* and known sparsity level s* < d, our MOM estimator achieves the optimal rates of
estimation of B* using a number of blocks K of the order of the number of outliers. The
convergence rate for o* improves on previously available estimators, but we do not show this
being optimal. Since the sparsity level may be unknown in practice, an aggregated adaptive
procedure based on Lepski’s method is proposed. For that, one first infers an estimated
sparsity level s and then a number of blocks K. It is shown that the resulting adaptive
estimator (E, 0,5) attains similar frequentist properties as the estimator with known true

sparsity level.




Chapter 1

Bayesian variance estimation in
the Gaussian sequence model with

partial information on the means

This chapter is based on:
G. Finocchio and J. Schmidt-Hieber. Bayesian variance estimation in the Gaussian sequence
model with partial information on the means. Electron. J. Statist. 14(1): 239-271 (2020).

Abstract

Consider the Gaussian sequence model under the additional assumption that
a fixed fraction of the means is known. We study the problem of variance estima-
tion from a frequentist Bayesian perspective. The maximum likelihood estimator
(MLE) for o2 is biased and inconsistent. This raises the question whether the
posterior is able to correct the MLE in this case. By developing a new proving
strategy that uses refined properties of the posterior distribution, we find that
the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters.
In particular, no assumption on the decay of the prior needs to be imposed. Sur-
prisingly, we also find that consistency can be retained for a hierarchical prior
based on Gaussian mixtures. In this case we also establish a limiting shape result
and determine the limit distribution. In contrast to the classical Bernstein-von
Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis
leads to new statistical estimators outperforming the correctly calibrated MLE

in a numerical study.

1.1 Introduction

For given 0 < a < 1, suppose we observe n independent and normally distributed random

variables

X; ~ N (p1(i > na),0*), i=1,...,n. (1.1.1)

9



1.1. Introduction

The parameters in the model are p}, ¢ > na and ¢* > 0. The goal is to estimate the
variance o*? while treating the mean vector pu* := (,u’lfnOJ ,..., ) as nuisance. For a = 0,
we recover the Gaussian sequence model. For o« > 0, this can be viewed as the Gaussian
sequence model with additional knowledge that the means of the first [na| observations
are known (in which case we can subtract them from the data).

One can think of model as a simple prototype of a combined dataset. Using
for instance different measurement devices, one often faces merged datasets collected from
multiple sources. The different sources might not be of the same quality concerning the
underlying parameter, see [65] for an example. An alternative viewpoint is to interpret
model as a sparse sequence model with known support. Since a (1 — a)-fraction of
the data is perturbed, we are in the dense regime. Knowledge of the support is then crucial
as otherwise there is no consistent estimator for o*2.

If nis even and o = 1/2, then is equivalent to the Neyman-Scott model [70] up to
a reparametrization. Model is in this case equivalent to observing U; := (X}, o4+ X;)
and V; 1= (X, /245 — X;) for i = 1,...,n/2. Since U; and V; are independent, this is thus

equivalent to observing independent random variables U;, V; ~ N/ ( 20*2). Estimation

M2/2+17
of o* in the latter model is known as Neyman-Scott problem.

Although ¢*? can be estimated with parametric rate based on the first na observations,
a striking feature of the model is that the MLE for ¢*? is inconsistent. In fact the MLE

o~
Omle
reason is that the likelihood over the observations with non-zero mean significantly affects

the total likelihood viewed as a function in o2.

converges to ao*? therefore underestimating the true variance by the factor a. The

We study what happens when a Bayesian approach is implemented for the estimation
of the variance and whether a posterior distribution can correct for the bias of the MLE.
The Bayesian method can be viewed as a weighted likelihood method: instead of taking the
parameter with the largest likelihood the posterior puts mass on parameter sets with large
likelihood. Because of this, the posterior can in some cases correct the flaws of the MLE.
An example are irregular models, see [40], 20, [75].

In the first part of the paper, we prove that whenever the nuisances are independently
generated from a proper distribution, the posterior does not contract around the true vari-
ance. This shows that, for a large class of natural priors, the Bayesian method is unable to
correct the MLE. In frequentist Bayes, several lower bound techniques have been developed
in order to describe when Bayesian methods do not work, [17, 25, 24, R0, 20} 49]. These
results can be used for instance to show that a certain decay of the prior is necessary to
ensure posterior contraction. Our lower bounds are of a different flavor and do not require
a condition on the tail behavior.

Since for the non-zero means no additional structure is assumed, there is no way to get
a better estimate of one mean from the knowledge of all other means. Therefore, one might
be tempted to think that a correlated prior on the means cannot perform better than an
i.i.d. prior and consequently must lead to an inconsistent posterior as well. Surprisingly,

this is not true and we construct in the second part of the article a Gaussian mixture prior

10



1.2.  Likelihood and posterior

for which the posterior contracts with the parametric rate around the true variance. For
this prior we derive the limit distribution in the Bernstein-von Mises sense. In contrast
with the Bernstein-von Mises theorem, the posterior limit is non-Gaussian in the case of
small means. In this case the posterior also incorporates information about the second part
of the sample into the estimator and we show in a simulation study that the maximum a
posteriori estimate based on the limit distribution outperforms the \/n-consistent estimator
that only uses the observations with zero mean.

Estimation of the variance in model can also be interpreted as a semi-parametric
problem. The results in this article therefore contribute to the recent efforts to understand
frequentist Bayes in semiparametric models. Semiparametric Bernstein-von Mises theorems
are derived under various conditions in [70, 19 12, 23]. For specific priors, it has been
observed that there can be a large bias in the posterior limit, see [I8, 23] [75]. In all the
cases studied so far, it is unclear whether the bias is due to the specific choice of prior
or whether this is a fundamental limitation of the Bayesian method. To the best of our
knowledge, our results show for the first time that the posterior can be inconsistent for all
natural priors.

Related to model [34] studies Bayes for variance estimation of the errors in the
nonparametric regression model. It is shown that if the posterior contracts around the true
regression function with rate o(nfl/ 1), the marginal posterior for the variance contracts
with parametric rate around the true error variance and Bernstein-von Mises result holds.

The article is organized as follows. In Section [1.2] we discuss aspects of the problem
related to the likelihood and the posterior distribution. A crucial identity for the log-
posterior is derived in Section [L.3] This leads then to the general negative result in Section
The Gaussian mixture prior with parametric posterior contraction is constructed in
Section This section also contains the limiting shape result and a numerical simulation
study. All the proofs are deferred to the appendix.

Notation: Vectors are denoted in bold letters, that is, u = (u1,...,uq) € R?. For a vector
u = (uy,...,us), we write |ul3 = Zle u? and u? = |u|3/k for the averages of the squares
(not to be confused with the squared averages). We write n; = |na] and ng =n —ny. The
probability and expectation induced by model are denoted by P and Ef.

1.2 Likelihood and posterior

The MLE. For the subsequent analysis, it is convenient to split the data vector X =
(X1,...,X,) in the part with zero means Y = (Xi,...,X,,) and the observations with
non-zero means Z = (Xp,4+1,...,Xp) such that X = (Y, Z). The likelihood function of the

model is

2 9 ) e
L(O-2 M‘Y Z) - ée_% ée_‘z a‘;|2 = LE_W.
’ ’ (27r02)n1/2 (27T02)n2/2 (27T02)n/2 (1.2.1)
L(o?ulY) L(02,1|Z)
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1.2.  Likelihood and posterior

Maximizing over (o2, ) yields the MLE
2~ Y3
(Ur2nleall'mle) = <’n‘2a Z) .

If only based on the subsample Y, the MLE for 0*2 would be [Y|3/n; and this converges to
0*? with the parametric rate n~'/2. Hence |Y|3/n converges to ao*?. The MLE for ¢*? is
therefore inconsistent and misses the true parameter o*2 by a factor «. It is clear that there
is very little extractable information about the parameter o*2 in Z. A frequentist estimator
can simply discard Z and only use the subsample Y. The MLE also does this but leads to
an incorrect scaling of the estimator.

The incorrect scaling factor of the MLE can be explained in different ways. One inter-

pretation is that the MLE can be written as

P = 5% e 25 e
with 312/,m1e = [Y|%/n1 the MLE based on the subsample Y and ﬁémle = 0 the MLE based
on the subsample Z. The fact that the overall MLE just forms a linear combination of the
MLESs for the subsamples shows again that too much weight is given to Z.

Another explanation for the incorrect scaling of the MLE is to observe that in
the likelihood based on the second subsample is L(0?, u|Z) oc 07" if g = [y If we
would take the likelihood only over the first part of the sample Y we would obtain the
optimal estimator |Y|3/n1, but since the likelihhod over the full sample is the product
of the likelihood functions for Y and Z, an additional factor ¢~ occurs in the overall
likelihood which leads to the incorrect scaling. We conjecture that likelihood methods do
not perform well for combined datasets where one part of the data is informative about a
parameter and the other part is affected by nuisance parameters.

Adjusted profile likelihood. For the profile likelihood, we first compute the maximum
likelihood estimator of the nuisance parameter for fixed o2, denoted by, say fi,2, and then

maximize
0% — L(O’Q, 2 ‘Y, Z).

Obviously fi,2 = Z for any 02 > 0 and the profile likelihood estimator coincides with the
MLE for ¢? in the Neyman-Scott problem. If the parameter of interest and the nuisance
parameters are orthogonal with respect to the expected Fisher information, that is,

2

0 9 _ .
E[W logL(a ,u{Y,Z)} =0, forallj (1.2.2)

the adjusted profile likelihood estimator [29, (64, [30] is the maximizer of
0?2 — L(0?) == det (M(O‘Q, ﬁoz))fl/zL(GQ, Bo2|Y,Z) (1.2.3)

for the matrix valued function
2

O Opug

M(o?, p) == (— logL(a2,u|Y,Z)>

j7é
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1.2.  Likelihood and posterior

and det(-) the determinant. It is easy to check that ([1.2.2)) holds for model (|1.1.1). Since
—0%/(0uj0u) log L(UQ,;L}Y, Z) = 0721(j = (), the adjusted profile likelihood estimator
for o2 coincides with the MLE for the subsample Y,

ny

In particular, the adjusted profile likelihood results in an unbiased \/n-consistent estimator
for o2.

The posterior distribution. From a Bayesian perspective it is quite natural to draw
0?2 and the mean vector p from independent distributions. Due to the orthogonality with
respect to the expected Fisher information , we also expect no strong interactions of
o2 and the mean parameters in the likelihood that could be taken care of by a dependent
prior. Suppose that g ~ v and that the prior for 02 has Lebesgue density 7. The marginal

posterior distribution is then given by Bayes formula

L(o?|Y,Z)n(c?)

2
Y.,Z) =
7T(U ‘ ) ) fR+ L(O’2|Y,Z)7T((72) do?’ (124)
with
2 _% _|Z_“’|%
L(6%[Y,Z) = 0 "¢ 2° (/ e 27 du(,u)). (1.2.5)
In [7§] it has been argued that by using multivariate Laplace approximation,
L(o*|Y,Z) = L(0*)v(Fiy2) (1 + Op(n 1)) = L(6*)v(Z) (1 + Op(n™ 1)), (1.2.6)

with £(o?) the adjusted profile likelihood in . This suggests that the posterior distri-
bution should be centered around the adjusted profile likelihood estimator |Y|3/n1, there-
fore correcting the MLE.

Associated sequence model with random means. For the Gaussian sequence
model with partial information equipped with the product prior 7 ® v, define the
associated sequence model with random means, where we observe independent random vari-

ables
Y; ~N(0,0*%), i=1,...,n1 and Zip ~N(u;,0*?), i=ni+1,...,n, (1.2.7)

with g ~ v and v known. In this model, the nuisance parameters are replaced by additional

randomness. The only parameter in this model is ¢*? and the model is therefore parametric.

Remark 1.2.1. The likelihood function of model (1.2.7) is L(c*|Y,Z) and models (1.1.1))
and (1.2.7) lead to the same formula in terms of Y, Z for the posterior distribution of o2.

Bayes with improper uniform prior. If the prior on the mean vector in the Bayes

formula is chosen as the Lebesgue measure, the formula for the posterior simplifies to

2 B,
m(0*|Y,Z) x o™ ™e 22 1(0?).
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1.3. On the derivative of the log-posterior

This is the same posterior we would get if we discarded the subsample Z. It follows from
the parametric Bernstein-von Mises theorem that if 7 is positive and continuous in a neigh-
bourhood of ¢*2, the posterior contracts around the true variance o*2. Notice that in the
case of uniform prior, the Laplace approximation in is exact and does not involve
any remainder terms. Obviously the Lebesgue measure is not a probability measure and
the prior is improper. This raises then the question whether there are also proper priors for
which the marginal posterior is consistent on the whole parameter space. We will address

this problem in the next sections.

1.3 On the derivative of the log-posterior

We first derive a differential equation for the posterior. Denote by u|(Z,c?) the posterior
distribution of p for the sample Z, that is,

_1Zoni J
dTl(p|Z, 02) = —< T’Z_m;’(’“‘) . (1.3.1)
Jrn€ 27 : dv(p)
In particular, we set
V(ul(Z.o) = [ |2 pBn(plz.o?). (1.3.2)

The quantity V(u|(Z, %)) measures the spread of I1(u|Z, 0%) around the vector Z. Recall
moreover the definition of L(Y,Z|o?) in (1.2.5).

Proposition 1.3.1. The marginal posterior satisfies

7(c?|Y,Z)
7(0?)

Y2 Z, 02
e log L(o2|Y, Z) = Y FVW(Z)  n (1.3.3)
204 202

0,2 log

By Remark [I.2.1] the right hand side is a closed-form expression of the score function for
o2 in the random means model . If the MLE in does not lie on the boundary,
the score function vanishes at the MLE. From the Bernstein-van Mises phenomenon it
is conceivable that the posterior will concentrate around this MLE. For the MLE to be
close to the truth o*2, the score function evaluated at ¢*? must be op(1). Since [Y|3 =
nao*? + Op(y/n), this leads to the condition

V(pl(Z,0?))

- =(1—a)o** +op(1).

In the next section, we derive a very general negative result. The main part of the argument
is to show that the previous equality does not hold in a neighborhood of 0*2, see (T.A.12).

1.4 Posterior inconsistency for product priors

In this section we study posterior contraction under the following condition.

14



1.4. Posterior inconsistency for product priors

Prior. The prior on p is independent of the prior on 2. Under the prior, each compo-
nent of the mean vector wp is drawn independently from a distribution v on R. The prior
on ¢ has a positive and continuously differentiable Lebesgue density on R

So far v denoted the prior on the mean vector. By a slight abuse of language we denote
the prior on the individual components also by v. The assumptions on the prior are mild
enough to account for proper priors with heavy tails and possibly no moments.

The i.i.d. prior is the natural choice, if we believe that there is no structure in the non-
zero means. From ([1.2.7)) it follows that the corresponding sequence model with random

means 1s
Y; ~ N(0,0*%), i =1,...,n; and Zi|p; ~ N (i, 0*?), i=n1+1,...,n, (1.4.1)

with p; ~ v. For o = 1/2 and unknown v, this model has been studied in [51]. It is shown
that the MLE for 0*2 and the MLE for the distribution function of the means are consistent.
Since the random means model leads to the same posterior distribution as explained in
Remark this suggests that the posterior might concentrate around the truth.

We now provide a second heuristic that leads to a different conclusion indicating that it
makes a huge difference whether the distribution of the means v is known or unknown. In
the framework of (T.4.1), v is known. If [u2dv(u) < oo, then p? = [u?dv(u) + Op(n~'/?)
and Z2 = p? + 0*? + Op(n~Y2), so we have Z2 — [w?dv(u) = o2 + Op(n~'/?). This
means that model carries a lot of information about ¢*2 in the sense that ¢*2 can
be estimated with parametric rate from the subsample Z only. Since the posterior only sees
model it is therefore natural to give a lot of weight to the subsample Z as well,
which, from a frequentist perspective, is wrong.

This heuristic does not say anything about heavy-tailed priors with [ u?dv(u) = co. But
even in this case, we will show that the posterior is inconsistent. The first result states that

in a neighborhood of ¢*? the posterior is increasing extremely fast with high probability.

Proposition 1.4.1. Given o < 1 and the prior above, then, for all sufficiently large o2,

there exists a mean vector p*, such that

*2
lim Pg({ag2 logw(0?|Y,Z) > 0" 2n, Yo? € [0—,20*2} }) ~ 1

n—o0 2

The proof of Proposition constructs a lower bound on ¢*? that is independent
of n and moreover guarantees that v has sufficiently small mass outside [—o*2 0*2]. Tt
therefore depends on the tail behavior of the prior mean distribution v. The mean vector
w* is subsequently chosen with all means being equal to an expression depending on o*.
Thus the means in p* are uniformly bounded and independent of n as well.

Suppose that almost all posterior mass is close to o*2. By the previous proposition, the
posterior is increasing at least up to 20*2. Hence, there must be even more mass around
20*2. This is a contradiction and shows that the posterior does not concentrate around o*2.
The proof of the next theorem is based on this argument. For this result, the means in the

vector pu* can again be chosen to be uniformly bounded.
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1.4. Posterior inconsistency for product priors

Theorem 1.4.2. Given a < 1 and the prior above, then, for all sufficiently large o*?, there
exists a mean vector p* such that
2
o ((551] < i) -
Jm B [(]5 1] = 5[y 7)) =0

Consequently, the posterior is inconsistent and assigns all its mass outside of a neighbour-

hood of the true variance.

The posterior is therefore inferior if compared to the frequentist variance estimator Y?2,

-1/2

which achieves the parametric rate n in the sense that

sup ESH 3{; — 1H <nl2,
o*2>0 o
It is remarkable that no conditions on the tail behavior of the prior distribution v are
required for Theorem|(1.4.2] Recall that for the improper uniform prior the posterior contract
around o*2. This shows that for distributions with heavy tailed densities, we need very sharp
bounds.

To the best of our knowledge there are no negative results in the nonparametric Bayes
literature that hold for such a large class of priors. The proof strategy to establish Proposi-
tion is based on a highly non-standard shrinkage argument that will be sketched here.

By expanding the square term in ([1.3.2]) we can lower bound (1.3.3) by

YE 2B n 1
D2 logm(a?|Y,Z) > —42 + 72 952 gl ZVZ + Op(1),
i=1

where V; := |Z;| [ |u;]d1L(p|Z;, 0%). For o2 close to o*?, we have

2 RQW 1 2
Oy logm(o”Y,2) = 5 — — 2;V + Op(v/n).
For improper uniform prior, one can check that V; > Zf, making the lower bound negative
and useless. For proper prior, there is a shrinkage phenomenon in the sense that for all
¢ > 0 there are parameters (u})? =< 0*? such that V; < ¢Z2, with high P2-probability. If

this is the case then

D2 logm(a?|Y,Z) > L 2 ) 2+ Op(v/n),
2 202

which yields the conclusion by choosing ¢ > 0 small enough.

In Proposition we showed that the posterior overshoots the true variance o*2
whenever the true means are large enough. By analyzing the Gaussian case in the next
section, we see that for small means the posterior will in fact underestimate ¢*2 and that
only for a small range of means vectors, one can hope that the posterior will be able to

concentrate around the true variance.
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1.5. Gaussian mizture priors

1.5 Gaussian mixture priors

1.5.1 Gaussian priors

To illustrate our approach, we first consider an i.i.d. Gaussian prior on the mean vector
i ~ N(0,6?), independently.

From Theorem we already know that the posterior will be inconsistent in this case.
Nevertheless, the Gaussian assumptions yields more explicit formulas and this allows us to
build a hierarchical prior that leads to good posterior contraction properties. By Remark
the marginal likelihood is the same as in the sequence model with random means
. The marginal posterior is therefore

2 2
no _|Y|2 ‘Z|2

7r(02|Y, Z) o o ™M (0? + 02)_76 2% e 202407 1(g?), (1.5.1)

which can also be written as the product of two inverse Gamma densities. In view of the
Bernstein-von Mises phenomenon, the posterior concentrates around the MLE for paramet-
ric problems. Similarly, we can argue here that the posterior will be concentrated around
the value 52 maximizing the likelihood part of the posterior . By differentiation, we
find n152 + no5 /(6% + 0%) = | Y |3 + 04|Z|3/(6? + 52)? and rearranging yields

~92 2
o o5 N2 o 75 02 ~2
_y =2 72 — 02 — 5.
’ n1<92+32>[ al

This can be rewritten as

1—
62— 02+ 0p(n~Y?) = ——

where we set

%2 *|2

p? = |pz/no
and suppress the dependence of the O() term on o*? and p*. If 6 is fixed, this shows that
for 62 = 0*2 4 Op(n~/?) we need

w2 =62 4 Op(n~1/?). (1.5.3)

Differently speaking, to force the maximum 2 to be close to o*2, the variance 62 of the prior
has to match the empirical variance p*2 of the nuisance parameter. We can also deduce from
(1.5.2) that if [4*2—62| > n~ /2 and 6 is fixed, then also |62 —¢*2| > n~ /2. More precisely,

we even have that p*2 — 62 > n~Y2 implies 62 — 0*2 > n /2 and p*2 — 02 < —n~1/2
2

implies 52 — 6*2 <« —n /2. This shows that, depending on the size of p*2 compared to 62,

the posterior can either overestimate or underestimate the true variance.
If 0 is allowed to vary with n, we can make the right hand side in ((1.5.2) arbitrarily

small by letting 6 tend to infinity. As 62 is the variance of the prior, the behaviour resembles
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1.5. Gaussian mizture priors

then that of the uniform improper prior, which, as we already know, leads to posterior
consistency. If we think of a prior as a prior belief on parameters, then the prior should
not change depending on the amount of available data and, in particular, it is unnatural
that the prior becomes more vague if the sample size increases. In the next section we show
that there are sample size independent mixture priors leading to a parametric posterior

contraction rates.

1.5.2 Mixture priors

Section [I.4] explains the posterior inconsistency for i.i.d. prior on the nuisance. It seems not
intuitive that adding dependency on the prior of the nuisance parameter can help avoiding
posterior inconsistency for o*2. Surprisingly, this is not true. In this section, we first provide
some intuition why mixture priors can resolve the issues of i.i.d. priors. Afterwards, we
discuss and analyze a specific prior construction.

Analyzing Gaussian prior above, suggests that for any nuisance parameter vector
p*, there exists an i.i.d. prior which seems to work. This i.i.d. prior does, however, depend on
the unknown p* and can therefore not be chosen without knowledge of the data. Intuitively,
if the posterior had the chance to see all possible i.i.d. priors on u, instead of just one, it is
conceivable that it would automatically select one that is adapted to the unknown nuisance
parameter and consequently leads to posterior consistency for the parameter of interest.
De Finetti’s theorem [47] states that an exchangeable prior v over the infinite sequence

= (p',p?,...) can be written as a mixture over i.i.d. priors in the sense that
VAl x A= [ QY QUHAGQ)
P(R)

with A a probability measure on the set of probability densities P(R) on R. The posterior

(1.2.4) then becomes

o2, ,
Tr(UQ{Y,Z) x 7r(02)/n LI(/c(f*z,ZlYY,ZZ)) v(p)dp,

n

= [ (Lo Lo

=1

where ¢ denotes the probability density function of ). Let gy be the i.i.d. prior maximizing
the interior integral. Suppose that this is a unique maximum and that the outer integral
is determined by the behavior of the integrand in a suitable neighborhood S of ¢g. This

means that

L(o?, uY,Z) -
7(o?|Y,Z) x n(c? / </ ‘ ‘
( ‘ ) ( ) P(R) n L(O’*%ﬂ*’Y,Z) i—

<o [ ([ gt bl f[lq(m)dm)A(dq)

mr(aQ)(/n Lﬁfizy?;zz)) lfllqO(ui)dui> /Sk(dq)-
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1.5. Gaussian mizture priors

The right hand side is the posterior density of o2 for i.i.d. prior ]\, go(u!) on the compo-
nents.
Although this argument is only a sketch, it suggests that something might be gained by

mixing over i.i.d. priors instead of just choosing one. Maximizing the marginalized likelihood
in (1.5.1) over 62 yields
0> =72 — o2, (1.5.4)

if the r.h.s. is non-negative. For this choice of 62 becomes 7(0?|Y,Z) o
o™ exp(—|Y|3/(202))m(0?). The posterior therefore coincides with the posterior density
based on the first part of the sample only which we know has good posterior contraction
properties.

Prior. In a first step generate 62 ~ ~y, with 7 a positive Lebesgue density on R, . Given
62, each non-zero mean is drawn independently from a centered normal distribution with
variance 62, that is, 11;|0% ~ N(0,602), i > ny.

Another heuristic about the posterior properties for this prior can again be derived by
making the link to the associated sequence model with random means . For the prior

considered here, the random means model has the form

Y; ~N(0,0*%), i =1,...,n; and Z;|6*> ~ N(0,0* +0**), i=ny +1,...,n, (1.5.5)

with 6% ~ ~. If #? were a second parameter and not generated from +, the variance o*?

would not be identifiable if only the Z;’s are observed. In model we know the density
7, but this is not enough to consistently reconstruct ¢*? from the subsample Z. By Remark
this model leads to the same posterior for o2. The posterior should therefore realize
that there is little extractable information about ¢*2 in Z and discard these observations.
We will see in the limiting shape result below that this is roughly what happens.

We denote by £(02|Y) and ¢(0? 4 6?|Z) the log-likelihoods of the sub-samples Y and Z
coming from model with o2 replacing ¢*2, that is

2
(oY) = - log(2m0?) — X"
2 20° (1.5.6)
72 o
24 021Z) = — 2 log(2n(0? + 62)) — — 22
L(o° + 0°|Z) 5 og(2m(o” + 07)) 2002 1 07

The log-likelihoods appearing in ((1.5.6)) can be written in terms of inverse-gamma distribu-
tions. We denote by IG(y, ) the inverse-gamma distribution with shape v > 0 and scale
B > 0. The corresponding p.d.f. is

5
fia () = =2 7 e =, 1.5.7
1G(v,8) T(7) ( )
where T'(+) is the Gamma function. Rewriting the posterior, we have the following.

Lemma 1.5.1. Under the Gaussian mixture prior, the marginal posterior density has the

form

+o0
70, 2) o) [ (o + 0201 )x(oD). (158
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1.5. Gaussian mizture priors

with v1 = n1/2 =1, p1 = n1W/2 and v2 = ng/2 — 1, By = nQﬁ/Z. The 1G(y1,51)-
distribution has mode B1/(v1+1) = Y2 and variance 53/ (y1—1)*(y1—2) = O(n~ 1), whereas
the 1G (2, Bo)-distribution has mode Ba/(va + 1) = Z2 and variance 53/ (y2 — 1)%(y2 — 2) =
O(n™1).

Starting from Lemma [1.5.1] we can develop a heuristic argument on how to recover the
shape of the limit posterior distribution. We interpret the posterior I1(:|Y, Z) with density
(1.5.8)) as the marginalized version, over the set % € (0, +00), of the distribution ﬁ(-\Y, Z)

whose density is given by

%(027 92|Y7 Z) X fIG('yl,ﬁl)(UQ)fIG(’YZﬂz)(O_Q + 92)7(92)7‘-(0‘2)7 (159)

and refer to II(-|Y, Z) as the joint posterior on (02, 62) € (0,400)2. The first step is dou-
ble localization. Thanks to the exponential tails of the inverse Gamma distribution, the
joint posterior II(-[Y,Z) asymptotically concentrates on the set {o2 € By} N {#% € By},
with By a O((,)-ball centered at Y2 and By a O((y)-ball around 0V (Z2 — Y2) for
any sequence (, > n~ 2. This also implies that the joint posterior is arbitrar-
ily close, in total variation distance, to the truncated posterior distribution with density
7(0%,0%|Y,Z)1({c? € B1}N{6? € By}). In particular, this means that the hyperparameter
62 concentrates on a neighborhood of the maximal value derived in .

Arguing as in the classical proof of the Bernstein-von Mises theorem, we can then show
that the truncated posterior distribution will asymptotically not depend on the prior and
prove that the posterior given by behaves asymptotically like

MY, 2) = 100 € B)ficn0(%) [ fici(0® +02)d8% (1.5.10)
2

Using essentially Laplace approximation, we show that the log-likelihoods #(0?|Y) and
¢(0? + 6%Z) in (1.5.6) can be always uniformly approximated by a second-order Taylor
expansion around their maxima Y2 and Z2 — 02, and thus the localized posterior converges

in total variation distance to a distribution with density
__m 2_32)2 "2 (924452_72)2
m2(02|Y,Z) x 1(02 € By)e w077 Y / ¢ iz T g s
Bs

whose factors are a truncated Gaussian density with mode Y2 and variance 20**/n; =
O(n~1) and the integral of a truncated Gaussian density with mode Z2 — o2 and variance
2(0*2 + p*2)? /ng = O(n~1). By undoing the localization argument, we can show that the
restriction to the sets By and Bs can be removed from ((1.5.11)) and the posterior given by
converges in total variation distance to the posterior limit distribution

—— Jia(o? — 7
Too(02Y, Z) x 1(02 > 0)e aort (@ =Y [1 _ @("2(0)>], (1.5.12)
\@(0*2_1_“*2)

with @ the c.d.f. of the standard normal distribution. Recall that Z2 ~ ¢*2 + p*2. This

suggests that the term involving ® in the posterior limit distribution should asymptotically
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1.5. Gaussian mizture priors

disappear if u*2 > n~1/2. The limit of the posterior should then be the truncated Gaussian

n

(o? - W)2>, (1.5.13)

Foo(02]Y) x 1(0? > 0) exp ( -

with mode Y2 and variance 20**/n; = O(n™1).
The next result is a formal statement of the arguments mentioned above. To pass to
(1.5.13) involves an additional log n-factor in the signal strength of p*2. Denote by || - ||rv

the total variation distance and recall that the expectation Ef is taken with respect to
model (1.1.1)).

Theorem 1.5.2. Let IIoo(-[Y,Z) and o(-|Y) be the distributions corresponding to the

densities (1.5.12) and (1.5.13)), respectively. If the prior densities v, m : [0,00) — (0,00) are
positive and uniformly continuous, then, for any compact sets K C (0,00), K C (—00, 00),

and n — oo,

sup KD [HH(-yY, Z) — (], Z)HTV} - 0.
o*2eK,ureK' Vi

Moreover, if inf xc s wi |17 > (log n/n)Y*, then

sup E(}[HH(-W,Z) Lo (Y

} — 0.
o*2eK,uyeK' Vi

v

As a corollary of the proof, posterior contraction around the true variance ¢*? with
contraction rate O( \/logT/n) can be established. In the case of large means this is an
immediate consequence of the posterior limit ﬁoo(|Y) and the parametric Bernstein-von
Mises theorem. For small means it is less obvious because of the non-standard limit of the

posterior.

Corollary 1.5.3. There exists a constant M = M («), such that

1
sup EO[ (’——1‘>M,/Og"‘Yz —>0
o*2eK,ur €K' Vi

The posterior limit distribution is closely related to the class of skew normal distribu-

tions, see [5], [6]. We now derive an alternative characterization of the limit distribution.

From the argumentation above, the p.d.f.

n 5o — "y (92452_72)2

oc 1(0_2’ 02 Z 0)674‘7714(027Y2)26 4(0*2+u*2)2( to ) (1514)
can be viewed as the joint posterior limit of (02,6%). In particular, the posterior limit
distribution is the marginal distribution with respect to 0. As this is clear from the context,
we do not write explicitly that the following distributions are conditional on Y, Z, that is,
Y, Z are assumed to be fixed.

Lemma 1.5.4. Let

N (Y2 270), g (7 2T

ni n2
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1.5. Gaussian mizture priors

be independent. The distribution with p.d.f. (1.5.14)) coincides with the distribution of

&n—=9(0<E<n).

In particular, the posterior limit distribution Il (-|Y,Z) coincides with the distribution of

flo<e<n.

If the standard deviations of n, £ are small compared to the means, the posterior limit
distribution essentially compares the means Y2 and Z2. This behavior is very reasonable
because if W is small, Y2 ~ Z2 and the subsample Z becomes informative about o2.

The posterior limit depends on unknown quantities. A frequentist estimator mimicking
the posterior would be to estimate o2 from the MLE for zero means X2 in the case that
the means are small. To detect whether small means are present, we can check whether
Y2 > Z2, which leads then to the estimator

Y2 ifY? < Z2

X2, otherwise.

1.5.3 Finite sample analysis

We compare the estimators 53 = Y2 and 2 to the maximum 02 ap.o and the mean G2 . o
of the limit density 02 — 7o (0?|Y, Z) for sample sizes n € {10,100,1000}. As discussed
above, we expect to see some differences for small means. We study the performances for
0*2 = 1 and p the vector with all entries equal to t/n'/* for the values t € {0,1,2,5}.
Since 332, does not depend on the means, the estimator performs equally well in all setups.
Table reports the average of the squared errors and the corresponding standard errors
based on 10.000 repetitions. The rescaled MLE 8%, performs worse than any of the other
estimators for small signals. Among the other estimators there is no clear 'winner’. For
t = 5, the risk of all estimators is nearly the same. For larger values of ¢, our simulation
experiments did not show any changes compared to ¢ = 5 and the results are therefore
omitted from the table.

There has been a long-standing debate whether Bayesian methods perform well if inter-
preted as frequentist methods. Results like the complete class theorem and the Bernstein-
von Mises theorem have been foundational in this regard, see [53], 41]. Our theory highlights
another instance where Bayes leads to new estimators with good finite sample properties.
The analysis moreover shows that the construction of a prior resulting in a posterior with

good frequentist properties can be highly non-intuitive.
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1.A. Proofs

Table 1.1: Comparison of the estimators for (o*2, u*) = (1, (t/n'/%,...,t/n'/*)) and t €

{0,1,2,5}.
Estim. n 0 1 2 5
10 0.414 (+ 8.7e-03)  0.411 (£ 8.6e-03)  0.386 (+ 8.2e-03)  0.399 (& 8.4e-03)
032/ 100 0.040 (£ 5.9¢-04)  0.040 (£ 5.9¢-04)  0.390 (£ 5.7e-04) 0.041 (£ 6.4e-04)
1000 0.004 (£ 5.7e-05)  0.004 (£ 5.6e-05)  0.004 (£ 5.8e-05) 0.004 (£ 5.8e-05)
10 0.235 (= 3.1e-03)  0.268 (£ 4.2e-03)  0.336 (& 6.2e-03)  0.399 (£ 8.4e-03)
72 100 0.028 (+ 3.8¢-04) 0.031 (£ 4.2¢-04) 0.037 (£ 5.2e-04) 0.041 (£ 6.4e-04)
1000 0.003 (+ 4.3e-05) 0.003 (£ 4.4e-05) 0.004 (£ 5.4e-05) 0.004 (£ 5.8e-05)
10 0.337 (£ 3.3e-03)  0.330 (£ 4.6e-03)  0.359 (& 6.9¢-03) 0.398 (£ 8.3e-03)
Efnappo 100 0.036 (4 4.3e-04)  0.032 (£ 4.2e-04) 0.034 (£ 4.7e-04) 0.041 (+ 6.3e-04
1000 0.003 (£ 4.9e-05) 0.003 (£ 4.5e-05) 0.003 (£ 4.9¢-05) 0.004 (£ 5.8e-05
10 0.167 (& 2.1e-03) 0.182 (£ 3.8¢-03) 0.232 (£ 5.9¢-03) 0.283 (£ 7.0e-03
Eﬁleanm 100 0.040 (% 4.5e-04)  0.034 (£ 4.3e-04) 0.034 (£ 4.7e-04) 0.041 (£ 6.2e-04
1000  0.004 (£ 5.1e-05) 0.003 (4 4.6e-05) 0.003 (£ 4.9¢-05) 0.004 (+ 5.8¢-05
Appendix 1.A Proofs
1.A.1 Proofs for Section 1.3
Proof of Proposition|1.3.1 By direct computation,
|z *#‘2
2 Y3 02(f6 207 dy( ))
Oy2log L(o°|Y,Z) = _ﬁ—i_ 5 + e .
fe 202 dv(p)
Since
1Z—nl3 7 — 1Z—nl3
602</e_ 252(11/(“)) _ [ N’z - 252(11/(#%
204
we recover (|1.3.3)). O

1.A.2 Proofs for Section [1.4l

Proof of Proposition[1.4.1. 1t is enough to show that the following statements hold for
sufficiently large sample size n. Let Q(u) = v([—u, u]®)/v([—wu, u]). Since v is a distribution
function Q(u) — 0 for u — oo. We work on I = [0*2/2,20*?], where ¢*2 is chosen such that

24
Q(o%) < exp ( _ 48(17+ 2? + ——

)) (1.A.1)

and « denotes the fraction of known zero means in the model. Notice that

2
g 2 2

5 <0*? <20% forall o ¢l (1.A.2)
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1.A. Proofs

Let
R:= L log( ! ” ) (1.A.3)
V6 Qo)
We choose the non-zero means to be
py = g (1.A.4)

The interval I is compact and the prior 7 is continuous and positive on Ry, inf,2c; m(0?) >

0. Since we also assumed that 7’ is continuous, we find that

0*2’71_/(02”
sup ————5v+—
o2cr  nm(o?)

for all sufficiently large n. With (1.3.3) and (1.A.2),

<1

*2 y/ 2 *2
inf 9,2 logm(c?|Y,Z) > n2 inf (U V(u|(4,a ) o 1)
o2el 0*? g2¢] 2no 202 (1.A5)
n_(inf; V(ul(Z,0%)
> ( —2).
0*2 80*2n

Using (T3.1) and ([:3:2), we expand V (4|(Z, 02),

|4 Z,o? Z3 1
B TD) By L (22 (2. o)

n n
— 12 + L i/(/ﬂ — 2Zip)m (il Zi, 0 )i
no one=Jg" 7

Since the integrands in the latter display are positive for |u;| > 2|Z;|, we can set V; :=

| Zi| f|u|§2|Zi| |7 (11| Zi, 0*)dp and bound

Z Z 2
V(ul(Z,0%)) ‘ |2 ZZ/ ,um(,ui‘ziaUQ)dW

n Nz'SQ‘Zi‘
Z[2
72 _2 Z
n

As a next step in the proof, we show

V(ul(Z,0%) _ |25 _ E’Z _ 5‘2 _2m2 o o
- .

inf >
o2el n 2n n

= (1.A.6)

To prove this inequality, we distinguish the cases |Z;| > R and |Z;| < R, decomposing
Vi =11 Z| (A + By) (1.A.7)
with

A=Az > B) [ (el 2o

Bi=ZI<B) [ Julr(ulZio®)dn
|1 <2]Z;]
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1.A. Proofs

For the term A; of (1.A.8), observe that A; < 2|Z;|1(|Z;| > R). If |Z;| > R, |Z;| < 2|Z;| —
R < 2|Z; — R/2| and therefore,

12, A; < s(zi - g)Q. (1.A.9)

Next, we bound the term B; in . In the sequel, we frequently make use of the fact
that o2 € I. The idea is to split the domain of integration 0 < |u| < 2|Z;] into sets |u| < o*
and o* < |u| < 2|Z;|. The contribution of the first part can be bounded by ¢*. More work
is needed for the second part. By expanding the square (1 — Z;)? in the exponent, the Zl-2—
terms in the numerator and denominator cancel against each other, as they do not depend
on u, and we have
_(w=2y)?
fwgz\zi\ lule™ 202~ dv(p)

(k=22

Je 2R dy(p)

ST 7}
fa*<|,u|§2R ule” 207 e o2 dv(p)

2 p

_nE K
Je 2e%e o du(p)

B; =1(]Z;| < R)

<o +1(|Z] < R)

We now treat numerator and denominator separately. For the numerator, the function

—-1/2

Yy — ye‘yQ/ 2 attains its maximum at y = 1 and is bounded by e . This means that
2

| /,L\e_'z% < ge~1/2 < o*, where the last step follows from (T.A.2)). Together with (T.A.2),

we obtain
_wronZ 4R? .
1(1Z;| < R)/ lule 20 e o v(p)dp < o*eZv([—0*,0*]°),
o*<|u|<2R
using puZ;/o? < 4R?/o*? to bound the exponent in the integral. To derive a lower bound
of the denominator, we replace the integral over R by an integral over [—¢*,¢*]. On this
wZ; .

interval, e—H*/(20%) > e land 1(|Z;] < Re? > e~ R?/o? > e2R?/o 2, since o* < R. We
obtain

2 uz _2R?

1(|1Z;| < R)/e;ﬂecr;dy(u) >ele 2y ([—0*,0"]).
R
Combining this with the upper bound for the numerator yields, with (1.A.1), (1.A.3]) and

the definition of the function Q(u),

6R2

=) Q(U*)U* _ elflogQ(g*)Q(a*)a* —eo* forallo?el. (1.A.10)

B, <!t

Together with (1.A.9)) and (1.A.7)),

2
V}S8<Zi—§) +|Zilo*e, forall o® €.

With |Z|o*e < Z2/4 + 0*%¢?, we finally obtain (L.A.6)).

In a final step of the proof, we derive, on an event with large probability, a deterministic
lower bound for the right hand side in . Let Uy,...,U,, be independent random vari-
ables. Rewriting Chebyshev’s inequality yields P(n=t Y2 U; > n=1 Y12, (E[U;] — 0*?)) >
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1.A. Proofs

1 — 32, Var(U;)/(neo*?)?. We aply this with U; = Z2/2 — 16(Z; — R/2)?. Recall that
Z; ~ N(R/2,0*?). Therefore, Eg[Z%] = R?/4 + 0*? and E[(Z; — R/2)?] = o*2. For the
variance, Varg(Z?) = R?0*2 +0*! and Var((Z; — R/2)?) = o**. Since by assumption a < 1,
Chebyshev’s inequality yields then P§(A,) — 1 when n — oo for the set

1Z|3 16 R|2 _ ny (R*+ 40*? )
pi=i2 g o s 22 T 17542 8 LA11
A {2n n 22_n( 8 U) ( )

On A, we have using (1.A.3), (1.A.6) and Q(c*) < exp(—48(17 + 22 + 24/(1 — a))),

o V(pl(Z,0?)) ng (R? 2 2
. > — —0" > 3. 1.A.12
alerefI 8o*2n 80*2n< g 7 (17 +2e )> 23 ( )
The assertion follows with (1.A.5)). O

Proof of Theorem[1.4.3 Proposition shows that

inf 9,2 logn(c?Y,Z) > —

02€(0*2/2,20*2] o*?

has PZ-probability tending to one. This means that for 02,52 € [0*?/2,20*?], with o2 <
72, we must have log w(c2|Y,Z) < logn(52|Y,Z) — n(c? — 02)/0*%. Exponentiating this
inequality for 62 = 02 + 0*2/2, yields

*2 30%2/2

H<02€ [0—2 ,3();2”Y,Z> z/ ., T (0?Y, Z)do?
0*2/2

20_*2
< e_"/Q/ 7Tn<02’Y, Z)da2 < e /2
g

*2

and this completes the proof since |02/c*2 — 1| < 1/2 is equivalent to o2 € [¢72/2,35*2/2].

O
1.A.3 Proofs for Section [L.5]
Proof of Lemma[1.5.1. We can write the posterior as
m(02[Y,Z) o 1(c® > 0)ele1Y) /0 h O H012) 5 (02) 302 (02). (1.A.13)
By using ([1.5.6) and (1.5.7) we obtain ([1.5.8)). O

We now prepare for the proof of the limiting shape result. From (1.5.8]), the density
(1.5.9) of the joint posterior is

702, 0%[Y,Z) x 1(02 > 0,62 > 0)e!* V)l +0°12) 4 (927 (52).

With

gn::4\/(1+< “ vl_a)) logn 4. (1.A.14)

11—« « ni A ng
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1.A. Proofs

define
Y2 y?
o [1+C"71 C”]7 _ _ (1.A.15)
2 2 2 2
By = {0\/ (HZr(n B 1an>’ 1Zgn - 11{@ '

It is shown below that the posterior concentrates on {o? € B;} and {#?> € By}. The
posterior can consequently be approximated by the distribution IT; (-|Y, Z) defined through
its density . On the localized set (02,6%) € By x Bs, we are able to replace the
log-likelihoods by a quadratic expansion. This then allows us to approximate the posterior
by I(-|Y,Z) which is defined as the distribution with density (1.5.11). We now state the

single steps formally and provide the proofs.

Proposition 1.A.1. If the prior densities v, 7 : [0,00) — (0, 00) are positive and uniformly
continuous, then there exists a sequence of sets (Ay)yn such that for any compact sets K C
(0,00), K’ C (—00, 00),

(Z) hmnﬁoo SupO’*QGK,MZGK/,Vi Pél(A%) =0.

(ii) With By, By as defined in (1.A.15)), we have for n — oo,

sup  H({o®¢ B} U{0% ¢ By} |Y,Z)1((Y,Z) € 4,) — 0.
o*2eK,ufeK' Vi

(iii) For n — oo,

sup
o 2eK ureK' Vi

(o2 e Y, Z) - L (]Y, Z)HTvl((Y, Z) € A,) = 0.

(iv) For n — oo,

sup
o*2eK,ureK' Vi

0 (-]Y, Z) — IL(-]Y, Z)HTvl((Y, Z) € A,) — 0.

(v) Forn — oo,

sup
o*2eK ureK' Vi

o (-[Y, Z) — T (-]Y, Z)HTvl((Y, Z) € A,) = 0.

(vi) Forn — oo, and inf - e |pf] > (logn/n)Y/4,

sup

MY, 2) ~ T (Y)|| 1((Y.Z) € A,) = 0.
o 2eK ur €K' Vi TV

Proof of Proposition[I.A.1 Recall the definition of ¢, in (1.A.14)) and set

1 1
Sy = O = 12281 A 071, with C2 := 16 + 16( LRy a). (1.A.16)
niy A\ ng 11—« a
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1.A. Proofs

Let 2 = inf{o*? € K} > 0. Define the event

An::{ﬁ> 1:[;/2}”{)Z22 1(+\——1(<5 } (1.A.17)

Since d, < 1/2, this implies in particular that on A,, Y2AZ2 > a*?/2.

Proof of (i): We simplify the notation by introducing the events

__ ¥z 7257 ¥
B::{Z2>7}, D ::{‘7—1‘ ‘——1‘<5},
" 1+6,/2 " o*2 + o*? -

so that A, = B, N D,,. Thus PI(AS) < P2(BS) + Pr(DS). We show that both PI(BS) and

PG (Dy;) tend to zero uniformly over compact sets of parameters. By Chebyshev’s inequality,

72 — pu*? Y2 On

o
Varg (7Z2 ) + Val"() (7>
<4 .
< 52
Since
72 — p*? 2 4p? Y2 2
Varg <*2M ) :74_7“*27 Varo( *2> =—
o 19 Nnoo o ni
we find
8 8 16 H
sup PG (Dy) < 5 5 52
o*2eK,ureK' Vi nion n205 n20;,

with H := supg*zeKWeK,7Vi(,LL;-“)2/U*2. Notice that H is a finite constant since K C (0, 00)
and K’ are compact sets. Because 8, = O(y/logn/n), the previous probability tends to

zero as n increases. We now bound P (B¢). Rewriting Bf;, we obtain

6\ (22 — p*? Y2 O o\ 2
B ={(1+2)(—F——-1)+1— <2 (142
n {( + 2>< 0.*2 >+ 0.*2 — 2 < + 2)0.*2}’

and again by Chebyshev’s inequality

2 *2 2

(1 + %”)QVaro (Zio__i‘; — 1) + Varg (1 — ;)
3\ 2
(3 +0+%)5)

<1+5£2 8+16H+8
- 2 ??,2(57% n25% nléﬁ’

which again tends to zero for n — oo uniformly over 0*? € K, uf € K, Vi.
Proof of (ii): We work on the event A,, defined in (1.A.17)) deriving deterministic lower

and upper bounds for the denominator and numerator in the Bayes formula. We start with

fB el(a®Y) foo 0(c2+6%|Z) (9 )d927r(02)d02
fooo UoPIY) [0 lo?+6212)(92)df2 7 (02)do?’

B (By) <

(B x Ry[Y,Z) = (1.A.18)
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1.A. Proofs

and show that on the event A, this quantity tends to 0 when n tends to infinity. The
first part of the proof provides a lower bound for the denominator. For that, we restrict
02 € ¥ :=[Y2/(1+6,),Y2/(1+6,/2)] and 6% € O(c?) := [Z2 — 02, Z2(1 + §,) — 0?] C
(0,00), where the last inclusion follows since by definition of the event A, in (1.A.17)),
72— 02> 7% -Y?2/(1+ 6,/2) > 0. The inner integral in the denominator of (T.A.18) can
be lower bounded by
/OO e€(a2+92|Z)7(02)d92 > / 63(02+02\Z)d92 inf 7(92>.
0 0(02) 02<Z2(1+4,)
Thanks to the definition of A, in (I.A.17) and §, < 1, we have Z2 < p*2 4+ ¢*2(1 4+ 6,), so
that Z2(1 4 6,) < 2u*2 + 40*2. We then set
7= inf v(6%) < inf  y(6%).

02 <sup_«2¢ W EK! Vi 2u*24-40*2 g2 <Z2(1+46,)
N )

Since K, K’ are compact sets and < is continuous and positive, we must have v > 0.
Differentiating (L.5.6) gives 9p2£(0? +62|Y) = $na(Z2 — 02 — 62) /(02 +6%)2, so the function
62 — £(c? + 62|Y) is decreasing on ©(c?) for any o2. As a direct consequence of (1.5.6)),

we obtain
0(Z2(1 +6,)|Z) = £(Z%|Z) + % (6/(1 + 6,) — log(1+ 6,.)). (1.A.19)
Consequently, for any o2 € ¥,

/oo 66(02+02|Z)’y(02)d92 > lﬁ5nef(?\2)+%(5n/(1+5n)710g(1+6n))
0 (1.A.20)
,Yg*z(;nee(ﬁ\zy%ag’

N

where the last inequality follows since Z2 > 0*2/2 on A, 6, < 1, and —log(1 + d,) > —d,
for 8, < 1. The right hand side does not depend on ¢? anymore. To lower bound the

first integral in the denominator of (1.A.18) we apply a similar argument. By (|1.5.6),
D,20(0%)Y) = n1(Y?2 — 62)/(20*). This means that the function o2 — ¢(c[Y) is increasing

on X and yields
Y/ (1+6n)) = (YY) + 2L (log(1 + dn) = b).

On A,, Y2 < 0*?(1 + 6,) and therefore Y2/(1 + 6, /2) < 20*2. Set

= inf 71'(02) < inf 7r(0'2),

02 s, ez 207 02 <V2/(1460/2)

B

so that w > 0 because K is a compact set and 7 is continuous and positive. We bound

/OO eé(‘72|Y)7r(02)d02 > inf W(UQ)%WJ(W/(H(S"”Y)
0

o2ex
> Wélweé(W|Y)+%(10g(1+5n)—5n) (1.A.21)
-2
S }Mna*zez(ﬁm—%ag
- 47 ~ )
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1.A. Proofs

using that on A,, Y2 > ¢*2/2 and log(1+4,) > 8, —62/8 for 0 < §,, < 1. The product of the
lower bounds obtained in and is then a lower bound for the denominator
of ([LATH).

In the next step we upper bound the numerator of . Firstly, observe that £(o? +
0%|Z) < ((Z2|Z) and

/ LOPH012)  (92) 12 < LZ212), (1.A.22)
0

Secondly, since 02 — £(0%|Y) is increasing on (0, Y?2] and decreasing on [Y?2, oc),

Y2/(14Cn _
/ () )1 (02)do? < PG
0
— Y2Y) 475 (log(14-¢n) —Cn)

< LPY)-TEE (1.A.23)

/ °° oY) 1 (62) 4o < (VP (1=GIY) — (HVPIY)+ 1 (08(1~Co) 46n)

Y2/(1=Cn)

< L)

The numerator of is upper bounded by the product of the bounds obtained in
(1.A.22) and (1.A.23). Together with the bounds on the denominator in and
, and ¢, = Cd,, we derive, on the event A,, the following bound for :
sup ﬁ(02 ¢ B1|Y,Z) < 17?46267(027“74”27%1)6%/16 — 0. (1.A.24)
o*2eK preK’ Vi Yo" 0,
The convergence to zero follows since by definition of the constant C' in , n1C? —
4ne — ny > 4ny and because of §,, = O(\/W).
Along similar lines, we show now that, on the event A, IL(62 ¢ B,[Y,Z) — 0 as n tends
to infinity. Since {62 ¢ By} C {02 ¢ B} U ({02 € B1} N {62 ¢ By}), and II(0? ¢ B,|Y,Z)
tends to zero by , it is sufficient to establish convergence of

fBl el(@?Y) st 62(02+02‘Z)’y(ez)d92ﬂ'<02>d0’2

H(Bl X B§’Y, Z) = fooo el(0?]Y) fooo €£(GQ+92‘2)7(92)d92’ﬂ'<02)d02

(1.A.25)

to zero. We can argue similarly as for the upper bound above using that £(02[Y) < £(Y2]Y).
By following the same steps as for (1.A.22) and (1.A.23) and using that a — ¢(a|Z) is
increasing on (0,Z2] and decreasing on [Z2, 00), the numerator in (I.5.9) integrated over
the set {02 € By} N {0* ¢ By} is upper bounded by
< Y g / (U H0712) 5 (92) 42 < 9 tVIY)+UZ2)~ 33
0’2631 Bg

Together with the lower bounds for the denominator in (1.A.20) and (1.A.21]), we upper
bound (1.A.25]), on the event A,, by

~ 32
sup  I(By x B§|Y,Z) < — e (CFnazdna=ni)i/16, (1.A.26)
2K, uf €K' Vi usgloand 1
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By definition (see (I.A.16)), the constant C? > 0 satisfies noC? — 4ny — ny > 4ns. Since

On = O(\/login/n), this implies that the right hand side of is bounded above by
< nexp(—ngdz/4) — 0, as n — oo. Together with (L.A.24), this completes the proof for
part (ii).

Proof of (iii): It is well-known that for probability measures P, @ defined on the same

measurable space X,
IP = P(I)lirv < 2P(49), (1.A.27)

see Lemma E.1 in [75]. With A = By N By, P =1I(-|Y,Z) and I(-|Y, Z) the distribution
with density

Pl +712)1 (52 € By, 6% € By)
fBl ee(a2|Y)(fBz ee(a2+02|z)d(92)d02 ’

770(0-27 62‘Y7 Z) =

we have that

f(o* € [Y,2) ~Th(o* € -[Y,2) |

sup
2K, ureK! Vi v
< sup

o 2eK ureK' Vi

M(o?€-,0%€-|Y,Z) —My(o? € 6% € - }Y,Z)HTV — 0.

By bounding the L!-distance between the densities, we now show that II(o? € -|Y, Z) and

(02 € |Y,Z) are close in total variation using the following lemma.

Lemma 1.A.2 (Lemma E.3 in [75]). If h(0?) x dlly(c? € -|Y, Z)/dIly(0? € -|Y,Z) emists
and [ |h(c?) — 1|dI11(0?|Y,Z) < § for some & € (0,1), then also

0
-5

As h is the Radon-Nikodym derivative up to a multiplicative factor, we can choose

o (0% € -|Y,Z) —y(0® € - |Y,Z)]| 1 <

7((02) fB2 66(02+92\Z),y<92>d92

infocp gocp, T(E)V(0?) [, 0*+0°12)dg2

h(o?) = 1(0? € By).

Then,

SupU2EBl,92€BQ 7[-(0-2),-)/(92)

inf52eB1,§26B2 m(2)y(6?)

1 < h(o?) <

(1.A.28)

Using the argument above, it remains to prove that sup,zcp, |h(6?) — 1| = 0 for n — oco.
By the definition of A,, and due to §, < (,,

1- n
By C B} := [kp0*?, 5, 0™ with Ky, := . +§ =1-2¢, + O(()). (1.A.29)

Recall that K is a compact set. Since 7 is positive and uniformly continuous,

2
sup sup
0*2€K 52 52¢[ky02,k, Lo*2]

(o) _ 1‘ ) (1.A.30)

m(62)

31



1.A. Proofs

Similarly, we have on the event A,

7 1\ o @1
By C B, = { L (,‘ﬁ‘, — —)a*Q, + <— — Kk )0*2}. 1.A.31
e e A T Vol (1-4.31)
Since uf € K’ for all i, the average of the squares ©*2 lies in the convex hull of K’ and
92
sup 7(~)—1‘—>0.

7(6?)

For real numbers u,v, uv = (u —1)(v — 1) + (v — 1) + (v — 1) + 1. We therefore obtain with
and (L.A.30), supy2¢p, [h(0?) — 1| — 0 for n — co. This completes the proof of
(ii).

Proof of (iv): We use the same strategy as in the proof of part (iii), applying Lemma
to

o*2eK,ureK' Vi 92,52€B§

ni

_ _ 0(024+02|Z)—0(Z2|Z) 702
h(o?) = 1(0? € By)e' @MW)+ (02 Y22 I, 40

)

n2 024+ 52_72)2
62+ )d92

s, e 4o*2tu2)?
which is a constant multiple of the likelihood ratio of ITy (2 € -|Y,Z) and Ily(c? € -|Y, Z).
To verify the assumptions of Lemma we have to show that sup,«2cx |h(0?)—1] =0
for n — oo. Using again the identity uv = (u—1)(v — 1)+ (u—1) + (v —1) + 1 and the fact
that | [ f/ [g—1| <sup|f/g— 1|, we find that it is enough to prove that on the event A,,

Uo?Y) — 6(Y2)Y) + L (5% — W)ﬂ - 0. (1.A.32)

sup  sup 1o+

oc*2cK o02eB;
na(02 + o2 — Z2)?

Uo? + 0% Z) — 0(Z2|Z) + e
( |Z) — ((Z2|Z) 1o 2)?

sup sup — 0. (1.A.33)

o 2eK ureK' Vi 02€B1,02€Bo

To verify (1.A.32)), differentiating (1.5.6]) gives

8,2L(c|Y) = %(W —0?), 0,:0(Y2|Y) =0,

nq

D2l(?]Y) = ~ % (02 — 2Y?), O%U(Y|Y) = ——,
2Y?2

206
95, 0(0?Y) = %(3@ —o?),

<0,

and by a third-order Taylor expansion around the maximum Y?2,
Uo?[Y) — 6(Y2[Y)

_ %a;e(ﬂy)(ﬁ _Y)2 4+ %8325(52]Y)(02 vt

ny — ni e N
= —4@2 (0 —Y2)% + 6?(ISY2 — 9 (0? —Y2)3
- Y24 %) -
B WEI RS Skl R o
4o*4 4o*4Y2
+ Y7 =)0t - Y2,
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1.A. Proofs

for some s2 between o2 and Y2. We now control the smaller order terms uniformly over
02 € By. Observe that also Y2, s? € B;. With (LA29), sup,2 52¢, |02 — 02| = O(¢n) and
0*2/2 < 0% < 20" for all 0% € By. Moreover, since K C (0, 00) is compact, inf 0*2 € K > 0.
Together this shows that

ny

) _
U Y) = (YY) + g

sup  sup
oc*2cK 02eB;

establishing ([1.A.32)). To prove ([1.A.33]) we argue similarly. Differentiating (|1.5.6) gives

(02 = Y| = 0(m¢) =+ 0,

0p2l(0% + 0%|Z) = M(ﬁ — 0% —02), 0,:0(Z2)Z) = 0,

Ol(c® +02Z) = — 2 (02 462 —272). OBUZ2|Z) = ——2_ <0

02 (U + ‘ ) 2(0_2+92)3( to )7 02 ( ‘ ) 2?2 )
n PR

8326(0—2 +02‘Z) == m(BZQ - 02 - 92),

and by a third-order Taylor expansion around the maximum 62 = Z2 — o2,
((o? + 62|Z) — ((Z2|Z)

j— —, 1 —
= 58326(2212)(02 +02-72)? + 63325(02 + s2|Z) (0% + 0* — Z2)3
n2 2 2 _ 792 n2 72 2 2\(p2 2 _72\3
= — 0 — 7?2 ————— (322 — 0" — 0 — 72
4@2( +o0o ) +6(02+52)4(3 o —s9)(0"+ o )
n2(Z2 + 0™ 4 p*?)
4(0*2+W)2ﬁ2
(3Z2 — 02 — s%)(0* + 0% — Z2)3,

_ 2 2 2 792
— —4(0*2 —|—,u*2)2(0 +o0°—7Z%)° +
"
6(02 + s2)4

(2 — 0™ — @) (0 + o> — Z2)?

for some s2 between 62 and Z2 — 2. If (62,0%) € By x By, then, on A,, both Z2 — o2

and s? are in Bj. With (1.A.29) and (1.A.31]), we have Sup, vepy [u — v[ = O(Gy) and

(02 + p*2)/2 < 0% + 5% < 2(0*? 4 p*2) for sufficiently large n. Together with the reasoning
for (|1.A.32)), this leads to

n2

(o7 012) — (B +

sup sup
o*2eK,ureK' Vi 02€B1,02€Bs

(0% + o2 — ﬁ)Z‘

being bounded by < n¢3 and thus converging to zero.
Proof of (v): Define I3(-[Y,Z) as the distribution on (0,00)2, with density (1.5.14)),
that is,

o om 2 3\2 _”727(92_’_0.2_?)2
m3(02,0%Y,Z) o< 1(0% > 0,6% > 0)e 2717 Y e a2 en)? .

and II3(-|Y, Z) as the localization of II3(-|Y,Z) on By x Bs, that is, the distribution with
density

73(02, 02Y . Z) x 1(02 € By, 0% € By)e 1017 YV =R (07 ) R0 407 -27)?
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1.A. Proofs

Here Bi, By are as defined in (1.A.15)). The marginal distributions of ﬁg("Y,Z) and
3(:[Y,Z) with respect to o2 are Ilx(:|Y,Z) and Il(:|Y,Z), respectively. Applying

(1.A.27)) yields

HH2('|Y7Z) _Hoo('|Y7Z HTV HHB |Y Z) H3('|Y7Z)HTV

) (1.A.34)
<2M3({c* ¢ B1} U{6* ¢ B,}|Y,Z).
To prove (v), it remains to show that for n — oo,
sup H3({O’2 ¢ Bl} U {92 ¢ BQHY, Z)l((Y, Z) S An) — 0. (1A35)

o*2eK,ufeK' Vi

By Lemma [l it is enough to prove that on A,

sup P(EZB|(0<&<n)+P(n—E&¢ Ba|(0<E<m) =0, (1.A.36)
o*2eK,ur €K' Vi
for independent & ~ N (Y?2,20**/n1),n ~ N (Z2,2(c*> + u1*2)? /ny). Recall that this and all
the following statements in (v) should be understood conditionally on Y, Z.
To bound the terms, we heavily rely on the exponential bounds for tail probabilities of

Gaussian variables given by Mill’s ratio [45]

e~ 2/2

( v’ >e_x2/2<P(N(o )>a)<” Ve >0 (1.A.37)
1+ a2 2 ’ Vorz’

In a first step we derive a lower bound on P(0 < ¢ < n). Using that on A,, Y2/(1 +
6n/2) < Z2 = E[n)], the definition of &, the symmetry properties of the A’(0, 1) distribution,
0*2/2 < Y2 < 20*2 on A,,, and Mill’s ratio, we find

Po<c<nzpP(o<es 1:;2/2)]3(229)
_ ;P</\/(0,1) € :— ‘/J’?;,—Q\f(ﬁzé(;ﬁ) 2D
:;p</\f(o,1) € 2\[2/:557; *2’@;]) (1.A.38)
> ;P<N(O,l) € })
:P<N( > < (0.1) Z;/E)
1 ,ﬂ 2 %

e 16,

> ——e 4 —
— 2./, /TN

where in the last inequality we used that z%/(1 + 2%) > % for x > 1.
We now derive an upper bound for P(§ ¢ Bj). Using the definition of &, ¢, < 1,
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Y2 > ¢*2/2, and Mill’s ratio (1.A.37),

_ L VmGY?  mGY?
R R B v )

VG Y?
<2p(¥0.0> )

\/771Cn>
§2P<N(0,1)> Wi
8§  _ma

e ot .

Vi Gy

Next, we obtain a similar bound for P(n—¢& ¢ Bo, & < n,& € By). If we define the difference
of twosets U,V as U~V :={u—v:u € U,v € V}, then, By = ([Z2/(1+(y), Z2/(1— ()] —
B1)NR,. On the event ¢ < 7, £ € By, we have that n € [Z2/(1+(,), Z2/(1—,)] implies that
n—¢& € By, which is equivalent to saying that n—& ¢ By implies ) ¢ [Z2/(1+C,), Z2/(1—C,))-
On A, |ﬁ — p2 - o*?| < %26, by definition. Because of 6, < 1/2, we obtain 72 >
(12 4 0*2) /2. Together with the symmetry properties of the normal distribution, ¢, < 1,

and Mill’s ratio (1.A.37)), this yields

P(n_£¢B27£§T/7£EBl)

A
SP@¢L+@W—@D

= P(/\/(o, 1) ¢ [ V2 V22 D

(1.A.39)

<

S )

V2(u 2 +02) (14 ) V2(u*? +0*2)(1 = ()
< 2P<N(0, 1) > \/TTQC”)

(1.A.40)

42
< 8 6_ n%in '
/et
To prove ((1.A.36]), we bound
P(§ ¢ Bi)
<EL <

and

nN—£€¢ B, €B,0<E< ) +P(E ¢ By)
PO<¢&<n)

Pln—c¢Bl0o<e<n)<®

Now (1.A.36) (and therefore (1.A.35)) follow from the inequalities (1.A.38), (1.A.39)),
(1.A.40) and the definition of ¢,,. This completes the proof of (v).
Proof of (vi): Recall the definitions of the densities

7%®ﬂYl%XM¥ZOMw<—;gAQ—Y%ﬂ<L4%$;if£;2X»

~ n 5
Fool0?Y) ox 1(0? = ) exp (= 17 (07 = Y)?),
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and let

WOO,Bl (U2|Y7 Z) X 71-00(0-2‘Y7 Z)]- 02 S B1)7
oo, (02 Y) o Too (02 Y)1(0? € By),

be their localised versions on Bj. It is enough to show that, on A,

sup Moo (-[Y,Z) — oo, 5, (Y, Z) || 1y —0, (1.A.41)
o*2eK ureK' Vi
sup Moo (-[Y) = Too 5, ()| gy —— 0, (1.A.42)
o*2eK ureK' Vi
sup Mo, (Y, Z) — Moo 5, ()| gy 2 0. (1.A.43)

o*2eK ureK' Vi

For (1.A.41]), we apply (1.A.27) and the fact that IIo(:|Y,Z) is the marginal distribution
of II3(-|Y, Z), finding

HHOO(-|Y, Z) — oo 5, (-|Y,Z < 2l (BS|Y,Z) = 2113(BS|Y, Z).

Ny
In (v) we proved that the right hand side converges to zero uniformly over o*? € K, W €
K',Vi. For (1.A.42), we argue similarly, using that

Moo (1Y) = Moo, (-Y)| |y < 20 (BS[Y) = 2P(¢ ¢ By),

with &€ ~ N(Y2,20**/n1). Using (1.A.39), we see that the right hand side converges to
zero, uniformly over 0*? € K, uf € K',Vi.

For (1.A.43), we apply Lemma On A,, the likelihood ratio of Il g, (-[Y, Z) and
ﬁm731(-]Y) is given by

n 02—72
h(c*Y,Z) := (1 — @(M))l(ﬁ € By).

7 V2 o *2
sup o? _ 7% = Y —Z2§U (1+0p)
o2eB; 1- Cn 1-— Cn

Uniformly over 0*? € K and inf prek | |2 > (,, the right hand side can be further upper

— 2 — 01— 4,).

bounded by —p*2/2 for sufficiently large n. Thus,

(a2 — 72
h(o?|Y,2) 1| = P(N(O’l) = M)

WN*Q
< P(N(O,l) > 2\/5(,;+0—*2)>‘

Since nu*2 > n¢, — oo for n — oo,

*2
sup P(N(O, ) > vk ) 2 ),
o*2€K put €K' Vi 2V2(u*? + 0*?)

This concludes the proof of (vi). O
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Proof of Theorem[1.5.3 Weinsert 1 = 1((Y,Z) € A,)+1((Y,Z) ¢ A,) in the expectation.

Since the total variation distance of probability measures is bounded, the result follows from
Proposition [[.A] O

Proof of Corollary[1.5.3 Recall that the posterior is the marginal distribution of (Y, Z)
with respect to 0. By Proposition m (ii), we have that

Y2 Y2
sup n(& ¢ [ ]
o*2€ K, ut €K' Vi 1+6G 1-G

Y, z> 1((Y,Z) € A,) — 0.

Using that on A,, 0*2(1 —6,) < Y2 < ¢**(1 4+ 6,), and §,, = C~1¢, = O(\/logn/n), we
obtain

2 logn

1| >0

sup H(*z_ Y,Z)l((Y,Z)EAn)%O
o*2e K ui €K' Vi o
for a constant M = M («) that is chosen to be sufficiently large. The claim follows by
splitting the expected posterior, inserting 1 = 1((Y,Z) € A,) + 1((Y,Z) ¢ A,) in the

expectation and using Proposition [L.A1] (). O

Proof of Lemma|[1.5.4) To prove the result, we derive an expression for the joint density of
(&n—9)|(0 <& <n). Observe that

The right hand side is zero if s < 0. Suppose now that 0 < s < ¢t. Conditioning on 7, the

right hand side can be rewritten as
s t
:/ P0<¢< u)f,,(u)du—i—/ P(0 <& <s)fy(u)du
0 s
t+s
+/ Pu—t<€<s) fo(u)du.
t

Taking derivatives 050, the density of (&,n — 5)‘(0 < ¢ < n) at point (s,t) equals up to a
multiplicative constant f¢(s)f,(t 4+ s). Which completes the proof for the case 0 < s < ¢.
The case 0 < t < s is similar and the proof for this case therefore omitted.

Since the posterior limit distribution is the marginal over the first component of the
joint distribution in ([1.5.14)), it must coincide with the distribution of §|(O < &< O
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Chapter 2

Posterior contraction for deep

Gaussian process priors

This chapter is based on:
G. Finocchio and J. Schmidt-Hieber. Posterior contraction for deep Gaussian process priors.
Arziv preprint, arXiv:2105.07410 (2021).

Abstract

We study posterior contraction rates for a class of deep Gaussian process
priors applied to the nonparametric regression problem under a general compo-
sition assumption on the regression function. It is shown that the contraction
rates can achieve the minimax convergence rate (up to log n factors), while being
adaptive to the underlying structure and smoothness of the target function. The
proposed framework extends the Bayesian nonparametrics theory for Gaussian

process priors.

2.1 Introduction

In the multivariate nonparametric regression model with random design supported on
[—1,1]%, we observe n i.i.d. pairs (X;,Y;) € [-1,1]? xR, i =1,...,n, with

and ¢; independent and standard normal random variables that are independent of the
design vectors (X1, ..., X,). We aim to recover the true regression function f : [-1,1]¢ — R
from the sample. Here it is assumed that the regression function f itself is a composition of
a number of unknown simpler functions. This comprises several important cases including
(generalized) additive models. In [76] it has been shown that sparsely connected deep neural
networks are able to pick up the underlying composition structure and achieve near minimax
estimation rates. On the contrary, wavelet thresholding methods are shown to be unable to

adapt to the underlying structure resulting in potentially much slower convergence rates.
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2.1. Introduction

Deep Gaussian process priors (DGPs), cf. [68, 33, 32], can be viewed as a Bayesian
analogue of deep networks. While deep nets are build on a hierarchy of individual network
layers, DGPs are based on iterations of Gaussian processes. Compared to neural networks,
DGPs have moreover the advantage that the posterior can be used for uncertainty quan-
tification. This makes them potentially attractive for Al applications with a strong safety
aspect, such as automated driving and health.

In the classical Bayesian nonparametric regression setting, Gaussian process priors are a
natural choice and a comprehensive literature is available, see for instance [82] or Section 11
n [41]. In this work we extend the theory of Gaussian process priors to derive posterior
contraction rates for DGPs. Inspired by model selection priors, we construct classes of DGP
priors in a hierarchical manner by first assigning a prior to possible composition structures
and smoothness indices. Given a composition structure with corresponding smoothness
indices, we then generate the prior distribution by putting suitable Gaussian processes on
all functions in this structure. It is shown that for such a DGP prior construction the
posterior contraction rate matches nearly the minimax estimation rate. In particular, if
there is some low-dimensional structure in the composition, the posterior will not suffer
from the curse of dimensionality.

Stabilization enhancing methods such as dropout and batch normalization are crucial
for the performance of deep learning. In particular, batch normalization guarantees that
the signal sent through a trained network cannot explode. We argue that for deep Gaussian
processes similar effects play a role. In Figure below we visualize the effect of composing
independent copies of a Gaussian process, the resulting trajectories are rougher and more
versatile than those generated by the original process alone. This may however lead to
wild behavior of the sample paths. As we aim for a fully Bayesian approach, the only
possibility is to induce stability through the selection of the prior. We enforce stability by
conditioning each individual Gaussian process to lie in a set of ’stable’ paths. To achieve
near optimal contraction rates, these sets have to be carefully selected and depend on the

optimal contraction rate itself.

e | S | }
- -
[Ty) 0
S 7 [SE
_ _ W W
S S
T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 2.1: Composition of Gaussian processes results in rougher and more versatile sample
paths. On the left: trajectories of two independent copies of a standard Brownian motion.

On the right: the composition (red o blue) of the trajectories.
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2.2. Composition structure on the regression function

Compared to the well-established nonparametric Bayes theory for Gaussian processes,
posterior contraction for compositions of Gaussian processes raises some theoretical chal-
lenges, such as bounding the decentered small ball probabilities of the DGPs. We show that
this can be done by using an extension of the concentration function for Gaussian processes
introduced in [82]. To our knowledge, the closest results in the literature are bounds on
the centred small ball probabilities of iterated processes. They have been obtained for self-
similar processes in [4] and for time-changed self-similar processes in [52]. A good reference
on the literature of iterated processes is given by [3]. In a different line of research, iter-
ated Brownian motions (IBMs) occur in [38] as solutions of high-order parabolic stochastic
differential equations (SDEs) and the path properties are studied in [I5]. The composition
of general processes in relation with high-order parabolic and hyperbolic SDEs has been
studied in [48]. More recently, the ad libitum (infinite) iteration of Brownian motions has
been studied in [31, 16].

The article is structured as follows. In Section [2.2] we formalize the model and give an
explicit parametrization of the underlying graph and the smoothness index. Section
provides a detailed construction of the deep Gaussian process prior. In Section [2.4) we state
the main posterior contraction results. In Section [2.5] we present a construction achieving
optimal contraction rates and provide explicit examples in Section [2.6] Section [2.7]compares
Bayes with DGPs and deep learning. All proofs are deferred to Section

Notation: Vectors are denoted by bold letters, e.g. x := (z1,...,24) . For § C
{1,...,d}, we write xg = (z;)ies and |S| for the cardinality of S. As usual, we define
Il = (S0, Bil?)177, [xcloo 1= ma i, Ixlo == Y0, 1(x; # 0), and write |[£][1s(p) for
the LP norm of f on D. If there is no ambiguity concerning the domain D, we also write
|| - |lp- For two sequences (ay), and (by), we write a, < by, if there exists a constant C' such

~

that a,, < Cb, for all n. Moreover, a,, < b, means that (a,)n < (bn)n and (bp)n < (an)n-

For positive sequences (ay), and (b,), we write a,, < b, if a,/b, tends to zero when n

tends to infinity.

2.2 Composition structure on the regression function

We assume that the regression function f in the nonparametric regression model
can be written as the composition of ¢+ 1 functions, that is, f = g40g4—1°...0g1 0 go, for
functions g; : [a;, b;]% — [a;s1, biy1]%+! with dg = d and dg+1 = 1. It should be clear that
we are interested in reconstruction of f but not of the individual components go, ..., g4-
If f takes values in the interval [—1,1], rescaling h; = ¢i(||gi-1llco")/||gillcc With

lg—1llco := 1 leads to the alternative representation
f=hgohg_10...0h10hg (2.2.1)

for functions h; : [~1,1]% — [~1,1]%+1. We also write h; = (hij);r:l,...,diﬂ’ with hgj :
[~1,1]% — [~1,1]. The representation can be modified if f takes values outside [—1, 1], but

to avoid unnecessary technical complications, we do not consider this case here. Although

41



2.2. Composition structure on the regression function

the function h; in the representation of f is defined on [—1,1]%, we allow each component
function h;; to possibly only depend on a subset of ¢; variables for some t; < d;.

To define suitable function classes and priors on composition functions, it is natural to
first associate to each composition structure a directed graph. The nodes in the graph are
arranged in g + 2 layers with ¢ + 1 the number of components in (2.2.1). The number of
nodes in each layer is given by the integer vector d := (d,dy,...,dq, 1) € N?+2 storing the
dimensions of the components h; appearing in . As mentioned above, each component
function h;; might only depend on a subset S;; C {1,...,d;} of all d; variables. We call S;;
the active set of the function h;;. In the graph, we draw an edge between the j-th node
in the 7 + 1-st layer and the k-th node in the i-th layer iff k& € S;;. For any ¢, the subsets

corresponding to different nodes j = 1,...,d;;1, are combined into S; := (Sit, ..., Sig,.,)
and S := (Sp,...,S,). By definition of ¢;, we have t; := max;—; g4, |Si;| and we define
t := (to,...,tq 1). We summarize the previous quantities into the hyper-parameter

A= (q,d,t,S), (2.2.2)

which we refer to as the graph of the function f in . The set of all possible graphs is
denoted by A.
As an example consider the function
f(x1,...,25) = h(g1(z1, 23, 74),
g2(x1,x4,25), g3(x2)) with corresponding e

graph representation displayed in Figure e

In this case, we have g = 1,dy = 5,d; =
3,ds = 1 and tg = t; = 3. The active sets ’
are S;1 = {1,3,4}, 812 = {1,4,5},813 = @’ @
{2}, and Sy; = {1,2,3}. @

We assume that all functions in the com- @
position are Holder smooth. A function has @
Holder smoothness index 8 > 0 if all par-
tial derivatives up to order |5] exist and Figure 2.2: Graph representation of the exam-
are bounded, and the partial derivatives of
order |3]| are (8 — |5])-Holder. Here, the
ball of S-smooth Hélder functions of radius K is defined as

CA(K) = {f L1 = [-1,1]

o > [0%fle 277 Y sup 0% f(x) —Baag(y)l < K} (2.2.3)
a:lal<[B) olal=|4] x,yi[;;J]T x — y|2

ple function f.

where a = (ay,...,a,) € N is a multi-index, |a| = |a|; and 0% = 90 ...90% . The
factors 2r and 2°~18) guarantee the embedding C/ (K) C c? I(K ) whenever ' < 3, see
Lemma 2. ATl

For any subset of indexes S, we write (+)g : X — Xg = (z;)ies and ()g1 for the inverse.

Since h;; depends on at most t; variables, we can think of the function Eij = hjj o ()gi as
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2.3. Deep Gaussian process prior

a function mapping [—1,1]" to [—1,1] and assume that h;; € Cgi(K), with 8; € [B-, B+],
for some known and fixed 0 < f_ < B4 < 4o00. The smoothness indexes of the ¢ + 1

components are collected into the vector

B:= (Bos---,By) € B, B+]TT = TI(N). (2.2.4)

Combined with the graph parameter A in (2.2.2)), the function composition is completely
described by

n:=W\n0) =I(¢,dt3S,0). (2.2.5)

We refer to n as the composition structure of the regression function f in (2.2.1). The set
of all possible choices of n = (\,3) with A € A and 3 € I()\) is denoted by Q.
Throughout the following, we assume that the true regression function belongs to the

function space F(n, K') where
.7:(?7,K) = {f =hgohg10...0hiohg: h;=(hij);:[—1, l]d" — [-1, l]di“,
hijo ()5 € ¢ (1)},

for some known K > 0 and unknown 7 € €. In fact, the regression function f might belong

(2.2.6)

to the space F(n, K) for several choices of 7. Since different choices of 1 lead to different
posterior contraction rates, the regression function will always be associated with an 7 that

leads to the fastest contraction rate.

2.3 Deep Gaussian process prior

In this section, we construct the deep Gaussian process prior as prior on composition func-
tions. Because of the complexity of the underlying graph structure, the construction is split
into several steps. The final DGP prior consists of a prior on the graph describing the
composition structure and, given the graph, a prior on all the individual functions that
occur in the representation. To achieve fast contraction rates, the prior weight assigned to
a specific composition structure depends on the smoothness properties and the sample size.
Therefore, the composition structure can not be decoupled from the estimation problem.

STEP 0. Choice of Gaussian processes. For a centered Gaussian process X =
(X¢)ter, the covariance operator viewed as a function on 7' x T, that is, (s,t) — k(s,t) =
E[XsX}] is a positive semidefinite function. The reproducing kernel Hilbert space (RKHS)
generated by k is called the RKHS corresponding to the Gaussian process X, see [83] for
more details.

For any r = 1,2,..., and any 8 > 0, let GBr) = (é(ﬁ’r)(u))ue[,m]r be a centered
Gaussian process on the Banach space of continuous functions from [—1,1]" to R equipped
with the supremum norm. Write || - ||g.» for the RKHS-norm of the reproducing kernel
Hilbert space H®") corresponding to G®7). For positive Holder radius K, we call

PP (u) .= sup

reeht )g-\\g—l?ﬁ - 91125 — logP(||[GE| < ), (2.3.1)
eCr(K) 7 00 =
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2.3. Deep Gaussian process prior

the concentration function over C/ (K). This is the global version of the local concentration
function appearing in the posterior contraction theory for Gaussian process priors [82]. For
any 0 < a <1, let g, (v, B,7) be such that

SOC&T,K) (gn(avlgar)l/a) S nEn(a767T)2' (232)

STEP 1. Deep Gaussian processes. We now define a corresponding DGP G on a
given composition structure n = (¢,d, t,S,3). Let Boo(R) := {f : SUPye[—1,1]" |f(x)] < R}
be the supremum unitary ball with radius R. For simplicity, we suppress the dependence on
7. Recall that K is assumed to be known. With «; := [[j_,. (B¢ A 1), we define the subset
of paths

Di(n, K) = Boo(1) N (c{jf (K) + Boo (260 (cui, @,t@-)l/ai)) : (2.3.3)

containing all functions that belong to the supremum unitary ball B, (1) and are at most
2 (v, Biy ti) Y/ ®i-away in supremum norm from the Hélder-ball C{gi (K). With GB) the
centred Gaussian process in Step 0, write @(5"’“)
the event {G%!) € D;(n, K)}. Recall that for an index set S, the function (-)s maps a

vector to the components in S. For each i =0,...,q, j =1,...,d;+1, define the component

for the process GBit) conditioned on

functions G\” to be independent copies of the processes Gt ()s;; = =1, 1% — [~1,1].

i i
Finally, set ng) = (GE;?))?’;T and define the deep Gaussian process G := ng) o.. .oG(()n) :
[~1,1]¢ = [~1,1]. We denote by TI(-|n) the distribution of G.
STEP 2. Structure prior. We now construct a hyper-prior on the underlying com-
position structure. For each graph A\, we have 3 € I()\) = [B_, ]9 with known lower
and upper bounds 0 < f_ < 4 < +oo. For any function a(n) = a(A, 8), it is convenient to

define

Jaman =3 [ A8

A€A

Let v be a probability density on the possible composition structures, that is, [ v(n) dn = 1.
We can construct such a measure 7y by first choosing a distribution on the number of compo-
sitions ¢. Given g one can then select distributions on the ambient dimensions d, the efficient
dimensions t, the active sets S and finally the smoothness 3 € [3_, 8, ]9*! via the condi-

tional density formula v(n) = y(A\)v(B|A) = v(a)v(dlg)v(t[d, ¢)v(S[t,d, 9)v(B]S,t.d,q).
For a sequence ¢, (n) satisfying

q

en(n) > Iax enlay, Bist;), with «; = | | (Bg A 1), (2.3.4)
1=U,...,.9 .
(=i+1

and |d|y =1+ Y7 d;, consider the hyper-prior

ey ()
— [e Uy (n)dy

The denominator is positive and finite, since 0 < e=¥»(" < 1 and [~(m)dn=1.

w(n) : . with W, (n) = nen(n)? + =" (2.3.5)

44



2.4. Main results

STEP 3. DGP prior. We define the deep Gaussian process prior as

(df) == /Q TI(df ) () din, (2.3.6)

where €2 is the set of all valid composition structures, II(-|n) is the distribution of the DGP
G™ and 7(n) is the structure prior on 7.

Lemma shows that it is often enough to check for « = 1 only. Con-
ditioning the Gaussian process to the set D;(n, K) is well-defined since D;(n, K) D
B (2€n(ai, Bi, ti)l/ "‘i) and Gaussian processes with continuous sample paths give positive
mass to Bo(R) for any R > 0. The inequality in provides the flexibility to choose
sequences that also satisfy Assumption m The prior 7(n) on the composition structure
n should be viewed as a model selection prior, see also Section 10 in [41]. As always, some
care is required to avoid that the posterior concentrates on models that are too large and
consequently leads to sub-optimal posterior contraction rates. This is achieved by the care-
fully chosen exponent ¥,, in , which depends on the sample size and penalizes large

composition structures.

2.4 Main results

Denote by H(- X, Y) the posterior distribution corresponding to a DGP prior II constructed
as above and (X,Y) = (X;,Y;); a sample from the nonparametric regression model (2.1.1)).
For normalizing factor Z, := [ps/ps+(X,Y)II(df) and any Borel measurable A in the

Banach space of continuous functions on [—1,1]¢,

MAXY) =2 [ PLaxvyma, n@) = [ namsman e

where (pf/ps<)(X,Y) denotes the likelihood ratio. With a slight abuse of notation, for any

subset of composition structures M C 2, we set

H(n € ./\/l|X,Y) = Zgl/ p}i (X,Y) /M II(df |n)m(n) dn, (2.4.2)
which is the contribution of the composition structures M C 2 to the posterior mass.
Before we can state the results, we first need to impose some conditions. The first
condition is on the graph prior from Step 2 in the DGP prior construction. It states that
all graphs have to be charged with non-negative mass and also requires | \/W dn to be
finite. The latter somehow requires that the prior mass decreases quickly enough as the

graphs become more complex.

Assumption 2.4.1. We assume that, for any graph A, the measure y(:|\) is the uniform
distribution on the hypercube of possible smoothness indices I(\) = [B_, B+]9TL. Further-
more, we assume that the distribution v is independent of n, that it assigns positive mass
v(n) > 0 to all composition structures 1, and that it satisfies [ \/’de < +00.
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2.4. Main results

The second assumption guarantees that the rates e, (o, 8, 1) are not too fast and controls

the local changes of the rates under perturbations on the smoothness indices.

Assumption 2.4.2. We assume the following on the rates appearing in the construction
of the prior.

(i) For any positive integer r, any B > 0, let Q1(B,r, K) the constant from Lemmal|2.A.5

Then, the sequences ey (o, B,7) solving the concentration function inequality

are chosen in such a way that
B __Ba
en(a, B,1) > Q1(B,r, K)2FFrn™ 25atr, (2.4.3)

(i) There ezists a constant QQ > 1 such that the following holds. For any n > 1, any graph
A= (q,d,t,8) with |d|; = 14 > 7 ;d; <log(2logn), and any B' = (6y,...,B;), 8 =
(Boy---+Bq) € I(N) satisfying B, < Bi < Bl +1/log?n for alli = 0,...,q, the rates
relative to the composition structures n = (\,3) and n' = (\,3') satisfy

en(n) < en(n') < Qen(n). (2.4.4)

The rate €,,(n) associated to a composition structure n can be viewed as measure of the
complexity of this structure, where larger rates e,(n) correspond to more complex models.
Our first result states that the posterior concentrates on small models in the sense that all

posterior mass is asymptotically allocated on a set

Mu(C) :={n:en(n) < Cen(n®)} N {n:|d|s <log(2logn)} (2.4.5)

with sufficiently large constant C'. This shows that the posterior not only concentrates on
models with fast rates ,(n) but also on graph structures with number of nodes in each
layer bounded by log(2logn). The proof is given in Section 2.A.1]

Theorem 2.4.3 (Model selection). Let H( . \X,Y) be the posterior distribution corre-
sponding to a DGP prior 11 constructed as in Section and satisfying Assumptions [2.4.1]

and . Let n* = (X, B%) for some B3* € [B—,B+]7 1 and suppose £,(n*) < 1/(4Q).
Then, for a positive constant C = C(n*),

sup  Eg [[I(n ¢ M, (C)|X,Y)] 70,
f*eF(n*.K)
where Ey« denotes the expectation with respect to Py, the true distribution of the sample

(X,Y).

Denote by p the distribution of the covariate vector X1 and write L?(u) for the weighted
L?-space with respect to the measure p. The next result shows that the posterior distribu-

tion achieves contraction rate €, (n*) up to a logn factor. The proof is given in Sectionm

Theorem 2.4.4 (Posterior contraction). Let II(-|X,Y) be the posterior distribution corre-
sponding to a DGP prior I constructed as in Section[2.3 and satisfying Assumptions[2.4.1]
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2.4. Main results

and . Let n* = (\*,8*) for some B* € [B_,B4]7 ! and suppose e,(n*) < 1/(4Q).
Then, for a positive constant L = L(n*),

sup g (|1 = fllpagn = Llogn) 5K e, ()X, Y) | 225 0,
f*eF(n*.K)

where Ey« denotes the expectation with respect to Py« the true distribution of the sample
(X,Y).

Remark 2.4.5. Our proving strategy allows for the following modification to the construc-
tion of the DGP prior. The concentration functions p#K) in are defined globally
over the Holder-ball Cﬁ(K) The concentration function inequality in essentially
(Br) of the RKHS of the underlying Gaussian process GB") con-

tains the whole Hélder ball. There are classical examples for which this is too restrictive,

requires that the closure H

and one might want to weaken the construction by considering a subset Hf(K) C Cﬁ(K)
This can be done by replacing Ctﬁii (K) with the corresponding subset ’Hfz (K) in the definition
of the conditioning sets D;(n, K) in and the function class F(n, K) in ([2.2.6). As
a consequence, this also reduces the class of functions for which the posterior contraction
rates derived in Theorem hold.

We would like to stress, that we do not impose an a-priori known upper bound on the
complexity of the underlying composition structure . While we think that this is
natural in practice, it causes some extra technical complications. If we additionally assume
that the true composition structure satisfies |d|; < D for a known upper bound D, then
the factor e¢“" in can be avoided. Moreover, the (logn)!T°8 K _factor occurring in
the posterior contraction rate is somehow an artifact of the proof, and could be replaced
by KP, see the proof of Lemma for more details. A trade-off regarding the choice of
K appears. To allow for larger classes of functions and a weaker constraint induced by the
conditioning on , we want to select a large K. On the contrary, large K results in
slower posterior contraction guarantees.

We view the proposed Bayesian analysis rather as a proof of concept than something that
is straightforward implementable or computationally efficient. The main obstacles towards
a scalable Bayesian method are the combinatorial nature of the set of graphs as well as
conditioning the sample paths to neighborhoods of Hélder functions. Regarding the first
point, considerable progress has been made recently to construct fast Bayesian methods
for model selection priors in high-dimensional settings with theoretical guarantees, see for
instance [13], [74]. To avoid a large number of composition graphs, it might be sufficient to
restrict to small structures with number of compositions ¢ below five, say, and |d|; in the
tens. Moreover, in view of the achievable contraction rates, there are plenty of redundant
composition structures. Lemma below shows this in a very specific setting.

Concerning the conditioning of the sample paths in Step 1 of the deep Gaussian pro-
cess prior construction, it is, in principle, possible to incorporate the conditioning into an
accept/reject framework, where we always reject if the generated path is outside the condi-

tioned set. To avoid that the acceptance probability of the algorithm becomes too small, one
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2.5. On nearly optimal contraction rates

needs to ensure that a path of the Gaussian process falls into the conditioned set with pos-
itive probability that does not vanish as the sample size increases. Lemma [2.6.3] establishes

this for a Gaussian wavelet series prior.

2.5 On nearly optimal contraction rates

Theorem 2.5 in [39] ensures existence of a frequentist estimator converging to the true pa-
rameter with the posterior contraction rate. This implies that the fastest possible posterior
contraction rate is the minimax estimation rate. For the prediction loss || f — g||z2(,), the

minimax estimation rate over the class F(n, K) is, up to some logarithmic factors,

By 4
ta(n) = Joax n Wit with = H (Ben1), (2.5.1)
{=i+1

see [76]. This rate is attained by suitable estimators based on sparsely connected deep neural
networks. It is also shown in [76] that wavelet estimators do not achieve this rate and can
be sub-optimal by a large polynomial factor in the sample size. Below we derive conditions
that are simpler than Assumption and ensure posterior contraction rate t,(n) up to
log n-factors. Inspired by the negative result for wavelet estimators, we conjecture moreover
that there are composition structures such that any Gaussian process prior will lead to a
posterior contraction rate that is suboptimal by a polynomial factor compared with ¢, (7).
The first result shows that the solution to the concentration function inequality for arbi-
trary 0 < @ < 1 can be deduced from the solution for aw = 1. The proof is in Section [2.A.2]

Lemma 2.5.1. Let ¢,(1, 5,7) be a solution to the concentration function inequality (2.3.2])
for a = 1. Then, any sequence e, (, 3,1) > em, (1, 5,7)* where m,, is chosen such that

Mnpem, (1, B,7)272% < n, solves the concentration function inequality for arbitrary o € (0, 1].

The following result makes the construction in Lemma explicit, when the solution
en(1,B,7) for a = 1 is at most by a logn factor larger than n=B/(26+1)  The proof is given
in Section [2.A.2)

Lemma 2.5.2. Let n > 3.
(i) If the sequence ,(1,3,7) = C1(logn)®2n=PF/CA+) solves the concentration function
inequality (2.3.2)) for a = 1, with constants C1 > 1 and Co > 0, then, any sequence

enlor B.r) > C3(26 + 1)%% (logn) 2(30+2) =

solves the concentration function inequality for arbitrary o € (0, 1].
(i1) If there are constant C7 > 1 and C% > 0 such that the concentration function satisfies

PP (5) < Ol (log 671) %075, for all0 <5 < 1, (2.5.2)
then, any sequence
/ __Ba
5”(0475»7“) > Ci(logn)CQ n~ 2Batr

solves the concentration function inequality (2.3.2) for arbitrary o € (0, 1].

48



2.6. FExamples of DGP priors

To verify Assumption m (ii), we need to pick suitable sequences e,(n) >
maxi=,...q én (0, s ti). If enlo, B,1) = C1(8,7)(logn) > PIn=0e/E5+D) for some con-
stants C1(B8,7) > 1 and Ca(,r) > 0, then, a suitable choice is

en(n) = C1(n)(log n) 2, (n), (2.5.3)

provided the constants éj(n) = maX;=0,..qSUPge(s_,p,) Cj(B,ti), 5 € {1,2} are finite. In
the subsequent examples, this will be checked by verifying that 8 — C;(8,r), j € {1,2} are
bounded functions on [5_, 54].

Lemma 2.5.3. The rates £,(n) in (2.5.3) satisfy condition in Assumption [2.4.9 with
Q= e+

Let II be a DGP prior constructed with the Gaussian processes and rates given in this
section. Then, the corresponding posterior satisfies Theorem [2.4.4] and contracts with rate
t,(n*) up to the multiplicative factor L(n*)Cy(\*, K)(log n)!*lg K+Ca(\",K)

To complete this section, the next lemma shows that there are redundant composition
structures. More precisely, conditions are provided such that the number of compositions ¢

can be reduced by one, while still achieving nearly optimal posterior contraction rates.

Lemma 2.5.4. Suppose that f is a function with composition structure n = (¢,d,t,S,3)
and assume that . = K = 1. If there exists an index j € {1,...,q} with t; =
ti—1 = 1, then, f can also be written as a function with composition structure n' :=
(¢g—1,d_j,t_;,5;,08'), where d_;,t_;,S_; denote d,t,S with entries d;,t;,S; removed,
respectiwvely, and B' = (Bo, ..., Bj—2,8i-18j, Bj+1,---,Bq). Moreover the induced posterior

contraction rates agree, that is, tn(n) = tn(n').

A more complete notion of equivalence classes on composition graphs that maintain the

optimal posterior contraction rates is beyond the scope of this work.

2.6 Examples of DGP priors

The construction of the deep Gaussian process prior requires the choice of a family of
Gaussian processes {G7) : 8 € [B_, 8+]}. In this section we show that standard families
appearing in the Gaussian process prior literature achieve near optimal posterior contraction

rates. To show this, we rely on the conditions derived in the previous section.

2.6.1 Lévy’s fractional Brownian motion

Assume that the upper bound S4 on the possible range of smoothness indices is bounded
by one. A zero-mean Gaussian process X* is called a Lévy fractional Brownian motion of
order § € (0,1) if

X5(0) =0, E[[X'B(u)—Xﬁ(u’)F —lu-u? vuu el-1,1].
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2.6. FExamples of DGP priors

The covariance function of the process is E[X?(u)X?(u)] = %(|U|§B + ]u’|35 —|ju— u’\%ﬁ).
Chapter 3 in [27] provides the following representation for a r-dimensional S-fractional
Brownian motion. Denote by f(&) = (2r)~"/2 Jgr ™€ f(u)du the Fourier transform of
the function f. For W = (W (u))ug|—1,1)» @ multidimensional Brownian motion, and Cy a

positive constant depending only on 3, r,

X = [ CE e
u) = - ,
R™ Cg/2|£|§”/2

in distribution, where W(d&) is the Fourier transform of the Brownian random measure
W (du), see Section 2.1.6 in [27] for definitions and properties. The same reference defines,

for all ¢ € L?([—1,1]"), the integral operator

e 1 g¢
Cylel T @y

Bo)(u) := 7
o= [ 7

As a corollary, the RKHS HP of X? is given in Section 3.3 in [27] as
HP = {I% Lo e L([-1, 1]7")}, (I, 1°¢ Yo = (0,9 ) L2((-1.17)-

Since the process X? is always zero at u = 0, we release it at zero. That is, let Z ~ N(0, 1)
independent, of X? and consider the process u ++ Z + X”(u). The RKHS of the constant
process u — Z is the set H? of all constant functions and, by Lemma 1.18 in [41], the
RKHS of Z 4+ X7? is the direct sum HZ @ HP.

The next result is proved in Section and can be viewed as the multidimensional
extension of the RKHS bounds in Theorem 4 in [I7]. Whereas the original proof relies on

kernel smoothing and Taylor approximations, we use a spectral approach. Write

ey = {h: (17 1) [ REOPO+ P s <K (200)

for the B-Sobolev ball of radius K.
Lemma 2.6.1. Let B € [3_, 4] and Z+XP = (Z—i—XfB(u))uE[_Ll]r the fractional Brownian
motion of order B released at zero. Fiz h € CL(K) NW.(K). Set ¢o = 0~ "¢(-/0) with ¢

a suitable regular kernel and o < 1. Then, ||h * ¢o — hllcc < KRgo? and ||h x ¢,
KQLQBU_T for some constants Rg, Lg that depend only on (3, r.

”IQHIZEBHB S

The next lemma shows that for Lévy’s fractional Brownian motion released at zero
near optimal posterior contraction rates can be obtained. For that we need to restrict the
definition of the global concentration function to the smaller class CZ(K) N WZ(K). The

proof of the lemma is in Section [2.A.3

Lemma 2.6.2. Let B4 < 1 and work on the reduced function spaces HE(K) = C2(K) N
WP(K) as outlined in Remark . For {é(ﬁvr) . B € [B-,B+]} the family of Levy’s

fractional Brownian motions Z + XP released at zero, there exist sequences en(n) =

C1(n)(logn)2 My, (n) such that Assumption holds.
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2.6.2 Truncated wavelet series

Let {¢;jr : 5 € N4, k = 1,...27"} be an orthonormal wavelet basis of L?([—1,1]"). For
any o € L%*([-1,1]"), we denote by ¢ = Py 22” i (©)¥; i its wavelet expansion. The
quantities A;x(¢) are the corresponding real coefﬁ(:lents. For any 8 > 0, we denote by
Boo,00,3 the Besov space of functions ¢ with finite
¢ llo0,00,6 := sup27¥F2) max [A\;x()].
jeN k=1,...297
We assume that the wavelet basis is s-regular with s > (. For i.i.d. random variables

Zjr ~N(0,1), consider the Gaussian process induced by the truncated series expansion

Jo 27" 5—j(p+5)

= Z Zj kb k()

7=1 k=1

where the maximal resolution Jg is chosen as the integer closest to the solution J of the
equation 27 = n'/(2#+7) see Section 4.5 in [82]. The RKHS of the process X? is given in
the proof of Theorem 4.5 in [82] as the set H” of functions ¢ = Z 2J —1 Njk(9)) with
coefficients \; (¢) satisfying [|¢]|2; := Z Zii jr223(B+r/2) ), (gp) < 0.

For this family of Gaussian processes, it is rather stralghtforward to verify that con-
ditioning on a neighbourhood of S-smooth functions as in Step 1 of the deep Gaussian
process prior construction is not a restrictive constraint. The next result shows that, with
high probability, the process X” belong to the Bog « s-ball of radius (1 + K’)y/21og 2, with
K’ > /3. Since the Besov space Boo,00,3 contains the Holder space Cf for any 8 > 0, the
process belongs to the Holder-ball cl (K) for some suitable K’ only depending on K.

Lemma 2.6.3. Let XP be the truncated wavelet process. Then, for any K' > /3,
4

P (11X 00,5 < (14 K)/210g2) > 1= g

The proof is postponed to Section [2 The probability in the latter display converges

quickly to one. As an example consider K’ = 2. Since r > 1, the bound implies that more
than 2/3 of the simulated sample paths u — X (u) lie in the Hélder ball Be o0 5(31/2Iog 2).
The next lemma shows that for the truncated series expansion, near optimal posterior

contraction rates can be achieved. The proof of the lemma is deferred to Section
Lemma 2.6.4. For {6(5”) 1B €[B_,BL]} the family of truncated Gaussian processes X
there exist sequences en(1) = C1(n)(logn)?Mv,, (1) such that Assumption holds.
2.6.3 Stationary process

A zero-mean Gaussian process X" = (X"(u))yg[—1,1) is called stationary if its covariance

function can be represented by a spectral density measure v on R" as

B (wX ()] = [ e e,
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see Example 11.8 in [41]. We consider stationary Gaussian processes with radially decreasing
spectral measures that have exponential moments, that is, [ 6‘3'5‘21/(€)d£ < 400 for some
¢ > 0. Such processes have smooth sample paths thanks to Proposition 1.4 in [41]. An
example is the square-exponential process with spectral measure v (&) = 2T 2e~IEl3/4,
For any ¢ € L*(v), set (H"¢)(u) = [p, e’fT“go(ﬁ)V(E)dﬁ. The RKHS of X" is given in
Lemma 11.35 in [41] as H” = {H"p : ¢ € L?(v)} with inner product (H"p, HY¢ )gv =
(P, ") L2(w)- N

For every 8 € [B_, 4], take G(#7) to be the rescaled process X¥(a-) = (XY(an))uegj-1,1]r

with scaling

1+17r

a=a(f,r)= nﬁ(log n) 26+, (2.6.2)
The process G(*7) thus depends on n. We prove the next result in Section m

Lemma 2.6.5. For {é(ﬁ’r) 2 B € [B—,B+]} the family of rescaled stationary processes
X"(a-), there exist sequences £,(n) = C1(n)(logn)“>Mr,(n) such that Assumption
holds.

2.7 DGP priors, wide neural networks and regularization

In this section, we explore similarities and differences between deep learning and the
Bayesian analysis based on (deep) Gaussian process priors. Both methods are based on
the likelihood. It is moreover known that standard random initialization schemes in deep
learning converge to Gaussian processes in the wide limit. Since the initialization is crucial
for the success of deep learning, this suggests that the initialization could act in a similar
way as a Gaussian prior in the Bayesian world. Next to a proper initialization scheme,
stability enhancing regularization techniques such as batch normalization are widely stud-
ied in deep learning and a comparison might help us to identify conditions that constraint
the potentially wild behavior of deep Gaussian process priors. Below we investigate these
aspects in more detail.

It has been argued in the literature that Bayesian neural networks and regression with
Gaussian process priors are intimately connected. In Bayesian neural networks, we generate
a function valued prior distribution by using a neural network and drawing the network
weights randomly. Recall that a neural network with a single hidden layer is called shallow,
and a neural network with a large number of units in all hidden layers is called wide. If the
network weights in a shallow and wide neural network are drawn i.i.d., and the scaling of the
variances is such that the prior does not become degenerate, then, it has been argued in [68]
that the prior will converge in the wide limit to a Gaussian process prior and expressions
for the covariance structure of the limiting process are known. One might be tempted to
believe that for a deep neural network one should obtain a deep Gaussian process as a limit
distribution. If the width of all hidden layers tends simultaneously to infinity, [63] proves

that this is not true and that one still obtains a Gaussian limit. The covariance of the

92



2.7. DGP priors, wide neural networks and regularization

limiting process is, however, more complicated and can be given via a recursion formula,
where each step in the recursion describes the change of the covariance by a hidden layer.
[63] shows moreover in a simulation study that Bayesian neural networks and Gaussian

process priors with appropriate choice of the covariance structure behave indeed similarly.

Input Hidden Output Input Hidden Output

Figure 2.3: Schematic stacking of two shallow neural networks.

It is conceivable that if one keeps the width of some hidden layers fixed and let the width
of all other hidden layers tend to infinity, the Bayesian neural network prior will converge,
if all variances are properly scaled, to a deep Gaussian process. By stacking for instance two
shallow networks as indicated in Figure and making the first and last hidden layer wide,
the limit is the composition of two Gaussian process and thus, a deep Gaussian process.
In the hierarchical deep Gaussian prior construction in Section [2.3] we pick in a first step
a prior on composition structures. For Bayesian neural networks this is comparable with
selecting first a hyperprior on neural network architectures.

Even more recently, [71), [46] studied the behaviour of neural networks with random
weights when both depth and width tend to infinity.

While the discussion so far indicates that Bayesian neural networks and Bayes with
(deep) Gaussian process priors are similar methods, the question remains whether deep
learning with randomly initialized network weights behaves similarly as a Bayes estima-
tor with respect to a (deep) Gaussian process prior. The random network initialization
means that the deep learning algorithm is initialized approximately by a (deep) Gaussian
process. Since it is well-known that the initialization is crucial for the success of deep learn-
ing, this suggests that the initialization indeed acts as a prior. Denote by —¢ the negative
log-likelihood /cross entropy. Whereas in deep learning we fit a function by iteratively de-
creasing the cross-entropy using gradient descent method, the posterior is proportional to
exp (/) xprior and concentrates on elements in the support of the prior with small cross
entropy. Gibbs sampling of the posterior has moreover a similar flavor as coordinate-wise
descent methods for the cross-entropy. The only theoretical result that we are aware of
examining the relationship between deep learning and Bayesian neural networks is [72].

It proves that for a neural network prior with network weights drawn i.i.d. from a suit-
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able spike-and-slab prior, the full posterior behaves similarly as the global minimum of
the cross-entropy (that is, the empirical risk minimizer) based on sparsely connected deep
neural networks.

As a last point we now compare stabilization techniques for deep Gaussian process priors
and deep learning. In Step 1 of the deep Gaussian process prior construction, we have
conditioned the individual Gaussian processes to map to [—1,1] and to generate sample
paths in small neighborhoods of a suitable Holder ball. This induces regularity in the
prior and avoids the wild behaviour of the composed sample paths due to bad realizations
of individual components. We argue that this form of regularization has a similar flavor
as batch normalization, cf. Section 8.7 in [44]. The purpose of batch normalization is to
avoid vanishing or exploding gradients due to the composition of several functions in deep
neural networks. The main idea underlying batch normalization is to normalize the outputs
from a fixed hidden layer in the neural network before they become the input of the next
hidden layer. The normalization step is now different than the conditioning proposed for
the compositions of Gaussian processes. In fact, for batch normalization, the mean and the
variance of the outputs are estimated based on a subsample and an affine transformation
is applied such that the outputs are approximately centered and have variance one. One
of the key differences is that this normalization invokes the distribution of the underlying
design, while the conditioning proposed for deep Gaussian processes is independent of the
distribution of the covariates. One suggestion that we can draw from this comparison is
that instead of conditioning the processes to have sample paths in [—1, 1], it might also
be interesting to apply the normalization f — f(t)/sup;ej_1 1)~ |f(t)| between any two
compositions. This also ensures that the output maps to [—1,1] and is closer to batch
normalization. A data-dependent normalization of the prior cannot be incorporated in the

fully Bayesian framework considered here and would result in an empirical Bayes method.

Appendix 2.A Proofs

2.A.1 Proofs for Section 2.4

Information geometry in the nonparametric regression model. The following re-
sults are fairly standard in the nonparametric Bayes literature. As we are aiming for a
self-contained presentation of the material, these facts are reproduced here. Let Py be the
law of one observation (X;,Y;). The Kullback-Leibler divergence in the nonparametric re-

gression model is

KL (P By) = [ (£60 = 920 < 1 = gl a0

with p the distribution of the covariates X;. Using that E¢[log dPy/dP,| = KL(Py, P,),
Var(Z) < E[Z?], Ef[Y|X] = f(X) and E;[Y?|X] = 1, we also have that

dP 2
Va(Py, Fy) =y || log d—P; ~ KL(P;, )| |
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_E, [(y( f(X) ~9(X) ~ 3FXP + 59(x)?) ]
1

In particular, for € < 1, ||f — g|loc < £/2 implies that Va(Pf, P,) < €? and therefore

Bo(Pp.e) = {9 : KL(P, P)) < 2 V(P Py < 2} 2 {g: If —gle < 5. (2A.1)

We derive posterior contraction rates for the Hellinger distance. This can then be related
to the | - |z2¢,)-norm as explained below. Using the moment generating function of a

standard normal distribution, the Hellinger distance for one observation (X,Y") becomes

A (P, Py) =1— / VAPrdP, =1 — / \/dP;/dP, dP,

~1-E, [eiw—g(m) (Y= f(X))? ]

Since 1 — e~ < z and p is a probability measure, we have that d (P, Py) < % [(f(x) —
g(x))? du(x). Due to 1 — e™® > e %z, we also find
e—Q@%/2

dy(Py, P, / f(x )2 dyu(x), for all £, g, with ||f]c, lgllec < Q-

(2.A.2)

By Proposition D.8 in [41], for any f,g, there exists a test such that Erp <
exp(—gdn (Pr, Py)?) and suPp.q,, (p, py)<dy (Py,Py)/2 Enll — ¢] < exp(—gdp (P, Py)?). This
means that for the Hellinger distance, the test condition in (8.2) in [41] holds for £ = 1/2.

Function spaces. The next result shows that the Hélder-balls defined in this paper

are nested.

Lemma 2.A.1. If0 < 3 < B, then, for any positive integer r and any K > 0, we have
cd(x) c cf (k).

Proof of Lemma[2.A1 If |5'] = |B] the embedding follows from the definition of the
Holder-ball and the fact that supy yej—113r X — yyégﬁ’ =208 1f | 8] < | B, it remains to
prove CA(K) C CcP'I+1(K). This follows from first order Taylor expansion,

s . 9°1(x) = 0% )| _ S Ivernll..

olad= g/ | BYE[-L1" x = ¥loo o lo=| 8/
lel=15") 7 0 Jel=1p']
<27 > [0l
alal=[8]+1
and the definition of the Holder-ball in (2.2.3]). O

95



2.A. Proofs

The following is a slight variation of Lemma 3 in [76].

Lemma 2.A.2. Let h;; : [—1,1]% — [=1,1] be as in ([2.2.1]). Assume that, for some K > 1
and 1n; > 0, [hij(x) — hij(¥)]|oo < m + Klx — y|§é,A1 for all x,y € [—1,1]%. Then, for any
functions h; = (71”);— with Eij C[=1,1)0 — [—1, 1],

q
tho...oho _hqo"'ohOHLOO[—l,l]d < Kaniai + H‘hl — hi|oo‘
=0

@i
"
with ;= [1§_; 1 Be A L.
Proof of Lemma[2.A.9. We prove the assertion by induction over ¢q. For ¢ = 0, the result
is trivially true. Assume now that the statement is true for a positive integer k. To show
that the assertion also holds for k + 1, define H;, = hi o...0 hg and flk = ﬁk o... oﬁo. By
triangle inequality,

|1 0 Hyy(x) — by © Hi(x)|

< [hkt1 0 Hg(X) — hgy1 0 ﬁk<x)‘oo + kg1 © Hi (%) = hgr 0 ﬁk(X)‘oo

~ Al =
< st + K| Hi(x) — Hi ()| 2 4 et — et o e

Together with the induction hypothesis and the inequality (y + z)* < y* + 2% which holds
for all y,z > 0 and all « € [0, 1], the induction step follows. O

The next result is a corollary of Theorem 8.9 in [41].

Lemma 2.A.3. Denote the data by D,, and the (generic) posterior by I1(-|D,,). Let (Ap)n
be a sequence of events and Ba(Py«,¢) as in (2.A.1). Assume that

e2na% H(An) n—oo
II(Ba( Py, an))

0, (2.A.3)

for some positive sequence (ay),. Then,
E g [H(An‘pn)] L 0,
where Ey« is the expectation with respect to Pps.

We now can prove Theorem [2.4.3

Proof of Theorem [2.4.3 By definition (2.4.2)), the quantity II(n ¢ M, (C)|X,Y) denotes
the posterior mass of the functions whose models are in the complement of M,,(C). In view
of Lemma[2.A.3] it is sufficient to show condition (2.A.3) for 4,, = {n ¢ M, (C)} = MS(C)

and a,, proportional to &,(n*). We now prove that

eQnai fM%(C) 71'(7’]) d’l’]

M(By(Preyan) A4

for a, = 4K (¢* +1)Qe,(n*) and TI the deep Gaussian process prior. The next result deals

with the lower bound on the denominator. For any hypercube I, we introduce the notation

diam(I) := supg gres |8 — B'|oo-
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Lemma 2.A.4. Let II be a DGP prior that satisfies the assumptions of Theorem [2.4.3
With Q the universal constant from Assumption R* := 4K (¢* +1)Q and sufficiently

large sample size n, we have
(B (P, 2R e, (1)) ) 2 eI M@ (30, 1y,
where I C [B_, B9t is a hypercube containing B* with diam(I}) = 1/log?®n.

Proof of Lemma[2.A.7] By construction (2.A.1), the set Ba(Py«,2R*e,(n*)) is a superset
of {g: [|f* — glloo < R*en(n*)}, so that

1(Bo(Pp 2R en(n)) = (1" + B (R'en(n) ).
We then localize the probability in the latter display in a neighborhood around the true
B* = (Bg---,B;). More precisely, let I, := {8 = (Bo,...,Bq) : Bi € [B] — bn, B]],Vi} with

by = 1/log?n. Since B € I(\*) = [B_, 34]7 !, we can always choose n large enough such
that I; C I(\*). With f* = hj.o...ohf and R* = 4K (¢* +1)Q,

T({g: 15" = gllee < R'en(n)})

: . 2.A.5
2/ P(|[rg o oons =GR P o0 GO < Rien())m(X, B)dB. 249
I;

q

Fix any 38 € I;;. Both ng)-‘*’ﬁ) and hy; map [—1,1]% into [~1,1]. They also depend on the

(NB) _ 408)

same subset of variables Sj;. By construction, the process Gy i ()5 is an
ij

independent copy of @gﬁi’t;) : [-1,1]% — [~1,1] and @gﬁi’t:) is the conditioned Gaussian

process Gt |{GPit]) € Dy(A*, B, K)}. The function E:j = hfjo(-)L;% belongs by definition
ij

to the space Cgf (K) and satisfies ]ﬁ:j(x) — ﬁ:j(y)\ < Kl|x — y|féAl for all x,y € [—1,1)%

and all i = 0,...,¢% j =1,...,d;,,. By Lemma[2.A.2] with 7; = 0, we thus find

*

q
I =60 < KTy | e B -G

o
. )
=0 ]—1,...,df+1

* ) * : * * x e IBF AN
where of = [[j_,,, B; A 1. Since of > a; = [[j_;,(Be A1) for B € I, if || h;; — Gz(j '6)||oo

is smaller than one, the latter display is bounded above by

*

q
[ = GNP < KT max By -GG
j—l,...,di+1

(677
o’

1=0

Set Gin = en(ay, Bi, t7)Y/*. By Assumption we have 0, < (Qen(a, B, t1))1/
and so 4d;, < 1 since we are also assuming &, (n*) < 1/(4Q). Together with the definition of

en(n*) in (Z34), imposing [[7f; — Gy} " |lae < 465, for all i =0,...,¢" and j = 1,...,d%,,
implies ||f* — G(’\*ﬂ)Hoo < R*ep(n*). Consequently,
IP)(Hh:;* o...ohy— G((I)*\*’ﬂ) 0...0 Gé)‘*’ﬁ)Hoo < R*en(n*)>
g 4 (2.A.6)

> T2l -5l < 400)-

i=0 j=1
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We now lower bound the probabilities on the right hand side. If EZ} S Cg; (K), then,
(1 - 25m)ﬁrj € Cgf*((l — 26;»)K) and by the embedding property in Lemma [2.A.1) we
obtain (1 — 2(5m)ﬁ}< € Cﬁ"( K).

When ||(1 — 25m)h — GBit]) || o < 263, the Gaussian process GUitl) is at most 26;,-
away from (1 — 25m)h” € Cgf( ). Consequently, {|[(1 25m)h — GUit]) | oo < 261} C
{GBt) e Dy(M\*, B,K)}, Wh;re the bound for the unitary ball follows from the triangle
inequality. Since [|(1 — 25m)h — GGt || < 205, implies Hh — GBit)) || < 484, by

the concentration function property in Lemma 1.28 in [41] and the concentration function

inequality in ([2.3.2)), we find

T+ =(AB) P(|(1 = 8in) oy — GPot]|o < 26;)
(H ) ) Hoo— ) ]P)(G(ﬂ“t:) ED()\* B, ))
> P(]|(1 = Gin); — GO < 205
> exp (= @ (5,0) )
>e (_ngn o, Bi, z)2>

v

exp (— @nenti ),

here Q is the universal constant from Assumptlon u With |[d*[; =1+ Z dz, ,
and the previous display we recover the claim. O

The latter result shows that

*

1‘[(32 (Pf*’4KQ* (q* + 1)Q5n(77*))) > €—|d*|1Q2nEn(7I*)2/ 7_(_()\*’,3) d,@, (2A7)

with I* = {8 = (Bo,---,B4) : Bi € [BF — b, B;],Vi} and b, = 1/log®n. Recall that, by
construction ([2.3.5), m(n) oc e”YnMry(n) with ¥, (n) = ne,(n)? + e’ For any B € I
we have Uy, (A*, B) < ¥,,(X*, B*), and Assumption [2.4.1] gives v(\*, B) = y(A\*)v(B|\*) with
7(A*) > 0 independent of n and (-|\*) the uniform distribution over I(\*) = [B_, B4]9 +1.
Thus, y(I¥|\*) = |I|/|I(X\*)| and |I*] = (1/log?n)9 +1, so that

7'('(’!’]) eq’n(ﬂ*)—‘yn(n)ry(n) |I()\*)’ )=o) 21 log]
< = n"N n\n q oglogn . A
S m(A5.8)dB ~ (A (L |A) S Ow) € € v(n). (2.A.8)

Both v(A*) and ]I(A*)| (By — B_)T ! are constants independent of n. Furthermore,
eVn(") = exp(e el” ) nen()? and the quantity exp( Il) is independent of n as well. We
can finally verify condition (2.A.4) by showing that, with a, = 4K (¢* 4+ 1)Q,

2a 2nen (n*)? nsn( *)242(g*+1) loglognZ/ ot *‘Ijn(n)’y(n) dg — 0.

By the lower bound in Assumption [2.4.2] (i), we have ne,(n*)? > nt,(n*)? > 2(¢* +
1) loglog n, since the quantity nt,(n*)? is a positive power of n by definition (2.5.1]). The
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complement of the set M,,(C) is the union of {n : e,(n) > Ce,(n*)} and {n : |d|; >
log(2logn)}. Over these sets, by construction (2.3.5)), we have either W, () > C?ne,(n*)?
or U, (n) > n?. Therefore, the term e~¥"(" decays faster than either e~ nen()? or g1
In the first case, the latter display converges to zero for sufficiently large C' > 0. In the
second case, the latter display converges to zero since e,(n*) < 1 and ne,(n*)? < n < n?.

This completes the proof. O

We need some preliminary notation and results before proving Theorem [2.4.4

Entropy bounds. Previous bounds for the metric entropy of Holder-balls, e.g. Proposi-
tion C.5 in [41], are of the form log (4, C,C@(K), [-[loc) < Q1(8, 7, K)5~"/8 for some constant
Q1(B,r, K) that is hard to control. An exception is Theorem 8 in [I4] that, however, only
holds for 8 < 1. We derive an explicit bound on the constant Q1 (3, r, K) for all 5 > 0. The

proof is given in Section [2.A.1

Lemma 2.A.5. For any positive integer r, any 5 > 0 and 0 < 6 < 1, we have

4e K28 (B+1)" 4T(ﬁ+1)r7‘7'(26K)%57%
N (5 e ) < (T ) (2 41)

< 6@1(67T7K)5 %

with Q1(8,7, K) == (1 + eK)A™ (3 + 3) Ty +1(8eK?)"/B. For any 0 < a < 1 and any
sequence 0, > Q1(83,r, K)B/(2B+1)p=Ba/2Batr) e glso have

log A" (8/, CP(K ) |- 1o ) < 2. (2.A.9)

Support of DGP prior and local complexity. For any graph A = (¢,d,t,S) and

any B € [B_, B4]9F!, denote by ©,,(), 3, K) the space of functions f : [~1,1]¢ — [~1,1]

for which there exists a decomposition f = hqo...o0 hg such that h;; : [-1,1]% — [-1,1]

and hjj = h;j o ()gi € Di(N,B,K), foralli=0,...,q;j=1,...,di+1 and D;(\, 3, K) as
defined in . Differently speaking

0,(\,B,K) :=04,(\,B,K)0---000,(\ B, K) (2.A.10)
with
Oun(\ B, K) = {hi : [-1, 1% = [<1,1]% by o ()51 € DyABLK),j =1, disa }.
By construction, the support of the deep Gaussian process G ~ II(:|n) is contained in
O,(\, B, K). For a subset B C [A_, 8+]7T! we also set ©,,(\, B,K) := Ugep©,(\, B, K).

The next lemma provides a bound for the covering number of ©, (), B, K). Recall that
diam(B) = supg gep |8 — B'|oo- We postpone the proof to Section m

Lemma 2.A.6. Suppose that Assumption holds and let N\ be a graph such that
|d|; < log(2logn). Let B C [B_,B.]9"" with diam(B) < 1/log?n. Then, with R, :=

5@(2 log n)l-i—logK’

. IOgN(RnEn()\,,@),@n()\,B,K), H i ||OO) < R?L
sup 3 S —.
BEB nen()\,ﬁ) 25
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We now prove Theorem by following a classical argument in [41], namely Theo-

rem 8.14, which recovers the posterior contraction rates by means of partition entropy.

Proof of Theorem[2.4.4. For any p > 0, introduce the complement Hellinger ball
He(f* p) == {f : du(Py, Ps+) > p}. The convergence with respect to the Hellinger dis-
tance dy implies convergence in L?(y) thanks to . As a consequence, we show that
sup B [I(HE(f, Luga(n) [(X,Y)) | =0,
[reF(n*.K)

with L, := MR,, R, := 10QC(2logn)'T°¢X and M > 0 a sufficiently large universal
constant to be determined. With M,,(C) = {n : e,(n) < Cen(n*)}N{n: |d]; <log(2logn)}
the set of good composition structures, and the notation in , we denote by II(- N
M, (C)|X,Y) the contribution of the good structures to the posterior mass.

We denote by L£,,(C) the set of graphs that are realized by some good composition

structure, that is,
L,(C):={XeA:3BeIN), n=(\B) e My(O)}. (2.A.11)

Condition in Assumption holds for all the graphs in £,(C). For any A € £,(C),
partition I(\) = [6_, 4]97! into hypercubes of diameter 1/log?n and let By()), ..., By
be the N (A) blocks that contain at least one 3 € I(A) that is realized by some composition
structure in M,,(C). The blocks may contain also values of 3 for which (A, 3) ¢ M, (C).

Then, the set of good composition structures is contained in the enlargement

N N(N)
M) S M(0)= | U ({)\} X Bk()\)>.
NELL(C) k=1

Thanks to Theorem and the enlarged set of structures M, (C), it is enough to show,
for sufficiently large constants M, C,

sup  Ep [H(?—Lc(f*,MRnen(n*)) mﬁn(C)‘(X,Y))] 0. (2.A.12)
[*eF(n*.K)

Fix any f* € F(n*, K). Since there is no ambiguity, we shorten the notation to H¢ =
HE(f*, MRyen(n*)) and rewrite

S, TAf 0 M (C)X,Y)
JI(dfX,Y)

E; [H(H; N Mn(C)}(X,Y))} — K,

We follow the steps of the proof of Theorem 8.14 in [4I]. In their notation we use &, =
Ruen(n*) and € = 1/2 for contraction with respect to Hellinger loss. Set

A;; = {/H(df‘X,Y) > H<B2(f*,Rnen(n*)))e_QRinan(n*F}.
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Then Py« (A}) tends to 1, thanks to Lemma 8.10 in [41] applied with D = 1. Since 1 =
1(A%) + 1(A%°), we have

Jge TS N M (C)[X,Y)
JII(df|1X,Y)

E;. [H(H;; mﬂn(C)‘(x,Y))] <Pp(AS) + Epe |1(A2)

and P« (A7) — 0 when n — 4o0. It remains to show that the second terms on the right
side tends to zero.

Let ¢n 1 (A) be arbitrary statistical tests to be chosen later. Test are to be understood
as Pnk(A) = énk(A)(X,Y) measurable functions of the sample (X,Y), taking values in
[0,1]. Then, 1 = ¢y, 1(A) + (1 — ¢y 1(A)). Using the definition of II(df N M,,(C)|X,Y) and

Fubini’s theorem, we find

E;- [H(H; n Mn(C)‘(X, Y))} <P (A% + Epe [T + T, (2.A.13)
where
' L AL (C) Sy dn (V) Jppoy ™A (f% . )L |A, 5))
Thi=1(4) T1I( df|X Y) :
S AZ)ZAGEM S Ly T B) (s (1= 6k (0) 22 (X, Y)II(AF |, B)) 43

JII(df|1X,Y)

We bound T by using 1(A%) < 1, together with

Jpeoy T(A (fH pie ( JIL(df |, 5))
<1
JI( df\X,Y) 7
so that
LIVTESEY) Z E - [, (A (2.A.14)
AELR(C) K

We bound T using the definition of A}, and obtain

_ Snca©) T Sy TO8) (s (1= ns W)L (X VAN B)) dB
2= H(Bg(f  Rnen (7)) e 2Ranen(r)?

For large n, R, = 10QC(2logn)' ¢ & > 4Q K% (¢* + 1). By Lemma we find
I (Bs(f*, Ruen(n®))) > e~ anen ) n (35 1), (2.A.15)

with I := {8 = (Bo, ..., Bg) : Bi € [BF — bn, B;],Vi} and by, := 1/log? n. By the construc-
tion of the prior 7 in (2.3.5), the denominator term e~¥»( is bounded above by 1 and
fQ ~v(n)dn =1, thus

(A, 1) =

Sy eIy (A", B)dB _w, )
T ey ) d _/;e By (A%, B)dB.
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Furthermore, by condition in Assumption we have g,(\",8) < Qen (¥, 3*) for
any B3 € I}, which gives

T(AT, I2) > exp(—ef™ 1) e @ ey (3 1),

‘d*ll) > ( independent of n. Again by construction,

with proportionality constant exp(—e®
the measure y(\*, I¥) can be split into the product v(A*)y(I:|\*) where (:|\*) is the uni-
form measure on I(\*) = [A_, ;]9 ! and the quantity y(\*) > 0 is a constant independent
of n. Thus, with c(n*) := exp(—ee‘d*ll)’y()\*)/]I(/\*)\, (N5, 1) > e(n)|IE]e @ e’ In
the discussion after we have shown that ne,(n*)? is a positive power of n and so,
for a large enough n depending only on n*, one has |I*| = (1/log?n)? +1 > ¢~m=n(7)?  This

results in

T(A*, IF) > c(nt)e (@ H0nen()? > o(p*)e=Ranen(n’)? (2.A.16)

By putting together the small ball probability bound (2.A.15) and the hyperprior

bound , we recover
N(X
Srezn© Zn ooy TOB) (frgg (1= k(W) 2L (X, Y)TI(F N, B) ) 4B

74Rn nen (n*)?2

T < c(n*)”
(2.A.17)

with proportionality constant ¢(n*)~! independent of n and depending only on %, 3_, ;.

We now bound the numerator of 75 using Fubini’s theorem and the inequality Ez[(1 —
P k(M) (P5/Pr) (X Y] S Ef[1 = ¢n (V)]

N o
Ej- (1= ¢n, (A))(X,Y)H(df\A,ﬂ)> d
! Aeﬁzn:((}) ; / (Aln ’ Dy~
N(X)
Aeg 2 / ( / Er [(1 - ¢n,k<A>>§Ji<X,Y>] H(dfrA,m) a8
< 2 Z / / CEp[(1 = ¢nn(N)]IL(df|A, B)dB. (2.A.18)
Aeﬁn(c k=1 M,

With the supports © ()\ B,K) in (2.A.10) and any & = 1,...,N()), consider
On(\, Br(A), K) = Ugep, (1)On(A, B, K). Now, for any fixed A,k choose tests ¢, x()\) ac-
cording to Theorem D.5 in [41], so that for f € ©,(\, Bp(\), K) N H(f*, M Rpen(n®)) we

have, for some universal constant K > 0,

Ej- 60k (V)] < ctWN (Rn&;(ﬁ)

Ef[l —onir(N)] < ck()\)*le*kMzR%mn(n*)Q’

—KM2R2ne,, (n*)?

)

7@”()\7 Bk(A)7K)7 || : ’OO) 1 - e—I?M2R%TLEn(7’]*)2

with choice of coefficients
(X, Bp(N))

cr(N)? = - '
N (22502 0, (A, B(N), K), | - )
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Let us denote by pg(A) the local complexities

= VA0, (V) - \/N (5 0000 B K I ).

Combining this with the bound on 77 in (2.A.14)) and the bounds on T5 in (2.A.17)—(2.A.18)),

gives

e—l(Ai?Rznan(n

Ef* [Tl]g 1_ —KM2R27’LE Z Zpk
Aeﬁn(C) k=1
I E U D Zpk
NELA(C) k=1

It remains to show that both expectations in the latter display tend to zero when n — +o0.
Since M > 0 can be chosen arbitrarily large, we choose it in such a way that KM?>5

and the proof is complete if we can show that

> Zpk A) < eftanen(n)?, (2.A.19)

AeLn(C

for some proportionality constant independent of n. Fix A € £,,(C) and k = 1,..., N()).
By construction, there exists 3 € By(\) such that (\,8) € M,(C). Since R, =
10QC (2logn)' T8 K using Ce,(n*) > €,(n) together with Lemma we find

2

g (25 0,00 B K. - ) < e

This results in

N
S S a0 s ew (g me0r?) ¥ Z\/ OB

AELR(C) k=1 AELR(C) k=

1
= exp <50R721n5n ) Z Z VYA, Bi(A
NELL(C) k=1

to\»—‘

where z, = >, f[(,\) e~ Yn(AB)~ (X, B)dB is the normalization term in (2.3.5)). By the local-
ization argument in (2.A.16)), we know that z, > w(\*, [}) 2 e~ RBanen(1)?  with proportion-

ality constant independent of n. Thus,

pd < 26
Z Z pr(A) S exp <50R121”5n ) Z Z VYA, Br(A
AL (C) k=1 \EL,

Since R,, = 10QC(2logn)' 18 K > 1 it is sufficient for ([2.A.19) that

3 Z\/W dnen(n (2.A.20)

AELL(C) k
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for some proportionality constant that can be chosen independent of n. To see this, ob-
serve that by Assumption we have v(\, 8) = v(A\)y(B|\) with v(-|A\) the uniform
distribution over I(A). Thus

> EIJ*YET" 3 §j¢wkn¢wxm@»

AEL(C) k AELA(C) K

where B, ()) is the center point of the hypercube By ()). Since |Br(\)| = (1/log?n)?+! and
(g+1) < |d]; < log(2logn), we have log(| Br(\)|~!) = 2(g+1)(logn) < 4log®n < ne,(n*)?.
Therefore, for a sufficiently large n depending only on 7*, we find |Bx(\)|7! < enen()?,
The above discussion yields the following bound on the latter display,

NOY
VYA Bi(A)) =
Ae%:(C) kZ=1 T Ae; Z \/!B

< eanen(’)? > Z|Bk (A, Br(N).

XELL(C) k=1

This is enough to obtain (2.A.20]) since, by Assumption

(A, Br(N))

) ijk!¢*fﬁf* }j/ VA8 = [ VAl dn

XeLn(C) K AEA

is a finite constant independent of n.
Since all bounds are independent of the particular choice of f* and only depend on the
function class F(n*, K), this concludes the proof of the uniform statement (2.A.12)). O

Proofs of auxiliary results

Proof of Lemma[2.4.5 We follow the proof of Theorem 2.7.1 in [84] and provide explicit
expressions for all constants. We start by covering the interval [—1, 1] with a grid of width
7= (8/c(B))YB, where ¢(3) := er + 2K. The grid consists of M points x,...,xy with

vol([—2,2]")

T

hev
™[

M <

= 47¢(B)557 5. (2.A.21)

For any h € C2(K) and any o = (a1, ...,q,) € N” with |aly = a1 + ...+ ar < | 8], set

Awu:<f”meV”¢&%@Mw>. (2.4.22)

Tﬁ_lah Tﬁ_|a|1

The vector 77~1¢1 A%}, consists of the values 9®h(x;) discretized on a grid of mesh-width
Pl Since 92h Cf_‘all (K) and 7 < 1 by construction, the entries of the vector in the

latter display are integers bounded in absolute value by
|0%h(x)| K K
{Tﬁ%lah S|\ Ban | S |73 (2.A.23)
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Let h, h € C,?(K) be two functions such that A%h = A%h for all a with |af; < |8]. We
now show that ||k — ks < 8. For any x € [—1,1]", let x; be the closest grid vertex, so that

|x — Xi|oo < 7. Taylor expansion around x; gives

(h—h)x) = >  0*h- m(xﬂ(x—;ﬁ)a + 1
oujal1 <[] ) N (x - x)° (2.A.24)
R= 3 [0%(h—R)xe) - 0%(h — ) i)
a:lali=[4]

with x¢, = x; + &(x — x;) and a suitable & € [0,1]. With [0%(h — E)|5_|a|1 the Holder
seminorm of the function 8*(h — h) € clled (2K), we bound the remainder R by

~ ~ leelt
Rl 30 (00— R)xe) = 0% — R)xi)| =
alali=|f] '
~ et
< ’311 h—h ‘ B—lai T
o Z_ ( ) B—la ! a!
olali=|5]
<2K7P.
Plugging this into the bound (2.A.24)) gives
~ ~ el
(=R < Y [%h=h)x)| T + Ko
ol <[A] '
- Z A=l 0%(h = (i) | 71 +2K7°
o 7'/8*|a|1 al ’
alal1<[A]

In view of definition (2.A.22), we denote A%(h — h)(x;) = [0%(h — h)(x;)/77~121 | and
B(h — h)(x;) = 8%(h — h)(x;)/m°~ 1 — A%(h — h)(x;). Thus A%(h — h)(x;) = 0 by
assumption on A, h and |B*(h — h)(x;)| < 1. We now prove

> 1al<er’ (2.A.25)
a:lali <[]
In fact, for any positive integer k, consider the multinomial distribution induced by a
fair r-sided die over k independent rolls. The corresponding p.m.f. is a + r~*k!/a! and is
_ 2k

o=k L/ =7"/KL
By summing over k = 0,..., [B], one finds >4, <5 1/l = Z,E@O Poclah=k L/al < er?,
proving ([2.A.25]). Combining the discussion above together with the previous bounds, yields

supported on {a : |a|; = k}. Since the p.m.f. sums to one, we have ),

~ 1
(h=R))| <7 > —42K7? <1 (erﬁ + 2K) =, (2.A.26)
ala1 <)

proving that, if two functions h,h € CZ(K) have A%h = A%h for all a with |a|1 < 8],
then ||h — ks < 0.
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The quantity N (0, c? (K), ||-|]) is bounded above by cardinality #.4 of the set of matrices

The rows of the matrix Ah consist of the row vectors A®h. Since we consider o : |a|; < | 3],
the matrix Ah can have at most (|5 +1)" rows. Any matrix Ah has moreover M columns.

To complete the counting argument, we first explain the underlying idea. If two neigh-
boring grid points x;,x; are selected such that |x; — x| < 27, say, then, 0%h(x;) ~
0%h(x;), whenever |a|; < (. Since the ¢-th column of Ah contains the discretized entries
(0%h(x¢))a:jal1<| 8> the number of possible realizations of the i-th and j-th column vector
can be bounded by the possible realizations of the i-th column vector times a factor that
describes the number of possible deviations of the values in the j-th column vector.

We now show that this factor is bounded by 2°+1¢(3). To see this, observe that Taylor
expansion gives

O%h(x;) = > Bo‘ﬂ‘h(xz‘)i(xj I_{!Xi)k + > aa+kh(x5)7(xj I_{!Xi)k7

ki|afi+k[1<[5] ki |1 +|k[1=(5]

for some x¢ on the line with endpoints x;, x;. By replacing h by 0, h by 0%h, by 8 — |a1

and 7 by 27, we can argue as for (2.A.26)) to find

9%h(x.) — f-ladi—Ikl1 gty () K5 =X | _ oplali g B-lath
(%) > T (xi) = < (B —lal)r
ko1 +[k[1<|B] '

< 2¢(B)rh-leh,

This shows that, if the i-th column of Ah is fixed, the values 0%h(x;) range over an interval
of length at most 2 - 2%¢(B)77~1®. The entry |9%h(x;)/m%712I1] can attain therefore at
most 2841 ¢(B)rP-led /rB-leh 1 = 28+1¢(B) 4 1 different values. As there are at most
(6+1)" many rows, for fixed i-th column of Ah, the j-th column of Ah can attain at most
(28+1¢(B) + 1)B+HD" different values.

Without loss of generality, assume that the points x1,...,xs are ordered in such a way
that for each j > 1, there exists i < j, such that |x; — Xj|cc < 27. This determines then
also the ordering of the columns of the matrix Ah. In view of Equation , the first
column of Ah can attain at most (2K7~# +1)(#+1)" different values. For each of the M — 1

remaining columns, we can use the argument above and find
N6, CHE), | - [loo) € #A< (2K7P 4 1)FHD" . 28+ ¢(g) 4 1)M=DEFDT,

Since = +y < xy for all z,y > 2, using ¢(f) = er® + 2K < 2¢KrP, the bound on M
in and the definition of 7 = (§/¢(8))"/?, the first assertion of the lemma follows.

For the bound on the constant Q(3,r, K), we take the logarithm. With log(z 4+ 1) <
log(2z) for all x > 1, we get

4 K2 ﬂ (6+1)T 4T(B+1)TT’T(2€K)%6_%
log (( A 1> (2B+26KT’8 + 1)

4]
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Re K 2rP
1)

< (ﬂ+1)7"10g<

=: A1 + As.

> +4"(8+ 1)TTT(26K)%57% log (2ﬁ+3€K7ﬁ)

Observe that log(z) < z%/a for all a,z > 0, then

2,8 .. _—
log (8155 : ) < B (serP)3575 = prr-i(seK?)io 5,

which yields A; < (8+ 1)1~ 1(8eK?)"/P§~7/8. Furthermore, using that logz < z for all
z >0,

log (2B+36Krf3) <2(B84+3)+pr+eK < (r+2)(f+3)+ekK.

Since r > 1, the latter display is smaller than 4(8 + 3)r + eK < 4eK(S + 3)r and so
Ay < 4eK (B4 3)r-47(B+1)"r"(2eK)"/P5~7/8. Putting together the bounds on A; and As,

we find
A+ A N -
15+T2 < B+ (8eK?)F 4 eK (B + 3)4 T (B 4+ 1) (2eK) 5
B
< (1+ eK)A™H(B + 3) Tt (8eK?) 5

which matches the definition of Q1(3,r, K) in the statement.
We now prove the entropy bound in (2.A.9). Let @1 = Q1(8,r, K), C1 = Q?a/(waﬂ)
and t, = n~Pe/(2Batr) By construction, tﬁr/ﬂa = nt2 and QlCl_T/ﬁa = C%. For any

sequence 6§, > Cqt,, the first part of the proof gives

log 7 (87 CER e ) < o7 ((Cuea) .2 () )

T

_r
< QIC1 pe Tn pe
= Cim?

< né>.
The proof is complete. O

Proof of Lemma[2.4.6, Fix any B € [5_, B84]9"L. In a first step we show that, with R :=
5K9(q+1) and 6in(X, B) = en(ai, Bi, i)/, we have

q
i=0
Foranyi=0,...,q,let gi1,...,9in, be the centers of a 3d;,(\, 3)-covering of ©; ,,(A, B, K).
Then, any function g0 --- 0 gp € ©,(A, B, K) belongs to a ball around a composition of

centers gg k, © - © gok, for some k = (ko, ..., k;) and such that ||g; — gir;llcc < 36in(A, B).
By definition of ©; (), 3, K), the components (g;;x,); of gix, satisfy \gij,ki (x) = gijm (¥)| <
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26m(A, B) + K|x — y|2" for all x,y € [-1,1]%. Using Lemma the definition of
din(A, B) and the fact that a; < 1, gives

q

1940090 = Gay © - © Gool o < KLY (20in(A, B)™ + (351 (A, B))™
=0

<5K%(q+ 1)en(X, B)
= Re,(\, B).

Since there are Ng x --- X Ny centers, this concludes the first part of the proof.

We now focus on the set ©,(X, B, K) = UgepOn (A, B, K). Set B the infimum of B, that
is, for any B € B we have ﬁz < B;, forall i =0,...,q. Since B is contained in the closed
hypercube [3_, 84]97, we have 8 € [3_, 8:]7"!. We now show that, for any i = 0,....,q and
B € B, the set ©; (), B, K) is contained in the set ©;,(A, 8, K). In fact, by definition, any
function h; € ©;,(\, B, K) satisfies hijo(-)gi, € D;(\, B, K) and, as a consequence of the em-
bedding in Lemmalm and the fact that d;,(X, B) < 0in (A, B) by the rate comparison con-
dition|(ii)|in Assumption[2.4.2} one has Cg_i(K)—i—]B%oo(Qém()\, B)) C Cg" (K)+ B (20in (X, B)).
Thus, D;(A, 8, K) C Di(\, B, K) and ©; ,(\, B, K) C ©;,(\, 8, K). Together with (2.A.27),

we obtain

N(Rgn()"g)v@n()‘vaK)’ H : ||oo) < N(Ren()‘vé)ven(Avg7 K)’ H : ”OO)

q
< IV (B6in(A B),©in(\ B K, | - lloo) -
i=0
We now use the definition of ©;, (A, 8, K) and upper bound the metric entropy by removing
the constraint B, (1) in the definition of D;(\, 8, K). This gives

dit1

N(géin()‘vé)7®i,n()‘7ga K)v H ’ HOO) < HN (35m()\7é)7ct%(K) + Boo (25m(>‘7g)) ) H ’ ”oo) .

j=i

Any function in Cg" (K)+Boo(20in ()\, @)) is at most, in sup-norm distance, 26;,, (A, B)-away

from some function in Cgl(K) Therefore, by applying Lemma |2.A.5| with r = ¢;, 5 = ﬁi’

o =y, and 617, = 5177,(77)7

N (36n(0,8). € (K) + Bow (28:0(0B)) |- ) <N (60, 8), € (K, - 1)
< ensn()\,g)g ]

Assumption ensures that €,(\,3) < Qe,(A, B), thus combining the last inequalities

gives

log V' (RQen(A, B),0n (A, B, K), || - o) < log N (Ren(X, B), On(X, B, K), || - [|oo)

q dit1

< Z Z nsn()\,g)z

i=0 j=1
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= |d|inen (X, B)°
< Q?|d|1nen(), B)2.

Since R = 5K9(q+1), we use that (¢+1) < |d|; < log(2logn), together with log(2logn) <
2logn. Thus, K(q+ 1) < (2logn)' 18K and, with R, = 5Q(2logn) s K
log N (Rnen(A, B), On(A, B, K), || - [loc) < 27;”571()‘7ﬂ) )

which concludes the proof. O

2.A.2 Proofs for Section [2.5]

Proof of Lemma[2.5.1. Fix B,r and let e be such that #7K)(ep) < Te2 for all T > 1.
For this choice of (3,7), we show that the concentration function inequality (2.3.2)) holds
for any 0 < o < 1 with e,(, 8,7) := €y, , where the sequence m,, is chosen such that

m

mneZ, 2% < n. To see this, observe that

90(/8’7”7]{) (En(av B, T)l/a) = SO(ﬁ’T’K) (5mn) < mn52 < n€72no¢n = nen(a, B, T)2'

mn

By Lemma 3 in [I7], the function u — (%™ () is strictly decreasing on u € (0, +00),
thus any g,(a, 5,7) > en(a, B, r) satisfies

(10(/877‘?[() (gﬂ (Oé, B? T)l/a) S SD(BWJ() <€n(()é, /Ba T)l/a) S nsn(a, B, T)2 S ngn(av 57 T)Qa
which concludes the proof. O

Proof of Lemma[2.5.3. (i): By Lemma the sequence e,(a, 3,7) can be obtained
from e,(1,8,r) via ey(a,B,7) = en,(1,58,r)% for any sequence m, such that
Mnem, (1, 8,7)272% < n. We verify this for the sequence m,, = C3(logn)~C4n(28+)/(2Ba+r)
with

@-20)@284n) (2 -20)(28 +7)

Cy = [C1(28 +1)%2] " 27+ and Cy:= 2Ba T Co.

Since C; > 1 and n > 3, we must have C3 < 1, (logn)~%* < 1 and thus also log(m,) <
(28 + 1) log(n). Consequently,

8 2—2«

Mnem, (1, 8,7)* 7% = mp, | C1(logmy) 2my, 7

2B+r—2B+28a
— C%—Qa(log mn)Cg(QfQOz)mn 2B+r

2Ba+r

< C22((26 + 1) log(n)) *® 7m0

< 022 Ca2(2—2a) 22Bﬂa-&err Ca(2—20)—Cy 222tr
<CI (28 +1) Cy (logn) 28+

= n.
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By Lemma 2.5.1], any sequence g, (v, 8,7) > e, (a, B, 7) is still a solution to the concentration
function inequality (2.3.2). We now derive a simple upper bound for €, («a, 8, 7). Using that
a <1 and log(m,) < (28 + 1) log(n), we find

5n(a)ﬂv’r) = 6mn(]" B)T)a
_Ba

< Ci;v log(m )anm 28+r
— B _Ba _Ba
< C1(28+1)%Cy 77 (logn) 4 marr " T

Using the definition of C5 together with 0 < a <1, (2 — 2«a) < 2 and 2Ba/(2Ba+71) < 1
yields

_ Ba (2—20)Ba
Cy P = [C1(28 4+ 1)) T < Ci(28 4+ 1)

Similarly, we get

Ba < (2—-2a)(28+T) 28+

1
0425(1—1—7“_ 2 2Ba +r 5 2[304—1—1" G228+ 1).

The two previous displays recover the first assertion.

(ii): By assumption, for any § € (0, 1), we have o3m5)(§) < C!(log 5*1)05(5_%. We now
choose § = e, (a, B,7)Y* and e, (a, B,7) = C} (logn)2n~—B/(2Be+7) Since €} > 1, C4 > 0,
and logn > 1,

1 __Ba
logan(a,ﬁ,T)*é < —alogn 2Batr < 5 " logn < logn.

Similarly,

P o 2
enla, B,r) P < (n_w[iiw) fer :n.n—%g nen(a, B, 1)
(C1)?(logn)?¢

and therefore,

Q=

) <y (logsn(a,ﬁ,r)_l>cl n(o, B,r) E nen(a, B,1)°.

O]

‘;0(6771’[() <5n (057 ﬁv T)

Proof of Lemma[2.5.3, 1t is sufficient to show that for n > 1, any composition graph A =
(4,d,t,8), and any B' = (8., )8 = (B, 0,) € I(\) satisfying 8 < B < 5l +
1/log?n for all i = 0, ..., q, the rates relative to the composition structures n = (), 3) and
= (A, B') satisfy en(n) < en(n) < Pren(n).
Since e,(n) = Co(n)(logm) e, () with C(n) = maxico,_qsupsegs_s,) O5(8.11).
J € {1,2}, we have that C;(n) = C;(n) and it is thus sufficient to prove t,(n) < t,(1') <
e, (n).
Using that v,(n) = max;—o,. 4 pPici/(2Bicitti) and the fact that the function z —
x/(2z + t;) is strictly increasing for x > 0 (its derivative is @ +— t;/(2x + t;)?), the first
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inequality t,,(n) < v,(n’) follows. For the second inequality, rewriting the expressions and

simplifying the exponents gives

/) __Bie Bjey Bl Bio L
< max min n 2%ttt < omax p 2Beitt 2Pt < gy pficiBiag

t,(n) T i=0,..q j=0,...q i=0,....q i=0,...,q

We conclude the proof by showing that |3;a; — Blal| < B4/logn. For u,u/,v,v" > 0,
we have that |uv — v/v'| < ulv — V| + V'|u — /|. In particular, if u,v” < 1, then also

luv — u'v'| < v — V| 4+ |u — u/|. By iterating this argument, we find that

—1
a; — o] < Z [(1ABe) — (1A BY)| Z |80 — By <
P log n
i+1 l=i+1

and thus, B;a; — Bl < Bi|a; —ab|+ak| B — Bi| < Bi(g+1)/log?n. Since we are restricting
ourselves to graphs A such that |[d|; = 1+ Y 7 d; < log(2logn), we have as well ¢ +
1 < log(2logn). Since logz < z/2 for all z > 0, we find (¢ + 1) < logn. This gives
(q+1)/log?n < 1/logn and thus Assumption [2.4.2] (ii) holds with Q = e’+. O

Proof of Lemma[2.5.7] For two functions gy € Cl’B’“(l), k = 1,2, and B1,82 < 1, we have

that |g2(g1(z)) — g2(91(1))| < |g1(x) — g1(y)| < |z — y|?#2. Hence, go 0 g1 € C;'72(1). We
now write

f=hgo--ohy=hgo---ohjiohjohj g0---0 h,

with Ej := hj o hj_1. The right hand side can be written as composition structure n’ :=
(¢g—1,d-j,t—;,8_;,8), with d_;,t_;,S_;, 3" as defined in the statement of the lemma.
Due to S < 1, we have v,(n) = max;—o,_.. 4 n_ﬁ, with v; = HZ:i B¢ and it follows that
tn(n) = ta(n). O

2.A.3 Proofs for Section 2.6

Proof of Lemma [2.0.1. For the first part of the proof, take a kernel ¢ with Rz :=
Jrr Iv|5.¢(v)dv < +oo. Using that h € CZ(K) and the change of variable v/ = v/o,

we immediately get

|(h % ¢5)(n) — h(w)] < - ¢o(V)|h(u —v) = h(u)| dv

SK [ |Vda(v)dv
R’l‘

= K/RT V|2 o "p(v/o)dv

_K / ov[8. (v
R’I’

< KRgo”.

This shows || * @5 — h|lcc < K Rgo? and concludes the first part of the proof.
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We now deal with the RKHS norm. Notice that

(hx 65) (w) = /R RAGIEG (2fffr/2

~ —imle_ 1 g
o A1)2 B+r/2 €
=y | hed (el g 0

The RKHS of Z + X” is the direct sum of the space of constant functions H% and HP. If
the term (h * ¢,)(0) is finite, it is a constant and thus belongs to H#. Then, the function
h % ¢y is a candidate element of HZ @ HP since h * ¢y — (h * ¢ )(0) has been represented
as a potential element of the RKHS of X”. We now bound their norm using the isometry
property of the norm || - ||gs, so that

d
I+ 6o s < 200k # 60O +2C5 [ ORGP s

By the change of variable ¢’ = ¢¢, the fact that € — (1+ |£|2)Bh( €) has L2-norm bounded by
K, the property ¢o(€) = ¢(c€), and choosing ¢ such that M2 := SUPgcRr \$(£)|2|£\§ < +o0,

we can bound

28+4r
/|h | |¢J | |€‘ ( )r/2
=0 [ hieoiderer oS

_ oo [ (L+1€/02)* o op+r  d§
e e PO PIE™ %
it

g 1OE)PIER" 205 (¢ for) 2
<o 2y (8B s [ 0 o) P G

oo |GEPIERTT [, N -
<o S [ o RO

< K?M?c7".

Similarly, by choosing ¢ such that N2 := (2r)~"/2 Jgr ]$(£)|2 d€ < 400, we obtain

|(h * ¢0)(0 (/ (R(&)]|do (€ ( W2>
B (/ [h(&)|(1+ |€I2)B(1|TT§)2|)6 (2j)£r/z)2

< ( porariear i) (A2 )

2>y 6(6)]? dg
=Ko /R (1+ [&/0]2)?P (2r)/2

< K*N?7".
The proof is complete by taking L2 := 2(Cg + 1)(M? v N?). Since this will be useful for
the proof of Lemma 2| the exphc1t form of the constant Cj is given in (3.67) in [27] as
o a(E 1)
’ T 22T (2p) sin(xB)T(5 +1/2)’
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and depends only on 3, r. O

Proof of Lemma[2.6.3. We show that:
(1.) Lemmam (ii) holds for some C(8,r) > 1 and C4(B,r) = 0.
(2.) Any sequence e,(a, 8,1) > C} (ﬂ,r)n_ﬁa/(wa”) solves ([2.3.2]).
(3.) Assumption (i) holds for e, (a,B,r) = Cl(,B,r)n*BO‘/(QBO‘”) with C1(B8,7) =
CL(B.7) V Qu(B,r, K )P/
(4.) SUPge[3_ 4, ] Ch(B,r) < 400.
(5.) Assumption (ii) holds for e,(n) of the form (2.5.3).
By Lemma 2.5.2, (1.) = (2.) = (3.) and by Lemma 2.5.3] (4.) = (5.). Thus it
remains to prove (1.) and (4.).
Proof of (1.): Fix 8 € [B_, 84]. We have to show that, for all § € (0,1), #"5)(§) <
C] (ﬂ,r)&‘r/ﬁ, for some constant C1(3,7) > 1 depending only on 3, r, K. We denote the
small ball probability term by cp(()ﬁ’r)(é) = —logP(||Z + X?|| < §) and show that

(A): sup 5T/5gog’8’r)(5) < +o0, (B): sup &P (cp(ﬁ’T’K)((S) — ap((]ﬁ’T) (8)) < +oo.
5¢(0,1) 5€(0,1)
To prove (A), observe that the process Z + X A is the sum of two independent processes,
thus its small ball probability can be bounded by log P(||Z + X?||oc < 6) > logP(|| Z]|00 <
§/2) +1ogP(|| X?||0o < §/2). It is then sufficient to study the small ball probabilities of Z
and X¥, separately. We now show the following condition, which implies (A),

sup —6"Plog P(| XP||lee < 8) < +00, sup —6"/PlogP(|Z] < §) < +o0.  (2.A.28)
5€(0,1) 5€(0,1)
Sharp bounds are known, see Theorem 5.1 in [59], for the small ball probability of the
fractional Brownian motion X?. In particular, for 0 < § < 1, we have —logP(||X”|| <
§) < ex(B,7)67"/# for a finite constant cx(3,r) depending only on S, r. Since Z is a
standard normal, we have P(|Z] < §) = (2r)~1/2 fi; e 2y > 256*52/2/\/271 With the
universal constant ¢ := 2/+/27, this gives —log P(|Z| < ) < log(c™'6~!) + 62 /2. Therefore,
using log(z) < z%/a for all x > 1,a > 0, we get
B1NP s2 B 1
sup —5r/*310g}P’ Z| <d) < sup 5r/5(— — +f>=7+f::cz B,r).
0€(0,1) (| | ) 5e(0,1) r \ cd 2 cr/By 2 ( )
This concludes the proof of (A).
To prove (B), we apply Lemma In particular, with finite constants R(3,7), L(8, )
depending only on 8, r, take o = (KR(B,7))"/#§'/#. Then, any function h € Cﬁ(K) N
wh (K) can be well approximated by the convolution h % ¢, in such a way that ||h — h *

dolloo < 9 and ||h x ¢U”I2HIZ@H5 < K2L(B,7)%6~"/#. This proves (B) because it gives

BrK) 5\ _ BT) 2 25—r/8
sup 2 (5) 900 (5) < sup K L(ﬁ,?") 5 :K2L(B,T)2.

5€(0,1) 6-r/8 "~ 5e(0,1) 6-r/8
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We have thus concluded the proof of (1.), that is, for any 8 € [5_, 5+], condition (ii) in
Lemma [2.5.2 holds with finite constants

Ci(ﬁ,’l“) = CX(5>T) + CZ(5¢T) + KQL(ﬁa T)27 Cé(/ﬁa 7") = 0.
Proof of (4.): With the definition of C1(/,r), we want to show that

sup  CL(B, 1)V Q1(B,r, K)/ 2B+ < foo.
BeE[B-.B+]
The constant Q1(53,r, K) is given explicitly in Lemma [2 and depends continuously on
B > 0. Thus, supgeps_ 5,1 Q1(8,7, K) = . Q1 < +00. Since the function 8 — 8/(28 + r) is
increasing for 8 > 0, we also have Q1 (3, r, K)?#/(28+1) < Qvf+/(26++r).
In the previous part of the proof we have found Ci(8,r) = cz(8,r) + cx(B,r) +
K?2L(B,r)?, thus it remains to prove

sup ¢z (B, 1)+ ex(B,r) + K2L(B,7)* < +oo. (2.A.29)
66[57764’]
By examining the proof of Lemma|2.6.1} we know that supgc(z_ g, K2L(B,r)? < +00. The
explicit form of ¢z () is given in (2.A.28) and so, with ¢ = 2/+/2,

sup  cz(B8,r) < £—+ + = < +oo.

BE[B-,B+]
We now show that the properties of cx(3,r) can be deduced from Theorem 5.2 in [59].
We observe that E[|[X?(u) — XA ()]?] = |u — |2ﬁ Furthermore, the function g +—
E[X#(u)X?(1')] is continuous for all fixed u,u’ € [~1,1]". In the notation of Theo-
rem 5.2 in [59], we can take o3(d) := §° and check that, with ¢; := 1/2+ and cp := 1,
c108(26 A1) < 05(0) < ca08(26 A1) for all 6 € (0,1). The constants ¢i, ¢z are chosen to
be independent of 5 in the compact interval [5_, 54]. From this, one obtains a constant
cx(r) that only depends on ¢, co and such that —log P(|| X7 e < ) < ex(r)3~"/8 for all
d > 0. This shows that the quantity c¢x (5, r) in can be replaced by cx(r) and thus
is bounded, concluding the proof of (4.). O

Proof of Lemma[2.6.3. Using the definition of X# yields

XA = — a Z;
1 X7 |l oo,00,8 = e, jrk:rf_.féjr| &

It is known that E[maxy_; oi» Zj1] < \/210g(2/7), a reference is Lemma 2.3 in [62]. For
K’ > 1, using symmetry of Z;j and the Borell-TIS inequality, e.g. Theorem 2.1.1 in [I],

P <k max |Zj > (14 K') 2log(2j7’)> < 2P (k max Zik = (14 K") 2log(2j7"))
=1,...,20" 1,02

< 4exp <—K' log(2jr)> :
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Combining this with the union bound and the formula for the geometric sum, we obtain
for any K' > 2//r,
Js 1
. . S 12
P (30 =1 T (0] > (14 ) 21020 <L S e
]:

Therefore, with K’ > 1/3, on an event with probability at least 1 — 4/ (2’"K/2 —4), we find

14+ K')\/2log(277)
x5 < ( =1+ K')\/2log?2.
1 X7 || oo,00,8 < j:rg_%?f% i (14 K')\/2log

O]

Proof of Lemma[2.6.4 In view of Section 4.3.6 in [42], the Besov space By 003 contains
the Holder space c? for any 8 > 0, and they coincide whenever 8 ¢ N. Thus there exists
K’ such that C2(K) C Boo,co,8(K'). We show that:
1.) Lemma [2.5.2] (i) holds for some C}(53,7) > 1 and C5(B,r) = 3/2.
(2.) Any sequence &, (a, 8,7) > C1(8,7)%(28 + 1)3(log n)3(F+Dp =B/ (2Be+r) golyes the con-
centration function inequality -
(3.) Assumption 2| (i) holds by taking e,(a, 3,7) = C1(B,r)(logn)C2Br)p=Fa/(2Batr)
with C1 (8, ) = Cl(ﬁ, 226 4+ 1)3 vV Q1(B, r, K)¥/ A7) and Cy(B,7) == 3(8 + 1).
(4.) supgers_ g, C1(B, 1) < 400 and supgerz_ 5,1 C2(B, ) < +o0.
(5.) Assumption [2.4.2] (ii) holds for an ,(n) of the form (2.5.3).
By Lemma 2.5.2) (1.) = (2.) = (3.) and by Lemma [2.5.3] (4.) = (5.). Thus it
remains to prove (1.) and (4.).
Proof of (i.): We denote the small ball probability term by cp( ) (6) := —log P(|| X |00 <
§) and the RKHS term by (%5 (5) — (p(()ﬁ’r) (0). We start with the RKHS term. The proof
of Theorem 4.5 in [82] shows that any function h € Bog 0 3(K’) can be well approximated
by its projection h’6 at truncation level Jg. In fact, one has |h—h’'# |, < K'27768 /(28 —1)
and, with coefficients w; = 277+7/2) / /57

Jﬁ 2IT JB
175 = D7D Ak < KPrds 3o 27 < KPr g5
j=1k=1 J=1

Recall that Jg is defined as the closest integer to the solution J of 2/ = nl/@8+7) By
definition, we always have Jz < 1+ logyn/(28 + ) and so 278 < 2p!/(28+7) o=Jsf >
2= Bp—B/(26+r) With all the above, we choose

8
5 —K’%f_% Vi P98,

implying ||h — h”%|| < d,, and

P10 (8n) = ") (Bn) < Kr 720"

< K"*r2" J3nwer
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(28 4 1)2
(28 — 1)
(28 +1)4
(28 — 1)

< K" r2" Jin e

< nK" r2" J3o-2Je8

< né2.

We now study the small ball probability. The proof of Theorem 4.5 in [82] shows that,
for any sequence d,, € (0,1),

Jp .
(Bvr) T 5712]
o)< =Y 2" log |20 | =———— | -1,
> R+

where K(f) is chosen in such a way that the function z — 2%/7/(K(B) + log3(x)) is
increasing for x > 1. Taking the derivative and imposing it to be positive for x > 1 yields
BE(B)/r + logd(x) — 2log(z)/log3(2) > 0, which is solved for any K(8) > 4r/8. [82] also
shows that the function f(y) = —log(2®(y) — 1) is decreasing and can be bounded above
by f(y) <1+ |logy| on any interval y € [0, ¢]. Thus we find

Js i3
(B,r) T 5712)
oy (0n) < 2714 |log | =—— .
! 2 K(8) + 22

j=1
Now, assume that our sequence satisfies §,, < f( (B) + J5 2227758 then

Jp 2,2
T T K +]r
oy (8,) < S <1+lo ( o ))

j=1

< Jg27em <1—|—log (K(S 55 ))
e (B9 ()]

We now show that indeed 6, < (K(8) + J§r2)2_‘fﬁﬁ. In fact one has to check that

< 2.J52767

8
K’ ((22/;1 1)) Vi) < K(B) + I3

which holds for sufficiently large n since J3 > < J2. Then, with the definition of d,,,

r [ K 15} + 72 1 ,
oy (6,) < 2 |log <<2)5> + log <5n>] Jp2”8

K(B) +r? 9758 ;
- @7"
<2 [log < 27 + log NELEERy ey J52
i K -1 \/ "¢ V5B

[ % 2
<2 |log (K(ﬁ) tr ) + log (2‘]55)] Jg278"

28
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<2 [Iog (W) + Blog (2)] J527er

<2 [Iog (W) + Blog (2)] 2" J3n 25+

B _r
Since JE < Jg, for large enough n the latter display is smaller than K" E;ﬁigz 27",]271 2BHr <
né2.

This concludes the proof of (1.), since we have shown that the sequence

20 +1)? 3/2
n(1 = kB o 290
€ ( ,5,7’) (26 _ 1) r J,B 9

solves the concentration function inequality for a = 1.

Proof of (4.): The constant Q1(8,r, K) is given explicitly in Lemma and depends
continuously on 3 > 0, so supge(s_ g, Q:1(B,r,K) =: @1 < +4o00. Since the function 8 —
B/(28 + r) is increasing for § > 0, we also have Q1(8,r, K)B/(QB”) < @’f+/(26++r).

All the quantities involved in the construction of the rate €,(1, 5,r) are explicit. It is
immediate to see that they are all bounded on the compact interval 8 € [3_, f4] since
B- > 0.

This concludes the proof of (4.). O

Proof of Lemma[2.6.5, We show that:

(1.) Lemma [2.5.2] (i) holds for some C{(3,7) > 1 and C(8,r) = (1 +7)B8/(28 + ).

(2.) Any sequence e,(a, 8,7) > C}(B,7)%(28 + 1)2C257) (log n)2A+2)C3(Br)p=Ba/(28a+r)
solves the concentration function inequality .

(3.) Assumptionm (i) holds for any e, (cv, 8,7) = C1(B,7)(log n)C2(Br)p=Be/2Batr) with
C1(8,7) = CL(B,r)2(26 + 1)205B7) v Qu(B,r, K)P/CH+) and Co(B,r) = (26 +2)(1 +
PB/(26 + 7).

(4.) supgeg_ g, C1(B,7) < 400 and supgeg_ 5,1 C2(8,1) < +00.

(5.) Assumption (i) holds for an ,(n) of the form (2.5.3).

By Lemma 2.5.2) (1.) = (2.) = (3.) and by Lemma [2.5.3} (4.) = (5.). Thus it

remains to prove (1.) and (4.).

Proof of (1.): Let gp&g ") the concentration function of the rescaled process X" (a-),

then Lemma 11.55 and Lemma 11.56 in [41] show that, for all 0 < § < 1,

AP9(8) < (0(0) (1ogfas™) ™ + D)

where C(r) and D(r) are constants that only depend on r and the spectral measure v of X".
It is sufficient to solve the concentration function inequality for « = 1. The solution
is given in Section 11.5.2 in [41] as e,(1, 8,7) = C}(B,r)(logn)(1+7B/2B+7)yy =B/ (26+7) for
some constant C1(S,7) > 1 depending on 3, r, K.

Proof of (4.): The constant Q1(53,r, K) is given explicitly in Lemma and depends
continuously on 8 > 0, so SUPge[s_,44] Q1(B,r,K) =: @1 < +oo. Since the function § —
B/(2 + r) is increasing for 8 > 0, we also have Q1 (8, r, K)#/(28+7) < @f+/(2ﬁ++r).
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The dependence on § in the concentration function bound only appears in the scaling
a = a(B,r), since the constants C(r) and D(r) are independent of 5. The right side of the

latter display depends continuously on the scaling a = a(/3,r), which in turn is continuous

in § € [B—, B+] by construction (2.6.2). This gives

sup Ci(B,r) < +o0, sup Co(B,r) < (26++1)(1 + 7“)B7Jr
Bepelf- p BeBelB_fy] 204+
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Chapter 3

Robust-to-outliers square-root

Lasso, simultaneous inference with
a MOM approach

This chapter is based on:
G. Finocchio, A. Derumigny and K. Proksch. Robust-to-outliers square-root Lasso, simul-
taneous inference with a MOM approach. Arziv preprint, arXiv:2103.10420 (2021).

Abstract

We consider the least-squares regression problem with unknown noise vari-
ance, where the observed data points are allowed to be corrupted by outliers.
Building on the median-of-means (MOM) method introduced by [55] in the case
of known noise variance, we propose a general MOM approach for simultaneous
inference of both the regression function and the noise variance, requiring only
an upper bound on the noise level. Interestingly, this generalization requires
care due to regularity issues that are intrinsic to the underlying convex-concave
optimization problem. In the general case where the regression function belongs
to a convex class, we show that our simultaneous estimator achieves with high
probability the same convergence rates and a similar risk bound as if the noise
level was known, as well as convergence rates for the estimated noise standard
deviation.

In the high-dimensional sparse linear setting, our estimator yields a
robust analog of the square-root Lasso. Under weak moment conditions,
it jointly achieves with high probability the minimax rates of estimation

(1/n)log(p/s) for the £y,-norm of the coefficient vector, and the rate
W for the estimation of the noise standard deviation. Here n
denotes the sample size, p the dimension and s the sparsity level. We finally
propose an extension to the case of unknown sparsity level s, providing a jointly

adaptive estimator (E,E,E). It simultaneously estimates the coefficient vector,
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3.1. Introduction

the noise level and the sparsity level, with proven bounds on each of these three

components that hold with high probability.

3.1 Introduction

We consider the statistical learning problem of predicting a real random variable Y by means
of an explanatory variable X belonging to some measurable space X. Given a dataset D
of observations and a function class F, the goal is to choose a function f € F in such a
way that f(X) approximates Y as well as possible. In particular, we study the problem
of predicting Y with the mean-squared loss, which corresponds to the estimation of an
oracle function f* € argmin;crE[(Y — f(X))?]. This setting has been formalized by [55]
in the context of robust machine learning. In this framework, one observes a (possibly)
contaminated dataset consisting of informative observations (sometimes called inliers) and
outliers. The statistician does not know which data points are corrupted and nothing is
usually assumed about the outliers, however one expects the informative observations to
be sufficient to solve the problem at hand, provided that the number of outliers is not too
large. When the inliers are a sample of i.i.d. observations with finite second-moment, such
a corrupted dataset can break naive estimators even in the simplest of problems: a single
big outlier can push an empirical average towards infinity when estimating the mean of a
real random variable. A much better choice of estimator in the presence of outliers is the
so-called median-of-means, which is constructed as follows: given a partition of the dataset
into some number K of blocks, one computes the empirical average relative to each block,
and then takes the median of all these empirical averages. The resulting object is robust
to K/2 outliers and has good performance even when the underlying distribution has no
second moment, see [37, Section 4.1]. Some of the key ideas behind the median-of-means
construction can be traced back to the work on stochastic optimization [69, [68], sampling
from large discrete structures [50], and sketching algorithms [2].

Our work builds on the MOM method introduced in [55], which solves the least-squares
problem by implementing a convex-concave optimization of a suitable functional. In the
sparse linear case, this problem can be rewritten as the estimation of 8* in the model
Y = XTB* 4 ¢ for some noise ¢, where Fsr = {x — x'8 : B € R%, |Blo < s*} for
some sparsity level s* > 0 and |3|¢ is the number of non-zero components of 3. There, the
MOM-Lasso method [55] yields a robust version of the Lasso estimator, which is known to be
minimax optimal, see [7, 9} 8], but its optimal penalization parameter has to be proportional
to the noise standard deviation o*. However, in practical applications this noise level o*
is often unknown to the statistician, and, as a consequence, it may be difficult to apply
the MOM-Lasso. We extend this MOM approach to the case of unknown noise variance
and highlight the challenges that arise from this formulation of the problem. The main
contribution of our paper is the choice of a new functional in the convex-concave procedure
that yields, in the sparse linear case, a robust version of the square-root Lasso introduced

in [10], which was shown to be minimax optimal by [35], while its penalization parameter
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does not require knowledge of o*. Interestingly, intuitive and seemingly innocuous choices
of functional end up requiring too restrictive assumptions, such as a known level o_ > 0
bounding above and below the noise standard deviation as in [36], whereas in this article,
we only require a known (or estimated) upper bound o .

Our main results deal with the simultaneous estimation of the oracle function f* and
standard deviation o* of the residual ¢ := Y — f*(X). In the high-dimensional sparse linear
regression setting with unknown o*, if the sparsity level s* < d is known and the number of
outliers is no more than O(s* log(ed/s*)), we prove that our MOM achieves the optimal rates
of estimation of 3%, using a number of blocks K of order O(s*log(ed/s*)). We also prove
that our estimator of the noise standard deviation satisfies [0k, — 0*| < 044/ % log (?—f)
with high probability, improving the rates compared to the previous best estimator &,
see [I1], Corollary 2], which satisfies |62 — 02| < J*2<S*10g(n\/dlogn) 4 o) Sloeldvn) L),

_.I_
n n N
whenever the noise has a finite fourth moment. Note that these rates for the estimation

of o* derived in [I1] correspond to a different penalty level than the one used in [35] that
allows to derive optimal rates for the estimation of 3*. A related paper is [28], which studies
optimal noise level estimation for the sparse Gaussian sequence model.

Since the sparsity level may be unknown in practice, we provide an aggregated adaptive
procedure based on Lepski’s method, that is, we first infer an estimated sparsity s and
then an estimated number of blocks K of order O(3log(ed/3)). We show that the resulting
adaptive estimator (E,E,g) attains the minimax rates for the estimation of B* while still
being adaptive to the unknown noise variance 0*? and selecting a sparse model (5 < s*)
with high probability.

Estimator Rate on 3 Adapt. to s Rate and adapt. to o* Robustness
Lasso Optimal [9] - - -
Aggreg. Lasso Optimal [9] Yes - -
Square-root Lasso Optimal [35] - Yes, complicated rate [11] -
Aggreg. Square-root Lasso Optimal [35] Yes Yes, but no rate -
MOM-Lasso Optimal [55] - - Yes
Aggreg. MOM-Lasso Optimal [55] Yes - Yes
Robust SR-Lasso Optimal (Th.[3.4.4 - \/% log (2—‘3) (Th.[3.4.4 Yes
Aggreg. Robust SR-Lasso | Optimal (Th. [3.4.7 Yes \/% log (%) (Th. [3.4.7 Yes

Table 3.1: Comparison of estimators of sparse high-dimensional regressions and their main
theoretical properties. Names in bold print refer to the new estimators that we propose in

this article.

In Table we detail a comparison of the Lasso-type estimators and their different
theoretical properties in this sparse high-dimensional regression framework. The two new
estimators that we propose solve the problem of minimax-optimal robust estimation of 3.
Even in the setting where no outliers are present, our estimators still improve the best-
known bounds on the estimation of the noise variance o*2. Moreover, the second estimator
(,5, 0,5) attains the same rate of simultaneous estimation of 3* and ¢* adaptively to the

sparsity level s*. Finally, the estimator (,@, o) is robust to the same number of outliers as
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the estimator which uses the knowledge of the true sparsity level s*. For every o* > 0,
let P(c*) be a class of distributions of (X, () such that the kurtosis of ¢ is bounded,
Var[¢] = ¢*? and X is isotropic, satisfies a weak moment condition and is such that the
weighted norms L'(Px), L?(Px), and L*(Px) are equivalent on R?. We work with a dataset
D = (X;,Y;)i=1,...n that might be contaminated by a set of outliers (X;,Y;)ico (for some
O C {1,...,n}) in the sense that, for i € O, (X;,Y;) is an arbitrary outlier while for
i ¢ O, (X;,Y;) is i.i.d. distributed as (X,Y’). We denote by D(N) the set of all possible
modifications of D by at most N observations. To sum up, our joint estimator (5,5,3’)

satisfies the following worst-case simultaneous deviation bound

s*:il?.f.,s+ g*i? £ Px,ci€n7£(o*)P§2 P <A"*’ﬁ*’5* (D)> 21— 9(s+,d),
ot <oy
where F is the set of s-sparse vectors, |-|, is the £, norm, ¢(s, d) := 4(logy(s)+1)2(2s/ed)""*
for a universal constant C’ > 0, the constants ¢,C' > 0 only depend on the class P(c*),
|O| denotes the cardinality of the set O and Pg« py . is the distribution of (X,Y’) when
(X,¢) ~ Px ¢ and Y = X" 8% +(. The event Ay« g« s+(D) describes the performance of the
aggregated estimator over a class of contaminations of the dataset D by arbitrary outliers.

Formally,

Acr*ﬂ*,S* (D) == m Ag+ (D/) N Aﬁ* (DI) N A (D/)v
D'eD (cs* log(ed/s*))

Ay (D) = {]&(D') — ot <

Age(D') = {]5@’) -5 <

A (D) = {E(D’) < s*},
and (B(D'),5(D'),3(D’)) is the aggregated estimator obtained from the perturbed dataset
D’. Our method only requires the knowledge of the upper bounds (o4, s4).

The manuscript is organized as follows. In Section [3.2], we introduce the main framework
and notation, as well as the step-by-step construction of the MOM estimator. In Section 3.3
we present our results in the general situation of a convex class F of regression functions.
The results for the high-dimensional sparse linear regression framework are presented in
Section [3-4] In Section [3.5] we discuss the contraction rates, the construction of the MOM
estimator and some known results from the literature. The proofs are gathered in the

appendix.
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3.2 Notation and framework

3.2.1 General notation

Vectors are denoted by bold letters, e.g. x := (x1,...,24)". For S C {1,...,d}, we write
|S| for the cardinality of S. As usual, we define x|, == (3%, |%i[P)'/P, |X|o0 := max; [x],
Ix|o := Zle 1(x; # 0), where 1 is the indicator function and write ||f||z»(py for the LP
norm of f on D. If there is no ambiguity concerning the domain D, we also write || - ||,. We
set |x|an := |X|2/y/n and, for a measure y on R? and a function f in a class of functions
F, we define || fll2,, := ||fllz2()- The expected value of a random variable X with respect
to a measure P is denoted PX = Ep[X], or E[X]| when the measure P is fixed. For two
sequences (ay, ), and (by,), we write a,, < by, if there exists a constant C' such that a,, < Cb,

~

for all n. Moreover, a,, < b, means that (ap), < (bp)n and (by)n < (ap)n.

n ~o n ~

3.2.2 Mathematical framework

The goal is to predict a square-integrable random variable Y € R by means of an explana-
tory random variable X, on a measurable space X', and a dataset D = {(X;,Y;) € X xR :
i=1,...,n}. Let Px be the law of X and L?(PPx) the corresponding weighted L?-space.
Let F C L?(Px) be a convex class of functions from X to R, so that, for any f € F,
I f”%x = [, f(x)?dPx (x) is finite. We consider the least-squares problem, which requires
to minimize the risk Risk(f) := E[(Y — f(X))?] among all possible predictions f(X) for Y.
This minimizes the variance of the residuals (s := Y — f(X). The best predictor on L*(Px)
is the conditional mean f(X) = E[Y|X], which can only be computed when the joint dis-
tribution of (X,Y") is given. Therefore, one solves the least-squares problem by estimating

any oracle solution

e F i=argminE[(Y — £(X))?], (3.2.1)
feF

which is unique, i.e. F* = {f*}, if the class F C L?(Px) is closed (on top of being convex).

The resulting representation is
where the residual ( and X may not be independent.

Assumption 3.2.1. We make the following assumptions on the residual (,

m*4

E(]=0, o":= E[C2]% <oy, m':= IE[CZL]i <my=oyky, K= g <Ry, (3.2.3)
o

with possibly unknown o*,m* k* and upper bounds o4,k either given or estimated from

the data. We use the convention that k* = 0 if both ¢* and m* are zero.

Without loss of generality we have oy < m_, since any upper bound on m* is also an

upper bound on the standard deviation o*. The requirement of a known upper bound on
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3.2. Notation and framework

the fourth moment of the noise is natural when dealing with MOM procedures, this is in line
with Assumption 3.1 in [61]. We aim at simultaneously estimating (f*, c*) from the dataset

D, but the problem is made more difficult due to possible outliers in the observations.

Assumption 3.2.2. We assume the dataset D can be partitioned into an informative set
Dz and an outlier set Do satisfying the following.
e Informative data. We assume that the pairs (X;,Y;)ier =: Dz with T C {1,...,n}
are independent and distributed as (X,Y") in the regression model ({3.2.2)).

e Outliers. Nothing is assumed on the pairs (X;,Y;)ico =: Do with O C {1,...,n}.
They might be deterministic or even adversarial, in the sense that they might depend

on the informative sample (X;,Y;)icz defined above, or on the choice of estimator.

The i.i.d. requirement on the informative data can be weakened, as in [55], by assuming

that the observations (X;,Y;);cz are independent and, for all i € Z

E[(Y: — f* (X)) (f — /1) (Xi)] = E[(Y — (X)) (f = fH)X)],
E[(f — [)*(X)] = E[(f - f)*(X)]-
In other words, the distributions of (X;,Y;) and (X,Y') induce the same L?-metric on the
function space F — f* = {f — f*: f € F}.
By construction, ZU O = {1,...,n} and ZN O = (), but the statistician does not know

whether any fixed index i € {1,...,n} belongs to Z or O. Otherwise, one could just remove

this group from the dataset and perform the inference of the informative part. In order to
achieve robust inference, we implement a median-of-means approach.

The sparse linear case. We highlight the special case when X = R¢, with a fixed
dimension d > 0. For 8 € RY, set fg : R? — R the linear map fg(x) = x'3. For any
1 < s <d, we define

Fi={fp:BeRY, Fo={fpeF:BeR’ |B<s}
here |B|o is the number of non-zero entries of 3 € R

3.2.3 Convex-concave formulation

We follow the formalization made in [55]. For any function f € F, and any (x,y) € X xR,
set £f(x,y) := (y — f(x))% In our setting we find

VI

f*eargminE[(;(X,Y)], o =E[(;+(X,Y)]?,
feFr

since E[¢s+(X,Y)] = E[¢?] is the risk of the oracle function f*. The oracle pair (f*,o*) is

a solution of the convex-concave problem

N

f* €argminsupE[(;(X,Y) — £,(X,Y)], o =E[(/+(X,Y)]?, (3.2.4)
fEF geF
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3.2. Notation and framework

and the goal is to build an estimator (f, o) such that, with probability as high as possible,

the quantities
Risk(f) — Risk(f*), ] = f*llax, [6 -0,

are as small as possible. The quantity Risk(f) — Risk(f*) is the excess risk, whereas the
quantity Hf—f* ||2,x is the convergence rate in L?(PPx )-norm of the random function fto f*
Since fis a function of the dataset D, we always mean that the expectation is conditional
onD,iec. |f— [Fllex = E[(f — f*)%(X)|D)]. Finally, the quantity |5 —o*| is the convergence

rate of o to o*.

3.2.4 Construction of the estimator

The starting point of our approach is the regularized median-of-means (MOM) tournament
introduced in [60], which has been proposed as a procedure to outperform the regularized

empirical risk minimizer (RERM)

1 n
SR = argmin § = (Y; = £(X)* + AllS ¢ s
fer n =1
with || - || a penalization norm on the linear span of 7 and A > 0 a penalization parameter.
The penalization term reduces overfitting by assigning a higher cost to functions that are
big with respect to || - ||. The RERM estimator above is susceptible to outliers since it
involves all the pairs (X;,Y;) in the dataset D, whereas replacing the empirical average by
the corresponding median-of-means over a number of blocks leads to robustness. The MOM
method in [55] builds directly on the theory of the MOM tournaments and it exploits the
fact that f/{ZERM is computed by minimizing n=! Y"1, £4(X;,Y;) + Al f|. From this, the

authors deal with the convex-concave equivalent

FRERM . arg min sup { fo Xi,Y;) - Zf (X, Yi) + A(LAIN = ||9||)}
feF geF

by replacing the empirical average n=* > 1 (E (X4, Y5) — £y(Xs, YZ)) with the median-of-

means over a chosen number of blocks. Our goal is to extend the scope of this procedure

to the estimation of the unknown o¢*. To this end, we modify the convex-concave RERM

by replacing the functional R({y,£¢) = £y — {4 with a new R.({y, X, {f,0) that incorporates

X,0 € I+ = (0,04]. This leads to a generalized empirical estimator

(fu:8) i= argmin  sup { ZR o(Xi, Yi), X, €5 (X4, Y5), 0 )+M(Hf||—HgH)},

(f,o)eFxIy (g, x)€F 1+

which we robustify using the MOM. The choice of the functional R, is crucial for the
performance of the procedure and a main contribution of our paper is providing a suitable
R.(lg,x,L¢,0), we refer to Section for a detailed discussion motivating our choice.

We give the step-by-step construction of a family of MOM estimators for (f*,o*) from
model f. We start with a preliminary definition.
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3.2. Notation and framework

Quantiles. For any K € N, set [K] = {1,...,K}. For all « € (0,1) and x =
(z1,...,7x) € RE we call a-quantile of x any element Q,[x] of the set

Qu[x] = {uER: H{k=1,....K:z; > u}| > (1 - )K,

and’{kzl,...,K:xkgu}}zaK}. (3.2.5)

This means that Q,[x] is a a-quantile of x if at least (1 — a) K’ components of x are bigger
than (Qu[x] and at least a/ components of x are smaller than (Q,[x]. For all ¢t € R, we
write Qq[x] > ¢t when there exists J C [K] such that |J| > (1 — «)K and, for all k € J,
x > t. We write Qq[x] < ¢ if there exists J C [K] such that |J| > oK and, for all k € J,
T < t.

STEP 1. Partition of the dataset.
Let K € N be a fixed positive integer. Partition the dataset D = {(X;,Y;) : i =1,...,n}
into K blocks Dy,..., Dk of size n/K (assumed to be an integer). This corresponds to a
partition of {1....,n} into blocks By,..., Bk.

STEP 2. Local criterion.
With ¢ > 1 and f,g € F, 0,x € R4, define the functional

0+t -t
(o Xl 0) = (0 —x)[1—2L 779 ) 4 9.2f "9 2.
Re(lg,x,f,0) := (o )< (+X)2>+ CU+X (3.2.6)

Since £f(x,y) = (y — f(x))? for all (x,y) € X x R, the latter definition induces the map
(x,y) = Re(ly(%,9), X, f(x,y),0) over X x R. For each k € [K], we define the criterion of
(f, o) against (g,x) on the block By as the empirical mean of the functional R.({g,x,{f,0)
on that block, that is,

P, (Be(lyx Uy, 7)) = ‘Bk|z (66X, V), 0 £ (Xi, Vi), ), (3.2.7)
1€By,

for all (g, x, f,0) € F x Ry x F x R4. Here |Bg| = n/K denotes the cardinality of By.
STEP 3. Global criterion.
For any a € (0,1) and number of blocks K, set

QaK[ by, X by 0 )} Qa[(PBk( (£97X7€f70))>

ke[KJ7

the a-quantile of the vector of local criteria defined in the previous step. For o = 1/2 we

get the median. We define the global criterion of (f,o) against (g,x) as
MOMy (Rc(eg,x,zf,a)) = Qiax [Rc(zg,x,ef,a)}, (3.2.8)
for all (g, x, f,0) € F x Ry x F x R;. With some norm || - || on the span of F, we denote
Ty (0., .) = MOMyc (Bolty . 01.0)) + uIf] — lal). (329)

where p > 0 is a tuning parameter, the functional T , is the penalized version of the global

criterion.
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STEP 4. MOM estimator.
With o4 the known upper bound in (3.2.3)), we define the MOM—K estimator of (f*,c*)

as

(fKposs OK o, ) i= argmin max Tg u(9,x, f,0), (3.2.10)
fEF, 0<oy geF, x<ot

where T, is the penalized functional in (3.2.9). Furthermore, set

Cxu(f,0): = max Tg,(g,x,f,0). (3.2.11)
geF, x<o4

The estimator (fK7M7U+,EK7M7U+) only depends on the upper bound o, the number K of

blocks and the tuning parameter pu.

3.3 Results for a general class F

We assume the following regularity condition on the function class F and the inliers.
Assumption 3.3.1. There exist constants 6y,601 > 1 such that, for alli € L and f € F,
LIf = FI3x = EI(f = £)*(Xa)] < BE[f — f*(Xa)]* = 0311 f — £*IIF x-
2 |If = £lix = BI(f = fOUX)2 < GE[(f - f2(X)] = G]1If = F15 -

This assumption guarantees that the L!(Px), L?(Px), L*(Px)-norms are equivalent on
the function space F — f*. The equivalence between | - [|; x and |- ||2,x in the first condition
matches Assumption 3 in [55]. The equivalence between || - |2 x and || - ||4,x in the second
condition, together with the finiteness of fourth moment of the noise in Assumption [3.2.1
helps controlling the dependence between ¢ and X; this also matches Assumption 3.1 in [61].
We do not necessarily assume that ¢ is independent of X, but the Cauchy-Schwarz inequality

gives

IC(f = f)3x = EIC(f — f)*(X)]
<E[CE[(f - f)4(X))
< G3mE[(f — f*)4(X)].

The bound ||{(f — f*)H%X < 03m*2||f — f*H%X is Assumption 2 in [55] with 62, = §?m*?,

whereas in our setting this is a consequence of Assumption and Assumption [3.3.1

3.3.1 Complexity parameters

With the introduction of MOM tournaments procedures, see [61] and references therein, the
authors have characterized the underlying geometric features that drive the performance of

a learning method. For any p > 0,r > 0, and f € F, we set

B(f.p)={9€F:lg—fll<p}, Balf,r):={geF:llg— flax <r},
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3.3. Results for a general class F

respectively the || - [|-ball of radius p and the || - ||2 x-ball of radius r, both centered around
f € F. We denote by B(p) and By(r) the balls centered around zero. We define the regular
ball around f* of radii p > 0,7 > 0 as

B(f*pr) ={f e F:Alf =l <p If = Fllax <7}

For any subset of inlier indexes J C Z, we denote the standard empirical process on J as

FoBi(f— f7) = ‘f, SO - )X,

icJ

Similarly, we denote the quadratic and multiplier empirical processes on J as

1
FoBr ((F= 1) = 7 20 = 1) (%),
i€J
Fro By (2 = ) = = S Gl = )X)
ieJ
where (; = (Y; — f*(X;)). These processes arise naturally when dealing with the empirical

excess risk on J, which is

Riske () = Risk () £ = 770 SO0 = F(X0))* = 77 S (% = 1" (X0)°
e ed

= U = PR = o G = 1K)
ieJ ieJ

=P; ((f — 1)) + By (=2¢(f — ).

The empirical processes defined above only involve observations that are not contaminated
by outliers and we are interested in controlling them when the indexing function class is a
regular ball B(f*, p, 7).

Let & be Rademacher variables, that is, independent random variables uniformly dis-
tributed on {—1,1}, and independent from the dataset D. For any r > 0 and p > 0,
consider the regular ball B(f*, p,r) defined above. For every vp,vq,ym > 0, we define the

complexity parameters

: [ 1 .
it feon o S <o)
sz lizn  Lrerpn | ] o
— inf 0: E- 1 (F— 22X < 2
rQ(p,7Q) :=inf {7 >0: sup sup | Y &(f = FP(X)| | < ver®
scz)I>2 Lrer(on 1| 4
. [ 1 * 2
rv(pyym) :=inf<r>0: sup E sup —Zflg(f—f Y(X) || < ymre .
sez iz Lresgon 14
(3.3.1)

Let r = r(-,yp,vam) be a continuous non-decreasing function r : Ry — R} depending on

Yp, VM, such that

r(p) > max {rp(p,vp), (P, 7M) } (3.3.2)
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3.3. Results for a general class F

for every p > 0. The definitions above depend on f* and require that |Z| > n/2. The function
() matches the one defined in Definition 3 in [55]. We refer to Section 3.5|for a detailed dis-
cussion on the role of complexity parameters, here we only mention that in the sub-Gaussian
setting of [56], for some choice of vp,yar, the quantity r*(p) = max{rp(p,vp), "2 (p,var)}

is the minimax convergence rate over the function class B(f*, p).

3.3.2 Sparsity equation

We follow the setup of [55], that we restate here for convenience.

Subdifferential. Let £ be the vector space generated by F and | - | a norm on €&.
We denote by (€*, || - ||«) the dual normed space of (£, ]| - ||), that is, the space of all linear
functionals z* from & to R. The subdifferential of || - || at any f € F is denoted by

O Ny ={z" €& |f +h|l>|fll +2z*(h), Vh € E}.

The penalization term of the functional Tk ,, in Section is of the form u(||f]| — |lgll),
for f,g € F, and the subdifferential is useful in obtaining lower bounds for || f|| — || f*||. For
any p > 0 and complexity parameter r(p) as in (3.3.2), we denote H, = {f € F: || f—f*|| =
p, |f — fllax < r(p)}. Furthermore, we set

Ff* (p) — U (3|| : H)f’
JEF:f=f*I<p/20 (3.3.3)

A(p):= inf sup 2*(f— f").
feH, 2*€T ¢« (p)
The set I'y«(p) is the set of subdifferentials of all functions that are close to f* (no more
than p/20) in penalization norm | - ||. The quantity A(p) measures the smallest level A >
0 for which the chain || f|| — [|f*]] > A — p/20 holds. In fact, if f** € F is such that
L7 = 0 < p/20, then (| FIF = LF=0 = LA = L0 = [/ = £ = 2*(f = f**) = p/20, for
any subdifferential z* € (9| - ||) p==.

Sparsity equation. The sparsity equation and its smallest solution are

4

A(p) > =P p* :=inf {p >0:A(p) > 45/)} . (3.3.4)

If p* exists, the sparsity equation holds for any p > p*.

3.3.3 Main result in the general case

We now present a result dealing with the simultaneous estimation of (f*,o*) by means of
a family of MOM estimators constructed as in Section [3.2.4] Fix any constant ¢ > 2 in the
definition on the functional R, in (3.2.6) and, with o, m, x4 the known bounds on the
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moments of the noise { =Y — f*(X), set

¢y = 200(c + 2k},
. c—2
C19202(c+2)(8 + 13487 (1 + ZE) v §) (3.3.5)
2. 3(c—2)
T T

and yp = 1/(1488603), yi = ¢/744 and g = ¢/372. Let p* be the smallest so-
lution of the sparsity equation in (3.3.4) and r(-) any function such that r(p) >
max{rp(p,vp), " (p,yar)} as in (3.3.2). Define K* as the smallest integer satisfying

.o e (p)

- 3.3.6
~ 384 607m*2 ( )
and, for any integer K > K*, also define px as the implicit solution of
384 03m* 2 K
r2(px) = T (3.3.7)

Assumption 3.3.2. We assume that there exists an absolute constant ¢, > 1 such that,
for all p > 0, we have r(p) < r(2p) < crr(p).

The role of the latter assumption is to simplify the statement of the main result. We are

mainly interested in the sparse linear case, where this holds with ¢, = 2 by construction of
the function r(-), see Section [3.5.4]

Theorem 3.3.3. With the notation above, let Assumptions[3.2.113.3.4 hold. With C? =
3849%6203%1/2, suppose that ne? > 3202 and |O| < ne?/(32C?). Then, for any inte-
ger K € [K*V32|0|, ne?/C?|, and for every v, € [1/4,4], the MOM—K estimator
((}/C\K%UJF,EK%UJF) defined in with K blocks and penalization parameter

r*(pK)
= —_— 3.3.8
w LuCu€ m*PK ’ ( )

satisfies, with probability at least 1 — 4 exp(—K/8920), for any possible |O| outliers,

Koy =N < 20k, Nfxpo, = Fllax <7(2px), |0k po, — 0| < car(2pK),

(3.3.9)
R(Fxpo.) < R(f*) + <2+2 +(44+5 )s+25“*1/252> 2(2pK)
o > Co Cc — r
fnes 8 867 P (3.3.10)

+ 40%5 (T2(2pK) V Té(2pK, VQ)) .

The proof of Theorem [3.3.3] is given in Appendix It provides theoretical guaran-
tees for the MOM—K estimator (fK7u7g+,6'\K,u,0+)2 this estimator recovers (f*,c*), with
high probability, whenever the number K of blocks is chosen to be at least K* Vv 32|O|
and at most ne?/C?. Specifically, the random function J?K,u,a . belongs to the regular ball
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8.4. The high-dimensional sparse linear regression

B(f*,2pk,7(2pK)), whereas the random standard deviation 0, ., is at most car(2px)
away from o*. The best achievable rates are obtained for K = K* when |O| < K*/32. Any
estimator (fK%U 20K 0. ) only depends on the penalization parameter i, the number of
blocks K and the upper bound o, thus the result is mainly of interest when these quan-
tities can be chosen without knowledge of (f*,o*). Our Theorem extends the scope
of Theorem 1 in [55] to the case of unknown noise variance. In the latter reference, the
authors obtain the same convergence rates for a MOM—K estimator ]/t\Kj » defined by using
a penalization parameter A that we compare to our p,
r(px) (px)

A= 16¢ , M= cCuE ,
PK " mrpg

so that u is proportional to A/m*. For the sparse linear case, [55] shows that the optimal
choice is A ~ m* \/m, which is proportional to the noise level o*. This in turn
guarantees that our penalization parameter can be chosen of the form u ~ \/log(ed/s*)/n
to obtain the optimal rates, and that such a choice does not depend on the moments of the

noise.

3.4 The high-dimensional sparse linear regression

3.4.1 Results for known sparsity

In this section, we will give non-asymptotic bounds that will hold adaptively and uniformly
over a certain class of joint distributions for (X, ). We now define the class of interest Py,
parametrized by an interval I. This interval I represents the set of possible values for the

standard deviation ¢* of the noise (.

Definition 3.4.1 (Class of distributions of interest). For I C Ry, 6y,01,co, L,ky > 1, let
us define Pr = Pr(0o, 01, co, L, k) to be the class of distributions Px ¢ on R satisfying:

1. The standard deviation o* of ( belongs to I and the kurtosis of ¢ is smaller than x4 .
2. For all B € RY, E[(XTB)2]2 < 6oE[|XT8]], and E[(XTB)*]? < 02E[(XTB8)2].
3. X is isotropic: for all B € RY, || fall2x = E[(XB)?] = |B|2, where fg(x) =x'B.

4. X satisfies the weak moment condition: for all 1 < p < ¢plog(ed), 1 < j < d,
1 1
E[|XTe;["]” < LypE[|XTe;l?]2.

The class Py only requires a finite fourth moment on (, allowing it to follow heavy-
tailed distributions. The weak moment condition only bounds moments of X up to the
order log(d), which is weaker than the sub-Gaussian assumption, see [56] and the references

therein for a discussion and a list of examples.

Definition 3.4.2 (Contaminated datasets). For a dataset D = (X;,Yi)i=1,..n € R(d+1)xn
and for N € [n], we denote by D(N) the set of all datasets D' = (x},y})i=1... ., € RFDx"
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8.4. The high-dimensional sparse linear regression

that differ from D by at most N observations, i.e.
D(N) := {D’ e R . 1D\ D/| < N}

where D\ D' is defined as the difference between the (multi-)sets D and D', meaning that
if there ewists duplicated observations in D that appear also in D', they are removed from
D up to their multiplicities in D'. This encodes all the possible corrupted versions of D by

means of up to N arbitrary outliers.

Definition 3.4.3. Let Pg« py . be the distribution of (X,Y) when (X, () ~ Px ¢ and Y :=
XT3 +¢.

In the following, we will use the minimaz rates of convergence for B* € Fg« defined

forpe[1,2] by vy := s*l/p\/(l/n) log(ed/s*). The allowed mazximum number of outliers is
defined by to = s*log(ed/s*) = nt2.

Theorem 3.4.4. Assume that to < 1. For every 0y, 01, co, L, k1 > 1, there exists universal
constants ¢, . ..,¢5 > 0 such that for every o4 and for every (i, v,) € [1/2,2]?, setting

1 d
K = [igcis™log(ed/s™)], p=tuC24]—log (€>,
n

the estimator (B\K#’UJF,&K%@) satisfies

inf P ng;nP ( SU.P {tQ_I |&\(D/) — 0’*|

Px¢ € Po.oy X.¢ \ P'eD(Gro)
B € Fs
1|3 / * ~ 8* C5s*
V sup t, |[3(D)—ﬂ ‘ < cyo4 21—4<—) .
pE(L2] P ed
This theorem is proved in Section Theorem ensures that, with high probabil-
ity, the estimator (BK o4 OK o ) achieves the rates |/6 By S O'+8*1/p\/ (1/n)log(ed/s*)

and [0 — 0*| < 04+/(s*/n)log(ed/s*), uniformly over the class of distributions P ,, ] with

bounded variance while being robust to up to ¢3s*log(ed/s*) arbitrary outliers. However,
the uniform constants appearing in the statement might be difficult to compute in practice;
to obtain precise values, one would need to quantify the constants in Theorem 1.6 in [67]
and Lemma 5.3 in [57]. As usual for MOM estimators, the maximum number of outliers is
of the same order as the number of blocks. Note that the estimator needs the knowledge of
an upper bound on the noise level o and the sparsity level s*.

In [9], it has been proved that the optimal minimax rate of estimation of 8* in the

| - |, norm is o*+/(s*/n)log(ed/s*) when o* is fixed and the noise is sub-Gaussian. Our
theorem shows that the rate of estimation of 3 over Pjg o, is the optimal minimax rate of
estimation for the worst-case noise level o,. In particular, this means that in the noiseless
case when o* = 0, the estimator B\K,u,a . does not achieve perfect reconstruction of the

signal 3*. This is worse than the square-root Lasso [35] which achieves the minimax optimal
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rate |BSR'L“53° -8 S 0*5*1/p\/(1/n) log(ed/s*) adaptively over o* € R,. However, the
square-root Lasso is not robust to even one outlier in the dataset. Furthermore, this optimal
rate for the square-root Lasso has only been proved for sub-Gaussian noise { whereas in
Theorem we allow for any distribution of ¢ with finite fourth moment. The MOM-
Lasso [55] achieves the optimal rate |BMOM—L‘155° -8, S J*s*l/p\/(l/n) log(ed/s*), but

needs the knowledge of o*. Therefore, this bound can uniformly hold only on a class of the

form Pjc, 5+ 0y for some fixed 0 < C7 < Ch.
To our knowledge, the estimator & is the first estimator of o* that achieves robustness.
Its rate of estimation \/(s*/n)log(ed/s*) is slower than the parametric rate 1//n that one

would get if 8* was known. Theorem 5 in [28] suggests that this rate to might be minimax as

well: the authors show that, albeit in a Gaussian sequence model, the factor \/s*log(ed/s*)
arises naturally in the estimation of ¢* by means of any adaptive procedure in a setting
where the distribution of the noise ¢ is unknown. Even in the case where no outliers are
present, we improve on the best known bound on the estimation of o*, obtained in [11]

Corollary 2] as ’(&SR—Lasso)Q . 02‘ < 0,2(5*10g(n7\1/d10gn) 4 5*log7(1an) 1 ﬁ)

Remark 3.4.5. When 3* is not sparse but very close to a sparse vector, that is, |3* —

B**|1 < o*y/s*log(ed/s*)/n for a sparse vector 3** € Fg«, the complexity parameter r(p)

~

is in fact unchanged compared to the sparse case and the upper bounds on the rates of

estimation |B — B*p S 045" 1/py/(1/n)log(ed/s*) and |G — o*| < oy+/(s*/n)log(ed/s*)
still hold, extending Theorem [3.].4)

In practice, it may not be obvious to choose a good value for o. This means that the
(unknown) distribution belongs in fact to the class Pjo o) = Uy, 0 Plo,oy]- A natural idea
is to cut the data into two parts. On the first half of the data, we estimate the variance
Var[Y] by the MOM estimator 3%{74_ = Q12K [YQ] - (Q1/27K[Y])2. On the second half of
the data, we use o 4 as the ‘known’ upper bound o4 and apply our algorithm as defined
in Equation . The following corollary, proved in Section gives a bound on the

performance of this estimator on the larger class Py, 4o

Corollary 3.4.6 (Performance of the estimator with estimated o4 on Pjg ). Let s* > 0.
Then, for every Px ¢ € Py, 400 and 3" € Fs=, there exists a constant C' > 0 such that, for

any n > Cs*log(p/s*) the estimator (Bk 5y s OK uax.,) Satisfies

Py pen ( sup {tQI‘ﬁ(D') —0o*|V sup tljl‘,@(D') — ,@*‘p}

B*.Px.c \ D'eD(estp) p€e(1,2]
X ook A
<4uVIF SNRU*) >1— 4(%)658 - 2(%)%3 ,
e e

where ¢g is a universal constant and SNR denotes the signal-to-noise ratio, defined by
SNR := Var[XT3*]/0*? = B*T Var[X|B* /o*2.

This corollary ensures that, with high probability, the estimator (B\ Kot OK udxk.4)

achieves the rates of estimation

18— B, S VI+SNRo*s*/?\/(1/n)log(ed/s"),
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8.4. The high-dimensional sparse linear regression

and

6 —0*| S V14 SNRo*\/(s*/n)log(ed/s*).
The factor 1+ SNR describes how the estimation rates of 8* and o* are degraded as

a function of the signal-to-noise ratio. Indeed, when the noise level is of the same order
or higher than the standard deviation of f*(X), the rates are optimal. On the contrary,

when the noise level is very small (SNR < 1), the rates of estimation are dominated by
\/ Var [XT 8]t

3.4.2 Adaptation to the unknown sparsity

We now provide an adaptive to s version of Theorem by introducing an estimator
(5,’&,9 that simultaneously estimates the vector of coefficients, the noise standard devi-
ation and the sparsity level. This procedure is inspired by [35 Section 4] that proposes a
general Lepski-type method for constructing an adaptive to s estimator from a sequence of
estimators that attains the same rate for each value of s. This method is different from the
one proposed in [55] for making the MOM-Lasso estimator adaptive to the sparsity level s,
which seems difficult to adapt for the case of unknown noise level.

The main idea of this procedure is to compute different estimators for several possible
sparsity levels. Starting from a sparsity of 2, we try different estimators by increasing
each time the sparsity by a factor of 2 unless the difference between an estimator and
the next one is too small. We choose this stopping value as the estimated sparsity level,
and it gives directly an estimated number of blocks to use, since there exists an optimal
number of blocks for each sparsity level. More precisely, given a sparsity estimator s, we
take K = [&5log(ed/3)].

Given a known upper bound sy < d on the spar51ty, we define the sequence of MOM—K

estimators (B(S Yot O(s),04 )s=1,....54 DY ,8 (s),op = BKs,ps,a+7 O(s),0p = OKo a0y and

K, = {@slog <esdﬂ L ps =0 log <ed) (3.4.1)

The adaptive procedure yields an estimator of the form § = 2™ for some integer m €
{1,...,[logs(s4)] + 1}, from which we get the simultaneous adaptive (to s* and o*) MOM
estimator (BC,+ 1 O0is80,) = (3(5)704_ ;0 (3),040 804 )-

Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as
follows.

e Set M := [logy(s+)].

e For every m € {1,...,M + 1}, compute (B(Qm),o-+,8(2m),0—+) =

(,@mem,ﬂ, EKW,MW,JJF) , with Kom and pom as defined in Equation (3.4.1)).
e Forue {1,...,25;:}, let vy(u) = u'/P\/(1/n)log(ed/u) and

M = {m €e{l,...,M}: for all k > m, |B\(2k—1) — E(Qk)h < 013(2M+1)t1(2k),
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|B\(2k—1) - B(Qk)’Q < 023(2M+1)t2(2k) and ‘3(21%1) - 8(2k)| < 033(2M+1)t2(2k)}.

e Set m := min M, with the convention that m := M + 1 if M = ().

o Define 3,, := 2™ and (8o, ,00.) = (B().0,+0(3).0, )-
The following theorem is proved in Section and gives uniform bounds for the

performance of the aggregated estimator (B, , 05, , S, ).

Theorem 3.4.7. Let 6y,01,c0,L,ky+ > 1. Let s € {1,...,d/(2e)} and assume that
t2(2s1) < 1. Then, the aggregated estimator (BU+,50+,§U+) satisfies

inf inf P/g?inpx sup {tg(s*)_lla(D') - 0*’ V sup tp(s*)_l‘B(D’) - B }
s*=1,...,54 Px¢€Poo, el D’'eD(c3rp) p€E[1,2] p
B € Fer

28 255S+
<dcyoy | > 1—4(logy(s+) + 1)2 <;>
e

and, for all D' € D(¢3t0), Sy, (D') < s* on the same event.

This theorem guarantees that for every s* € {1,...,sy}, both estimators 5 and o

converge to their true values at the rate a+s*1/p\/(1/n) log(ed/s*) as if the true sparsity
level s* was known. However, the probability bounds are slightly deteriorated due to the
knowledge of an upper bound sy only.

Note that the estimator presented above uses the knowledge of the upper bound on the
standard deviation oy. If o4 is not available, the estimator presented in Corollary can
be aggregated in the same way. It will satisfy the same bounds up to some small degradation

in the probability of the event.

3.5 From the choice of the functional R. to empirical process

bounds

Our construction in Section [3.2.4] produces a family of MOM estimators
(o cpos) = argmin  max  {MOMuc(Rellysx,0r,)) + n(If1 = gl }
JEF, 0<oy geF, x<oy
where R, is a carefully chosen functional in . As mentioned in Section this
extends the scope of the MOM estimator in [55]
fiex = arg min max {MOMu (R(£g, £5)) + A(IIf] = llgl) }
feF geF

where R({y,l¢) = {; — {4, which was constructed in the setting of known o*. In this section
we discuss in detail the role of the functional R.. In Section [3.5.1] we motivate our choice
by showing that, in the sparse linear setting, we recover a robust version of the square-root
Lasso. In Section we lay down our proving strategy and highlight the contribution of R,
in recovering convergence rates and excess risk bounds in terms of complexity parameters.
In Section and Section we reproduce the main results on complexity parameters

in the sub-Gaussian and sparse linear case respectively.
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3.5. From the choice of the functional R. to empirical process bounds

3.5.1 Adaptivity to ¢*: choice of the functional R. and corresponding
conditions

Since we implement the same proving strategy as in [55], we introduce the following prop-

erties as natural assumptions that the functional R, should satisfy.

P1. Anti-symmetry. For all f,g € F, x,0 € Ry and (x,y) € X x R, we have

RC (Eg(xv y)v X Ef(X, y)? J) = _RC (Ef(X, y)? g, fg(X, y)a X)v

in short, we write R.({y, X, f,0) = —R.(s, 0,44, X).
The latter is a crucial requirement for the whole convex-concave procedure to work, as we
show in the next section. It is automatically satisfied when o* is known, since R({gy,{f) =

ly— by = ~R((7.0,).

P2. Concavity in x, given f = g. For any fixed f =g € F, 0 € Ry and (x,y) € X xR,
the function x — R.(¢¢(x,y), X, Lf(%x,y),0) is concave and has a unique maximum
for x € Ry

This is an additional requirement that has no counterpart when o* is known. In fact, for

f =g, we have R({y,l) ={; —ly = 0.

P3. Maximization over g, given o = x. For any fixed f € F and x = 0 € R4, the

problems of maximizing the functionals
g — MOMj <Rc(€g,0, 0, a)), g — MOMj (ef - zg),

over g € F are equivalent.
The latter condition requires that our functional R.({y4,0,lf,0) behaves similarly to
R(ly,l¢) = Ly — £y when viewed as a functional on g € F.
As a consequence of anti-symmetry, the following properties are equivalent to

above:

P1’. Anti-symmetry. For all f,g € F and x,0 € Ry, we have R.({y,x,ls,0) =
_RC(EfaO—7£g>X)'

P2’. Convexity in o, given f = g. For any fixed f = g € F, x € R} and (x,y) € X xR,
the function o — R.({f(x,y), x,{¢(X,y),0) is convex and has a unique minimum for
g€ R+.

P3’. Minimization over f, given o = x. For any fixed g € F and x = ¢ € R, the

problems of minimizing the functionals
F s MOMp (Rc(zg,a, zf,a)), f s MOMj (zf _ eg),

over f € F are equivalent.
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3.5. From the choice of the functional R. to empirical process bounds

Consider the sparse linear setting, where we want to recover oracle solutions

1
B* ¢ argminE [(Y . XT,B)2] . 0" =E [(Y . XTﬁ*)Q} 2.
BeR4
Any linear function f : X — R can be identified with some 3¢ € R such that f(x) =x'3 I
and lf(x,y) = g, (x,y) = (y — x ' Bf)?. The MOM method in [55] yields a robust version
of the Lasso estimator

n

B € argmin {1 S - X! 8)% + )\|ﬂ\1} ,

BeRd n i=1

which has been shown to be minimax optimal in [8] [7, 9], but its optimal tuning parameter
A is proportional to o*. An adaptive version of the Lasso is the square-root Lasso introduced

in [I0], which is also minimax optimal, as shown in [35]. This adaptive method uses

=

N 1N
BSF-Lasso ¢ aromin ( Z<Yi — Xz‘TB)2> +ulBlh g

BeRd n-=

and its optimal tuning parameter u does not require the knowledge of o*. The key insight
behind the square-root Lasso, see for example Section 5 in [43], is that when 3 is close to
B* one can approximate o*? by E[(Y — X 3)?]. Thus, with A\ = *, one finds

E[(Y - XTB)?]

O-*

)\ 1
+ 2Bl = B[y - X8} + i

and the minimization problem is independent of o*.
In view of the discussion above, a candidate natural implementation of the robust

square-root Lasso is given by

=(Ux)<1 €f>+€f_€g,
X

Tieu(9 % f,0) = MOM (Relly, x,5.0)) + (11 £ = llgl).

since EC implements the idea that, in the linear setting, dividing £; by o should lead to the
square-root of £¢. Also, this choice satisfies the properties EHE

e Anti-symmetry holds by construction.

e When f = g, replace {f(x,y) = {4(x,y) by some positive real number a? > 0, then

the function
X = RC(GQ,X,CL2,O') = (U - X) <1 - ) )

is concave and has a unique maximum for y € R,.
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3.5. From the choice of the functional R. to empirical process bounds

e We compare MOMg({y —£g4) to MOMK(EC(EQ,X,@,J)) when o = x,
MOMi(ty — (y) ,B 2 (6~ (X 7)),

1€ By
~ Xz,}/z —/{ Xl)}/Z
MOMK(RC(eg,a,ef, ) !Bkl 3 ( o )>

1€By,

)

where By, is the block realizing the median. The block Bj is the same in both cases

because the multiplicative factor o~! is positive and does not depend on the observa-

tions. Therefore, for any fixed f € F, maximizing the functionals in the latter display

over g € F are equivalent problems.
This choice comes with a drawback. The proof of our main result is based on the argument
proposed in [55], which requires sharp bounds for the functional TK#(@, X, Lf+,0") over
the possible values of (g,x). This is done by carefully slicing the domain and assessing
the contribution of each term appearing in T K- In particular, one finds a slice in which
X < 0% —cqr(2pK) and the leading term of TVK,H is of the form 2¢/x, with some small fixed
e > 0. Since 2 /x — 400, for x — 0, we cannot control the supremum of wa(ﬁg, X, Lpe,0%)
over this slice. The only way around it would be to assume from the start that ¢* > o_,
for some known lower bound o_ > 0, but this would be a stronger assumption than the
upper bound o4 we use in . This issue is caused by the fact that the two terms of
ﬁc(ﬁg,x,ﬁf,a) are

by — 4

Ly
o, “o(1=HE), (@t Y%
(gaXv f,O')’—)(O' X)( O_X>7 (Q)Xa fvo-)'_> Y 5

and the second one cannot be controlled if Y — 0. A way to introduce stability is to replace
the denominator x by the average (o + x)/2, which is always bounded away from zero
when ¢ is fixed. However, making this substitution alone breaks the anti-symmetry of the
functional, so we have to take care of both terms simultaneously. To this end, we use

0+ 01,
c\tg) Xb L f = - 1-2 2 ,
Rulty . b7,0) = (0 =0 (1= 2500 ) + 22

TK,,IL(.QaX? fa U) = MOMK (RC(691X7€f70)) —i—M(Hf” - ||g||)7

for all (f,g) € F x F and (0,x) € (0,04] x (0,04], which guarantees that R. satisfies
properties [PTHP3] In fact, anti-symmetry holds for both terms

Uy + 4 by — 1Ly
R a— J4 J4 2
(O_+X)2>’ (gaX’ f70->'_> CO'—{—X’

(fg,x,ff,aw(a—x)(l—z

separately. Also, for any fixed f =g € F, 0 € R, we have

at,
X = Re(ly,x, Ly, 0) = (U—X)<1 - (U+X)2>’

which satisfies property Finally, for any fixed f € F, o,x € Ry, we can rewrite

qg— MOMyg (Rc(gga)Oefv U))
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2/ - 2/ —
= MOMg ((a—x)—i— ! (C—U X> -9 (c—i—a X)),
o+ X o+ X o+ X o+ X

and the quantity ¢+ (0 — x)/(c + x) belongs to the interval [c — 1,c¢+ 1] and ¢ > 1 by

construction. We check property [P3| by fixing o = x, this gives
1 c
MOMi (Rellgs 5,0)) = 5 3 - (050K V) = £5(X5 7).
i€By,

with By, the block realizing the median. The block By, is the same for MOMg (¢ —{¢,) since
the factor ¢/o is positive and independent of the observations. Therefore, maximizing the

two functionals over g € F are equivalent problems.

3.5.2 From R. to convergence rates and excess risk bounds

The choice of R. induces a penalized functional Tk, which characterizes the MOM—K
estimator

(fKpos OKpo,) = argmin - max Tk ,(9,x, f,0), Iy =(0,04]
feF, o€l geF, x€ly

Our goal is to guarantee that, with as high probability as possible, the function estimator
J/"\K,H,UJr recovers f* with as small as possible rates in ||- || and || - ||2,x, and that the standard
deviation estimator ox .o . Tecovers o with as small as possible rates in absolute value.
With the same high probability, we also want that the excess risk Risk(fK#) — Risk(f*) is
as small as possible.

Starting with the convergence rates, they can be obtained by showing that

(]?K%UJF,&K%UJF) belongs to a bounded ball of the form

B*(2p) = {(f,0) € Fx L |f = [ < 2p, |If = f*

with appropriate radius p and complexity measure 7(2p). In the proof of Theorem we

|2,X < ’I"(Qp), |J - J*| < Coﬂ"(2,0)},

show that this can be achieved with p = px and any r(p) > max{rp(p,vp), ra(p,vm)},
which only requires the complexities rp, ;. The convergence rates 2px, r(2pk) are per-
fectly in line with those obtained with the MOM tournaments procedure in [61] and the
robust MOM method in [55]. The key idea behind this result is to essentially show that the
evaluation of T , at the point (]?K,“,ﬂ,c?;(%ﬂ, f*,0*) is too big for (J?K,u,crwaK,mcu) to
be outside of the bounded ball B*(2pk). Precisely, we show that, for some B; 1 > 0,
Ticp(Fposs 0k oss f7:07) 2 =B, sup Tru(g,x, f*,0") < =Bug,
(9:x)¢B*(2px 7 (2pK))
which guarantees that (fK,#,ﬂ,EK,#,UJr,f*, o*) € B*(2pk). The problem of finding a suit-
able bound Bj 1 is solved as follows.
e The problem is equivalent to —TK,M(J/C\K,M,ax,M, f* o) < Bia.
e By the anti-symmetry property of R., together with the quantile properties in
Lemma we have —Tk .(f,0, f*,0%) < Tk ,(f*,0%, f,0) and it is sufficient to
find

TKvﬂ(f*’0-*7va”70-+78[{7/"/70'+) S BLl.
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e The evaluation at (f*,0*) can be bounded with the supremum over the domain, that
is, we look for sup(y \yerxr, Tru(9: X [K poys Ok por) < B

e By definition, the MOM—K estimator (fx o, 0K 0, ) minimizes the latter supre-
mum if we allow for other pairs (f, o). In particular, with (f, o) = (f*, o), it is enough
to find sup(y \)erxr, Tru(9: X, f*,0%) < Bia.

e Finally, in Lemma [3.A°11] we show that the supremum is achieved on the bounded
ball B*(pg ), that is, the solution to the problem is the sharpest bound such that

sup Tk (g, x, f*0") < By
(9:x)€B*(px)

The argument we just sketched can be found in the proof of the main result in [55], it is
a clever exploitation of the convex-concave formulation of the problem. One key element
of the argument is that the computations only require lower bounds on the quantiles of
the quadratic and multiplier empirical processes, which in turn can be obtained by means
of the complexities 7p and ry; alone. These facts have been established in [57, [60] and we
provide them in Lemma Lemma

The fact that the estimator (fK,u,U .

in obtaining excess risk bounds. First, one writes

OK,u,04) belongs to the ball B*(2pk) is instrumental

Risk(fx 00 ) — Risk(f*) = | frcpos — FIB3x + E[-20(Frpos — F5)(X)],

and then bounds HfK,u,mr — f13x < r*(2pKk). By applying a quantile inequality, see
Lemma and adding the quadratic term (fK poy —f *)2, the expectation term becomes

E[-2¢(Fxor = )X < Quae =2 (Fipor = 17)] + 0k
< Quiak |l — ] +air

since €5 — lp = (f — f*)* — 2¢(f — f*). Since the 1/4-quantile is always smaller than
the 1/2-quantile, which is the median, some algebraic manipulations allow to rewrite the

difference ¢ 7

K,p,04

the penalized Tk ,(f*, 0", fK,W,Jr 0K 0y ). Specifically, in Lemma we find

GKMH + o*
2c
a'\K,%U_'_ +o*
2c

. . . ~
— s+ in terms of our functional R.({f+, 0¥, EfK#w , 0K 04 ) and to recover

TK,H(f*7 O—*? fK,M,J+)8K7M7U+) + remainder,

E[_2<(J?K,u,a+ - f*)(X)] <

< B 1 + remainder,

where Bj; is the upper bound we found when dealing with the convergence rates. It is
easy to show that By1 < r?(2pk), the majority of the work is spent on bounding the
remainder terms. In the same lemma, we show that they are: the quantity upx < r%(pk)
where p1 ~ 7%(pK)/pr is the penalization parameter, the quantity a3, < r?(2pk) related

to the quantiles of the multiplier process, the mixed terms
i |3K,u,a+ —o*- Q15/16,K [(fK,u,a+ - f*ﬂ )

. |6'\K,,u,a+ —o*|- Q15/16,K [—QC(fK,u,a+ - f*)} )
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involving the quantiles of the quadratic and multiplier processes. The standard deviation es-

timator satisfies |0k .0, —0*| S 7(2pK ). In Lemma we show that Q15/16’K[—2C(]?K,#—
] < I[E[—QC(}”}QM’O—+ — )] + a3, so that the Cauchy-Schwarz inequality is sufficient for

E[—2C(]?K7H7g+ - < éla*Hj/”\K’M’a+ — f*ll2x S 7(2pK). Finally, in Lemma we find
Qus/16.x(fr oy — 1% <12 (20K) + ag) S 72(2pK) V 15 (20K,7Q)-

3.5.3 Complexity parameters in the sub-Gaussian setting

We follow the construction presented in [56]. Let G = (G(f) : f € L?(Px)) the Gaussian
process indexed on L?(Px) and such that E[G(f)] = 0 and E[G(f)G(h)] = E[f(X)h(X)].
For any F' C F, we set

E[||G| 7] := sup {IE [sup G(h)] :HCF is ﬁnite}.
heH

As an example, if 7/ = {x — x"B: 8 € T c R} and X is a random vector in R? with

covariance matrix X, then G ~ N (0, %) and

E[IGlr] = E

supG' 3
BeT

Sub-Gaussian class. We say that F is sub-Gaussian if there exists a constant L such
that, for all f,h € F and p > 2, one has || f — hll,x < Ly/p|lf — hll2,x-
Gaussian complexities. For any r > 0, set Bo(r) = {f € L*(Px) : ||f
F—F={f—h:f heF} Forany 7,7 > 0, take

2x < r} and

sn(v) = f{r > 0: E[|Glg,)nz-p)] < vr°Vn}, (3.5.1)
ra(Y) = imf{r > 02 E[|Glleymnr-r)] <2'rva}.

The goal of this section is to provide the following bounds.

Lemma 3.5.1. Under the sub-Gaussian assumption, there exist absolute constants cy,c3
such that the complexity parameters rp,rq,ry defined in (3.3.1) satisfy

* P * Q * ™
< < < . 5.2
TP(P,'YP) =7y <C2L2> ’ TQ(prQ) =Ty <02L2> ) rM(pv'YM) > Sy <03L111*> (3 5 )

In particular, any continuous non-decreasing function p — r(p) with

* P * ™M
T‘(p) 2> max {Tn <02L2> S <03Lm*> } )
is a valid choice in (3.3.2)).
Proof of Lemma|3.5.1. We invoke Lemma Lemma [3.5.3] and Lemma below.

Their proofs are based on a symmetrization argument in [66], which controls the processes

sip =S - (Xe) — B[(f — £1)(X)]

FEFNf=f*ll2,x<r n i=1

I
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LSS (f - (%)~ EI(f - f*)Q(X)]',

sup
FEF:f=f*llzx<rl T =

1 n

n : - XZ _E —fF X )
e R 2GS = X0 B = )X

in terms of the processes

)

wp S (- )X
=1

FEF:Nf=f*ll2x<r

swp ST - K
i=1

JEF:Nf=F*ll2,x<r

wp LS G - )X
=1

FeF:Nf=f*llax<r

9

)

with Rademacher variables (&;)i=1,.. n. The latter play a role in the definition of the com-
plexities in ((3.3.1]).
Lemma below shows that, for any r > r* (),
1 n
£ 327 = WK = BI(S ~ (X < '

n -
=1

sup
LheF: | f=hllz,x<r

with probability bigger than 1 —2exp(—c1y'?n). Choosing v/ = yp/(coL) and h = f* gives,
for all » > 7} (vg/(c2L)),

n

> = 1) = B - 51X < g

=1

S|

sup
FEFf—F*ll2,x<r

By definition, the complexity rp(p,vp) is the smallest level r at which the latter display
holds for all functions f in the smaller set B(f*, p, 7). Thus rp(p,vp) < r}(vp/(c2l)).
Lemma below shows that, for any r > r(v/),

n

DU~ P ~ B - WP < e 222

=1

sup
LheF:||f=hl|l2,x<r

SRS

with probability bigger than 1 — 2exp(—c17/?n). Choosing 7' = vg/(c2L?) and h = f*
gives, for all r > 7 (yo/(c2L?)),

n

sup
feF:Nf=f*ll2,x<r

(f = F2(X:) —E[(f — f*)2(X)}' < or?

1
n

=1

By definition, the complexity rg(p,vq) is the smallest level  at which the latter display
holds for all functions f in the smaller set B(f*, p,r). Thus rg(p,vq) < r(vo/(caL?)).
With E[¢4]'/* = m*, Lemma below shows that, for any r > s (v),

n

sup EZCi(f—h)(Xi) —E[C(f—h)(X)]‘ < 63’ym*Lr2,

fREF: | f=hl2x<r | T

=1
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with probability bigger than 1 — 4 exp(—cinmin{+?r2,1}). Choosing v = yas/(c3Lm*) and
h = f* gives, for all r > s (yar/(csLm*)),

UG FKe) ~ EIC — F)X]| < e

i=1

sup
fEFf=f*ll2,x <r
By definition, the complexity ras(p, yar) is the smallest display r at which the latter display
holds for all functions f in the smaller set B(f*, p,r). Thus ras(p, yar) < sk (var/(csLm™)).
O

Lemma 3.5.2 (Corollary 1.8 in [66]). There exist absolute constants c1,ca for which the
following holds. Let F be an L-sub-Gaussian class, assume that F —F is star-shaped around
0. If v/ € (0,1) and v > r}(v'), then with probability at least 1 — 2 exp(—c1vy'*n), we have

1 n

£ D7 = W)~ BI(S ~ X < '

n <
=1

sup
LheF:| f=hll2x <r

Lemma 3.5.3 (Lemma 2.6 in [56]). There exist absolute constants cy,co for which the
following holds. Let F be an L-sub-Gaussian class, assume that F — F is star-shaped around
0. If v/ € (0,1) and r > r(v'), then with probability at least 1 — 2 exp(—c1vy'*n), we have

sup

1 n
n — h)*(X;) = E[(f — h)*(X)]| < e/ L7
FREF:|f—hllz.x <r Y (f = h*(X) —E[(f — h)*( )]' < ey

n <
=1

Lemma 3.5.4 (Corollary of Theorem 2.7 in [56]). Let F be an L-sub-Gaussian class,
assume that F — F is star-shaped around 0. Let E[|¢|9])'/9 = m* for some q > 2, there exists
an absolute constant c3(q), depending on q only, for which the following holds. For some

v >0 and r > sk(v), with probability at least 1 — 4exp(—cinmin{y?r2,1}), we have

1 n
- i(f—h)(X;) —E — X)) < T2
e B n;uf )(Xi) = E[C(f = h)(X)]| < es(q)ym”Lr

3.5.4 Complexity parameters in the sparse linear setting

The next result shows that, in the linear setting, it is possible to weaken the sub-Gaussian

assumption and still be able to control the complexity parameters rp, s as in (3.5.2]).

Theorem 3.5.5 (Theorem 1.6 in [67]). There exists an absolute constant ¢; and for K > 1,
L > 1 and qy > 2 there exists a constant co that depends only on K, L,qy for which the
following holds. Consider

o V C R? for which the norm || - ||v = supyey (v, )| is K -unconditional with respect to
the basis {e1,...,eq};

o m* = IEUCHO]I/% < +o0;
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3.5. From the choice of the functional R. to empirical process bounds

e an isotropic random vector X € R% which satisfies the weak moment condition: for

some constants co, L > 1, for ally € RY, 1 < p < ¢ylog(ed), 1 < j < d,

3=

1
E[|X e;["]7 < LypE[X e;|*]2.

If (X, Gy are i.i.d. copies of (X, (), then

E |sup

veV

jﬁ > (6XTv - E[X V) ] < e E[|Glv).
=1

Since this result deals with the multiplier empirical process and, when ( = 1, with the

standard empirical process, by arguing as in the proof of Lemma we find that any

« [ VP * Y™M
= > D B )
po o) 2 max {r (20) s (220

is a valid choice in (3.3.2). Our Definition restricts our analysis to settings where the
assumptions of the previous theorem are satisfied.

function

By following Section 4 in [56], we provide bounds for the complexity parameters 7}, s¥

in (3.5.2). For any B8 € RY, set fg : R — R the linear map fg(x) = x'[3, consider
F= {fﬂ 1B e Rd} and, for any p > 0,

Bi(p) = {fs € F: 1Bl < p}-

Assume that X is an isotropic random vector that satisfies the weak moment condition of
Theorem recall that m* = E[¢*]'/%. By symmetry, B;(p) — B1(p) = B1(2p) and it is
sufficient to control the function r — E[HGHBI(%)Q%(T)]. One finds, for every 2p/v/d < r,

d
E[||Glle, 2p)nBa(r)] = E[ sup > 9B } ~ p\/log (edmin{r2/p?,1}),
BeR:|B11<2p,|8|2<r | ;"0
and if 7 < 2p/+/d, then
d
E[IGllg, 2p)rBs )] = E[ sup Zgzﬂi } ~ pVd.
BERL:|B[1<2p,|Bl2<r | ;1 2o

With €, some constants only depending on L and vyp, one finds

[

log (%) if n < esd,

if ng S n S C4d7
C2

2 <7P> < Cgp X

o &-‘bw 3‘@

n > cyd,

the constants c3, ¢4 depend only on L. Similarly, with C,, some constants only depending
on L and vy,

if p’n < m*?logd,

% M * .

«2d 2 %2 72
m*o pen > mrede.
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3.A. Proof of Theorem 333

The bounds given above are valid for any regime of n and d, but we continue the discussion
for the more interesting high-dimensional case, that is d > n. This simplifies the notation

and allows to choose, for some constant C only depending on L,vp, v,

YPsYM

logd p? : *\logd
max{pm*\/ 8d - ]og (&) }, if p < %,

A maX{pm*\/llog(EdQS"‘*Q),ﬁlog(%d)}v if Bl < p

n

3.5.3)
which coincides with the function obtained in Section 4.4 in [55].
Solution of the sparsity equation. We study the case n > slog(ed/s) and assume there
exists a s-sparse vector in 3* 4+ B1(p/20). In the proof of Theorem 1.4 in [57], it is shown
that the smallest solution of the sparsity equation (3 is
1 d
p= CijPy'YMm —log (6 )

n s*

for some constant C7_ . ~only depending on L,vyp,yrn. We now compute r2(p*). Up to

multiplying p* by a big constant, we have p* 2> m*/log d/+/n, since s*/log(ed/s*) > /logd
for all 1 < s* < d. By definition, we have

. e w1 ed?m*2\ p*2 ed
TQ(p ) = C’%P:’YM max {p m \/n log ( 0*2n )v n log <n)
*2 s* d2
=C? cr lo g \/log )
VLA - g*2
i oo | O3z ()

*2*
<202 cr log( >

YPyYM ’YP Y™

in the last inequality we have used that 10g(a2) = 2log(|a|) and C73, ., > 1/+/1og(ed/s*).
The latter is true without loss of generality in the high-dimensional setting d > n >
s*log(ed/s*). The quantity r(p*) is the convergence rate of the Lasso estimator with pe-
nalization parameter A\ ~ 72(p*)/p* ~ m*\/log(ed/s*)/n. This choice of A\ requires the

knowledge of the true sparsity parameter s*.

Appendix 3.A Proof of Theorem (3.3.3

The structure of the proof is as follows. First, we control the supremum of the functional
Tru(g, X, [*,0") over possible values of (g, x) by partitioning the domain in slices. Each slice
is treated separately by the results from Lemma [3.A2]to Lemma[3.A10] Then, we compare
the bounds over different slices in Lemma and show that the leading contribution

comes from a bounded ball of the form

B*(pr) = {(g9:x) € F x (0,04] : [lg = f*|| < px, (P ), Ix — 0" < car(pi)}
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3.A. Proof of Theorem 333

In Lemma [3.A.12] we translate the supremum bounds into convergence rates by showing
that the MOM—K estimator belongs to a bounded ball B*(2px ). We finalize the proof by
computing the excess risk bound in Lemma |3.A.13

In the notation of Theorem for any ¢ > 2 we have

¢, = 200(c + 2)kY/?,
c—2
©T 2 1/2 LZANVENY
19203 (c +2)(8 + 134k} (1 + Z£) V 2))
2= 3(c—2)
“ 502

furthermore, we use the auxiliary parameters

1 € € 1 31 1

7P:148890, FYQ:%a YM = n= - 7:§a = 93

744’ 16
We denote by r(:) a function such that r(p) > max{rp(p,vp),rm(p,va)}. By Assump-
tion [3.3.2] there exists an absolute constant such that r(p) < r(2p) < ¢r(p). With
C? = 38463¢2 2/£+/ , we allow for K € [K*V 32|0|, ne?/C?]. We denote by Q(K) the
intersection of the event Q4 (K) in Lemma[3.D.4] the event Q3(K) in Lemma[3.D.7 and the
event Q3(K) in Lemma The probability of Q(K) = Q1(K) N Q2(K) NQ3(K) is at
least 1 —P(Q(K)) —P(Qa(K)) —P(Q23(K)) > 1 —4exp(—K/8920). For any ¢, € {1,2}, we
denote
*4 252
A, = car(CopK ), 5%(’,1 = y, T2(pK = m, (3.A.1)
the last equation rewrites the implicit definition of pg in .
The next lemma checks that the choices made in Theorem [3.3.3|satisfy a set of sufficient
conditions that are required by our proving strategy. In principle, our main result is valid

for different choices as long as the relevant quantities satisfy the conditions below.

Lemma 3.A.1. The assumptions of Theorem imply, with c%( = 384 and any v, €

[1/4,4],
ne? > Kci0ic2cin 1/2, (3.A.2)
3/4,
1600
LuCp > 27/?92 + 48k 1/2(c+ 2), (3.A.3)
c—2 800k %2 1+ 2 36
2402 > =2 92 +16(c+2)e + ( 3 Y IO)L“C“€ (3.A.4)
1/2 £2
1800k 144.,.¢c,
2 pou
—5— +1 2 —_— . A.
o > %{9% +108(c + 2)e + 10 (3.A.5)

Conditions (3.A.2) and (3.A.5) imply 46k n/0* < ak., < o*. Condition (3.A.4) implies
both

o de + (0" 4+ o4)tucue

— A.
1663 2(c —2)m* (3-4.6)
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3.A. Proof of Theorem 333

c—2  800k*1/2¢2 36¢,,¢c,6
16 9 el it Sy
i~ e Tllerdet g

Proof of Lemma[3.A.1 Condition is equivalent to the upper bound K < ne?/C?
on the number of blocks, which is itself an assumption of Theorem [3.3.3]

We now show that implies af ., < 0. By Assumption we have 72(pg) =
C%H%m”K/(szn) and r%(2pk) < 2r?(pK). Since ako = car(2pK), then also ax s < crax
and, by using condition in the last inequality,

(3.A.7)

2 2 2 2 2 02, %2 2 p2,.%1/2
Qg1 Qko GOy 5 o ABm2 K, 202K

< < A =l A <1,
o*2ne? ne?

0.*2 — 0.*2 — 0*2 T Trra

thus K., < o*. Condition (3.A.5)) implies 40k, /0" < QK c,, Since it gives the inequality
160%,, _ 400m*™ K _ 400m*2 K _ 2 3840?m*? K

o*2 o*2n n @ ne2

We now show ([3.A.3)). By definition of ¢, in (3.3.5)), we have

bty > % = 50(c + 2)r% = 2(c + 2)x}? + 48(c + 2)x}/,

= aK,l-

thus (3.A.3)) holds since, by construction ([3.3.5)),

03 (c+2)  120%(c+2)

800x* 25kl

We now deal with (3.A.4), which we rewrite using c% = 384,

50k 20262 38402(c + 2)e (1t 36) 240 |
(c—2)03 c—2 3 10 c—2

With the definition of ¢, in (3.3.5)) and ¢, = 4, this becomes

1/2 1/2
50[@4_/ (9(2)62+489(2)(C+2) <8+400I€+/ <<1+U+)\/12>>5< 1.

(c—2)63 c—2 3 o* 10

The inequality above has the form Ae? + Be < 1, which is satisfied by any e smaller
than min{1/v2A, 1/2B}. The definition of ¢ in (3.3.5)) coincides with imposing ¢ = ¢. -
min{1/v2A, 1/2B} = ¢./2B, with ¢, = 1/2 and

1 0
—— =Ve—2—2
V24 106pr}/*
1 c—2

2B 9662(c+2) (8 + 134k (1 + Z£) v &)
we have used that 400/3 < 134. Thus, condition is satisfied. It is immediate to
verify that this implies both (3.A.6) and (3.A.7)).
We conclude by showing . With c%( = 384, the definition of ¢, in and

ty = 4, we rewrite this as

1/2
9 7oKy

320 19
>
1662

e2 +108(c +2) <1+3f<¢+ >5

Ca

107



3.A. Proof of Theorem 333

By the discussion on ¢ above, it is sufficient that, with ¢ = 1/2 and 320/3 < 107,

9 75/~$}r/2 . c(c—2)6? 1/2 ce(c—2)

+108(c +2) (1 + 107k

©7 1667 100922 ) 9602(c +2) (8 + 134xY (1 + Z£) v §))

This is equivalent to

. 15(c—2) , 27(c — 2)(1 + 107xY/?)
o« Z 39002 2 1/2 gy 6y
0 24603 (8 + 134k (1 4+ Z£) Vv 2))
and, with
1+ 1072

1/2 o <1
8+ 134k (1+ ZE) Vv )

and c¢. = 1/2, condition (3.A.5) holds if

2o 15(e=2) 5 2(e—2) _(e—2) (15 27\ _4l(c-2)
“= 32002 ¢ 2402 1602 \80 3 76802
This is exactly the case from the definition of ¢,, in (3.3.5)), since 3/5 > 441/768. The proof
is complete. O

3.A.1 Control of the supremum of Tk ,(g, x, f*,0")

With o the known upper bound on ¢*, set I = (0,04] and, with r(-) any function such
that 7(p) = {rp(p,vp),rm(p; M)}, any ¢, € {1,2} and ak, = car(cppi), let us define

F = {(g,x) € Fx Iyt |lg = £ < copics lg = F*llax < r(cppic)s 10% — x| < e, }
Fi o= {(g,x) € F x Ly : |lg = 11| < coprcs [l = F¥ll2x > r(cppi); l0% = x| < e, }
F = {(g,0) € Fx Lt g = 7]l > oy |0 — x| < aree, }

FE o= {(g,x) € Fx Ly : |lg = 1| < coprcs 19 = ¥ ll2x < r(cppi)s X > 0" + aree,}
Fiol = {(g,0) € Fx Lt g = 171l < copics g — f¥llox > r(copic)s X > 0" + e, }
Fer = {lg.0) € Fx Ly g — | > coprcs X > 0" + ake,}

Fiol = {(g,0) € Fx Lt g — 171l < copics 19 — f¥llox < r(copic)s X < 0% — e, }
FE o= {(g,x) € Fx Ly : |lg = 51| < coprcs 19 = F¥ll2x > r(cppi), X < 0 — aree,}
F§ = {(g,x) € Fx Iy : g = f*I| > cppic, X < 0% — e, ).

The sets above are a partition of the domain F x I where the functional

Tie (9% F*,0%) = MOMyc (Rellg, x: €5+, 0) ) + (L] = llgl)

takes inputs. For ¢, € {1,2} and i = 1,...,9, we set B;., some upper bound for the
supremum of Tk ,(g, X, f*,0*) over (g,x) € ]:i(cp). That is,
sup  Tru(g,x, f*0") < Bic,, (3.A.8)
(g.0)€F )
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3.A. Proof of Theorem 333

and the goal of this section is to give sharp bounds for each slice separately. Using the

definition of R.({y, X, £f+,0%) in (3.2.6), and £y = £y« + L4 — £+, we find

U+ 1 g — 0
Re(by,x, b+, 0%) = (6 — 1—2-L 9 2 J
(g7X7 f 70) (U X)( (U*+X)2>+ CO'*+X

(o* + x)? o*+x/) o +x
O — 1
:R E* E* * 2A *7‘97
c(f7X7faU)+ C(X’O-)O—*"i'x

with

o—X
Ac(x,0) = |c+ €lec—1,c+1], Vo,x € (0,+00),
()= (4 TN ) ele Lo, Vo (0.4)

and ¢ > 2 by construction. We plug this into the functional Tk ,(g, x, f*,0*), so that

Cps — Ly

TK,M(QJ X5 f*7 U*) = MOMK (RC(Ef*)Xagf*vo-*) + 2AC(X7 U*) I Y

) N = lal).

g

For all (x,y) € X x R, we have the decomposition

2

Lr(x,y) = Lo(x,y) = 2(y — f(x)) (9(x) — (%)) = (9(x) = f(x))",

and this gives {p« — €, = 2((g — f*) — (g — f*)*. By the triangular quantile property in
Lemma [3.D.2] we can write

TK,u(gv X5 f*v 0*)
00,

= RC€*7 JE *y * +2AC ) *
Q1/2,K (foU) (XU)U*+X

2Ac ,0'>)< * *
((J'*(ZC—X))Q?)M’K [2C(9 - --f )2}

] T u(lF1 — llal)
(3.A.9)

< Q3/4,K [Rc<€f*7 X gf* ) U*)] +
+ udlLF I = Ngl)-
By arguing as in the proof of Lemma see discussion after (3.D.2)) for bounding (3.D.3]),

the quantity

40
Q3/47K[Rc(£f*,X7€f*yU*)] = Q3/4K [(g* - X) (1 — M)]

is bounded above, when x > ¢*, by

. o (4072 + 40k,
Q3/4,K [Rc(éf*7X)€f*7O- )] S (X — 0 )<W><)I§ - 1), (3A10)

or, when y < o*, by

40*2 — 45[(,”)
(0* +x)?
The following lemmas give, on the event (K), the bounds B;., in (3.A.8) for i =
1,...,9 and ¢, € {1,2}.

Qsasc[Rellye,x, Lger0™)] < (0" = X) (1 - (3.A.11)
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3.A. Proof of Theorem 333

Lemma 3.A.2. On the event Q(K), for all c, € {1,2}, the supremum of Tk ;. (g, x, f*,0*)

over the set

F = (g0 € Fx Iy lg = 17 < coprs g = F¥lax < r(copr), |o* = x| < akce,}

18 bounded above by

16 ) 8(c +2)e
PR yr—

C,EC
Big, = r(eoprc) + = T (o).

o*(20* — ak,c,) o 20* — OK.c,

Proof of Lemma[3.A.9 Let (g,x) € }'l(c’)). Using the bound obtained in (3.A.9)), the in-
equality (¢ — f*)? > 0 and the triangular inequality, the quantity Tk ,.(g,x, f* o*) is
bounded above by

ZAC(Xva*) * * *
ot x Qsyai [26(9 = f*) = (9= ] + w(1£*1 = lgll)

2A,(x, 0" ) )
220 Oy [260 — )]+l ~ gl

Q3/4,K [RC(Ef* » X gf* ) U*):| +
< Q3/4,K [Rc(éf*v)(agf*vo_*)] +

By Lemma Qs/4,x12¢(g — [*)] < af; < 4er?(cppr) and, with Ac(x,0*) < ¢+ 2 and
our choice p = (cue/m*)r?(pr)/pr, we find
8(c+2)e
20* — OK.cp,
8(c+2)e
20" — ak e,

Tru(g: X, £, 0%) < Qapa i [Re(lye, x, Uy, o) | + r?(cppic) + HCppic

= Q3/4,K [Rc(ﬁf*% ff*aa*)] +

*

cuec
r(copr) + L% (pK).
m
We now bound the quantile term appearing in the latter display. Directly from (3.A.10)
and (3.A.11)), we get
Q3/4,K [Rc(ff*aX>€f*7J*)]

< max{ sup |o* — x|(

XE[O’*,O’*"‘O&}(’CP]

By arguing as in the proof of Lemma see bound (3.D.4)) with ak ., > 20k n/0", we
obtain

40*° + 40k n )

40*? — 45K,n) }
(0" +x)? '

su o — 1-—
D | X|< (o 1 x)?

X€E[o* —ak c,,0*]

16 9 8(c+2)e
D S w—

. cuec
TK,,u(Q,X,f , O ) < Tz(cppK) + %TQ(pK)a

*

0*(20* —ak,)? T 20% —ag,

which is what we wanted. O

Lemma 3.A.3. On the event Q(K), for all c, € {1,2}, the supremum of Tk , (g, x, f*,0")

over the set

F o= {(g,x) € Fx Iy : |lg = £*]| < copics 19 — Fllax > r(copr)s 10 — x| < e, )

s bounded above by

16
o*(20* — akc,)

4e — (464) 2 cuec
2 2 ucCp 2
50k + 2(c— Q)WT (cprr) + R (PK)-

Bg7cp =
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3.A. Proof of Theorem 333

Proof of Lemma[3.A.3 Let (g,x) € ]-"2(0’) ). The space ]-'Q(C” ) shares with ]-"1(6" ) the conditions
lg—f*Il < cppx and |x —0*| < ak,c,. By arguing as in the proof of Lemma we know
already that

TK,u(gv X5 f*7 U*)

16 2A(x, 0%)
L e
RNy

< e Qi [2(g = 1) = (9= F7] + 0% (o).
The quantile properties in Lemma give Q3/4,x[2C(g—f*)—(9— )2 < Q7/8,x[2¢(9—
)] = Qs xl(g— *)?]. An application of Lemma bounds from above Q7,3 x[2¢(g —
)] < af; < 4er?(cppi) and from below Q5. [(9— f*)*] > (490)_2||9—f*H%7x' Since 4e <
1/(460)? by condition (3.A.6), we have a3, — ||g — f*H%’X(ZIGQ)_Q < (4e — (460)~H)r?(cppK ).
Together with A.(x,0%) > ¢ —2,

TK,,LL(g7 X5 f*vo-*)

16 2 2Ac(x,0%) (5 ) cLEC
——=—= (a3, — (40 — %) £ EETRy2
> o'*(20* _ aK,cp)2 Kn (U* + X) ( M ( 0) ||9 f ’ 2,X) o (PK)
16 4e — (46p) 2 cueC
67 2c—2)— 22 CucCp 2
=~ O'*(20'* _ OCK,cp)2 K.n + (C ) 90 T aK?cp T (CppK) + " r (IOK)a
which concludes the proof. -

Lemma 3.A.4. On the event Q(K), for all c, € {1,2}, the supremum of Tk , (g, x, f*,0")

over the set
F = {(g,x) € Fx Iy : lg = I*] > coprc, 0% — x| < ke, },

1s bounded above by

16 8(c+2)e 4c,e CuE
( ) o H >7"2(pK)+ TQ(PK),

B3, :=ma 6% +c £
3o x { 0*(20% — ag,,)? Km T %0 (20* — Qe Om* 10m*

16 de — (400)72  cue Cug
62 20c—2)———— 4 )2 hZ 2 .
o*(20* — aK,cp)2 Kn Cp< (c ) 20 + ag e, - m* rpr) + 10m*r (px)

Proof of Lemma[3.4.7) Let (g,x) € ]-}ECP). The space }":,EC”) shares with .7-'1(6"),}"2(0”) the
constraint |y —o*| < ak,,. By arguing as in the proofs of Lemma and Lemmam
together with an application of Lemma with p = pg, the bound in (3.A.9)) becomes

TK,u(gv X5 f*7 G*)
16 9 2A.(x, 0%)

v Sy e e U CA R Al U AP R U L
16 9 2A.(x,0%) . e
~ 0*(20* — aK’Cp)z(SK’” + WQW&K [2¢(g = f*) = (9= )]
B I e R T
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3.A. Proof of Theorem 333

We follow now the proof of Lemma 5 in [55]. Let us define f := f*+ px (9 — f*)/llg — f*l
this function belongs to the function class F by convexity. Let T := |lg — f*||/px. By
construction, || f — f*|| = px and g — f* = Y(f — f*). Then,

TK,M(ga)O f*,O'*)

16 2 2TA(x,07) . 2
= (20" — aK,Cp)z‘sKan T o ) B/ [2¢(F = ) = (f = 1)?]
—uY sup  2(f - )+ B

z*€lpx (prc)

From here, we separate the cases ||f — f*|la.x < 7(px) and || f — f*|la.x > r(pK)-

We start with |[f — f*|l2x < r(pk). Since ||f — f*|| = pk, we have f € H,, with
Hy ={f e F:\f =1l <ok, If = f*llax < 7(pk)} defined in Section [3.3.2] Recall that
K* is defined as the smallest integer satisfying K* > ner?(p*)/c%62,, with p* the smallest
value p > 0 satisfying the sparsity inequality

inf s 2N(f- ) >
feHPZ*EFf*(pK)

(SL Y

p.
Since K > K*, we get px > p* and pg satisfies the sparsity inequality
* * 4
sup z(f—f)zng.
€l = (px)
Using our choice of p = (c,e/m*)r?(pK)/prc, we get

Cusup (- f) < S,

*
z*€l ¢+ (pK) 5

The latter display, the fact that (f — f*)? > 0, the bound A.(x, 0*) < ¢+2, and the quantile
bound Q3,4 x [2C(f — f*)] < a2, < 4er?(pr) in Lemma all together yield

16 8(c+2)e dcye UPK
T *o¥) < Y T — )2 —_.
Kju(g? xf5e ) N U*(2U* - O‘K,Cp)2 Fon - <2U* — 0K, om* )T (pK) - 10

By condition (3.A.3]), the term multiplied by T is negative. This is true because /ii/ ‘>
K14 =m*/o* > 1 and ke, < 0, by Lemma so that

- Sm*(c + 2) N deye - d(c+2)e - d(c+2)e

Cu

o* 5m* o* 20% — QK.
Since T > ¢,, we have
16 8(c+2)e dcye CuE
T o) < 52 - ) " r?(pr).
Kul9:X f7,07) < 0*(20* — ak,)? KnF Cp<20* — 0K, om' o) + 10m* (pr)

This concludes the first part of the proof.

We now consider the case ||f — f*|l2x > r(pKr). Since ||f — f*|| = px and A.(x,0%) >
¢ — 2, an application of Lemma bounds from above the quantiles of 2¢(¢g — f*) and
from below the quantiles of (g — f*)2, this gives

TK,M(Q?Xv f*a U*)
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16 de — (460) 2 1PK
62 T(2(c—2)———F— —_—
~ 0*(20% — OéK,cp)2 Ko F ( (c—2) 20% + akc, oK)+ pox )+ 10
16 de — (460)7%  cue

)Tz(PK) + 12 (p),

2 6%{,71 + CP (2(0 - 2) 10m*

= 0*(20* — aky,) 20 + ag e, WM

using that T > ¢, and that, as we show below, the term multiplied by T is negative. In

fact, by condition (3.A.6|) one has

1 (0" 4+ 04)cue
—_ > 4 T L i
1662 et 2(c — 2)m*
de — (460) 2 de — (460) 2
Y el L) B TP Y el .
o*+o4 m* 20" + ak e, m*
This concludes the second part of the proof. O

Lemma 3.A.5. On the event Q(K), for all ¢, € {1,2}, the supremum of Tk , (g, x, f*,0*)

over the set

F = {(g,x) € Fx Iy : lg = 1| < coprc, 19 — ll2x < 7(copr), X > 0 + e, },

1s bounded above by

20" 8(c+2)e

2 Cu€lp 2
(20* + ak.c,)? rlepp) + me (prc).

e 20* + QK ,cp
Proof of Lemma[3.4.5, Let (g,x) € Fic" ). The space fic" ) shares with .7-"1(CP ) the conditions
lg — Il < copr and [|g — f*|l2,x < r(c,pK). By arguing as in the proof of Lemmam
and using that x > 0" + ag,, from (3.A.10) we get

TK,,u(ga X5 f*a U*)

< swp
X>0'*+04K75p

o (4072 + Ok .n) 8(c+2)e o CuECy o
(x—o )(W - 1) Py (CpPK) + TT
8(c*2 + k) ) 8(c+2)e
(20* + CVK,cp)2 20*% + QK c,

c,ec
= —ae, (1~ Pepprc) + L2 o).

Since ak.c, > 20k /0", one has

4(0*2 + 5K,n) - 4(0*041(,0;1 - 5K,n) a%(,c/a 4(U*O‘K70p — 6K7”> QU*QK’CP

= > > )
(20* + ak.c,)? (20* + ax,c,)? (20* + akc,)? (20* + ax,c,)? (20* + ag,c,)?
and

20" 9 8(c+2)e

T S S e
K,,u(gax f g ) = (20_* +04K,cp)2aK

c,eC
r¥(eoprc) + = Er (pc)-

et 20% + OK.c, *

This is enough to conclude. O

Lemma 3.A.6. On the event Q(K), for all c, € {1,2}, the supremum of Tk , (g, x, f*,0™)

over the set

F = {(g,x) € Fx Iy : |lg — ]| < copics 19 = Fllax > r(copi)s X > 0 + e, },
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s bounded above by

20" 4e — (46) 72 Cuec
Bye = -0 0% 4 2c—2)= 0 2 S 12 (1),
e (20* + ozK,cp)2aK’C" +2e ) o*+oy T (Cppr) + m* r*(px)
Proof of Lemma[3.4.6 Let (g9,x) € ]-"éc”). The space ]-'5(0”) shares with ]-"l(c") the condition
lg—F*|l < copr, with .7-"2(0") the condition ||g— f*||2,x > r(pK), and with Fic") the condition

X > 0*+ak,,. By arguing as in the proofs of Lemma[3.A.2] Lemma[3.A.3and Lemma[3.A.5]

one gets
T ( f* *) < 20" 2 + 2( 2) de — (400)_2 2( ) + Cu&lp 2( )
o -« c—2)————r“(c —7r
K, 9, X, ) = (20_* + OZK,CP)Q K,cp o* + oy ppK m PK ),
where o is the upper bound on Y. O

Lemma 3.A.7. On the event Q(K), for all ¢, € {1,2}, the supremum of Tk ;. (g, x, f*,0")

over the set
F = {(g.0) € Fx Iy i |lg = 7l > coprcs X > 0" + arce, },

1s bounded above by

20" 8(c+2)e deye CuE
B — - 2 o M 2 M
B T { (20* + ak.,)? ey T <2a* +aKe, om* >r (rc) + '

20" 4e — (460)72%  cue CuE
- (20* + ak )2a%<,0p + ¢ <2(C -2) o+ oy + # T2(PK) + = TQ(PK) .
)Cp

Proof of Lemma[3.A7 Let (g9,x) € ]:éc” ). The space ]-'6(0” ) shares with ]:?EC” ) the condition
lg = f*Il > cppr, and with féc”) the condition x > 0* + ag,,. By arguing as in the proofs
of Lemma and Lemma we find

20" 9 2T A (x,0%)

T o [ —
K,,u(gaXaf ) )— (20_*_1_06[{70/))2 Kcp U*+X

Qa/arc [2C(f = ) = (f = )]

—pT sup Z(f = f)
z*€lpx (prc)
with the function f = f*+px(9— f*)/|lg— f*|| and the quantity T = ||g— f*||/px, as in the
proof of Lemma m By following the same argument, we split the cases || f — f*||2,x <

r(px) and |[f = f*llax > r(pK).
We start with || f — f*|l2x < r(pk). We find,

deye o

—p sup  2(f—fT) < —
2*€l px (prc)

Combining this with (f — f*)2 > 0, we get

20" 2 4
o 9 p+T< 8(c+2)e C“5>r2(p ) UK

(20*+aK,Cp)2aK7c 20*+OZK,CP 5m* K + 10

TK:H(gv X f*,O'*) S -
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20* 8(c+2)e 4c,€ CLE
: D)2 on) + 1 o)

<——s« C
> (20*4_0‘](76/3)2 K,Cp+ p<20*+04K,cp 5m* 10m*

using that the quantity multiplied by Y is negative by condition (3.A.3)), and T > ¢,. This
concludes the first part of the proof.
We now consider || f — f*|l2x > r(pk). We have,

TK,/L(ga X5 f*¢ G*)

20" 9 4e — (469)72% , UPK
< T(2(c—2)———~F— il
= (20" + OéK,cp)2aK’Cp + ( (c ) ot + oy r(pK) + ppr | + 10
20" de — (460)72  cue Cug
< 42 e — 9 M 2 M 2
— (20% + oaK,cp)QaK’Cp * cp< (c ) o+ o4 m* rlor) + 10m*r (prc),

using that the quantity multiplied by Y is negative by condition (3.A.6]), and T > ¢,. This

concludes the proof. O

Lemma 3.A.8. On the event Q(K), for all ¢, € {1,2}, the supremum of Tk ,(g,x, f*,0*)

over the set

F = {lg.x) € F x Ly tllg = f7 < opic, g = Fllax < r(cppr)s X < 0" = ke, },
s bounded above by

20'* 2 8(C+2)E7“2

cycecC
B, = — AR e, T T (cpprc) + %Tz(PK)-

*

(20* — aK,cp>2

Proof of Lemma[3.A.8 Let (g,x) € ]-"7(0’) ). The space ]-'écﬂ ) shares with ]-"1(6" ) the conditions
lg — f*|| < ¢ppx and [lg — f*|l2x < r(cppK). By arguing as in the proof of Lemma [3.A.2)
and using x < 0" — ag,,, from (3.A.11) we get

TK,,U,(g7Xa f*a U*)

4(0*? — k) 8(c+2) , CuECy o
< sup U*—X(l— ’) r*(copr) + —Lr*(pK
e (=01 ) + R ) + o
4(0*? — 6k n) 8(c+2)e , CuecC
—_ Ao T OKn) 1) oler 2)e Cuclp 20,y
aK’c’)<(20* — OéK,Cp)Q * o* r{eoprc) + m* r*(px)
Since 46 /0" < a ., < c* by Lemma we find
4(0*? — dKn) B do*ak e, — 40K pn — Oé%(,cp 20" ak e,
(20* _aK,cp)Q (20’*—04}(7%)2 (20*—0&1(7%)2’
and
N 20" 2 8(c+2)e , Cutlp 2
TK,#(Q?Xaf O ) < _maK,cp+TT (CpPK)‘i‘?T (IOK)7
which is sufficient to conclude. O
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Lemma 3.A.9. On the event Q(K), for all c, € {1,2}, the supremum of Tk ;. (g, x, f*,0*)

over the set
FE o= {(g9,X) € F x Ly : lg = £ < coprcs lg = F¥llax > r(cppi)y X < 0 — e}y

s bounded above by

20" 4e — (490)_2 c,EC
50 e, +2(c = 2) 5 ———"—r*(copr) + %T2(/’K)-

Bg, =————"——=
e (20* — ak,,) 20% — ag.c,

Proof of Lemma[3.4.9. Let (g9,x) € féc'”). The space féc”) shares with ]_—1(%) the condition
lg— f*|l < cppi, with ]-"2(6") the condition [|g — f*|| > r(c,pK), and with ]__7(43,,) the condition

X < 0*—ak,,. By arguing as in the proofs of Lemma[3.A.2] Lemma[3.A.3)and Lemma[3.A.8]

one finds
20" de — (46p) 2 cuec
T *o Y < — — 2 2We—9)— 7Y/ 2 Cuctp 9
K,,u(%Xa f y O ) = (20_* — aK7Cp)2aK,cp + (C ) 2% — aK., r (CppK) + v (pK)a
which concludes the proof. O

Lemma 3.A.10. On the event Q(K), for all c, € {1,2}, the supremum of Tk ;. (g, x, f*,0%)

over the set
Fy® = (9.0 € Fx Lot llg = Il > eppres X < 0" —arce, ),

1s bounded above by

20" 8(c+2)ec, 4cyuec Cue
B — o 2 P H==p M 2
9cp max{ (20* — aK,cp)QaK’CP + < o* bm* + 10m* )" (Prc);

20* 5 de — (4600)72  cue o CuE o
S A— 2Ne—2)= 0, G :
(20" — e, )2 Koo +CP< (e=2)5 - —axe, w )" () + Toe " (PK)

Proof of Lemma[3.A.10. Let (g,x) € .Féc"). The space ]-"éc”) shares with féc") the condition
lg— f*Il > cppK, and with .7-"7(CP) the condition x < 0* — ag,,. By arguing as in the proofs

of Lemma [3.A.7] and Lemma [3.A.8] we get

20" 9 2T Ac(x, 0%)
O[K,Cp O.* + X

Ti (g, x, [ 0%) < - Qaarc[2¢(f — )= (f = 1)

20% — ozKycp)2
* * K
—pY  sup Z(f-f )+%,
2*€l ¢ (pKc)
with the function f = f*+ pr (9 — f*)/llg — f*|| and the quantity T = |lg — f*||/px. We

now split the cases || f — f*Hzx < r(pk) and || f — f*| 2x > r(pic)-
For ||f — f*|l2.x < 7(pK), we find

. N 4dc e
—n_sup  2(f = ) < = 1or¥(px).
€T ¢+ (px) m
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We combine this with (f — f*)2 > 0 and get

20* 8(c+2)e  Adcye UPK
T Ry <« " 42 T T 2 HPK
K9 17507 S =% —ag, e T < o 5m*)r (o) +
20" 2 8(c+2)e  4dcue) o CuE o
< - —
— (20.* _ (X%{ cp)QaK7cp + CP( o* 5m* r (pK) + 10m*r (PK):

using that the quantity multiplied by Y is negative by condition (3.A.3), and T > ¢,. This
concludes the first part of the proof.
We now consider the case ||f — f*|l2.x > r(px). We find

TK,M(gv X f*a U*)

20" 9 4e — (409)72% , UPK
< T(2(c—2)————>— 0=
=" (20" — OéK,c,,)2aK’Cp + ( (c—2) 20" — ok, r°(pr) + pupr | + 10
20" 2 4e — (4600)7%  cue o CuE o
R — 2e—2)— ) Tu=
- (20— aK,cp)ZaK’CP - CP< (c=2) 20% — agc, * m )" (px) + 10m* (prc),

using that the quantity multiplied by Y is negative by condition (3.A.6), and T > c,. This

concludes the proof. O

3.A.2 Comparison between the bounds

This section compares the bounds Bi,,. .., By, found above. We show that, for ¢, = 1,
the quantity Bp; dominates the bounds B; 1 on the slices ¢ = 2,...,9. Furthermore, for
¢, = 2, the negative quantity —B; 1 is also bigger than any other bound B; > on the slices
t = 2,...,9. This implicitly shows that the bounds B; 2 are negative and bounded away

from zero, if ¢ # 1.

Lemma 3.A.11. We have Bl,l = maxi:L.._,g B@l and _Bl,l > maXi:27_._,9 Bi72.

Proof of Lemma|3.A.11 We start by showing that By ; is bigger than the other B; 1, ¢ =
2,...,9. In Lemma [3.A.2] we have found

16 9 8(c+2)e
27K T g w o

By =

)

2 Cu€ 2
O'*(QO’* I aK,l) — aK,lr (pK) + m*r (pK)‘

Take i = 2. By Lemma we have

16
o*(20* — ak,)

C,E
20* + a1 r (CPpK)+ K2

m r (PK),

B2,l = 25%(771, + 2(C - 2)

so that imposing Bo 1 < Bj 1 is equivalent to

4e — (460)~2 < 8(c+2)e
20+ ag1 ~ 20% —agg

2(c—2)

which is always true since 4¢ — (46)~2 < 0, by condition (3.A.6).
Take i = 3. By Lemma we have

16 8(c+2)e  4dcue Cue
B _ 52 _ [ 2 © 2
y max{g*(%*_%m o (G = 52 (o) + 1 o)
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16
o*(20* —ak1)

de — (400)72%  cue CuE
0+ (2= 25— SN )+ ) |

so that imposing B3 1 < Bj1 requires both

8(c+2)e  1Tcue < 8(c+2)e
20" —ag1  10m* T 20* —ag,’
de — (460)72  cyue < 8le+2)e
20% + ag, 10m* = 20* —ag,

2(c—2)

The first inequality is always true, whereas the second is equivalent to

8(c—2)e  B8(c+2)e L Gt
20+ ag1 20" —ag;  10m*

Since 20* + ag,;1 > 20" — a1, the latter condition is implied by

Cue 32¢ c—2

< .
10m*  20* —agy ~ 802(20* + ak 1)

By Lemma we have 0 < ag, < o* and the above display is satisfied if

CuE 16¢e c—2
10m* = o* = 24630*

x1/4

We multiply by ¢* and use that x =m*/o* > 1, so it is sufficient that

cue c—2
£~ <16 —
10 =T 207

which holds by condition (3.A.7)).
Take ¢ = 4. By Lemma |3.A.5 we have

20" 9 8(c+2)e

A
41 (20% + 041(,1)2aK

2 Cut 2
1t oo +aK,1r (px) + oy (PK),

so that imposing B, 1 < By is equivalent to

20" af,  8(c+2)e _ 16 Scn  8(c+2)e
(20* + ar1)?r2(pr)  20* +ak1 ~ 0 (20* —ag1)?r?(pr)  20%* —akg’

which is always satisfied.

Take i = 5. By Lemma [3.A.6] we have

20" de — (46) 2 CuE
B —_ _ 2 2 _ 2 2 123 2
5,1 20 +ari)? +aK71)20¢K,1 +2(c )70* o, r°(pK) + T (PK),
so that imposing Bs 1 < By 1 is equivalent to
20 ag fo(e—2) de — (460) 2 _ 16 Scn  8(c+2)e
(20* + ak1)? r(pK) o*+oy T o*(20* —aka)?r¥(pk) 20" —aga’

which is always satisfied, since the term on the left is negative by condition (3.A.6)).
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Take ¢ = 6. By Lemma [3.A.7] we have

20" 8(c+2)e  4dcue Cue
B = 42 _ [l 2 (4 2
o1 max{ (20" + ar,)? ! (20* ok, b >r (P) + Toee ™ (PEO):
20" 9 de — (4600)7%  cue o CuE o
e e —9)2 —\FP0)
(20 +aK,1)2aK’1 * ( (c=2) o* + o4 )" (pxe) + 10m* (px)

so that imposing Bg 1 < B1 1 is equivalent to both

8(c+2)e  Teue < 20" Oé%gl n 16 5%(,71 8(c+2)e L e
20% + QK1 10m* — (20* + OéK71)2 T’Q(pK) U*(QO’* — OJK,l)Q T2(pK) 20% — QK1 m*’

which is always true, and
de — (4600) % | Ueue _ 20+ af, 16 0% m
o*+oy 10m* = (20* +ak1)?r?(pr) o0*(20* — ak1)? r?(pK)

8(c+2)e  cuc
- 7 _|_ _
20* — ak1 m*

2(c—2)

The first term on the left side is negative, by condition (3.A.6)). With the ratio 5%(7n /r%(pK)
in (3.A.1)), it is sufficient that

e _ 20* 2 . 16 25m*2e?  8(c+2)e
C . .
10m* — (20’* + OZK,1)2 « O’*(QU* — OzK71)2 C%{@% 20% — QK1

By Lemma we have 0 < ag, < 0%, so it is enough that

CuE 2¢2 400m*2e2  8(c+2)e
10m* = 90*  4o*3c2.6% 20°*
We now multiply by m* and use that x*1/4 = m*/o* > 1, this gives the sufficient condition
Icue o 4502
<c+ + 18(c + 2)e,
20 ¢ 203
which follows from condition (3.A.5|).
Take ¢ = 7. By Lemma |3.A.8, we have
20" 8(c+2)e CuE
Boi— 20 2 oleT 2)E o 4 wE 2 ,
o (20% — aK,1)2aK’1 + o (pxc) m (px)
so that imposing B7 1 < Bj 1 is equivalent to
8(c+2) _ 20" af 16 0% 8(c+ 2)e
o* 7 (20" —ak1)?r}pk)  0*(20% —ak1)?ri(pk)  20% —oagy

We argue as for i = 6, we plug in the ratio (5%(7n/r2(pK) from (3.A.1)) and use 0 < agy < 0™
and 20" — ag 1 < 20" 4+ ak 1, it is enough that

8(c+2)e < 2¢2 400m*2e?  8(c+2)e

+ +
o* ~ 90* 40*36%{9% 20*

119



3.A. Proof of Theorem 333

*1/4

We now multiply by ¢* and use that x =m*/o* > 1, this gives the sufficient condition
ply by )

) 2
8(c+2)e < % + 100 + 4(c + 2)e,

which is true if 18(c + 2)e < ¢2 + 4502, which holds thanks to condition (3.AF)).
Take i = 8. By Lemma we have

20* de — (460)72 Cue
Bgi=-———" 0% +2c-2)—— 202 (pg),
8,1 (20" — aKJ)Q a1+ (c ) 20" — ax1 r*(pr) + m m*(pK)
so that imposing Bg 1 < Bj 1 is equivalent to
20 ag f2(e—2) de — (460) 2 _ 16 Scn  8(c+2)e
(20% — ag1)? % (pK) 20 —ag1 — 020" —ag1)?r?(pr)  20% — ok’

which holds since the left side is negative, thanks to condition (3.A.6)).
Take ¢ = 9. By Lemma we have

20" 8(c+2)e 4deye  cuE
B — =~ 2 . 4 M 2
9,1 = hax { (20% — g 1)? K1 ( o* 5m*  10m* ) r(px),
20* de — (400)72  cue

2 2 Cu€ 2
7 S 2(c—2
(20% — OéK,1)2aK’1 + ( (c ) 20* — ak 1 * m* >T (prc) + 10m*r (pK)}’

so that imposing By 1 < Bj 1 is equivalent to both

8(c+2)e  Tcue < 20" 04%41 n 16 5%(,71 8(c+2)e  cue
o* 10m* = (20% —ag1)?r?(px)  o*(20* —ak1)?ri(px) 20" —ag; mwm*’

which is always true, and

de = (400)2 | cue _ 20" a%, 16 5% m L 8le+2)e

2(c — 2 .
(C ) 20% — QK1 10m* — (20’* — 0sz1)2 7’2(,0[() + O'*(QO'* — aK71)2 TQ(pK) 20% — QK1

Arguing as in i = 6, the first term on the left side is negative by condition (3.A.6]), then it
is sufficient that

CuE 20 % 1 16 0% m 8(c+2)e
< : ’ )
10m* = (20* —ag1)?r?(pr)  o*(20* —ak1)?r?(px) 20" —aka

which coincides with the bound obtained in i = 6.
The first part of the proof is complete. We now show that —Bj ; is bigger than B; o, for
all i = 2,...,9. We recall that Lemma [3.A.2] gives

16 9 8(c+2)e

By = K

2 Cu€ 2
o*(20* —ag1)? " 20% — OéK,lr (pr) + m (prc).

Take i = 2. By Lemma we have

16
o*(20* — ag2)

= AT 29 e
20" + ak o r(2ok) + m (Pr),

Byo =

)

50%n +2(c—2)
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so that imposing B2 + B 1 < 0 gives

9
o*(20* —aK72)2 Kn T 9 gk +aK72T (20x) + m* r(px)
16 2 8(c+2)e Cu€ 2 C
_ <2(c—2)——1r“(2 .
Since r2(2px) > r2(pK), Qg2 > a1, it is sufficient to show
32 0% m 8(c—2)e  8(c+2)e  3cue c—2
0*(20% —ak2)?r?*(2pK) 20" —ags  20* —ags m* 802(20* + ag2)’

By Lemma we have 0 < ag o < o* and, with the ratio 6%, /r?(pk) in (B-AD), it is
enough that

800m*2e? 3cuec*  c—2
W+8(C—2)8+8(C+2)€+ e < 2403
Since k*1/4 = m*/o* > 1, we find the sufficient condition

80051/ 22 c—2
Tae +16(c+ 2)e + 3cue < 2468

which is true by condition (3.A.7)).
Take i = 3. By Lemma we have

16
o*(20* — ak2)

r*(px),

8(c+ 2)e 4c,e CLE
3372 = max{ ( ) - = )T2(pK) +

6% +2 K
20KnF <20*—0¢K72 5m* 10m*

16
0*(20* — ak2)

4e — (4600)~2 Cue
20% + QK2 m*

25%@4'2(2(0—2) >7°2(PK) + K 7"2(PK)}7

10m*

so that imposing B3 + B11 < 0 requires both

32 5%(,71 16(c + 2)e 8(c+2)e < CGue
J*(QU* —aK72)2 7“2(2,0]() 20* — QK2 20%* — 0K 1 21’(1*7
32 0% m 16(c—2)e  8(c+2)e  3leue c—2

0*(20* — ag2)?r?(2px)  20*+ags  20* —aga  10m* T 46%(20% + ak )’

As for the previous point, we use that 72(2pr) > r%(pg), agp > o and0 < ago < o

by Lemma and the ratio 6%(771 /r%(px) in (3.A)). It is sufficient that both

800k *1/2£2
203

800k *1/2£2 3le,e  c¢—2
— 4+ 8(c—2 8 2 R- < )
252 +8(c—2)e +8(c+2)e + 10m1/4 < 1202

+16(c+2)e + 8(c + 2)e < ﬁ

The first bound holds by condition (3.A.3)), so we plug it into the second line using x* > 1,
we obtain the sufficient condition 36¢,e/10 < (c — 2)/(1263), which follows from condi-

tion (3.A.7).
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Take ¢ = 4. By Lemma |3.A.5 we have

20* 8 2
Bup— -0 2y SleF2e

2c,e
2 uE 2
2 + —
(20 ’2)2 *(2pK) T (pK),

2T 9 + agpo
so that imposing By s + B11 < 0 gives
16 5%(7,1 8(c+2)e 8(c+2)e 3cue 20* 04%(72
0*(20* —ag1)?r?(2pK) 20"+ akga  20% —aga m* (20% + ak2)? r?(2pKk)

Again, we use that r2(2pr) > r2(px), agp > a1 and 0 < agp < o* by Lemmam
and the ratio (ﬁfm /r%(px) in (3.A)). It is sufficient that

400 x1/2_2 3 2 2
S b A(c+2)e +8(c+2)e + 1 < ZCa

K*1/4 9 °

Cic bt
With x* > 1, it is enough that

1800k*1/2¢2 27
= 54(c+2)e + ;ue <,

2 2
07

which follows from condition (3.A.5|).

Take ¢ = 5. By Lemma |3.A.6, we have

20" 4e — (46p)~2 2¢,6
Bsg=——" 0%, +2(c—2)— " ;22 nE g2
5,2 (20_* + CKK72)2O[K’2 + (C ) o* + oy r ( pK) + m* r (pK)7
so that imposing B2 + B1 1 < 0 gives
16 0% m fole—2) de — (400)"2  3cue  8(c+2)e 20" a%
c— :
o*(20% —ak1)? r?(2pK) of + oy m* 20" —ag1 (20" 4+ akg2)? r?(2pk)

The second term in the latter display is negative by condition (3.A.6). We use that
r?(2pK) > 7 (pK), argz > a1 and 0 < agp < o* by Lemma and the ratio
0% /72 (pxc) in B-AT). Tt is sufficient that

400x*1/2e2 3c,e
203 K*1/A

With k* > 1, it is enough that

1800K*/2e2 27c,e

36 e < 2,
C%H% 5 +36(c+2)e < c,

which is true thanks to condition (3.A.5]).
Take i = 6. By Lemma we have

T2(pK)a

20" (c+2)e 4e,€ CLE
B672:max{— ( ) — ”>7“2(,0K)—|—

2 i
7 2
20" T axg)? K27 (20* Yok, 5m* 10m*

20*

e ak 2 <2(c —2)

4e — (490)72 n u€
(20* + OéKg)z

o*+ o4 m*

)TQ(PK) + 1%‘;1 TQ(PK)},
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3.A. Proof of Theorem 333

so that imposing Bg 2 + B1,1 < 0 requires both

16 0kn  16(c+2)e  8(c+2e  cue 25" o,
0*(20* —ag1)?r?(px) 20" +aks 20" —agi 2m* (20" 4+ aks2)?r(pk)’

16 5%01 8(c+2)e 3lcue (e 2)45 — (46,)2 95+ 0‘%{,2
o*(20* — ag1)?r?(pk) 20" —ag;  10m* o* 4o (20* + ak2)?r?(pK)’

By condition , the last terms on the left side of both equations are negative. As for

the previous point, we use that r?(2px) > r?(pk), Ak > ag1 and 0 < ago < o by

Lemma and the ratio (5%7n /m(pr) in (3-A]). We find the sufficient conditions
7400/;*1/2252 +24(c+2)e < %7

ci 07 9

400*1/2¢2 3lc,e 262

+8(c+2)e + =

—E 2
0%0% 10k*1/4 9

With x* > 1, it is enough that
1800k*1/2¢2

203
1800k*1/2¢2

i 07

+108(c + 2)e < 2,
+36(c + 2)e + ldcue < 2,

which follow from condition (3.A.5)).
Take ¢ = 7. By Lemma |3.A.8, we have

20" 8(c+2)e 2¢,e
Boo— — 2 2(9 u€ 2
so that imposing B7 2 + B1 1 < 0 gives
16 5%(@ 8(c+2)e N 8(c+2)e  3eue 20" Oé%(@
0*(20% —ak1)? r%(2pK) o* 20" —ag, m* (20% — ak2)? r2(2pK)

Again, we use that r*(2px) > r?(pKk), a2 > akx1 and 0 < a2 < o* by Lemma
and the ratio 5%’n/r2(pK) in (3.A.1)). It is sufficient that

400 x1/2_2 3 ) 2
L+8(c+2)6+8(c+2)6+ = Ca

302 P

With «* > 1, it is enough that

1800k*1/2¢2 27
R 2(e 4 2)e + S 2
c2.02 2
KY1

which follows from condition (3.A.5|).
Take i = 8. By Lemma we have

20" 4e — (40p)~2 2¢,€
g0t 20— 2) A gy 4 2 2,

Bsp=—— 0
8,2 (20* — ak2)

20* — ak 2
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3.A. Proof of Theorem 333

so that imposing Bg o + B11 < 0 gives

2

16 5% m 8(c+2)e LT ( 2)45 — (46,)2 20* %,
c— :
o*(20* —ag1)?r?(2pK)  20* —ag; ow* 20% — a2 (20" — ak2)? r?(2pK)
By condition (3.A.6)), the last term on the left side is negative. We use that r?(2pg) >
r?(p), arga > ag1 and 0 < ags < o by Lemma and the ratio 5%(7n/r2(pK)
in (3.A.1)). It is sufficient that

4 *1/2_2 3 202
00k™/“¢ +8(c+2)e+ Cug c,

30 P

With «* > 1, it is enough that

1800k*1/2¢2 27
S T 4 36(c+2)e + < 2,
ci 07 2
which holds thanks to condition ([3.A.5]).
Take ¢ = 9. By Lemma |3.A.10] we have

20* 16(c+2)e  8cue = cue
Ba o — _ 2 _ S 1 2

20* 9 de — (4600)7%  cue o Cu o
SR A 2(2(c— o)=L,
(20_* — OéK,Q)QaK’Q + < (C ) 20 _ K2 + m r (PK) + m r (PK) s

so that imposing Bg s + B11 < 0 gives both

16 Skn  16(c+2)e  8(c+2)e  Beue 20" %y
o+ (20" — ax1)? r2(pK) = %0 —ary  10m* (20" —ax2)? 2(px)’

16 5% m 8(c+2)e  32cue (e 2)48 — (460)72 20°* %
J*(QU* —OCK,1)2 T‘2(pK) 20* — K1 10m* 20* — QK2 (20* —CKK72)2 7'2(,0[()'

By condition (3.A.6]), the last terms on the left side in the latter display are negative. One
last time, we use that r2(2px) > r%(pk), aro > ag and 0 < ago < o* by Lemmam
and the ratio 6%(7,1 /r%(px) in (3.A)). It is sufficient that

400 x1/2 .2 202

e 1 16(c+2)e+ 8(c+ 2)e < —2
cq-0

KY1

400*1/2£2 32c,e 2c

8(c+ 2)e + " o Za,
gz TSt pnTE <

With x* > 1, it is enough that
1800r*1/2¢2
Cicbt

1800k*1/2¢2 144
N 4 36(c + 2) + 18“5 <é,

+108(c +2)e < 2,

2 02
i 07

which both follow from condition (3.A.5)). O
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3.A. Proof of Theorem 333

3.A.3 Contraction rates and risk bound

In this section we obtain convergence rates and risk bounds by exploiting the re-

sults of the previous section. We recall that we are using a function r(-) such that

r(p) > max{rp(p,vp), s (p,va)}. By Assumption there exists an absolute con-
stant ¢, such that r(p) < r(2p) < c¢r(p). With C? = 3846%0203/13{ we allow for
K € [K* Vv 32|0|, ne?/C?]. We denote by Q(K) the intersection of the event Q4 (K) in

Lemma the event 23(K) in Lemma and the event Q3(K) in Lemma
The probability of Q(K) = Q1 (K)NQ(K)NQ3(K) is at least 1 —P(Q21(K)) —P(Q(K)) —
P(Q3(K)) > 1 — dexp(—K/8920).

Lemma 3.A.12. On the event Q(K) defined above, the MOM-K estimator
(fAK,u,U+78K,;L,U+) belongs to the slice

2 * * *
Y ={lg.0) € Fx L llg = 171 < 201, llg = I llzx < r(20x). |0 = x| < car(2p10)},
thus recovering the convergence rates in (3.3.9)).

Proof of Lemma[3.A.19 By definition (3.2.11]), Lemma [3.A.11] gives the last inequality of

CK,#(fK,,uvaK,u) < CK,M(f*aa*) = sup TK,N(97X7f*7O-*) < Bl,l‘
geF, x<o4

Then, with the property Q;/2[x] > —Q1/2[—x] from Lemma m
Biy > Crpu(frp0kcp) = sup Tiu(g. Xo Frc g O
gEF, x<o+

2 TK“U,(f*a U*’ fK“uaaK,/L) Z _TKuu'(fKHu"aK’)u” f*’o-*)

We deduce that, on the event Q(K), TK7M(‘)?K7M,8K,M,f*,U*) > —DBi1. Applying
Lemma again, we have —Bj1 > sup;—y ¢ Bi2 and

max  sup  Tgu(g,x, f5,0") < max B;js < —DBi.
1=2,...,9 (2) 1=2,...,9
(9:X)€F;

Thus, the estimator (fK,u,a+aa'\K,u,a+) is outside U?:QFZ-(Q), which means that
(]/”\K7M7J+,8K,M,U+) belongs to .7:1(2). By definition of .7-"1(2), we have H]?K#J+ - < 2pk,

||fK,u,a+ - f*

plete. O

2x < r(2pK), and |0k 4o, — 0¥ < ag2 = car(2pK). The proof is com-

Lemma 3.A.13. On the event Q(K) defined above, the MOM—K estimator

(fK,p,,O'+ ) 8K7/_L7a'+) Satisﬁes

~ . 25/4/*1/2 ) )
R(fK,y,cr+) - R(f ) < 24 2004 + (44 + SCM) €+ WS r (2:01()
1

+ 49%5 (r2(2pK) Vv Té(QpK, ’yQ)) ,

thus recovering the excess risk bound in (3.3.10)).
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3.A. Proof of Theorem 333

Proof of Lemma[3.A.13 We apply Lemma with p = 2px and ag., = ax;2, which

gives

R(frp) — R(f*) = fxcp — FHI3x +E[-2¢(frp — f5)(X)]

20" + ok 2 . 20" + ak 2
TQ(QPK) + TTK,;L(JC O K Orp) + 7#01( + OK?\/[
820 + ak2) QK2

(20%r(2pK) + 7 (2pK) + a2Q + o).

)2 Kn

CU*(QU* — QK2 0(20* - 04K,2)

In the proof of Lemma [3.A.12] we have shown that Tk \(f*, o ,.]/C\K#,a[(,u)
CKv,\(fK,#,aK#) < Bj,;. By Lemma the ratio (%n/r (2pk) in (3.A.1), m* > o*
and ag ., < 0* by Lemma we have

16 8(c+2)e Cue
Bi1= 52 AT TAE L2 pe 2

25m*2 2 8(c+2)e  cue\ o
- (249%0 *(20* —ag1)?  20* —ag + me r(pK)

255*1/2e2 8(c+2)e  cue
= ( 2402 0* L +ﬁ r(pr).
1

This gives

20 + ago 30% [ 25k*1/22  8(c+2)e  cue ) o
= TR < 2
c ( 249%0 + o* * o* r(20x)

2561262 12(c+2)e  3cue ) o
— 20K).
( 6% T ¢ T oac )" @)

By construction, we have u = (c,e/m*)r?(pk)/pK, so that

20% + ago 30* c,e 3¢,
TR e < 2 B2 ) < S ),

- c m*

By Lemma we have a3, < 4er?(2pg ), whereas by Lemma we bound

148804 K
2(0.70), If — 1 ||2x>

148801 K 1)
2 Y

o2 < emax <||f £ 3. 228800

<e (r2(2pK) V r%(2pK,ny)) max < -

< 40%5 (r2(2pK) vV ré(QpK,'yQ)) ,
using K < ne?/C2, C2 = 38462¢2c2k/* and 1488/384 < 4.
With ax 2 < ¢* and the ratio (5K7n/7" (pr) in (3.A.1)), we find

8(20* + aK2) 24 25k*1/2¢2
: 5K S * K S r (pK)
)2 T g2 166%c

CJ*(QU* — 04K,2

By putting together all the previous bounds we have

25k*1/22 12(c + 2)e n 3cue N 3cue
C

R(fK,u,a.,_) — R(f*) <7 (2px) + ( 1607 + 45) (2pK)

c 2c
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3.B. Proofs for the high-dimensional sparse linear regression

25,41*1/2&2 9
———1r(2
T6g3c " 2Pr)F

49%cae

co*

«

ci? (20°r*(2pK) + (1 + 46)r° (2pk))

+ r(20K) (r*(2pK) V 15 (20K,7Q)) -

Using co7(2pK) = a2 < 0 in the second and third lines of the latter display, we find

~ 25k*1/22 12(c+2)e  3cue 3cue
R — R(f*) <r*(2 g K 4 e | (2
(freu) = R(f7) < r°(2pk) + < 6 T e o oo AT (20K)

25K*1/2e2 Cor 3 1 )
T@fcr (2pK) + (CQT (2pK) + 5(1 + 4e)r (QPK)>

403¢
_|_
c

With ¢ > 1 and (¢ + 2)/c < 3, this recovers

(r2(2pK) V ré(QpK, VQ)) .

~ 25&*1/2 ) )
R(fru) — R(f*) < (2+2ca+ (444 5cy) e+ Ws r°(2pK)
1

+ 467 (r*(2pK) V 7"22(2,01(, 7)) »

which completes the proof. O

Appendix 3.B Proofs for the high-dimensional sparse linear

regression

3.B.1 Proof of Theorem [3.4.4]

In Section we prove the following Theorem We show now how this theorem
can be used to derive our Theorem [3.4.4]

Theorem 3.B.1. Assume that Px¢ € Py, There exists universal constants cy,
(¢i)i=o,...5 that only depend on 6y,01,v9,Ym such that the following holds. Assume that
IZ| > n/2, |O| < cps*log(ed/s*), n > s*log(ed/s*) and B* € Fy.

For every (v, ty) € [1/2,2)%, let K = [1xcas* log(ed/s*)] and let (BK’M’U+,8K,M,U+) be
the MOM—K estimator defined in with penalization parameter

~ /1 ed
M= 1uCp - log - )
Then, for all p € [1,2], we have

3 ~ -1 11 e
’5K,u,a+ - B* ’p < cs3¢e K*o*s*p ﬁ log (5*)’

(3.B.1)

v

@
% &

~ - _ 11

)

with probability at least 1 — 4 exp(—K/8920).
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3.B. Proofs for the high-dimensional sparse linear regression

With high probability, we have

|/§K,u — B%|p < cze” 1m*a*s*P \ /

We can explicit the value of e ™! as

19263(c +2) (8 4+ 1345/ (1 + Z£) v §) )

el = p— —o(t+ vy,

for a constant C' > 0, and therefore

Brep =B < (1 + Jo's"r *10g

Since by assumption ¢* < oy, we deduce

By — B'lp S 045 10%

The proof for the bound on 6k, », follows the same computations as it involves a factor

of e71

3.B.2 Proof of Theorem [3.B.1]

In this section we use the results in Theorem and the computations in Section
for the sparse linear setting. For any fixed ¢ € (0, 1), the function

max {pm*\/ 12?2d7 > log (mg) }, if p< ™ Tl;g%

max {pm*\/mg log (6557222)7 5 log (n52) }, if m\/\%;? Sps

2 2
Te (P) - C’YPv'YA{

7

9
n52

3.B.2)

—

is a strict upper bound on 72(p) defined in (3.5.3)). The smallest solution of the sparsity

equation is of the form

1 ed N m*2s* ed
P* - C;PfYMm*S 1 08 < > T?(p ) - 0:129’7]% 2 log <8*> ’

ne2 ne
For any fixed constant C' > 0, let K* be the smallest integer such that

2
* ne 2/ %
K > Cgm*grs(p )7

this matches definition (3.3.6)) in Theorem with C? = 38467 and r = r.. By definition,

this is equivalent to

C*Z
K* 'VCP’;YM S]Og <€d>
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3.B. Proofs for the high-dimensional sparse linear regression

which gives the heuristic that the minimum number of blocks is of order K* ~ slog(ed/s).

For any integer K > K*, we compute the radii px solving

TL€2

K = 2" r2(pK),

which is a rearrangement of definition (3.3.7) in Theorem For all p* < px < m*Vne?,

we have
1 ed?m*2
2 2
Te (pK) - C’YP7’}/1\4me*\/TL62 IOg <p%(n€2 >7

and the implicit solutions pg are of the form

L |1 ed?\1 !

with Cx some absolute constant, for all K < ne?. To check this, let us compute

ne? ed®\1™ ed? ed?
W 5(pK) CVP ’YMCK\/[IOg (](2>:| log (Cz 2 log (W))

log( ) +loglog( ) —log (C%)

log (ed2 ) ,

which we want to be equal to the given C?2. Since d > n and K < ne?, without loss of
generality C% < d/n, thus

=C% _ Ok

YPyYM

2 log + loglog — log (C? 2
L wes(cp) _lo(5) (i) “le(Ch) _, ou(ch) _,

* () s (%) o)

which allows for an absolute constant Cy € [C? /(V/20?),1/2C?

YPYYM YPYYM

/C?] recovering the
solution.

As mentioned earlier, we can write K* = [¢s*log(ed/s*)] with ¢ = C32_ /(38467)
and, without loss of generality, ¢ > 1. Assume that the number of outliers is smaller than
cos™ log(ed/s*) with ¢y = ¢/32, this results in 32|O| < K* and the choice K = K* is valid
in Theorem Then set ¢o = 2¢ and apply Theorem separately for any choice
K = [1gcas*log(ed/s*)] for all vx € [1/2,2]. Then, for any ¢, € [1/4,4], any penalization

parameter of the form

2 214y *2 2
rZ(pK) 9 1 ed’m ~ |1 ed
”:LMCMEM:W%@MM&\/ nez 08 e ) =ty o ()

. . ~ _ 2
with universal constant ¢, = C:“C’YP;’YM7

2
©= LucquP 7M\/ (log <ed ) — 2loglog <Zil) — 210g(LK52)).
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3.B. Proofs for the high-dimensional sparse linear regression

We observe that, since txca > 1,

d? d ~ d?
log <62> — 2loglog <e*> — 2log(tice) <log <e*2> ,
s s s

and, with log(ed/s*) < (ved/s*)'/? and 1x ¢y < (ed/s*)'/4,

ed? ed - 1 ed? - 1 ed?
=) - =) - > = =) - > = .
log <s*2> 2log log (s*) 2log(txca) > 5 log <3*2> 2log(txca) > 1 log <3*2)

Therefore, any penalization parameter in the smaller interval

1. /1 ed?\ __ |1 ed?
n e 50# E log 5? s 2C“ E log 5? s

with absolute constant ¢, = Cucgpmw is valid. This matches the construction required by

Theorem for any (vf,¢,) € [1/2,2])? and shows that the penalization parameter p can

be chosen without knowledge of the moments of the noise.

The convergence rates in Theorem [3.3.3] become

3 1 ed2\17!
* —1..%

|8 — B%1 <2px = 2Cke mK\/n [Iog<K2ﬂ ,

3 K

1B — B2 <r-(2pK) < 2Ce™'m* \/:7

~ K
oK — 0" < care(2pK) < 2caC€_1m*\/ —.
n

Finally, for K ~ K*, one gets

3 _ 1 ed
1B =B < 20k S 2C:;P7’Y]\/I€ fm*s® log <*>7
~ " N 1 4 |S* ed
B = B7l2 < e(2pK+) 5 205, € ‘m n log <*>,

=R . N 1 . |S* ed
|0k — 0% < car(2pr+) S 2¢0C3,, 4,,€ m g log <>

The bounds in (3.B.1)) for p € [1,2] are obtained by applying the interpolation inequality
1By < \,8|1_1+2/p|[3|§_2/p. This concludes the proof.

3.B.3 Proof of Corollary

Recall the definition of signal-to-noise ratio

~ Var(f*)  Var(f")
SNI = Var(¢)  o*2

and denote
42— Var(Y?) ) E[Y]?
YU Var(Y)2 YT Var(Y)

The following proposition allows us to bound above and below the estimator G 4 on

an event with high probability.
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3.B. Proofs for the high-dimensional sparse linear regression

Proposition 3.B.2. Assume that Var(Y') > 0 and consider the quantities Ay, By defined
above. For any integer

n52 n n

K € (8|0|, —5 A A
©1: C? 17743 706B% |’

there exists an event Q(K) with probability at least 1 — 2 exp(—7K/3600) such that, on this

event, the estimator

. 2
U%{,Jr = Ql/z,K [Y2] - (Q1/2,K [Y]) )
satisfies 0*? < 83%(’_% <160*2(SNR +1).

Combining Proposition and Theorem by replacing o4 by 0k + and reasoning

on the intersection of both events yields the conclusion.
We now prove Proposition

Proof. We start with
Var(Y) = Var(f*(X) 4 ¢) = Var(f*(X)) + o*2 + 2 Cov(f*(X), ¢) = Var(f*(X)) 4+ o*2,

where in the last step we have used that f*(X) = XT3* is the orthogonal projection of
the square-integrable random variable Y = XT3* 4+ ¢ onto the closed and convex set of
square-integrable random variables A := {X '3 : 8 € R?}. Thus, Var(Y) = 0*2(SNR +1).
We apply Lemma to the variable Z = Y?2. We choose n = 1/2 and v = 7/8,
x=1/15, 6%, = ak,, := 15(K/n) Var(Y?), so that y(1 —1/15 — z) > 1/2, in fact

1 7 1 1 91 1
7<1‘15‘~’“> :8<1_15_15> =120 2
Therefore, on an event Q;(K) with probability at least 1 — exp(—7K/3600), we have
Q12 [Y?] € [E[Y? — agn, E[Y?] + akn)-
We now repeat the argument for Z = Y. We choose again n = 1/2 and v = 7/8,
x = 1/15, 5%(7n = bz,n = 15(K/n) Var(Y'), so that v(1 — 1/15 — z) > 1/2. Therefore, on
an event (y(K) with probability at least 1 — exp(—7K/3600), we have (Q19x [Y])? €
(B[] = bica)?, (B[] + bic.)?]
We now work on the event Q(K) = Q;(K) N Q2(K) which has probability at least
1 —2exp(—7K/3600). We have

v € [Var(Y) = arn — 2B[YJbicn — Vs Var(Y) + asn + 2B Jbren — b

with a%(’n = 15(K/n) Var(Y?), bﬁ(’n = 15(K/n) Var(Y'). We now show that

1 <20k <4Var(Y),

which would give the claim. We start with the lower bound, we want

| < 2Var(Y) — 2ax,, —4E[Y )bk n — 2b%(7n
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3.B. Proofs for the high-dimensional sparse linear regression

and we show the stronger

2b?
max{2aK’n AE[Y Jbgn K,n} . % <2Var(Y) - 1) |

0*2/47 0*2/4 ’ 0*2/4 0*2/4

By construction, we have

)

8ar,  +/Var(Y?2) \/960[(

o*2 - o*2 n
16E[Y]bk,,  E[Y]y/Var(Y) \/3840[(
o*2 )

o*2 n

8%,  Var(Y) 120K

o*2  g*2 n
and the quantities Ay, By are defined in such a way that y/Var(Y?) = Ay Var(Y) and
E[Y] = By+/Var(Y). Therefore, it is enough that

40K
Ay(SNR+1)\/86T? <8(SNR+1) -1,

A560K
By(SNR+1),/° 550 <8(SNR+1)—1,

(SNR + 1)% <8(SNR+1) - 1.

We now divide by (SNR + 1) and use 1/(SNR + 1) < 1, the stronger condition

40K
Ay 20 <7
n
4560K
By 34560 <7
n
360K§7,
n

is then satisfied if K < n/max{177A%, 706B%, 52}, which is true by assumption on the
upper bound on the number of blocks. This completes the proof of ¢*? < 88%7 4 on the
event Q(K).

We now deal with 23%{7 4+ < 4Var(Y). Since the quantity _b%{,n is negative, it is sufficient
that 2 Var(Y) + 2ax , + 2E[Y bk, < 2 Var(Y) and, dividing by o*2,

2axn  2E[Y bk, _ 2Var(Y)
K ) < .
0.*2 0.*2 — 0.*2

We show the stronger inequalities

2aK n < Var(Y)

0.*2 — 0.*2 ’
2E[Y )bk, _ Var(Y)
— <

0.*2 — 0.*2 ’

by arguing as for the previous step. It is sufficient that

Ay (SNR + 1)\/¥ < (SNR+1),
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By (SNR + 1),/% < (SNR+1),

which holds if K < n/max{604%, 60B%}, and the latter is true by assumption on the
upper bound on the number of blocks. This completes the proof of 23%(’ 4+ < 4Var(Y) on
the event Q(K). O

Appendix 3.C Proofs for adaptivity to the sparsity level

3.C.1 A general algorithm for simultaneous adaptivity

In this section, we prove a more general theorem, that will yield Theorem as a par-
ticular case.
Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as

follows.
e Let wy,wy, ws be three functions [1,d/e] — Ry and set M := |logy(s4)].
e For every m € {1,..., M + 1}, compute (B(Qm),&(zm)).
e Set

M = {m €e{l,...,M}: for all k > m, |B(2k71) — B@k)h < 018w1(2’“),
|B(2k71) - B(Qk)b < Cgawg(Qk) and ‘8(21%1) - 6(2k)| < 038w3(2k)}.

e Set m := min M, with the convention that m := M + 1 if M = 0.
e Define 5 := Qm and (B, 5) = (B(g),&(g))

Definition 3.C.1. Let © be a subset of R? x Ry and || - || a norm on ©. For a given
s€{2,...,d/(2e)}, we say that an estimator QA(S) € O robustly converges to 0* € © in norm
| - || with bound Cho*w(s) if

] KXn / ) / * * ~ S E5S
gl P (VD € D(N), |f)(D') — 6%]| < Cio w(s)) >1 - 3o <a) —

(3.C.1)
inf Py (VD' € D(N), [|05)(D)) — 6*|| < C’la*w(s)> >1—¢6Co (28> " —u
ﬁ*€f2s’g*>0 ﬁ ,PX,C Y (5) — — ed )
(3.C.2)
and if the function w(-) : [1,d/e] — Ry satisfies the following conditions:
1. w(-) is increasing on [1,d/e] ;
2. There exists a constant C' > 0 such that, for allm =1,...,|logy(s+)], we have

iw@k) <C"w(2™);
k=1
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3. There exists a constant C" > 0 such that, for allb=1,... 54,

w(2b) < C"w(b).

Theorem 3.C.2 (Joint adaptation of (ﬁ, o) to s). Let sy € {2,...,d/(2e)} and for s =
1,...,284, let (B(S),E(S)) be a joint estimator of (3*,0*) such that

1. B(s) robustly converges to 3* in | - |1-norm with bound Cio*wi(s);
2. B(s) robustly converges to 3* in | - |a-norm with bound Cyo*wa(s);

3. 0(s) robustly converges to a* in | - [-norm with bound C3o*w3(s);

for some constants N > 0, ¢g > 0 C1 > 0, u, > 0 and for some functions wi,ws, ws

such that Csws(2s4) < 1/2. Then, there exists constants 6’1,5'2,53 such that, for all s* €
{1,...,54+} and B* € For, the aggregated estimator (B,E,E) satisfies

pen (vp’ € D(N), |8 — B*]1 < Cro*wi(s%), |B — B2 < Cac™wa(s¥), |5 — 0| < éga*wg(s*))

B*,Px. ¢
ZiaM+1

9g*\ 265" oM+1
> 1 —21(logy(sy) +1)2 E5< 7 > + up, —2156< g > — 21uy,

and

5521W+1

. B . o~ (25 2¢5s™ _ /9oM+1
Pg- (VD' € D(N),5 < s*) > 1 —6(logy(s4) + 1) ¢ ¥ +u, | —6¢s 7 — Gy,

We adapt the proof given in [35, Section 7.3.1] to this new setting where the adaptation
is done on both estimators simultaneously. Proof of Theorem [3.C.2]is given in Section[3.C.3

3.C.2 Proof of Theorem

To prove Theorem we will apply Theorem We first check that its assumption
are satisfied. We choose the functions w1 (s) = s+/(1/n)log(ed/s), wa(s) = w3(s) = wi(s) =
s1/2,/(1/n)log(ed/s). By Lemma 4.4 in [35], wy, we and ws satisfy the three conditions in
Definition B.C.1l

It remains to check that the following bounds in probability and hold
for all s* =1,...,s,. Applying Theorem gives

* T ook

~ $*\ C5s
inf pen sup {t_l (D) —o*| v sup ¢, tB3(D) - B* } <oy | >1- 4(—) ,
B*EFgx,0%*>0 B 7PX,§ (D/G'D(Egto) 2 ‘ ‘ pE[l,Q] p ‘ ‘p ed

proving that the bound (3.C.1)) is satisfied.

Furthermore, we have

o = [ e (£2)] = [ (o () + )] =2
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- /1 ed - /1 ed log(2) _ ..,
H2sx = Cp EIOg (28*) = Cu\/n log <8*) T = (25" s,

with some 7(2s*),75(2s*) € [1/2,2]?. This gives BKQS*M(QS*)’MWW(QS*) = BKS*,MS* and,
applying Theorem with 2s* instead of s*, yields

2s* ed
. Xn / ~ -~ / * ~
ﬁ*efglf, i Pﬁ*,Px,g (VD € D(csrp), {‘O’(D ) —o*| < Ca0 4y | - log (23*)

~ 1
and vp € [172]1 |B(D,) _16*‘1 < E4U+(28*)1/p Elog ( ed >> >1- 4(

proving that the bound (3.C.2)) is satisfied with ¢, multiplied by 4.

3.C.3 Proof of Theorem [3.C.2|

We choose s € [1,s4] and assume that 8* € F;. Define P := Pg« ,« and mq := |log,(s)|+1.
For p =1, 2, define éég)) = E(S), o) .= B, 9P+ .= B* and d, be the distance on R induced
by the norm | - |,. Define éx(i’)) = 0(s) 6B := 5, 3= .= o* and d3 be the distance on R
induced by the absolute value.

Bound on ¢ with high probability. Combining the definition & = 79, with the
assumptions that C3ws(2s4) < 1/2 and that () robustly converges to o™ in |- [-norm with
bound Cso*ws(s), we get

‘5521\/14—1

/ * ~ * _ 2M+1 o
P (VD' € D(N),0*/2 <5 < (3/2)0") > 170 y Up. (3.C.3)

Bound on the probability P(3D’ € D(N), m > mg + 1). We have

M
P(3D' € D(N), m >mo+1)< Y P@ED € D(N),/m=mg+1)

m=mo-+1

M M
< >N ]P><3D’ € D(N), |Bryr-1y — Bamlr > 4C15w; (2°)
m=mo+1 k=m
or ‘,/B\(Qkfl) - ,/B\(Qk)‘Q > 4028w2(2k) or ‘E(Qkfl) - 8(2k)| > 4033w3(2k)>
M M
< Y ¥ 1@(3@' e D(N),3p € [3], dp(e?g,l,l), §§§,1)) > 4cpawp(2k)>
<S>y ¥ IP’<EID’ € D(N), d, (é((gi,l),éggz)) > 4cp3wp(2’f)>

3 M M
<> > > IP’(HD’ € D(N), dy (051, 0P > 4Cpawp(2k)>

+P(3D' € D(N),dy(6%),,09*) > 4cpawp(2k)>
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3 M M
<2 > > P<377' € D(N), dy (05 1), 0P > 4Cpawp(2’f))
p=1 m=mo+1 k=m—1

)

Combining the previous equation with Equation (3 , and then with the assumption on

the bound on the estimator égi,l) for the distance dp, we get

N[ Q

3 M M
<2 Z Z Z P<E|D/ € D(N)7 dp(é\gl)c—l)a 9(}7),*) > 4Cp8wp(2k)’ o >
=m—1

+6IP<3D’ e D(N), 5 < ;)

3 M M
23> > 3 B(30 D051, 007) > 20,02 )

oM+1y &2M
— 6¢g < > — 6uy,

oM+1

2 2¢6s 2M+1 Cs
< 6(logy(sy) +1)%c <p> + up, | — 666 ( y ) — 6up,. (3.C4)

This gives the bound on s as claimed.

Bound on the deviation probability of 6, For any a > 0, we have

P(3D' € D(N), d,(8P,0%)*) > a) <P(ID' € D(N),d, (0P, 60P*) > a,m < my)
+P(3D € D(N),m > mg + 1). (3.C.5)

On the event {m < mg}, we have the decomposition

d, (67 <3 4 (001,88 ) + dy (B30, 89, (3.C.6)
k=m-+1

Using the assumption on the function w,, we get that

Z dp <’11202 1),/@)) Z 46Chw(2

k=m+1 k=m+1
< 46C,C'w, (2™M0) < 46C,C'C"wy (). (3.C.7)

We have 20 < 2s, therefore applying Assumption (3.C.2|) we have, with Pg« ,«-probability
at least 1 — &5 (2s/p)*®° — uy,, for all D’ € D(N),

dp (é\(p)

(oo 07)%) < Cpow(2s) < CpC"Gw(s). (3.C.8)

Combining Equations (3.C.6)), (3.C.7), (3.C.8) and (3.C.3), we get with Pg--probability at
least 1 — &5(2s/p) 265 — &5(2M+1 /p)@2" ™ _ 2y for all D’ € D(N),

dp (8P, 0P)*) < (4C,C"C" + (3/2)CpC") ow(s). (3.C.9)
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Combining Equation (3.C.4)) with Equations (3.C.5|) and (3.C.9)), we finally get that

P (ap’ € D(N), dp(6P,0%)*) > (4C,C'C" + (3/2)C,C") Uwp(s))

9\ 2655 oM+1 cs2M+1
< 7(logy(s1) +1)% [ G <p) +un | — 76 ( g > — Tup,.

By a union bound, we then obtain

Pge,o- (VD' € D(N),¥p = 1,2,3, d, (67, 60)%) > (4C'C" + (3/2)C") Cypowy ()

’0"52]\/I+1

25 25 oM +1
> 1 —21(logy(sy) + 1) & <d) +u, | —21¢ < g > — 2luy,,

as claimed.

Appendix 3.D Auxiliary results

In this section we give auxiliary results that are used in the proofs of the main results.

Lemma 3.D.1 (Lemma 6 in suppl. mat. of [55]). Let p > 0 and denote I't-(p) =
User: 17— 1<p/20 (9] - H)f For all g € F, we have

* p * *
IF7 I =llgll < 75— sup 2"(g = f7).
z*€T ¢+ (p)

We recall here the definition of quantiles we used in Section |3.2.4] For any K € N, set
[K] = {1,...,K}. For all a € (0,1) the a-quantile of a vector x = (21,...,7x) € RE is

any element Q,[x] of the set
Qu[x] := {u ER: [{ke[K]: o >u}| > (1—a)K, |{ke[K]:a <u}|> aK}.

For all t € R, we write Qq[x] > t when there exists J C [K] such that |J| > (1 — a)K and,
for all j € J, z; > t. We write Qq[x] < t if there exists J C [K] such that |J| > oK and,
forall j € J, z; <t.

Lemma 3.D.2. We have the following properties.

1. Monotonicity
For all a € (0,1), B € (0,a] and x € RE, Qg[x] < Qa[x].

2. Opposite
For all a € (0,1) and x € R Qu[x] > —Q1-a]—X].

3. Linearity
For all a € (0,1), x € RE and a,b € R, Qqalax + b] = |a|Qq[sgn(a)x] + b.

4. Difference
For all a, B € (0,1) and x,y € R¥, Qa[x — y] < Qa+sx] — Qply]-
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5. Triangular
For all a, B € (0,1) and x,y € R¥, Qa[x +y] < Qayslx] + Q1ply]-

Proof of Lemma[3.D.2. We prove property [I} Write x = (2;);¢c[x). The property Qg[x] <
Q«[x] is true by construction, because Q,[x] < u implies that there are at least K > SK
components such that z; < u.

We prove property Write x = (z;) je|x] and Qa[x] = u, then there are at least (1—a) K
components such that z; > u and at least oK' components such that z; < u. We now show
that u > —Q1_4[—x]. This is equivalent to Q1_o[—%] > —u, which requires at least aK
components such that —z; > —u, that is, x; < u. The latter is true by construction.

We prove property Write x = () jc[k]- The property Qq[ax+b] = Qqa[ax]+b follows
from the definition, that is, if Q4[ax] = u then there are at least (1 — a) K components
such that ar; > w and at least o/ components such that ax; < wu. Thus, the same
components also satisfy ax; +b > u+b or axj+b < u+b. It remains to show that Q. [ax] =
|a|Qq[sgn(a)x]. Let Qqlax] = u. We show that we have at least (1 — a)K components
sgn(a)r; > u/|a| and at least K components sgn(a)z; < u/|a|. The latter conditions
are equivalent to |a|sgn(a)z; > u and |a|sgn(a)z; < u. This is enough to conclude since
a = sgn(a)|al and Qnlax] = u.

We prove property 4, Write x = (7;)je(x), ¥ = (¥i)icx] and Qa1s[x] = u, Qply] = L.
By construction:

e there are at least (1 —a — §)K components z; > u;

e there are at least (a4 )K components z; < u;

e there are at least (1 — ) K components y; > [;

e there are at least SK components y; < [.

With (x—y) = (21— Yk) re[k], We Want to show that Qu[x—y] < u—I, which means there are
aK components xi —yr < u—I. We now count how many times this inequality fails. In order
for a component to be xp —yr > u—1, it is necessary that either zp > w, which can happen
at most (1 —a — B)K times, or y, < [, which can happen at most SK times. Therefore, the
inequality g —yx > u—1 is satisfied by at most (1—a—f)K+ K = (1—«a)K components,
leaving at least a/X components where z; — yr < u — [. This is enough to conclude.

Property [ is a consequence of property [4 and property O

In the following, we use the notation [K] = {1,..., K} and [K]|; := {k € [K] : B, C Z}.
We denote by Kr the cardinality of [K];.

Lemma 3.D.3. Let Z = Z(X,Y) be a real-valued random variable. Let n € (0,1) and
Y50k s > 0 such that y(1 — KVar(Z)/(nd%,,) — «) > max{n,1 —n}. Let K € [|O]/(1 -
7),n]. There exists an event Q = Q(Z,K) with P(Q) > 1 — exp(—K~x2/2) such that, on
this event

[{k € [K] : |Pp,(Z) — E[Z]| < 6k n}| > max{n,1 - n}K,

thus the quantiles Qy[Z], Q1—y[Z] belong to the interval [E[Z] — 6k pn, E[Z] + 0k n)-
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Proof of Lemma[3.D.3 We have
{k € [K] : [P, (2) —E[Z]| < 0kn}| > D 1{|Ps(2) —E[Z]| < bkn}

ke[K]r
= Kr— Y Px{[P5,(2) - EIZ]| 2 0k}
ke[K]r
= Y (UIPs.(2) ~ E(2] = dxn} — Px{IP5,(2) ~ E[Z]] = 0} ).
kelK];

We bound the second term using Chebychev’s inequality
Var|Pg, (2) - E[Z]

Var|Z) K
== I

KVar|Z]
|Bk‘5%(,n '

> Px{[Ps,(2) - ElZ)| > bxc} < K Vo
Kn

52 = K
kG[K}[ K,n

We bound the last term using Hoeffding’s inequality
> (1IPs.(2) — E[2)l 2 0k} — Px{IP5,(2) — EIZ] 2 0k} ) < 0K,
kelK];

on an event ((Z, K) of probability greater than 1 —exp(—22K7/2). Combining the previous
inequalities, we get that on Q(Z, K),

KVar|Z KVar|Z
(k€ [K)1 < IPs,(2) ~ BLZ)| < 6ol > Ky (1 - 2VarlZl ) s ey (4 - BVerlZ] )
ndK’n n5K,n
and the last term is bigger than max{n,1 — n}K by assumption. By definition, this also
means that the quantiles @, [Z], Q1—,[Z] belong to the interval [E[Z] -6k pn, E[Z]+0K n]. O

Lemma 3.D.4. Let K € [16|0|,n]. On an event Q(K) with probability P(Q(K)) > 1 —
exp(—K/4320), the quantiles Q1 g 1 [C?], Q7/s,k[¢?] belong to the interval [0** — 6, 0™ +
Ok n), with Ok defined in (3.A.1)).

Proof of Lemma[3.D.7} We use Lemma with n = 1/8, Z = ¢2, Var(Z) = E[¢Y] -
E[¢?)? = o™ (k* — 1) n=1/8 ~v=15/16, x = 1/45, and 3. ,, > 25(K/n) Var(Z). Then,

KVar(Z)\ _ 15 L 1\_15_ 7 1
el B e L e I - )
né%,, 16 5 25) 16 120 8
The probability of the corresponding event is P(Q(K)) > 1 — exp(—K~vyx?/2) = 1 —
exp(—K/4320). 0

Lemma 3.D.5 (Lemma 3 in suppl. mat. of [55]). Grant Assumption[3.3.1 Fizn € (0,1)
and p € (0,+00]. Let a,7y,vp,x be positive real numbers such that v(1 — a —x — 16ypby) >
1 —n. Assume that K is an integer in [|O]/(1 — ~),na/463]. Then, there exists an event
Qo (K) with probability P(Qo(K)) > 1 —4exp(—Kvxz?/2) and, on this event: for all f € F
with || f = f* < p, if |f = f*ll2,x = 7p(p,7p) then

[{k € [K] : P, (f — *)? = (400)~

In particular, Qy, k[(f — )2 > (460)~

—-n)K
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Lemma 3.D.6 (Lemma 4 in suppl. mat. of [55]). Grant Assumption[3.3.1 Fizn € (0,1)
and p € (0,+00]. Let o, 7y, v, x be positive real numbers such that y(1 —a —x — 8ypr/e) >
1 —1n. Assume that K is an integer in [|O|/(1 —v),n]. Then, there exists an event Qpr(K)
with probability P(Qy(K)) > 1 — exp(—K~y2%/2) and, on this event: for all f € F with
1f=rl <e

[{k € [K]: |(Pp, —E)(2C(f — [ < ady}| = (1 —n)K,

\%,x) .

Lemma 3.D.7. Let K € [32|0|, n/(37263)] . There exists an event Q(K) of probability
bigger than 1 — 2 exp(—K/8928) such that, for all p € {pK,2pK}, and all f € F such that
If = £l < p, we have

Loaf If = fFllax > re(p,vp)s then Qupex ((F — £5)%) > (460) 2|1 f — F*II5 %
2. Qusjie x| — 20(f — )] SE[-2¢(f — £)(X)] + a3,

3. Qe [—2¢(f = )] = E[-2¢(f — f)(X)] — a3y,

4 Quspie i [2¢(f — 9)] < @i,

with

with

1602 K
2 . m 2 _fx
ayg e 5max< 2, w TM(p77M>7 Hf f

148862, K . *
oy i emax (PR g 1~ FlBx) =

Furthermore, for r(-) as in Theorem and || f — f*llax < 7(p), we find a3, < 4er?(p).

Proof of Lemma[3.D.7. The first property follows from applying Lemma with n =
1/16, p € {pr,2px}, o = © = 1/93, v = 31/32, yp = 1/(14886p) and checking that
Y1 —a—x —16ypby) > 1 — n. With our choices, we find

31<1_1_1_16) :31<1_1> _30_ B

32 93 93 1488 32 31 32 16

The corresponding event Q0 has probability at least 1—exp(—K~yz?/2) = 1—exp(—K/8928).
The second and third properties follow from applying Lemma with n = 1/16,

p € pr,2pK, « = x = 1/93, v = 31/32, ypy = ¢/744 and checking that y(1 — o — x —

8y /€) > 1 —n. With our choices, we find

st b 1 8 8L 1y _30_15
32 93 93 T44) 32 31) 32 16
The corresponding event ()5 has probability at least 1—exp(—K~x?/2) = 1—exp(—K/8928).

The fourth property holds on the same event () given above, and is a consequence of

the nearest point theorem and the convexity of the function class F, which guarantee that

ER¢(f = f)X)] <0.
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Given all the above, the probability of the event Q(K) = Q1 N Qs is at least 1 —P(Q) —
P() = 1 — 2exp(—K/8928).
We finally bound, with 72(pg) = 384602 K/(ne?),

2 2 2

a2, o, 148862, K 1 1488
< = J— =

22px) ~ 2lox) ( e2 nri(pg)’ " 384

O

Lemma 3.D.8. Let K € [32|0|,n/(37203)]. There exists an event Qq(K) of probability
bigger than 1 — exp(—K/8928) such that, for all p € {pK,2pK}, and all f € F such that
If = Il < p, we have

Qusjiox [(f = )] <If = FFlx + o
with

148804
a% = £max <Hf fr ||2X ot é(ﬁ Q) |

Proof of Lemma[3.D.8 Take n = 1/16, v = 31/32, « = & = 1/93 and g = £/372. We
follow the steps of the proof of Lemma 4 in the supplementary material of [55]. For all f € F
and p > 0, set B(f,p) ={g € F:|lg— f|| < p}. For all k € [K], set Dy, = (X;,Y)ien, and

05(Dy) = (P, — B)[(f — £*)?),
4
aé<f>:=emax<uf FlBx L K o001 - f||2x>

TL

Let [K]; = {k € [K] : By C I} and consider any k € [K];. An application of Markov

inequality gives

E|lgs (Do)I?]
ag(f) - ad(f)
The denominator of the last term in the previous display can be bounded below using

both a3 (f) > ellf — f*l5x and a3 (f) > |If — f*I3x401K/(ean). Since ||f — f*[lax <
61|/ f — f*|l2,x by Assumption this gives

4E[ (s, —Px)(f — 1)?)’]

If = F I3 25K = )12

< ZieBk Var ((f*f ) (X z))

T BRLE - g

- B = f)X)
IBolZE | 7 — 14«
allf - fl4x

S0 — iy
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< o

Take J = Uye(k), Br. and write 7q(p) = 7q(p,7q)- Take B(f*, p,7q(p)) the set of functions
f e B(f*, p) such that ||f — f*|la.x < rg(p). With the argument in the proof of Lemma 4

in the supplementary material of [55], one finds

E[ sup Y §kgf(Dk)]

reB( ) i, el

<

E Pp, —E)(f — f*)? ]
erg () LeB(fil,lpI,)rQ(p>>‘k€%;h€k( o B f)‘

and, with the definition of r¢(-) and the symmetrization argument in the same reference,

gf(Dk)] 1K n

dvq
< AollK = = LK.
< Enml[ 1l - 1K

E[ sup Y & 7

2
In the same proof, the authors define a suitable function ¢ such that, on an event Q(K)
with probability at least 1 — exp(—K~yz?/2) = 1 — exp(—K/8928),

S 1(lg5(D)| < ad(f))

kelK];

> (1— a)|[K]/] - 2E{f€]§?ﬁ’p)k%] o (2] +

>(1—- Kl —2E DIATRI
-l 25| s 32 60

ZHK]I\(l—a_x_‘WEQ?)

4
27K<1—a—m—m>.
€

We now check that the latter is bigger than (1 — n)K. With our choices, this gives

311 1 1 4 _311 1\ 30 15
32 93 93 372) 32 31/ 32 16’

which is what we want. As a consequence, Q1516 x [(f — f*)?] < [|f — f*”%,x + ozgg(f). O

In the next result we use the event Q(K) := Qi (K) N QoK) N Q3(K) with
041 (K), Q2(K) and Q3(K) respectively defined as the events in Lemma[3.D.4] Lemma[3.D.7]
and Lemma [3.D.8] The event Q(K) has probability at least 1 — 4 exp(—K/8920). We also
denote by r(-) any function satisfying r(p) > max{rp(p,vp), s (p,yar)}. For any integer
K and ¢, € {1,2}, we will use the notation ar ., := ca7(c,p) and 5%@” = 25m* K /n.

Lemma 3.D.9. Let C? = 3849%030(21&1/2 and

n n n€2

K€ 32|10, o5 A =m— A —
€3 |O|’37219(2;A25/~;+A C2
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On the event Q(K) defined above, for all f € F such that || f — f*|| < copr, |f — fFllax <

r(copk) and |0 —o*| < UK,

20" + 0K c,

2
9% pp + Qg

20 c
B[-20(f = f)(X)] £ T (0%, fro) +

8(20* + ake,)
0%+

(8]
Koo (207 r(eopic) + ¥ (eppic) +ay + )

co*(20* — ak.c,)? c(20* — ag,

where oz%\/[, aé are given in Lemma and Lemma .

Proof of Lemma[3.D.9. We start by applying Lemma which gives
E[-2¢(f = [)(X)] < Quuar[=2¢(f = f)] + afr < Quuakl(f = ) = 2¢(f = )] + oy,

the second inequality follows from the fact that (f — f*)? is positive. Using the definition
of T ,,(f*, 0%, f,0) in (3.2.9) and the quantile properties in Lemma we can rewrite

E[-2¢(f — f*)(X)]
< Quurl(f— ) =20(f — )] + ok

e pste]

. ;C"*Ql/u( [Rc(gf*,a*,ef, o) - (0 — o) <1 - 2%)] +al,

<Z —;ca* (Ql/z,K [Rc(gf*aa*7€f’ U)} — Q1/4K [(U —0") <1 - Q(ifj__(ff;g)}) +aiy

< T3 T (Quan[Rlty o tr. )] + A1 = 17D) + T4 T o+ o

= %;‘*TK,M(]C*? o, fro)+ 2 ;FCU* (up — Q4K [(0 —0") (1 - 2%)]) +ajr.
Since o + o* < 20* + QK c,, it Temains to show that
g ‘;CU* Qu/ix [(a — o) <1 - 2%)] (3.D.1)

- Cf*((22o;k*+0(;[;?cpj)2 %(,TL * C(2O'*OZK7ZK,C‘0) (2U*T(cppK) * TZ(CPPK) * a2Q * a%w) .

First, by the quantile properties in Lemma we have

T T Quae| (o - o) (1= 2 ) | < LT Qo - 00 (2 1) |

2c o+ o*)? o+ 0%)?
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By expanding ¢y = £« + £y — £+, we get

o+0* oy (o s T b
5 @8/4.K {(U —0o )<2(U+U*)2 1”
_o+o0" x Al w2 = L)
= 0. @k (00)((0+0*)21>+(0‘7)M
o+o* . 40 Qs [(0 — ")y — Ly+)]
< - 1 :
>~ 2 Q?/S,K [(J g )((O' + O.*)2 > + C(O' + O—*)
2c

(3.D.2)

Since the term (o — ¢*) has different signs for 0 < ¢* and ¢ > ¢*, we need to account for

this in the bounds. We focus first on

40
1= oo (5 1)
Smax{ sup (o'_o-*)<4Q7/8’K[€f*]_1>’ sup (O_*_O_)<1_4Q7/8,K[£f*])}‘
o&( ] o€ )

o*,a*—&-aK,cp (U + U*)Q o*—aK,cp,a* (U + O-*)Q

Thanks to Lemma the quantile Q7/g k[ly<] = Q7/87K[C2] is in the interval [0*? —
OK n,s o2 + 0K n), therefore

f<max{ sy (a_a*)<4<"*z+w_1>, sup <a*_a>(1_4<"*z“w>}.

UE(O’*,O’*-&-O&K’cp] (J + U*)2 JE[O*—aKCp,J*) (U + U*)Z

(3.D.3)

We denote a%r =024+ K,n and a? =02 —-§ K.n- The first function in the latter display is
positive (or zero) for o € [0*,2a, —0*]. Let 0,, be the point achieving the maximum, then
04, belongs to the same interval and |o,, — 0*| < 2a; — 20* = 20*(\/1+ 0k n/0*2 — 1).
By construction, the quantity dx ./ o*? is smaller than one, since

Okn _ 20K 255K _ 25K0 K _

= 1
o*4 o*in n ~ n

and K <n/(25k4). For all x € (0, 1), the inequality /1 + 2 < 1+ z holds, so that

J d 20
’Ua+—0*’§20*< 1+ K’n—1>§20*<1+ K’“—l):[jn.

0.*2 0.*2 o

Now we repeat the same argument for the second function in (3.D.3), using /1 —2 > 1—=z
for all z € (0,1), thus getting a point o,_ achieving the maximum such that |o,_ — o*| <
20K n/0*. By Lemma we have 20k /0" < ak,., < o*. With §, = 20k /0, this
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yields

Q7/8,K [(U —0o") ((alff);*y — 1)]

< max{(a* oa_)<1 - m%i,y) (0a, U*)<m:m+icr*)2 1>}

- 20k 40*% — 46, 40™% + 40k, )
a. — _
- o* (20% —64)2 7 (20 + §,)?

20k {40*5a 02+ 40y Abg, — A0S, — 52 }
= max

(3.D.4)

o* (20% —64)%2 7 (20* + 64)?
_ 1667,
= 0% (20% — §4)?
. 160%,,

o*(20* — aKCp)Q '

It remains to bound 73 in (3.D.2)) in order to obtain (3.D.1)). We only consider the

case when o € [0%,0" + ak,], the case 0 € [0" — ak,,,0"] follows the same steps. With

Cpe — L = 2¢(f — f*) — (f — £*)? and using Lemma and Lemma in the last

inequality, we get

7y = =T Qups [(F = = 2006 = 1)
< o ey @uspion [ = 7] + Quypoe (264 = 1)
CVK,C,)

= @ —ang) (If = F*13x + 0B + E[=2¢(f — [*)(X)] + a3y) -

By the Cauchy-Schwarz inequality, E[-2¢(f — f*)(X)] < 20*||f — f*|l2.x < 20*71(cppK).

We now put together all the bounds found so far and conclude

20% + 0K c,
2c

20" + QK c,

o hp Ok

E[-2¢(f = fH)(X)] <
8(20" + ak.c,)
co*(20* — ak.,)

TK,M(f*7U*7 f7 U) +

QK c
52 Cp 25* 2 2 2
2k ¥ o = agy) 7 o) T Cupa) o F o),

which gives the claim. O
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Summary

This thesis investigates Bayesian and frequentist procedures for challenging high-
dimensional estimation problems.

In a Gaussian sequence model, we study the Bayesian approach to estimate the common
variance of the observations. A fraction of the means is known to be zero, whereas the non-
zero means are treated as nuisance parameters. This model is non-standard in the sense
that it induces inconsistent maximum likelihood. We show a general inconsistency result:
the posterior distribution does not contract around the true variance as long as the nuisance
parameters are drawn from an i.i.d. proper distribution. We also show that consistency is
retained by a hierarchical Gaussian mixture prior. For the latter, we recover the asymptotic
shape of the posterior in the Bernstein-von Mises sense and show it is non-Gaussian in the
case of small means.

In the nonparametric regression model, we study the Bayesian approach to the estima-
tion of a regression function that is characterized by some underlying composition structure,
parametrized by a graph and a smoothness index. This model is inspired by deep learning
methods, which work well when complex objects have to be built from simpler features.
In previous work, a frequentist estimator based on deep neural networks has been shown
to be adaptive with respect to the underlying structure and achieve minimax estimation
rates. We characterize the contraction rates of the posterior distribution arising from priors
induced by the composition of Gaussian processes. With a suitable model selection prior,
we show that the posterior achieves the minimax rates of estimation.

In the nonparametric least-squares regression model, we study a frequentist approach
to estimate the regression function and the standard deviation of the residuals. The dataset
consists of i.i.d. observations contaminated by a small number of outliers, and heavy-tailed
residuals. For the case of known standard deviation, robust median-of-means procedures
are available, and we extend them to the case of unknown standard deviation. In the
sparse linear regression case, the median-of-means estimator yields a robust version of the
Lasso, whereas our method yields a robust version of the square-root Lasso thanks to a
scale-invariance argument. We also provide an aggregated estimator achieving minimax

convergence rates while being adaptive to the unknown sparsity level.
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Samenvatting

Deze thesis onderzoekt Bayesiaanse en frequentistische procedures voor uitdagende hoog-
dimensionale schattingsproblemen.

We bestuderen de Bayesiaanse benadering om de gemeenschappelijke variantie van
waarnemingen in een Gaussiaans sequentiemodel te schatten. Een deel van de gemiddelden
is bekend en gelijk aan nul. De gemiddelden die niet gelijk zijn aan nul worden behandeld als
hinderlijke parameters. Dit model is niet-standaard aangezien het inconsistente maximale
waarschijnlijkheid veroorzaakt. We tonen een algemeen inconsistentieresultaat aan: de pos-
terieure verdeling vertoont geen contractie rond de werkelijke variantie zolang de hinderlijke
parameters worden gehaald uit een identieke en onderling onafhankelijke ‘proper’ verdeling.
We tonen ook aan dat de consistentie wordt behouden door een hiérarchisch Gaussiaans
mengsel prior. Voor dit laatste vinden we de asymptotische vorm van de posterior in de zin
van Bernstein-Van Mises en we tonen aan dat dit niet-Gaussiaans is in het geval van kleine
gemiddelden.

In het niet-parametrische regressiemodel bestuderen we de Bayesiaanse benadering van
de schatting van een regressiefunctie die wordt gekenmerkt door een onderliggende com-
positiestructuur, geparametriseerd door een grafiek en een gladheidsindex. Dit model is
geinspireerd op deep learning-methoden, die goed werken wanneer complexe objecten wor-
den gebouwd met eenvoudigere functies. In eerder onderzoek is aangetoond dat een fre-
quentistische schatter op basis van neurale netwerken zich aanpast aan de onderliggende
structuur en dat deze schatter de minimax-schattingssnelheden bereikt. We karakteriseren
de contractiesnelheden van de posterior-verdeling die voortkomt uit de priors geinduceerd
door de samenstelling van Gauss-processen. Met een geschikte prior modelselectie tonen we
aan dat de posterior de minimax schattingssnelheid bereikt.

In het niet-parametrische kleinste-kwadratenregressiemodel bestuderen we een frequen-
tistische benadering van de schatting van de regressiefunctie en de standaarddeviatie van
de residuen. De dataset bestaat uit onafhankelijke en identiek verdeelde waarnemingen die
worden vervuild met een paar uitschieters en residuen met een zware staart. In het geval
van een bekende standaarddeviatie zijn robuuste median-of-means procedures beschikbaar,
en wij breiden deze uit naar het geval van een onbekende standaarddeviatie. In het geval
van schaarse lineaire regressie levert de median-of-means-schatter een robuuste versie van
de Lasso, terwijl onze methode een robuuste versie van de wortel Lasso oplevert dankzij
een schaalinvariantie-argument. We geven ook een samengevoegde schatter die minimax-

convergentiesnelheden bereikt en zich ook aanpast aan het onbekende schaarsteniveau.

157



Samenvatting

158



Curriculum Vitae

Gianluca Finocchio is an Italian mathematician born in Tychy (Poland) on December 1st,
1991. He completed secondary school in summer 2010 at Istituto Superiore “S. Spaventa”,
Atessa. In the autumn of the same year, he began his studies in Mathematics at the Uni-
versity of Pisa. There, he graduated with a bachelor’s degree in Mathematics in 2014 and
a master’s degree in Mathematics (cum laude) in 2017. His master thesis focused on the
mean field theory of systems of interacting particles and was written under the supervision
of Prof. Franco Flandoli and Dr. Dario Trevisan.

In spring 2017 he started his PhD career at Leiden University, working on high-
dimensional Bayesian statistics under the supervision of Prof. Johannes Schmidt-Hieber. In
spring 2019 he moved to the University of Twente and continued his research by studying
the Bayesian counterpart of deep neural networks. Under the additional supervision of Dr.
Katharina Proksch and Dr. Alexis Derumigny, he worked on robust estimation via median-
of-means. His four-years research project was financed by the Dutch Research Council
(NWO).

159



Curriculum Vite

160



	Introduction
	Bayesian variance estimation in the Gaussian sequence model with partial information on the means
	Introduction
	Likelihood and posterior
	On the derivative of the log-posterior
	Posterior inconsistency for product priors
	Gaussian mixture priors
	Proofs

	Posterior contraction for deep Gaussian process priors
	Introduction
	Composition structure on the regression function
	Deep Gaussian process prior
	Main results
	On nearly optimal contraction rates
	Examples of DGP priors
	DGP priors, wide neural networks and regularization
	Proofs

	Robust-to-outliers square-root Lasso, simultaneous inference with a MOM approach
	Introduction
	Notation and framework
	Results for a general class F
	The high-dimensional sparse linear regression
	From the choice of the functional Rc to empirical process bounds
	Proof of Theorem 3.3.3
	Proofs for the high-dimensional sparse linear regression
	Proofs for adaptivity to the sparsity level
	Auxiliary results

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitæ

