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Introduction

Statistical estimation problems require to reconstruct an unknown parameter of interest

given data. The general setting can be expressed in terms of a parameter space Θ and

a dataset Dn of n ≥ 1 random variables whose distributions are parametrized by the

model Dn|θ ∼ P(n)
θ , (P(n)

θ : θ ∈ Θ). This incorporates the idea that the information on the

parameter can be (partially) inferred from the law of the observations.

This thesis consists of three chapters that investigate the theoretical properties of dif-

ferent approaches for benchmark estimation problems. They study many desirable features

of estimation procedures, providing both positive and negative results. We introduce below

the relevant terminology, starting from the different interpretations of randomness itself.

The frequentist approach assumes there exists some objective random process generating

the observations, and that the experiment can be repeated (in principle) multiple times.

That is, the dataset is distributed according to P(n)
θ0

for some ‘true’ parameter of interest

θ0 ∈ Θ. The parameter of interest θ0 is viewed as some deterministic entity that can be

inferred by a suitable estimator, which is a function of the random dataset. Maximum

likelihood is a famous example, but frequentist methods are not restricted to be based on

the likelihood.

The Bayesian interpretation assigns a prior probability distribution π to the whole

parameter space Θ, in order to model a priori information. The prior distribution might be

intended as an objective or a subjective belief, but the purpose is the same. Even though

the observations might be the result of a random process, they are treated as given known

quantities, and they are employed into the computation of the posterior distribution through

Bayes’ theorem. The posterior is the conditional distribution of the parameter θ, given the

dataset Dn and the prior π, and is the sole tool that a Bayesian has (and needs) to make

statements about estimation and uncertainty.

In this thesis, Bayesian methods are evaluated under the frequentist paradigm. This

means that it is always assumed that the observations follow some unknown (but fixed)

distribution P(n)
θ0

for some θ0 ∈ Θ. The hope is that the posterior distribution contracts,

that is, assigns most of its mass, to a small neighbourhood of θ0, with high probability

or in expectation (with respect to P(n)
θ0

). In all these cases, the posterior density will be

proportional to the product between the likelihood of the sample and the prior, and this

makes posterior contraction a likelihood-based method.

A statistical model (P(n)
θ : θ ∈ Θ) can be classified depending on the size of the parameter
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Introduction

space Θ, in the following sense. The model is parametric if Θ is embedded in some Euclidean

space Rd. The model is semiparametric if the indexing parameter is actually a pair (θ, η)

of a Euclidean parameter θ and an infinite-dimensional nuisance parameter η. For our

purposes, this means that the latter belongs to either an infinite-dimensional vector space,

some subset of real-valued functions or some subset of probability measures on the real line.

The model is nonparametric if Θ itself is infinite-dimensional. The main difference between

semiparametric and nonparametric models is that, in the former, the parameter of interest

θ0 ∈ Θ is always finite-dimensional. Lastly, we say that the model is high-dimensional if

the number of parameters grows with the number of observations.

Among the many desirable properties that a good estimation method might satisfy,

the bare minimum is consistency. This is an asymptotic property, thus only depends on

the limiting behavior as the sample size n tends to infinity. A frequentist estimator θ̂n is

consistent if it converges, in a suitable sense, to the parameter of interest θ0. Similarly,

a Bayesian posterior distribution is consistent if it converges to the point mass at θ0.

Consistency can be quantified by convergence rates, which measure the speed of convergence

to θ0. They are usually given as decreasing sequences rn depending of the sample size n,

and possibly some other model-related parameters.

Fast rates make a procedure more appealing from a practical point of view, more so if it

can be easily implemented. Even when this is not the case, the effort of recovering optimal

convergence rates usually provides insights into the specific problem at hand. For example,

it is known that the minimax rate of estimation (in supremum norm) in the nonparametric

regression problem depends on the smoothness of the regression function. Another example

is the sparse linear regression problem, where the minimax rates (in L1 or L2 norm) depend

on the sparsity level, that is, the number of non-zero components of the regression vector.

In situations where the optimal rates depend on an underlying hyperparameter, it might

be difficult to obtain fast rates when no prior information is available. To overcome this

issue, the concept of adaptivity has been introduced. An estimator is adaptive if it can

achieve optimal contraction rates without requiring knowledge of the hyperparameter. A

well-established technique in the Bayes literature to deal with adaptivity involves hierar-

chical priors: one puts first a hyperprior on the hyperparameters and then, given a fixed

hyperparameter, a prior on the corresponding parameter space. If optimal rates can be

achieved when the true hyperparameter is known, and the prior is carefully selected, then

the posterior will be adaptive. On the frequentist side, there is no general approach and

each problem has to be tackled on its own. In the sparse linear regression setting, one can

employ for instance a Lepski-type procedure as in [9], and show that the Lasso estimator

in [79] achieves adaptivity with respect to the sparsity level.

A more refined property for an estimator θ̂n with rates rn is the asymptotic shape

of the rescaled r−1
n (θ̂n − θ0). In parametric models, the frequentist statistician aims to

find asymptotically efficient estimators, for which the sequence
√
n(θ̂n − θ0) converges in

distribution to the normal N (0, I−1
θ0

) where Iθ0 denotes the Fisher information matrix at

θ0. This is true for the maximum likelihood estimator (MLE) if the model is regular. The

2
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Bayesian statistician aims to invoke the parametric Bernstein-von Mises (BvM) theorem,

see Theorem 10.1 in [81], which states that, under weak conditions on the model and the

prior θ0 ∼ π, the posterior distribution of
√
n(θ̂n − θ0) also converges to N (0, I−1

θ0
). A

remarkable feature of this result is that the contribution of the prior washes out in the

limit. The major implication is that the posterior distribution is a valid inference tool from

a frequentist perspective.

The situation is dramatically different for high-dimensional models, where the prior

choice becomes crucial in determining the asymptotic properties of the posterior. Semi-

parametric BvM theorems have been obtained in [12, 19, 23, 70]. It has been observed that

there can be a large bias in the posterior limit, for example in [18, 23, 75], and it is unclear

whether the bias is due to the specific choice of prior or whether this is a fundamental limi-

tation of the Bayesian method. The nonparametric BvM phenomenon has been studied for

Gaussian regression models in [21, 22], whereas the non-asymptotic accuracy of the normal

approximation of the posterior has been the focus of a recent effort in [77].

Another valuable property of an estimation principle, such as Bayes or maximum like-

lihood, is the ability to deal with observations that are non-i.i.d. as a result of the com-

bination of different datasets or the contamination by outliers. In these models, a fraction

of the observations is informative, that is, it behaves as an i.i.d. sample of the true under-

lying distribution; the remaining fraction can instead be only slightly informative or even

adversarial. A method that can lead to fast rates under contaminated datasets is said to be

robust. A frequentist statistician has an advantage in this situation because it is sometimes

possible to discard part of the data and reduce the fraction of contaminated observations.

An example of a robust frequentist estimator for the mean of a heavy-tailed variable is the

median-of-means in [37, Section 4.1]. On the other hand, a purely Bayesian approach does

not allow to assign a prior after having looked at the data, and so the whole dataset should

be used instead. In the Bayesian framework, the concept of robustness can also refer to

the sensitivity of the posterior with respect to different choices of prior. If the posterior is

well-behaved for large families of prior, then the procedure is robust.

With the terminology introduced so far, we can briefly synthesize the three chapters of

the thesis in the next table. This is meant as a broad overview to compare their different

facets.

3
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Chapter 1 Chapter 2 Chapter 3

Interpretation Bayesian Bayesian frequentist

Dimension semiparametric nonparametric nonparametric

Model Gaussian sequence regression regression

Observations indep. Gaussian i.i.d. i.i.d. with outliers

Gaussian noise heavy-tailed noise

Param. of interest model variance regression function regression function

noise variance

Hyperparam. underlying structure sparsity level

smoothness index

Nuisance param. vector of means noise distribution

Principle posterior contraction posterior contraction median-of-means

Consistency fails in general yes unknown in general

holds in special case holds in linear case

Type of rates asymptotic asymptotic non-asymptotic

Optimal rates yes yes yes and maybe

Asymptotic shape yes

Adaptivity yes yes

Robustness (data) mild adversarial

Robustness (prior) no no

Chapter 1: Bernstein-von Mises for a non-standard semipara-

metric model

In the first chapter, we consider the following semiparametric experiment. For given 0 ≤
α ≤ 1, one observes n independent and normally distributed random variables

Xi ∼ N
(
µ∗i1(i > nα), σ∗2

)
, i = 1, . . . , n.

The parameters in the model are {µ∗i : i > nα} and σ∗ > 0. The goal is to estimate

the variance σ∗2 while treating the mean vector µ∗ := (µ∗dnαe, . . . , µ
∗
n) as nuisance. We

approach the problem from a Bayesian perspective, by studying the asymptotic properties

of the posterior distribution arising from different priors on the parameters.

The observations can be divided into two sets, one with bnαc i.i.d. normal variables

N (0, σ∗2) and the other with n−bnαc independent normal variables N (µ∗i , σ
∗2). The statis-

tician knows which fraction of the dataset has mean zero and which fraction is corrupted,

but the contamination is not adversarial, that is, both fractions of the sample share the

same variance σ∗2. This might be the result of combining datasets coming from different

experiments measuring the same physical quantity.

The family of models taken into consideration generalizes the Neymann-Scott model

in [70], which has been labelled ‘disturbing’ by L. Le Cam [54] since it naturally leads
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to inconsistent MLE. A frequentist approach would allow throwing away the fraction of

the sample that is contaminated by the non-zero means, and this would yield consistent

estimates. It is easy to show that the MLE obtained using all the data points converges to

ασ∗2, it therefore underestimates the true variance by the factor α. One could dismiss the

issue by multiplying the MLE by the factor α−1.

We investigate whether a Bayesian methods is robust enough to deal with the combined

dataset by itself. This approach to the problem is more involved and requires a suitable

choice of priors for the pair (σ∗2,µ∗). Since the posterior assigns more mass to regions with

large likelihood, it is not clear whether the Bayesian method is able to correct for the flaws

of the MLE. Such a correction has been observed before in some irregular models, see for

example [26, 40, 75].

In the first part of the chapter, we investigate whether the posterior is consistent when

the nuisances are modelled as i.i.d. variables. Surprisingly, the answer is negative in a very

general sense. Whenever the nuisances are independently drawn from a proper distribution,

the posterior does not contract around the true variance. Thus the Bayesian method fails

to correct the flaws of the MLE for a large class of natural priors. We can show this by

means of lower bounds on the logarithm of the posterior density. Our arguments heavily

rely on the specifics of the Gaussian sequence model, but they do not require any decay

condition on the tails of the prior.

The lack of structure on the nuisance parameter would suggest that a correlated prior

on the means should perform worse, but it turns out that this is not the case. In the

second part of the chapter we construct a Gaussian mixture prior for which the posterior is

consistent and contracts with parametric rate. For this prior, the limit distribution in the

BvM sense is derived and it is shown that it is non-Gaussian in the case of small means.

It remains open whether a similar behavior carries over to more general prior choices or

whether this is a fortuitous feature of the Gaussian mixture.

Another counter-intuitive fact is the non-Gaussianity of the asymptotic shape in the case

of small means. This is motivated by the fact that the posterior does not throw away the

non-zero mean observations, and a simulation study shows that the maximum a posteriori

(MAP) estimate based on the limit distribution has better frequentist properties than the

adjusted MLE that only uses the observations with zero mean.

Chapter 2: deep Gaussian process priors

In the second chapter we consider the multivariate nonparametric regression model with

random design supported on [−1, 1]d, where we observe n i.i.d. pairs (Xi, Yi) ∈ [−1, 1]d×R,
i = 1, . . . , n, with

Yi = f∗(Xi) + εi, i = 1, . . . , n

and εi independent and standard normal random variables that are independent of the

design vectors (X1, . . . ,Xn). The problem is tackled from a Bayesian perspective, under

5



Introduction

an additional structural assumption that includes important cases such as (generalized)

additive models.

We assume that the regression function f∗ can be represented as the composition of

q∗ + 1 functions, that is, f∗ = h∗q∗ ◦ h∗q∗−1 ◦ · · ·h∗1 ◦ h∗0. Each component h∗i is β∗i -Hölder

and maps Rd∗i to Rd
∗
i+1 , thus taking in input d∗i ≥ 1 variables. We allow h∗i to only depend

on a number t∗i ≤ d∗i of variables, which we call effective dimension. This results in a

hyperparameter (λ∗,β∗) consisting of a graph λ∗ and a vector of smoothness indices β∗.

We are interested in recovering the regression function f∗ only, while being adaptive with

respect to the unknown composition graph and smoothness index.

This particular setting is inspired by deep learning methods [44], which are most success-

ful when performing tasks that involve some underlying modular structure, that is, when

complex objects have to be built using a small number of simpler features. A prototypical

example is writing. The page of a book can be assembled using a small number sentences,

each sentence using a small number of words, and each word using a small number of letters.

In [76] it has been shown that sparsely connected deep neural networks are able to pick up

the underlying composition structure and achieve near minimax estimation rates. On the

contrary, wavelet thresholding methods are shown to be unable to adapt to the underlying

structure resulting in potentially much slower convergence rates.

Gaussian process (GP) priors are a natural choice in the classical Bayesian nonparamet-

ric regression setting. Posterior contraction rates have been established in [41, Section 11]

and are known to be optimal in certain cases. Gaussian processes priors are also widely used

in machine learning [73]. This motivates the study of priors induced by the composition of

GPs, which are known as deep Gaussian processes (DGPs) in the literature [33, 32] and are

the Bayesian analogue of deep networks.

In this chapter we derive posterior contraction rates for DGPs, by extending the theory

of GP priors. We implement a hierarchical procedure, where a hyperprior is assigned to the

possible composition structures and then, given a composition structure, a suitable DGP

prior is assigned to the corresponding function class. For such a DGP prior construction

we show that the posterior contraction rate matches nearly the minimax estimation rate.

In particular, if there is some low-dimensional structure in the composition, the posterior

will not suffer from the curse of dimensionality.

The main tool of our analysis is an extension of the concentration function for Gaussian

processes introduced in [82]. Furthermore, our proving strategy requires some regularization

in the construction of the DGP prior. For a fully Bayesian approach, stability is enforced by

conditioning each individual Gaussian process to be in a set of ’stable’ paths. Specifically,

these sets are obtained by inflating Hölder balls and, to achieve near optimal contraction

rates, the size of the inflations has to be carefully selected and depends on the optimal

contraction rate itself. It is not clear whether this regularization is indeed necessary, but it

has the same flavor of other stabilization enhancing methods that improve the performance

of deep learning, such as dropout and batch normalization [44].

6
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Chapter 3: median-of-means for robust inference in least-

squares regression

In the third chapter we consider the setting of nonparametric least-squares regression. Let

Y be an unknown square-integrable real variable and let X be some explanatory variable

on a measurable space X and law PX. The statistician is given a (closed) convex function

class F ⊆ L2(PX) and some dataset of observations Dn = (Xi, Yi)i=1,...,n. The goal is to

provide a frequentist estimator for the oracle pair (f∗, σ∗) given by

f∗ := arg min
f∈F

E
[
(Y − f(X))2

]
, σ∗ := E

[
(Y − f∗(X))2

] 1
2 ,

and this estimator should have as good as possible non-asymptotic guarantees.

The additional complication is that the dataset Dn may be contaminated by a subset

DO = (Xi, Yi)i∈O of |O| ≤ n/2 arbitrary outliers. One expects to be able to solve the

problem at hand as long as the number of outliers is not too large and the remaining

informative observations in DI = Dn \DO are i.i.d. as (X, Y ), which satisfy Y = f∗(X) + ζ

with residual ζ := Y − f∗(X) that may be heavy-tailed and not independent of X.

A frequentist nonparametric method to recover the unknown regression function f∗ is

the regularized empirical risk minimizer

f̂RERMλ := arg min
f∈F

{
1

n

n∑
i=1

(Yi − f(Xi))
2 + λΨ(f)

}

for some tuning parameter λ > 0 and a penalty functional Ψ on F . The penalty functional

reduces overfitting by assigning a large value to functions that are too big, in some sense.

This method has two drawbacks: on one hand, if the residuals are heavy-tailed this leads

to suboptimal non-asymptotic properties; on the other, the empirical average involves all

the observations in the dataset and can be strongly influenced by the presence of even one

outlier.

The method introduced in [60, 55] makes the RERM robust by replacing the empirical

averages by the median-of-means (MOM) over a number K of blocks: one partitions of

the dataset into K blocks, computes the empirical average relative to each block, and then

takes the median of all these empirical averages. The resulting object is robust to K/2

outliers and has good performance even when the underlying distribution has no second

moment [37, Section 4.1]. This results in a robust MOM-K estimator f̂λ,K with penalization

parameter λ > 0, for which non-asymptotic guarantees are obtained in high probability.

In the sparse linear case, this problem is equivalent to estimating β∗ in the model

Y = XTβ∗ + ζ for the function space Fs∗ = {x 7→ xTβ : β ∈ Rd, |β|0 ≤ s∗} for some

sparsity level s∗ > 0 and |β|0 the number of non-zero components of β. In this case, the

MOM method outlined above yields a robust version of the Lasso estimator [7, 8, 9], which

is minimax optimal but its optimal penalization parameter has to be proportional to σ∗. In

a special instance, the Lasso has the following Bayesian interpretation: it is the maximum

7
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a posteriori (MAP) estimate arising from the model Y |X,β ∼ N (X>β, σ2I) and β drawn

from a Laplace prior.

In the third chapter we extend the scope of the MOM approach to the case of unknown

noise standard deviation σ∗. A new method is proposed that yields, in the sparse linear

case, a robust version of the square-root Lasso [10, 35], which is minimax optimal and its

penalization parameter does not depend on σ∗. The square-root Lasso is a scale-invariant

method [43, Section 5] that modifies the Lasso in order to achieve adaptivity, but the

modifications have no obvious Bayesian interpretation.

We also show that, in the high-dimensional sparse linear regression setting with unknown

σ∗ and known sparsity level s∗ ≤ d, our MOM estimator achieves the optimal rates of

estimation of β∗ using a number of blocks K of the order of the number of outliers. The

convergence rate for σ∗ improves on previously available estimators, but we do not show this

being optimal. Since the sparsity level may be unknown in practice, an aggregated adaptive

procedure based on Lepski’s method is proposed. For that, one first infers an estimated

sparsity level s̃ and then a number of blocks K̃. It is shown that the resulting adaptive

estimator (β̃, σ̃, s̃) attains similar frequentist properties as the estimator with known true

sparsity level.
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Chapter 1

Bayesian variance estimation in

the Gaussian sequence model with

partial information on the means

This chapter is based on:

G. Finocchio and J. Schmidt-Hieber. Bayesian variance estimation in the Gaussian sequence

model with partial information on the means. Electron. J. Statist. 14(1): 239-271 (2020).

Abstract

Consider the Gaussian sequence model under the additional assumption that

a fixed fraction of the means is known. We study the problem of variance estima-

tion from a frequentist Bayesian perspective. The maximum likelihood estimator

(MLE) for σ2 is biased and inconsistent. This raises the question whether the

posterior is able to correct the MLE in this case. By developing a new proving

strategy that uses refined properties of the posterior distribution, we find that

the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters.

In particular, no assumption on the decay of the prior needs to be imposed. Sur-

prisingly, we also find that consistency can be retained for a hierarchical prior

based on Gaussian mixtures. In this case we also establish a limiting shape result

and determine the limit distribution. In contrast to the classical Bernstein-von

Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis

leads to new statistical estimators outperforming the correctly calibrated MLE

in a numerical study.

1.1 Introduction

For given 0 ≤ α ≤ 1, suppose we observe n independent and normally distributed random

variables

Xi ∼ N
(
µ∗i1(i > nα), σ∗2

)
, i = 1, . . . , n. (1.1.1)

9



1.1. Introduction

The parameters in the model are µ∗i , i > nα and σ∗ > 0. The goal is to estimate the

variance σ∗2 while treating the mean vector µ∗ := (µ∗dnαe, . . . , µ
∗
n) as nuisance. For α = 0,

we recover the Gaussian sequence model. For α > 0, this can be viewed as the Gaussian

sequence model with additional knowledge that the means of the first bnαc observations

are known (in which case we can subtract them from the data).

One can think of model (1.1.1) as a simple prototype of a combined dataset. Using

for instance different measurement devices, one often faces merged datasets collected from

multiple sources. The different sources might not be of the same quality concerning the

underlying parameter, see [65] for an example. An alternative viewpoint is to interpret

model (1.1.1) as a sparse sequence model with known support. Since a (1 − α)-fraction of

the data is perturbed, we are in the dense regime. Knowledge of the support is then crucial

as otherwise there is no consistent estimator for σ∗2.

If n is even and α = 1/2, then (1.1.1) is equivalent to the Neyman-Scott model [70] up to

a reparametrization. Model (1.1.1) is in this case equivalent to observing Ui := (Xn/2+i+Xi)

and Vi := (Xn/2+i − Xi) for i = 1, . . . , n/2. Since Ui and Vi are independent, this is thus

equivalent to observing independent random variables Ui, Vi ∼ N (µ∗n/2+1, 2σ
∗2). Estimation

of σ∗ in the latter model is known as Neyman-Scott problem.

Although σ∗2 can be estimated with parametric rate based on the first nα observations,

a striking feature of the model is that the MLE for σ∗2 is inconsistent. In fact the MLE

σ̂2
mle converges to ασ∗2 therefore underestimating the true variance by the factor α. The

reason is that the likelihood over the observations with non-zero mean significantly affects

the total likelihood viewed as a function in σ2.

We study what happens when a Bayesian approach is implemented for the estimation

of the variance and whether a posterior distribution can correct for the bias of the MLE.

The Bayesian method can be viewed as a weighted likelihood method: instead of taking the

parameter with the largest likelihood the posterior puts mass on parameter sets with large

likelihood. Because of this, the posterior can in some cases correct the flaws of the MLE.

An example are irregular models, see [40, 26, 75].

In the first part of the paper, we prove that whenever the nuisances are independently

generated from a proper distribution, the posterior does not contract around the true vari-

ance. This shows that, for a large class of natural priors, the Bayesian method is unable to

correct the MLE. In frequentist Bayes, several lower bound techniques have been developed

in order to describe when Bayesian methods do not work, [17, 25, 24, 80, 20, 49]. These

results can be used for instance to show that a certain decay of the prior is necessary to

ensure posterior contraction. Our lower bounds are of a different flavor and do not require

a condition on the tail behavior.

Since for the non-zero means no additional structure is assumed, there is no way to get

a better estimate of one mean from the knowledge of all other means. Therefore, one might

be tempted to think that a correlated prior on the means cannot perform better than an

i.i.d. prior and consequently must lead to an inconsistent posterior as well. Surprisingly,

this is not true and we construct in the second part of the article a Gaussian mixture prior

10



1.2. Likelihood and posterior

for which the posterior contracts with the parametric rate around the true variance. For

this prior we derive the limit distribution in the Bernstein-von Mises sense. In contrast

with the Bernstein-von Mises theorem, the posterior limit is non-Gaussian in the case of

small means. In this case the posterior also incorporates information about the second part

of the sample into the estimator and we show in a simulation study that the maximum a

posteriori estimate based on the limit distribution outperforms the
√
n-consistent estimator

that only uses the observations with zero mean.

Estimation of the variance in model 1.1.1 can also be interpreted as a semi-parametric

problem. The results in this article therefore contribute to the recent efforts to understand

frequentist Bayes in semiparametric models. Semiparametric Bernstein-von Mises theorems

are derived under various conditions in [70, 19, 12, 23]. For specific priors, it has been

observed that there can be a large bias in the posterior limit, see [18, 23, 75]. In all the

cases studied so far, it is unclear whether the bias is due to the specific choice of prior

or whether this is a fundamental limitation of the Bayesian method. To the best of our

knowledge, our results show for the first time that the posterior can be inconsistent for all

natural priors.

Related to model 1.1.1, [34] studies Bayes for variance estimation of the errors in the

nonparametric regression model. It is shown that if the posterior contracts around the true

regression function with rate o(n−1/4), the marginal posterior for the variance contracts

with parametric rate around the true error variance and Bernstein-von Mises result holds.

The article is organized as follows. In Section 1.2, we discuss aspects of the problem

related to the likelihood and the posterior distribution. A crucial identity for the log-

posterior is derived in Section 1.3. This leads then to the general negative result in Section

1.4. The Gaussian mixture prior with parametric posterior contraction is constructed in

Section 1.5. This section also contains the limiting shape result and a numerical simulation

study. All the proofs are deferred to the appendix.

Notation: Vectors are denoted in bold letters, that is, u = (u1, . . . , ud) ∈ Rd. For a vector

u = (u1, . . . , uk), we write |u|22 =
∑k

i=1 u
2
i and u2 = |u|22/k for the averages of the squares

(not to be confused with the squared averages). We write n1 = bnαc and n2 = n− n1. The

probability and expectation induced by model (1.1.1) are denoted by Pn0 and En0 .

1.2 Likelihood and posterior

The MLE. For the subsequent analysis, it is convenient to split the data vector X =

(X1, . . . , Xn) in the part with zero means Y = (X1, . . . , Xn1) and the observations with

non-zero means Z = (Xn1+1, . . . , Xn) such that X = (Y,Z). The likelihood function of the

model is

L
(
σ2,µ

∣∣Y,Z
)

=
1

(2πσ2)n1/2
e−
|Y|22
2σ2︸ ︷︷ ︸

L(σ2,µ|Y)

1

(2πσ2)n2/2
e−
|Z−µ|22

2σ2︸ ︷︷ ︸
L(σ2,µ|Z)

=
1

(2πσ2)n/2
e−
|Y|22+|Z−µ|22

2σ2 .
(1.2.1)
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1.2. Likelihood and posterior

Maximizing over (σ2,µ) yields the MLE(
σ̂2

mle, µ̂mle

)
=

(
|Y|22
n

,Z

)
.

If only based on the subsample Y, the MLE for σ∗2 would be |Y|22/n1 and this converges to

σ∗2 with the parametric rate n−1/2. Hence |Y|22/n converges to ασ∗2. The MLE for σ∗2 is

therefore inconsistent and misses the true parameter σ∗2 by a factor α. It is clear that there

is very little extractable information about the parameter σ∗2 in Z. A frequentist estimator

can simply discard Z and only use the subsample Y. The MLE also does this but leads to

an incorrect scaling of the estimator.

The incorrect scaling factor of the MLE can be explained in different ways. One inter-

pretation is that the MLE can be written as

σ̂2
mle =

n1

n
σ̂2
Y,mle +

n2

n
σ̂2
Z,mle,

with σ̂2
Y,mle = |Y|22/n1 the MLE based on the subsample Y and σ̂2

Z,mle = 0 the MLE based

on the subsample Z. The fact that the overall MLE just forms a linear combination of the

MLEs for the subsamples shows again that too much weight is given to Z.

Another explanation for the incorrect scaling of the MLE is to observe that in (1.2.1)

the likelihood based on the second subsample is L(σ2,µ|Z) ∝ σ−n2 if µ = µ̂mle. If we

would take the likelihood only over the first part of the sample Y we would obtain the

optimal estimator |Y|22/n1, but since the likelihhod over the full sample is the product

of the likelihood functions for Y and Z, an additional factor σ−n2 occurs in the overall

likelihood which leads to the incorrect scaling. We conjecture that likelihood methods do

not perform well for combined datasets where one part of the data is informative about a

parameter and the other part is affected by nuisance parameters.

Adjusted profile likelihood. For the profile likelihood, we first compute the maximum

likelihood estimator of the nuisance parameter for fixed σ2, denoted by, say µ̂σ2 , and then

maximize

σ2 7→ L
(
σ2, µ̂σ2

∣∣Y,Z
)
.

Obviously µ̂σ2 = Z for any σ2 > 0 and the profile likelihood estimator coincides with the

MLE for σ2 in the Neyman-Scott problem. If the parameter of interest and the nuisance

parameters are orthogonal with respect to the expected Fisher information, that is,

E
[ ∂2

∂σ2∂µj
logL

(
σ2,µ

∣∣Y,Z
)]

= 0, for all j (1.2.2)

the adjusted profile likelihood estimator [29, 64, 30] is the maximizer of

σ2 7→ L(σ2) := det
(
M(σ2, µ̂σ2)

)−1/2
L
(
σ2, µ̂σ2

∣∣Y,Z
)

(1.2.3)

for the matrix valued function

M(σ2,µ) :=
(
− ∂2

∂µj∂µ`
logL

(
σ2,µ

∣∣Y,Z
))

j,`

12



1.2. Likelihood and posterior

and det(·) the determinant. It is easy to check that (1.2.2) holds for model (1.1.1). Since

−∂2/(∂µj∂µ`) logL
(
σ2,µ

∣∣Y,Z
)

= σ−21(j = `), the adjusted profile likelihood estimator

for σ2 coincides with the MLE for the subsample Y,

σ̂2 =
|Y|22
n1

.

In particular, the adjusted profile likelihood results in an unbiased
√
n-consistent estimator

for σ2.

The posterior distribution. From a Bayesian perspective it is quite natural to draw

σ2 and the mean vector µ from independent distributions. Due to the orthogonality with

respect to the expected Fisher information (1.2.2), we also expect no strong interactions of

σ2 and the mean parameters in the likelihood that could be taken care of by a dependent

prior. Suppose that µ ∼ ν and that the prior for σ2 has Lebesgue density π. The marginal

posterior distribution is then given by Bayes formula

π
(
σ2
∣∣Y,Z

)
=

L(σ2|Y,Z)π(σ2)∫
R+
L(σ2|Y,Z)π(σ2) dσ2

, (1.2.4)

with

L(σ2|Y,Z) = σ−ne−
|Y|22
2σ2

(∫
Rn
e−
|Z−µ|22

2σ2 dν(µ)
)
. (1.2.5)

In [78] it has been argued that by using multivariate Laplace approximation,

L(σ2|Y,Z) = L(σ2)ν
(
µ̂σ2

)(
1 +OP(n−1)

)
= L(σ2)ν

(
Z
)(

1 +OP(n−1)
)
, (1.2.6)

with L(σ2) the adjusted profile likelihood in (1.2.3). This suggests that the posterior distri-

bution should be centered around the adjusted profile likelihood estimator |Y|22/n1, there-

fore correcting the MLE.

Associated sequence model with random means. For the Gaussian sequence

model with partial information (1.1.1) equipped with the product prior π ⊗ ν, define the

associated sequence model with random means, where we observe independent random vari-

ables

Yi ∼ N (0, σ∗2), i = 1, . . . , n1 and Zi|µ ∼ N (µi, σ
∗2), i = n1 + 1, . . . , n, (1.2.7)

with µ ∼ ν and ν known. In this model, the nuisance parameters are replaced by additional

randomness. The only parameter in this model is σ∗2 and the model is therefore parametric.

Remark 1.2.1. The likelihood function of model (1.2.7) is L(σ2|Y,Z) and models (1.1.1)

and (1.2.7) lead to the same formula in terms of Y,Z for the posterior distribution of σ2.

Bayes with improper uniform prior. If the prior on the mean vector in the Bayes

formula is chosen as the Lebesgue measure, the formula for the posterior simplifies to

π
(
σ2
∣∣Y,Z

)
∝ σ−n1e−

|Y|22
2σ2 π(σ2).
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1.3. On the derivative of the log-posterior

This is the same posterior we would get if we discarded the subsample Z. It follows from

the parametric Bernstein-von Mises theorem that if π is positive and continuous in a neigh-

bourhood of σ∗2, the posterior contracts around the true variance σ∗2. Notice that in the

case of uniform prior, the Laplace approximation in (1.2.6) is exact and does not involve

any remainder terms. Obviously the Lebesgue measure is not a probability measure and

the prior is improper. This raises then the question whether there are also proper priors for

which the marginal posterior is consistent on the whole parameter space. We will address

this problem in the next sections.

1.3 On the derivative of the log-posterior

We first derive a differential equation for the posterior. Denote by µ|(Z, σ2) the posterior

distribution of µ for the sample Z, that is,

dΠ(µ|Z, σ2) =
e−
|Z−µ|22

2σ2 dν(µ)∫
Rn e

−
|Z−µ|22

2σ2 dν(µ)

. (1.3.1)

In particular, we set

V
(
µ|(Z, σ2)

)
:=

∫
Rn
|Z− µ|22dΠ(µ|Z, σ2). (1.3.2)

The quantity V (µ|(Z, σ2)) measures the spread of Π(µ|Z, σ2) around the vector Z. Recall

moreover the definition of L(Y,Z|σ2) in (1.2.5).

Proposition 1.3.1. The marginal posterior satisfies

∂σ2 log
π(σ2|Y,Z)

π(σ2)
= ∂σ2 logL(σ2|Y,Z) =

|Y|22 + V (µ|(Z, σ2))

2σ4
− n

2σ2
. (1.3.3)

By Remark 1.2.1, the right hand side is a closed-form expression of the score function for

σ2 in the random means model (1.2.7). If the MLE in (1.2.7) does not lie on the boundary,

the score function vanishes at the MLE. From the Bernstein-van Mises phenomenon it

is conceivable that the posterior will concentrate around this MLE. For the MLE to be

close to the truth σ∗2, the score function evaluated at σ∗2 must be oP(1). Since |Y|22 =

nασ∗2 +OP(
√
n), this leads to the condition

V (µ|(Z, σ∗2))

n
= (1− α)σ∗2 + oP(1).

In the next section, we derive a very general negative result. The main part of the argument

is to show that the previous equality does not hold in a neighborhood of σ∗2, see (1.A.12).

1.4 Posterior inconsistency for product priors

In this section we study posterior contraction under the following condition.
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1.4. Posterior inconsistency for product priors

Prior. The prior on µ is independent of the prior on σ2. Under the prior, each compo-

nent of the mean vector µ is drawn independently from a distribution ν on R. The prior

on σ2 has a positive and continuously differentiable Lebesgue density on R+.

So far ν denoted the prior on the mean vector. By a slight abuse of language we denote

the prior on the individual components also by ν. The assumptions on the prior are mild

enough to account for proper priors with heavy tails and possibly no moments.

The i.i.d. prior is the natural choice, if we believe that there is no structure in the non-

zero means. From (1.2.7) it follows that the corresponding sequence model with random

means is

Yi ∼ N (0, σ∗2), i = 1, . . . , n1 and Zi|µi ∼ N (µi, σ
∗2), i = n1 + 1, . . . , n, (1.4.1)

with µi ∼ ν. For α = 1/2 and unknown ν, this model has been studied in [51]. It is shown

that the MLE for σ∗2 and the MLE for the distribution function of the means are consistent.

Since the random means model leads to the same posterior distribution as explained in

Remark 1.2.1, this suggests that the posterior might concentrate around the truth.

We now provide a second heuristic that leads to a different conclusion indicating that it

makes a huge difference whether the distribution of the means ν is known or unknown. In

the framework of (1.4.1), ν is known. If
∫
u2dν(u) <∞, then µ2 =

∫
u2dν(u) +OP(n−1/2)

and Z2 = µ2 + σ∗2 + OP(n−1/2), so we have Z2 −
∫
u2dν(u) = σ∗2 + OP(n−1/2). This

means that model (1.4.1) carries a lot of information about σ∗2 in the sense that σ∗2 can

be estimated with parametric rate from the subsample Z only. Since the posterior only sees

model (1.4.1) it is therefore natural to give a lot of weight to the subsample Z as well,

which, from a frequentist perspective, is wrong.

This heuristic does not say anything about heavy-tailed priors with
∫
u2dν(u) =∞. But

even in this case, we will show that the posterior is inconsistent. The first result states that

in a neighborhood of σ∗2 the posterior is increasing extremely fast with high probability.

Proposition 1.4.1. Given α < 1 and the prior above, then, for all sufficiently large σ∗2,

there exists a mean vector µ∗, such that

lim
n→∞

Pn0
({
∂σ2 log π(σ2|Y,Z) ≥ σ∗−2n, ∀σ2 ∈

[σ∗2
2
, 2σ∗2

]})
= 1.

The proof of Proposition 1.4.1 constructs a lower bound on σ∗2 that is independent

of n and moreover guarantees that ν has sufficiently small mass outside [−σ∗2, σ∗2]. It

therefore depends on the tail behavior of the prior mean distribution ν. The mean vector

µ∗ is subsequently chosen with all means being equal to an expression depending on σ∗.

Thus the means in µ∗ are uniformly bounded and independent of n as well.

Suppose that almost all posterior mass is close to σ∗2. By the previous proposition, the

posterior is increasing at least up to 2σ∗2. Hence, there must be even more mass around

2σ∗2. This is a contradiction and shows that the posterior does not concentrate around σ∗2.

The proof of the next theorem is based on this argument. For this result, the means in the

vector µ∗ can again be chosen to be uniformly bounded.
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1.4. Posterior inconsistency for product priors

Theorem 1.4.2. Given α < 1 and the prior above, then, for all sufficiently large σ∗2, there

exists a mean vector µ∗ such that

lim
n→∞

En0
[
Π
(∣∣∣ σ2

σ∗2
− 1
∣∣∣ ≤ 1

2

∣∣∣Y,Z
)]

= 0.

Consequently, the posterior is inconsistent and assigns all its mass outside of a neighbour-

hood of the true variance.

The posterior is therefore inferior if compared to the frequentist variance estimator Y2,

which achieves the parametric rate n−1/2 in the sense that

sup
σ∗2>0

En0
[∣∣∣Y2

σ∗2
− 1
∣∣∣] . n−1/2.

It is remarkable that no conditions on the tail behavior of the prior distribution ν are

required for Theorem 1.4.2. Recall that for the improper uniform prior the posterior contract

around σ∗2. This shows that for distributions with heavy tailed densities, we need very sharp

bounds.

To the best of our knowledge there are no negative results in the nonparametric Bayes

literature that hold for such a large class of priors. The proof strategy to establish Proposi-

tion 1.4.1 is based on a highly non-standard shrinkage argument that will be sketched here.

By expanding the square term in (1.3.2) we can lower bound (1.3.3) by

∂σ2 log π(σ2|Y,Z) ≥ |Y|
2
2

2σ4
+
|Z|22
2σ4
− n

2σ2
− 1

σ4

n2∑
i=1

Vi +OP(1),

where Vi := |Zi|
∫
|µi|dΠ(µ|Zi, σ2). For σ2 close to σ∗2, we have

∂σ2 log π(σ2|Y,Z) ≥ n2µ∗2

2σ∗4
− 1

σ∗4

n2∑
i=1

Vi +OP(
√
n).

For improper uniform prior, one can check that Vi ≥ Z2
i , making the lower bound negative

and useless. For proper prior, there is a shrinkage phenomenon in the sense that for all

c > 0 there are parameters (µ∗i )
2 � σ∗2 such that Vi ≤ cZ2

i , with high Pn0 -probability. If

this is the case then

∂σ2 log π(σ2|Y,Z) ≥
(

1

2
− 2c

)
n2

2σ∗2
+OP(

√
n),

which yields the conclusion by choosing c > 0 small enough.

In Proposition 1.4.1 we showed that the posterior overshoots the true variance σ∗2

whenever the true means are large enough. By analyzing the Gaussian case in the next

section, we see that for small means the posterior will in fact underestimate σ∗2 and that

only for a small range of means vectors, one can hope that the posterior will be able to

concentrate around the true variance.
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1.5. Gaussian mixture priors

1.5 Gaussian mixture priors

1.5.1 Gaussian priors

To illustrate our approach, we first consider an i.i.d. Gaussian prior on the mean vector

µi ∼ N (0, θ2), independently.

From Theorem 1.4.2 we already know that the posterior will be inconsistent in this case.

Nevertheless, the Gaussian assumptions yields more explicit formulas and this allows us to

build a hierarchical prior that leads to good posterior contraction properties. By Remark

1.2.1, the marginal likelihood is the same as in the sequence model with random means

(1.4.1). The marginal posterior is therefore

π
(
σ2
∣∣Y,Z

)
∝ σ−n1(θ2 + σ2)−

n2
2 e−

|Y|22
2σ2 e

− |Z|22
2(θ2+σ2)π(σ2), (1.5.1)

which can also be written as the product of two inverse Gamma densities. In view of the

Bernstein-von Mises phenomenon, the posterior concentrates around the MLE for paramet-

ric problems. Similarly, we can argue here that the posterior will be concentrated around

the value σ̂2 maximizing the likelihood part of the posterior (1.5.1). By differentiation, we

find n1σ̂
2 + n2σ̂

4/(σ̂2 + θ2) = |Y|22 + σ̂4|Z|22/(θ2 + σ̂2)2 and rearranging yields

σ̂2 −Y2 =
n2

n1

(
σ̂2

θ2 + σ̂2

)2[
Z2 − θ2 − σ̂2

]
.

This can be rewritten as

σ̂2 − σ∗2 +OP(n−1/2) =
1− α
α

(
1 +O(n−1)

)( σ̂2

θ2 + σ̂2

)2[
σ∗2 − σ̂2 + µ∗2 +OP(n−1/2)− θ2

]
,

(1.5.2)

where we set

µ∗2 = |µ∗|22/n2

and suppress the dependence of the O() term on σ∗2 and µ∗. If θ is fixed, this shows that

for σ̂2 = σ∗2 +OP(n−1/2) we need

µ∗2 = θ2 +OP(n−1/2). (1.5.3)

Differently speaking, to force the maximum σ̂2 to be close to σ∗2, the variance θ2 of the prior

has to match the empirical variance µ∗2 of the nuisance parameter. We can also deduce from

(1.5.2) that if |µ∗2−θ2| � n−1/2 and θ is fixed, then also |σ̂2−σ∗2| � n−1/2. More precisely,

we even have that µ∗2 − θ2 � n−1/2 implies σ̂2 − σ∗2 � n−1/2 and µ∗2 − θ2 � −n−1/2

implies σ̂2− σ∗2 � −n−1/2. This shows that, depending on the size of µ∗2 compared to θ2,

the posterior can either overestimate or underestimate the true variance.

If θ is allowed to vary with n, we can make the right hand side in (1.5.2) arbitrarily

small by letting θ tend to infinity. As θ2 is the variance of the prior, the behaviour resembles
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1.5. Gaussian mixture priors

then that of the uniform improper prior, which, as we already know, leads to posterior

consistency. If we think of a prior as a prior belief on parameters, then the prior should

not change depending on the amount of available data and, in particular, it is unnatural

that the prior becomes more vague if the sample size increases. In the next section we show

that there are sample size independent mixture priors leading to a parametric posterior

contraction rates.

1.5.2 Mixture priors

Section 1.4 explains the posterior inconsistency for i.i.d. prior on the nuisance. It seems not

intuitive that adding dependency on the prior of the nuisance parameter can help avoiding

posterior inconsistency for σ∗2. Surprisingly, this is not true. In this section, we first provide

some intuition why mixture priors can resolve the issues of i.i.d. priors. Afterwards, we

discuss and analyze a specific prior construction.

Analyzing Gaussian prior above, (1.5.3) suggests that for any nuisance parameter vector

µ∗, there exists an i.i.d. prior which seems to work. This i.i.d. prior does, however, depend on

the unknown µ∗ and can therefore not be chosen without knowledge of the data. Intuitively,

if the posterior had the chance to see all possible i.i.d. priors on µ, instead of just one, it is

conceivable that it would automatically select one that is adapted to the unknown nuisance

parameter and consequently leads to posterior consistency for the parameter of interest.

De Finetti’s theorem [47] states that an exchangeable prior ν over the infinite sequence

µ = (µ1, µ2, . . . ) can be written as a mixture over i.i.d. priors in the sense that

ν(A1 × · · · ×Ak) :=

∫
P(R)

Q(A1) · · ·Q(Ak)λ(dQ),

with λ a probability measure on the set of probability densities P(R) on R. The posterior

(1.2.4) then becomes

π
(
σ2
∣∣Y,Z

)
∝ π(σ2)

∫
Rn

L(σ2,µ|Y,Z)

L(σ∗2,µ∗|Y,Z)
ν(µ)dµ,

= π(σ2)

∫
P(R)

(∫
Rn

L(σ2,µ|Y,Z)

L(σ∗2,µ∗|Y,Z)

n∏
i=1

q(µi)dµi
)
λ(dq),

where q denotes the probability density function of Q. Let q0 be the i.i.d. prior maximizing

the interior integral. Suppose that this is a unique maximum and that the outer integral

is determined by the behavior of the integrand in a suitable neighborhood S of q0. This

means that

π
(
σ2
∣∣Y,Z

)
∝ π(σ2)

∫
P(R)

(∫
Rn

L(σ2,µ|Y,Z)

L(σ∗2,µ∗|Y,Z)

n∏
i=1

q(µi)dµi
)
λ(dq)

≈ π(σ2)

∫
S

(∫
Rn

L(σ2,µ|Y,Z)

L(σ∗2,µ∗|Y,Z)

n∏
i=1

q(µi)dµi
)
λ(dq)

≈ π(σ2)

(∫
Rn

L(σ2,µ|Y,Z)

L(σ∗2,µ∗|Y,Z)

n∏
i=1

q0(µi)dµi
)∫
S
λ(dq).
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1.5. Gaussian mixture priors

The right hand side is the posterior density of σ2 for i.i.d. prior
∏n
i=1 q0(µi) on the compo-

nents.

Although this argument is only a sketch, it suggests that something might be gained by

mixing over i.i.d. priors instead of just choosing one. Maximizing the marginalized likelihood

in (1.5.1) over θ2 yields

θ2 = Z2 − σ2, (1.5.4)

if the r.h.s. is non-negative. For this choice of θ2, (1.5.1) becomes π(σ2|Y,Z) ∝
σ−n1 exp(−|Y|22/(2σ2))π(σ2). The posterior therefore coincides with the posterior density

based on the first part of the sample only which we know has good posterior contraction

properties.

Prior. In a first step generate θ2 ∼ γ, with γ a positive Lebesgue density on R+. Given

θ2, each non-zero mean is drawn independently from a centered normal distribution with

variance θ2, that is, µi|θ2 ∼ N (0, θ2), i > n1.

Another heuristic about the posterior properties for this prior can again be derived by

making the link to the associated sequence model with random means (1.2.7). For the prior

considered here, the random means model has the form

Yi ∼ N (0, σ∗2), i = 1, . . . , n1 and Zi|θ2 ∼ N (0, θ2 + σ∗2), i = n1 + 1, . . . , n, (1.5.5)

with θ2 ∼ γ. If θ2 were a second parameter and not generated from γ, the variance σ∗2

would not be identifiable if only the Zi’s are observed. In model (1.5.5) we know the density

γ, but this is not enough to consistently reconstruct σ∗2 from the subsample Z. By Remark

1.2.1, this model leads to the same posterior for σ2. The posterior should therefore realize

that there is little extractable information about σ∗2 in Z and discard these observations.

We will see in the limiting shape result below that this is roughly what happens.

We denote by `(σ2|Y) and `(σ2 + θ2|Z) the log-likelihoods of the sub-samples Y and Z

coming from model (1.5.5) with σ2 replacing σ∗2, that is

`(σ2|Y) = −n1

2
log(2πσ2)− n1Y2

2σ2
,

`(σ2 + θ2|Z) = −n2

2
log(2π(σ2 + θ2))− n2Z2

2(σ2 + θ2)
.

(1.5.6)

The log-likelihoods appearing in (1.5.6) can be written in terms of inverse-gamma distribu-

tions. We denote by IG(γ, β) the inverse-gamma distribution with shape γ > 0 and scale

β > 0. The corresponding p.d.f. is

fIG(γ,β)(x) =
βγ

Γ(γ)
x−γ−1e−

β
x , (1.5.7)

where Γ(·) is the Gamma function. Rewriting the posterior, we have the following.

Lemma 1.5.1. Under the Gaussian mixture prior, the marginal posterior density has the

form

π(σ2|Y,Z) ∝ fIG(γ1,β1)(σ
2)

(∫ +∞

0
fIG(γ2,β2)(σ

2 + θ2)γ(θ2)dθ2

)
π(σ2), (1.5.8)
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1.5. Gaussian mixture priors

with γ1 = n1/2 − 1, β1 = n1Y2/2 and γ2 = n2/2 − 1, β2 = n2Z2/2. The IG(γ1, β1)-

distribution has mode β1/(γ1+1) = Y2 and variance β2
1/(γ1−1)2(γ1−2) = O(n−1), whereas

the IG(γ2, β2)-distribution has mode β2/(γ2 + 1) = Z2 and variance β2
2/(γ2 − 1)2(γ2 − 2) =

O(n−1).

Starting from Lemma 1.5.1, we can develop a heuristic argument on how to recover the

shape of the limit posterior distribution. We interpret the posterior Π(·|Y,Z) with density

(1.5.8) as the marginalized version, over the set θ2 ∈ (0,+∞), of the distribution Π̃(·|Y,Z)

whose density is given by

π̃(σ2, θ2|Y,Z) ∝ fIG(γ1,β1)(σ
2)fIG(γ2,β2)(σ

2 + θ2)γ(θ2)π(σ2), (1.5.9)

and refer to Π̃(·|Y,Z) as the joint posterior on (σ2, θ2) ∈ (0,+∞)2. The first step is dou-

ble localization. Thanks to the exponential tails of the inverse Gamma distribution, the

joint posterior Π̃(·|Y,Z) asymptotically concentrates on the set {σ2 ∈ B1} ∩ {θ2 ∈ B2},
with B1 a O(ζn)-ball centered at Y2 and B2 a O(ζn)-ball around 0 ∨ (Z2 − Y2) for

any sequence ζn � n−1/2. This also implies that the joint posterior (1.5.9) is arbitrar-

ily close, in total variation distance, to the truncated posterior distribution with density

π̃(σ2, θ2|Y,Z)1({σ2 ∈ B1}∩{θ2 ∈ B2}). In particular, this means that the hyperparameter

θ2 concentrates on a neighborhood of the maximal value derived in (1.5.4).

Arguing as in the classical proof of the Bernstein-von Mises theorem, we can then show

that the truncated posterior distribution will asymptotically not depend on the prior and

prove that the posterior given by (1.5.8) behaves asymptotically like

π1(σ2|Y,Z) = 1(σ2 ∈ B1)fIG(γ1,β1)(σ
2)

∫
B2

fIG(γ2,β2)(σ
2 + θ2)dθ2. (1.5.10)

Using essentially Laplace approximation, we show that the log-likelihoods `(σ2|Y) and

`(σ2 + θ2|Z) in (1.5.6) can be always uniformly approximated by a second-order Taylor

expansion around their maxima Y2 and Z2−σ2, and thus the localized posterior converges

in total variation distance to a distribution with density

π2(σ2|Y,Z) ∝ 1(σ2 ∈ B1)e−
n1

4σ∗4
(σ2−Y2)2

∫
B2

e
− n2

4(σ∗2+µ∗2)2
(θ2+σ2−Z2)2

dθ2, (1.5.11)

whose factors are a truncated Gaussian density with mode Y2 and variance 2σ∗4/n1 =

O(n−1) and the integral of a truncated Gaussian density with mode Z2 − σ2 and variance

2(σ∗2 + µ∗2)2/n2 = O(n−1). By undoing the localization argument, we can show that the

restriction to the sets B1 and B2 can be removed from (1.5.11) and the posterior given by

(1.5.8) converges in total variation distance to the posterior limit distribution

π∞(σ2|Y,Z) ∝ 1(σ2 ≥ 0)e−
n1

4σ∗4
(σ2−Y2)2

[
1− Φ

(√
n2(σ2 − Z2)
√

2(σ∗2 + µ∗2)

)]
, (1.5.12)

with Φ the c.d.f. of the standard normal distribution. Recall that Z2 ≈ σ∗2 + µ∗2. This

suggests that the term involving Φ in the posterior limit distribution should asymptotically
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1.5. Gaussian mixture priors

disappear if µ∗2 � n−1/2. The limit of the posterior should then be the truncated Gaussian

π̃∞(σ2|Y) ∝ 1(σ2 ≥ 0) exp
(
− n1

4σ∗4
(σ2 −Y2)2

)
, (1.5.13)

with mode Y2 and variance 2σ∗4/n1 = O(n−1).

The next result is a formal statement of the arguments mentioned above. To pass to

(1.5.13) involves an additional log n-factor in the signal strength of µ∗2. Denote by ‖ · ‖TV

the total variation distance and recall that the expectation En0 is taken with respect to

model (1.1.1).

Theorem 1.5.2. Let Π∞(·|Y,Z) and Π̃∞(·|Y) be the distributions corresponding to the

densities (1.5.12) and (1.5.13), respectively. If the prior densities γ, π : [0,∞)→ (0,∞) are

positive and uniformly continuous, then, for any compact sets K ⊂ (0,∞),K ′ ⊂ (−∞,∞),

and n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

En0
[∥∥Π(·|Y,Z)−Π∞(·|Y,Z)

∥∥
TV

]
→ 0.

Moreover, if infµ∗i∈K′,∀i |µ
∗
i | � (log n/n)1/4, then

sup
σ∗2∈K,µ∗i∈K′,∀i

En0
[∥∥Π(·|Y,Z)− Π̃∞(·|Y)

∥∥
TV

]
→ 0.

As a corollary of the proof, posterior contraction around the true variance σ∗2 with

contraction rate O(
√

log n/n) can be established. In the case of large means this is an

immediate consequence of the posterior limit Π̃∞(·|Y) and the parametric Bernstein-von

Mises theorem. For small means it is less obvious because of the non-standard limit of the

posterior.

Corollary 1.5.3. There exists a constant M = M(α), such that

sup
σ∗2∈K,µ∗i∈K′,∀i

En0

[
Π
(∣∣∣ σ2

σ∗2
− 1
∣∣∣ ≥M√ log n

n

∣∣∣Y,Z
)]
→ 0.

The posterior limit distribution is closely related to the class of skew normal distribu-

tions, see [5, 6]. We now derive an alternative characterization of the limit distribution.

From the argumentation above, the p.d.f.

∝ 1(σ2, θ2 ≥ 0)e−
n1

4σ∗4
(σ2−Y2)2e

− n2

4(σ∗2+µ∗2)2
(θ2+σ2−Z2)2

(1.5.14)

can be viewed as the joint posterior limit of (σ2, θ2). In particular, the posterior limit

distribution is the marginal distribution with respect to σ2. As this is clear from the context,

we do not write explicitly that the following distributions are conditional on Y,Z, that is,

Y,Z are assumed to be fixed.

Lemma 1.5.4. Let

ξ ∼ N
(
Y2,

2σ∗4

n1

)
, η ∼ N

(
Z2,

2(σ∗2 + µ∗2)2

n2

)
.
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1.5. Gaussian mixture priors

be independent. The distribution with p.d.f. (1.5.14) coincides with the distribution of

(ξ, η − ξ)
∣∣(0 ≤ ξ ≤ η).

In particular, the posterior limit distribution Π∞(·|Y,Z) coincides with the distribution of

ξ
∣∣(0 ≤ ξ ≤ η).

If the standard deviations of η, ξ are small compared to the means, the posterior limit

distribution essentially compares the means Y2 and Z2. This behavior is very reasonable

because if µ∗2 is small, Y2 ≈ Z2 and the subsample Z becomes informative about σ2.

The posterior limit depends on unknown quantities. A frequentist estimator mimicking

the posterior would be to estimate σ2 from the MLE for zero means X2 in the case that

the means are small. To detect whether small means are present, we can check whether

Y2 ≥ Z2, which leads then to the estimator

σ̃2 =

Y2, if Y2 < Z2,

X2, otherwise.

1.5.3 Finite sample analysis

We compare the estimators σ̂2
Y = Y2 and σ̃2 to the maximum σ̂2

map,∞ and the mean σ̂2
mean,∞

of the limit density σ2 7→ π∞(σ2|Y,Z) for sample sizes n ∈ {10, 100, 1000}. As discussed

above, we expect to see some differences for small means. We study the performances for

σ∗2 = 1 and µ the vector with all entries equal to t/n1/4 for the values t ∈ {0, 1, 2, 5}.
Since σ̂2

Y does not depend on the means, the estimator performs equally well in all setups.

Table 1.1 reports the average of the squared errors and the corresponding standard errors

based on 10.000 repetitions. The rescaled MLE σ̂2
Y performs worse than any of the other

estimators for small signals. Among the other estimators there is no clear ’winner’. For

t = 5, the risk of all estimators is nearly the same. For larger values of t, our simulation

experiments did not show any changes compared to t = 5 and the results are therefore

omitted from the table.

There has been a long-standing debate whether Bayesian methods perform well if inter-

preted as frequentist methods. Results like the complete class theorem and the Bernstein-

von Mises theorem have been foundational in this regard, see [53, 41]. Our theory highlights

another instance where Bayes leads to new estimators with good finite sample properties.

The analysis moreover shows that the construction of a prior resulting in a posterior with

good frequentist properties can be highly non-intuitive.
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1.A. Proofs

Table 1.1: Comparison of the estimators for (σ∗2,µ∗) = (1, (t/n1/4, . . . , t/n1/4)) and t ∈
{0, 1, 2, 5}.

Estim. n 0 1 2 5

10 0.414 (± 8.7e-03) 0.411 (± 8.6e-03) 0.386 (± 8.2e-03) 0.399 (± 8.4e-03)

σ̂2
Y 100 0.040 (± 5.9e-04) 0.040 (± 5.9e-04) 0.390 (± 5.7e-04) 0.041 (± 6.4e-04)

1000 0.004 (± 5.7e-05) 0.004 (± 5.6e-05) 0.004 (± 5.8e-05) 0.004 (± 5.8e-05)

10 0.235 (± 3.1e-03) 0.268 (± 4.2e-03) 0.336 (± 6.2e-03) 0.399 (± 8.4e-03)

σ̃2 100 0.028 (± 3.8e-04) 0.031 (± 4.2e-04) 0.037 (± 5.2e-04) 0.041 (± 6.4e-04)

1000 0.003 (± 4.3e-05) 0.003 (± 4.4e-05) 0.004 (± 5.4e-05) 0.004 (± 5.8e-05)

10 0.337 (± 3.3e-03) 0.330 (± 4.6e-03) 0.359 (± 6.9e-03) 0.398 (± 8.3e-03)

σ̂2
map,∞ 100 0.036 (± 4.3e-04) 0.032 (± 4.2e-04) 0.034 (± 4.7e-04) 0.041 (± 6.3e-04)

1000 0.003 (± 4.9e-05) 0.003 (± 4.5e-05) 0.003 (± 4.9e-05) 0.004 (± 5.8e-05)

10 0.167 (± 2.1e-03) 0.182 (± 3.8e-03) 0.232 (± 5.9e-03) 0.283 (± 7.0e-03)

σ̂2
mean,∞ 100 0.040 (± 4.5e-04) 0.034 (± 4.3e-04) 0.034 (± 4.7e-04) 0.041 (± 6.2e-04)

1000 0.004 (± 5.1e-05) 0.003 (± 4.6e-05) 0.003 (± 4.9e-05) 0.004 (± 5.8e-05)

Appendix 1.A Proofs

1.A.1 Proofs for Section 1.3

Proof of Proposition 1.3.1. By direct computation,

∂σ2 logL(σ2|Y,Z) = − n

2σ2
+
|Y|22
2σ4

+
∂σ2

( ∫
e−
|Z−µ|22

2σ2 dν(µ)
)

∫
e−
|Z−µ|22

2σ2 dν(µ)

.

Since

∂σ2

(∫
e−
|Z−µ|22

2σ2 dν(µ)
)

=

∫
|Z− µ|22

2σ4
e−
|Z−µ|22

2σ2 dν(µ),

we recover (1.3.3).

1.A.2 Proofs for Section 1.4

Proof of Proposition 1.4.1. It is enough to show that the following statements hold for

sufficiently large sample size n. Let Q(u) = ν([−u, u]c)/ν([−u, u]). Since ν is a distribution

function Q(u)→ 0 for u→∞. We work on I = [σ∗2/2, 2σ∗2], where σ∗2 is chosen such that

Q(σ∗) ≤ exp
(
− 48

(
17 + 2e2 +

24

1− α

))
, (1.A.1)

and α denotes the fraction of known zero means in the model. Notice that

σ2

2
≤ σ∗2 ≤ 2σ2 for all σ2 ∈ I. (1.A.2)
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Let

R :=
σ∗√

6

√
log
( 1

Q(σ∗)

)
. (1.A.3)

We choose the non-zero means to be

µ∗i :=
R

2
. (1.A.4)

The interval I is compact and the prior π is continuous and positive on R+, infσ2∈I π(σ2) >

0. Since we also assumed that π′ is continuous, we find that

sup
σ2∈I

σ∗2|π′(σ2)|
nπ(σ2)

≤ 1

for all sufficiently large n. With (1.3.3) and (1.A.2),

inf
σ2∈I

∂σ2 log π(σ2|Y,Z) ≥ n

σ∗2
inf
σ2∈I

(σ∗2V (µ|(Z, σ2))

2nσ4
− σ∗2

2σ2
− 1
)

≥ n

σ∗2

( infσ2∈I V (µ|(Z, σ2))

8σ∗2n
− 2
)
.

(1.A.5)

Using (1.3.1) and (1.3.2), we expand V (µ|(Z, σ2),

V (µ|(Z, σ2))

n
=
|Z|22
n

+
1

n

∫
Rn

(|µ|22 − 2Z>µ)π(µ|Z, σ2)dµ

=
|Z|22
n

+
1

n

n∑
i=1

∫
R

(µ2
i − 2Ziµi)π(µi|Zi, σ2)dµi.

Since the integrands in the latter display are positive for |µi| ≥ 2|Zi|, we can set Vi :=

|Zi|
∫
|µ|≤2|Zi| |µ|π(µ|Zi, σ2)dµ and bound

V (µ|(Z, σ2))

n
≥ |Z|

2
2

n
− 2

n

n2∑
i=1

Zi

∫
|µi|≤2|Zi|

µiπ(µi|Zi, σ2)dµi

≥ |Z|
2
2

n
− 2

n

n2∑
i=1

Vi.

As a next step in the proof, we show

inf
σ2∈I

V (µ|(Z, σ2))

n
≥ |Z|

2
2

2n
− 16

n

∣∣∣Z− R

2

∣∣∣2
2
− 2n2

n
σ∗2e2. (1.A.6)

To prove this inequality, we distinguish the cases |Zi| > R and |Zi| ≤ R, decomposing

Vi =: |Zi|(Ai +Bi) (1.A.7)

with

Ai := 1(|Zi| > R)

∫
|µ|≤2|Zi|

|µ|π(µ|Zi, σ2)dµ

Bi := 1(|Zi| ≤ R)

∫
|µ|≤2|Zi|

|µ|π(µ|Zi, σ2)dµ.

(1.A.8)
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For the term Ai of (1.A.8), observe that Ai ≤ 2|Zi|1(|Zi| > R). If |Zi| > R, |Zi| ≤ 2|Zi| −
R ≤ 2|Zi −R/2| and therefore,

|Zi|Ai ≤ 8
(
Zi −

R

2

)2
. (1.A.9)

Next, we bound the term Bi in (1.A.8). In the sequel, we frequently make use of the fact

that σ2 ∈ I. The idea is to split the domain of integration 0 ≤ |µ| ≤ 2|Zi| into sets |µ| ≤ σ∗

and σ∗ < |µ| ≤ 2|Zi|. The contribution of the first part can be bounded by σ∗. More work

is needed for the second part. By expanding the square (µ− Zi)2 in the exponent, the Z2
i -

terms in the numerator and denominator cancel against each other, as they do not depend

on µ, and we have

Bi = 1(|Zi| ≤ R)

∫
|µ|≤2|Zi| |µ|e

− (µ−Zi)
2

2σ2 dν(µ)∫
e−

(µ−Zi)2

2σ2 dν(µ)

≤ σ∗ + 1(|Zi| ≤ R)

∫
σ∗<|µ|≤2R |µ|e

− µ2

2σ2 e
µZi
σ2 dν(µ)∫

e−
µ2

2σ2 e
µZi
σ2 dν(µ)

.

We now treat numerator and denominator separately. For the numerator, the function

y 7→ ye−y
2/2 attains its maximum at y = 1 and is bounded by e−1/2. This means that

|µ|e−
µ2

2σ2 ≤ σe−1/2 ≤ σ∗, where the last step follows from (1.A.2). Together with (1.A.2),

we obtain

1(|Zi| ≤ R)

∫
σ∗<|µ|≤2R

|µ|e−
µ2

2σ2 e
µZi
σ2 ν(µ)dµ ≤ σ∗e

4R2

σ∗2 ν
(
[−σ∗, σ∗]c

)
,

using µZi/σ
2 ≤ 4R2/σ∗2 to bound the exponent in the integral. To derive a lower bound

of the denominator, we replace the integral over R by an integral over [−σ∗, σ∗]. On this

interval, e−µ
2/(2σ2) ≥ e−1 and 1(|Zi| ≤ R)e

µZi
σ2 ≥ e−R

2/σ2 ≥ e−2R2/σ∗2 , since σ∗ ≤ R. We

obtain

1(|Zi| ≤ R)

∫
R
e−

µ2

2σ2 e
µZi
σ2 dν(µ) ≥ e−1e−

2R2

σ∗2 ν
(
[−σ∗, σ∗]

)
.

Combining this with the upper bound for the numerator yields, with (1.A.1), (1.A.3) and

the definition of the function Q(u),

Bi ≤ e1+ 6R2

σ∗2 Q(σ∗)σ∗ = e1−logQ(σ∗)Q(σ∗)σ∗ = eσ∗ for all σ2 ∈ I. (1.A.10)

Together with (1.A.9) and (1.A.7),

Vi ≤ 8
(
Zi −

R

2

)2
+ |Zi|σ∗e, for all σ2 ∈ I.

With |Zi|σ∗e ≤ Z2
i /4 + σ∗2e2, we finally obtain (1.A.6).

In a final step of the proof, we derive, on an event with large probability, a deterministic

lower bound for the right hand side in (1.A.6). Let U1, . . . , Un2 be independent random vari-

ables. Rewriting Chebyshev’s inequality yields P (n−1
∑n2

i=1 Ui > n−1
∑n2

i=1(E[Ui]−σ∗2)) ≥
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1 −
∑n2

i=1 Var(Ui)/(n2σ
∗2)2. We aply this with Ui = Z2

i /2 − 16(Zi − R/2)2. Recall that

Zi ∼ N (R/2, σ∗2). Therefore, E0[Z2
i ] = R2/4 + σ∗2 and E[(Zi − R/2)2] = σ∗2. For the

variance, Var0(Z2
i ) = R2σ∗2 +σ∗4 and Var((Zi−R/2)2) = σ∗4. Since by assumption α < 1,

Chebyshev’s inequality yields then Pn0 (An)→ 1 when n→∞ for the set

An :=

{
|Z|22
2n
− 16

n

∣∣∣Z− R

2

∣∣∣2
2
≥ n2

n

(R2 + 4σ∗2

8
− 17σ∗2

)}
. (1.A.11)

On An, we have using (1.A.3), (1.A.6) and Q(σ∗) ≤ exp(−48(17 + 2e2 + 24/(1− α))),

inf
σ2∈I

V (µ|(Z, σ2))

8σ∗2n
≥ n2

8σ∗2n

(R2

8
− σ∗2(17 + 2e2)

)
≥ 3. (1.A.12)

The assertion follows with (1.A.5).

Proof of Theorem 1.4.2. Proposition 1.4.1 shows that

inf
σ2∈[σ∗2/2,2σ∗2]

∂σ2 log π(σ2|Y,Z) ≥ n

σ∗2

has Pn0 -probability tending to one. This means that for σ2, σ̃2 ∈ [σ∗2/2, 2σ∗2], with σ2 ≤
σ̃2, we must have log π(σ2|Y,Z) ≤ log π(σ̃2|Y,Z) − n(σ̃2 − σ2)/σ∗2. Exponentiating this

inequality for σ̃2 = σ2 + σ∗2/2, yields

Π
(
σ2 ∈

[σ∗2
2
, 3
σ∗2

2

]∣∣∣Y,Z
)

=

∫ 3σ∗2/2

σ∗2/2
πn(σ2|Y,Z)dσ2

≤ e−n/2
∫ 2σ∗2

σ∗2
πn(σ2|Y,Z)dσ2 ≤ e−n/2

and this completes the proof since |σ2/σ∗2 − 1| ≤ 1/2 is equivalent to σ2 ∈ [σ∗2/2, 3σ∗2/2].

1.A.3 Proofs for Section 1.5

Proof of Lemma 1.5.1. We can write the posterior as

π(σ2|Y,Z) ∝ 1(σ2 ≥ 0)e`(σ
2|Y)

∫ ∞
0

e`(σ
2+θ2|Z)γ(θ2)dθ2π(σ2). (1.A.13)

By using (1.5.6) and (1.5.7) we obtain (1.5.8).

We now prepare for the proof of the limiting shape result. From (1.5.8), the density

(1.5.9) of the joint posterior is

π̃(σ2, θ2|Y,Z) ∝ 1(σ2 ≥ 0, θ2 ≥ 0)e`(σ
2|Y)e`(σ

2+θ2|Z)γ(θ2)π(σ2).

With

ζn := 4

√(
1 +

( α

1− α
∨ 1− α

α

)) log n

n1 ∧ n2
∧ 1, (1.A.14)
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define

B1 :=
[ Y2

1 + ζn
,

Y2

1− ζn

]
,

B2 :=
[
0 ∨

( Z2

1 + ζn
− Y2

1− ζn

)
,

Z2

1− ζn
− Y2

1 + ζn

]
.

(1.A.15)

It is shown below that the posterior concentrates on {σ2 ∈ B1} and {θ2 ∈ B2}. The

posterior can consequently be approximated by the distribution Π1(·|Y,Z) defined through

its density (1.5.10). On the localized set (σ2, θ2) ∈ B1 × B2, we are able to replace the

log-likelihoods by a quadratic expansion. This then allows us to approximate the posterior

by Π2(·|Y,Z) which is defined as the distribution with density (1.5.11). We now state the

single steps formally and provide the proofs.

Proposition 1.A.1. If the prior densities γ, π : [0,∞)→ (0,∞) are positive and uniformly

continuous, then there exists a sequence of sets (An)n such that for any compact sets K ⊂
(0,∞),K ′ ⊂ (−∞,∞),

(i) limn→∞ supσ∗2∈K,µ∗i∈K′,∀i P
n
0 (Acn) = 0.

(ii) With B1, B2 as defined in (1.A.15), we have for n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

Π̃
({
σ2 /∈ B1

}
∪
{
θ2 /∈ B2

} ∣∣Y,Z
)
1
(
(Y,Z) ∈ An

)
→ 0.

(iii) For n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π̃
(
σ2 ∈ ·

∣∣Y,Z
)
−Π1(·|Y,Z)

∥∥∥
TV

1
(
(Y,Z) ∈ An

)
→ 0.

(iv) For n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π1(·|Y,Z)−Π2(·|Y,Z)
∥∥∥

TV
1
(
(Y,Z) ∈ An

)
→ 0.

(v) For n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π2(·|Y,Z)−Π∞(·|Y,Z)
∥∥∥

TV
1
(
(Y,Z) ∈ An

)
→ 0.

(vi) For n→∞, and infµ∗i∈K′ |µ
∗
i | � (log n/n)1/4,

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π∞(·|Y,Z)− Π̃∞(·|Y)
∥∥∥

TV
1
(
(Y,Z) ∈ An

)
→ 0.

Proof of Proposition 1.A.1. Recall the definition of ζn in (1.A.14) and set

δn := C−1ζn =

√
2

log n

n1 ∧ n2
∧ C−1, with C2 := 16 + 16

( α

1− α
∨ 1− α

α

)
. (1.A.16)
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Let σ∗2 = inf{σ∗2 ∈ K} > 0. Define the event

An :=
{

Z2 >
Y2

1 + δn/2

}
∩
{∣∣∣Z2 − µ∗2

σ∗2
− 1
∣∣∣+
∣∣∣Y2

σ∗2
− 1
∣∣∣ ≤ δn}. (1.A.17)

Since δn ≤ 1/2, this implies in particular that on An, Y2 ∧ Z2 ≥ σ∗2/2.
Proof of (i): We simplify the notation by introducing the events

Bn :=
{

Z2 >
Y2

1 + δn/2

}
, Dn :=

{∣∣∣Z2 − µ∗2
σ∗2

− 1
∣∣∣+
∣∣∣Y2

σ∗2
− 1
∣∣∣ ≤ δn},

so that An = Bn ∩Dn. Thus Pn0 (Acn) ≤ Pn0 (Bc
n) + Pn0 (Dc

n). We show that both Pn0 (Bc
n) and

Pn0 (Dc
n) tend to zero uniformly over compact sets of parameters. By Chebyshev’s inequality,

Pn0 (Dc
n) ≤ Pn0

(∣∣∣Z2 − µ∗2
σ∗2

− 1
∣∣∣ > δn

2

)
+ Pn0

(∣∣∣Y2

σ∗2
− 1
∣∣∣ > δn

2

)

≤ 4
Var0

(
Z2−µ∗2
σ∗2

)
+ Var0

(
Y2

σ∗2

)
δ2
n

.

Since

Var0

(
Z2 − µ∗2
σ∗2

)
=

2

n2
+

4µ∗2

n2σ∗2
, Var0

(
Y2

σ∗2

)
=

2

n1
,

we find

sup
σ∗2∈K,µ∗i∈K′,∀i

Pn0 (Dc
n) ≤ 8

n1δ2
n

+
8

n2δ2
n

+
16H

n2δ2
n

with H := supσ∗2∈K,µ∗i∈K′,∀i(µ
∗
i )

2/σ∗2. Notice that H is a finite constant since K ⊂ (0,∞)

and K ′ are compact sets. Because δn = O(
√

log n/n), the previous probability tends to

zero as n increases. We now bound Pn0 (Bc
n). Rewriting Bc

n, we obtain

Bc
n =

{(
1 +

δn
2

)(
Z2 − µ∗2
σ∗2

− 1

)
+ 1− Y2

σ∗2
≤ −δn

2
−
(

1 +
δn
2

)
µ∗2

σ∗2

}
,

and again by Chebyshev’s inequality

Pn0 (Bc
n) ≤

(
1 + δn

2

)2
Var0

(
Z2−µ∗2
σ∗2 − 1

)
+ Var0

(
1− Y2

σ∗2

)
(
δn
2 +

(
1 + δn

2

)µ∗2
σ∗2

)2

≤
(

1 +
δn
2

)2( 8

n2δ2
n

+
16H

n2δ2
n

)
+

8

n1δ2
n

,

which again tends to zero for n→∞ uniformly over σ∗2 ∈ K,µ∗i ∈ K ′,∀i.
Proof of (ii): We work on the event An defined in (1.A.17) deriving deterministic lower

and upper bounds for the denominator and numerator in the Bayes formula. We start with

Π̃(Bc
1 × R+|Y,Z) =

∫
Bc1
e`(σ

2|Y)
∫∞

0 e`(σ
2+θ2|Z)γ(θ2)dθ2π(σ2)dσ2∫∞

0 e`(σ2|Y)
∫∞

0 e`(σ2+θ2|Z)γ(θ2)dθ2π(σ2)dσ2
, (1.A.18)

28



1.A. Proofs

and show that on the event An this quantity tends to 0 when n tends to infinity. The

first part of the proof provides a lower bound for the denominator. For that, we restrict

σ2 ∈ Σ := [Y2/(1 + δn),Y2/(1 + δn/2)] and θ2 ∈ Θ(σ2) := [Z2 − σ2,Z2(1 + δn) − σ2] ⊂
(0,∞), where the last inclusion follows since by definition of the event An in (1.A.17),

Z2 − σ2 ≥ Z2 −Y2/(1 + δn/2) ≥ 0. The inner integral in the denominator of (1.A.18) can

be lower bounded by∫ ∞
0

e`(σ
2+θ2|Z)γ(θ2)dθ2 ≥

∫
Θ(σ2)

e`(σ
2+θ2|Z)dθ2 inf

θ2≤Z2(1+δn)
γ(θ2).

Thanks to the definition of An in (1.A.17) and δn ≤ 1, we have Z2 ≤ µ∗2 + σ∗2(1 + δn), so

that Z2(1 + δn) ≤ 2µ∗2 + 4σ∗2. We then set

γ := inf
θ2≤supσ∗2∈K,µ∗

i
∈K′,∀i 2µ∗2+4σ∗2

γ(θ2) ≤ inf
θ2≤Z2(1+δn)

γ(θ2).

Since K,K ′ are compact sets and γ is continuous and positive, we must have γ > 0.

Differentiating (1.5.6) gives ∂θ2`(σ
2 +θ2|Y) = 1

2n2(Z2−σ2−θ2)/(σ2 +θ2)2, so the function

θ2 7→ `(σ2 + θ2|Y) is decreasing on Θ(σ2) for any σ2. As a direct consequence of (1.5.6),

we obtain

`
(
Z2(1 + δn)|Z

)
= `
(
Z2|Z

)
+
n2

2

(
δn/(1 + δn)− log(1 + δn)

)
. (1.A.19)

Consequently, for any σ2 ∈ Σ,∫ ∞
0

e`(σ
2+θ2|Z)γ(θ2)dθ2 ≥ γZ2δne

`(Z2|Z)+
n2
2

(δn/(1+δn)−log(1+δn))

≥ 1

2
γσ∗2δne

`(Z2|Z)−n2
4
δ2n ,

(1.A.20)

where the last inequality follows since Z2 ≥ σ∗2/2 on An, δn ≤ 1, and − log(1 + δn) ≥ −δn
for δn ≤ 1. The right hand side does not depend on σ2 anymore. To lower bound the

first integral in the denominator of (1.A.18) we apply a similar argument. By (1.5.6),

∂σ2`(σ2|Y) = n1(Y2−σ2)/(2σ4). This means that the function σ2 7→ `(σ2|Y) is increasing

on Σ and (1.5.6) yields

`
(
Y2/(1 + δn)

)
= `
(
Y2|Y

)
+
n1

2

(
log(1 + δn)− δn

)
.

On An, Y2 ≤ σ∗2(1 + δn) and therefore Y2/(1 + δn/2) ≤ 2σ∗2. Set

π := inf
σ2≤supσ∗2∈K 2σ∗2

π(σ2) ≤ inf
σ2≤Y2/(1+δn/2)

π(σ2),

so that π > 0 because K is a compact set and π is continuous and positive. We bound∫ ∞
0

e`(σ
2|Y)π(σ2)dσ2 ≥ inf

σ2∈Σ
π(σ2)

δn
2

Y2e`(Y
2/(1+δn)|Y)

≥ πδn
2

Y2e`(Y
2|Y)+

n1
2

(log(1+δn)−δn)

≥ 1

4
πδnσ

∗2e`(Y
2|Y)−n1

16
δ2n ,

(1.A.21)
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using that on An, Y2 ≥ σ∗2/2 and log(1+δn) ≥ δn−δ2
n/8 for 0 ≤ δn ≤ 1. The product of the

lower bounds obtained in (1.A.20) and (1.A.21) is then a lower bound for the denominator

of (1.A.18).

In the next step we upper bound the numerator of (1.A.18). Firstly, observe that `(σ2 +

θ2|Z) ≤ `(Z2|Z) and ∫ ∞
0

e`(σ
2+θ2|Z)γ(θ2)dθ2 ≤ e`(Z2|Z). (1.A.22)

Secondly, since σ2 7→ `(σ2|Y) is increasing on (0,Y2] and decreasing on [Y2,∞),∫ Y2/(1+ζn)

0
e`(σ

2|Y)π(σ2)dσ2 ≤ e`(Y2/(1+ζn)|Y)

= e`(Y
2|Y)+

n1
2

(log(1+ζn)−ζn)

≤ e`(Y2|Y)−n1
16
ζ2n , (1.A.23)∫ ∞

Y2/(1−ζn)
e`(σ

2|Y)π(σ2)dσ2 ≤ e`(Y2/(1−ζn)|Y) = e`(Y
2|Y)+

n1
2

(log(1−ζn)+ζn)

≤ e`(Y2|Y)−n1
16
ζ2n .

The numerator of (1.A.18) is upper bounded by the product of the bounds obtained in

(1.A.22) and (1.A.23). Together with the bounds on the denominator in (1.A.20) and

(1.A.21), and ζn = Cδn, we derive, on the event An, the following bound for (1.A.18):

sup
σ∗2∈K,µ∗i∈K′,∀i

Π̃
(
σ2 /∈ B1

∣∣Y,Z
)
≤ 16

πγσ∗4δ2
n

e−(C2n1−4n2−n1)δ2n/16 → 0. (1.A.24)

The convergence to zero follows since by definition of the constant C in (1.A.16), n1C
2 −

4n2 − n1 > 4n1 and because of δn = O(
√

log n/n).

Along similar lines, we show now that, on the event An, Π̃(θ2 /∈ B2|Y,Z)→ 0 as n tends

to infinity. Since {θ2 /∈ B2} ⊂ {σ2 /∈ B1} ∪ ({σ2 ∈ B1} ∩ {θ2 /∈ B2}), and Π̃(σ2 /∈ B1|Y,Z)

tends to zero by (1.A.24), it is sufficient to establish convergence of

Π̃(B1 ×Bc
2|Y,Z) =

∫
B1
e`(σ

2|Y)
∫
Bc2
e`(σ

2+θ2|Z)γ(θ2)dθ2π(σ2)dσ2∫∞
0 e`(σ2|Y)

∫∞
0 e`(σ2+θ2|Z)γ(θ2)dθ2π(σ2)dσ2

(1.A.25)

to zero. We can argue similarly as for the upper bound above using that `(σ2|Y) ≤ `(Y2|Y).

By following the same steps as for (1.A.22) and (1.A.23) and using that a 7→ `(a|Z) is

increasing on (0,Z2] and decreasing on [Z2,∞), the numerator in (1.5.9) integrated over

the set {σ2 ∈ B1} ∩ {θ2 /∈ B2} is upper bounded by

≤ e`(Y2|Y) sup
σ2∈B1

∫
Bc2

e`(σ
2+θ2|Z)γ(θ2)dθ2 ≤ 2e`(Y

2|Y)+`(Z2|Z)−n2
16
ζ2n .

Together with the lower bounds for the denominator in (1.A.20) and (1.A.21), we upper

bound (1.A.25), on the event An, by

sup
σ∗2∈K,µ∗i∈K′,∀i

Π̃(B1 ×Bc
2|Y,Z) ≤ 32

πγσ∗4δ2
n

e−(C2n2−4n2−n1)δ2n/16. (1.A.26)
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By definition (see (1.A.16)), the constant C2 > 0 satisfies n2C
2 − 4n2 − n1 > 4n2. Since

δn = O(
√

log n/n), this implies that the right hand side of (1.A.26) is bounded above by

. n exp(−n2δ
2
n/4) → 0, as n → ∞. Together with (1.A.24), this completes the proof for

part (ii).

Proof of (iii): It is well-known that for probability measures P,Q defined on the same

measurable space X ,

‖P − P (·|A)‖TV ≤ 2P (Ac), (1.A.27)

see Lemma E.1 in [75]. With A = B1 ∩B2, P = Π̃(·|Y,Z) and Π0(·|Y,Z) the distribution

with density

π0(σ2, θ2|Y,Z) =
e`(σ

2|Y)e`(σ
2+θ2|Z)1(σ2 ∈ B1, θ

2 ∈ B2)∫
B1
e`(σ2|Y)(

∫
B2
e`(σ2+θ2|Z)dθ2)dσ2

,

we have that

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π̃
(
σ2 ∈ ·

∣∣Y,Z
)
−Π0

(
σ2 ∈ ·

∣∣Y,Z
)∥∥∥

TV

≤ sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥∥Π̃
(
σ2 ∈ ·, θ2 ∈ ·

∣∣Y,Z
)
−Π0

(
σ2 ∈ ·, θ2 ∈ ·

∣∣Y,Z
)∥∥∥

TV
→ 0.

By bounding the L1-distance between the densities, we now show that Π0(σ2 ∈ ·|Y,Z) and

Π1(σ2 ∈ ·|Y,Z) are close in total variation using the following lemma.

Lemma 1.A.2 (Lemma E.3 in [75]). If h(σ2) ∝ dΠ0(σ2 ∈ ·|Y,Z)/dΠ1(σ2 ∈ ·|Y,Z) exists

and
∫
|h(σ2)− 1|dΠ1(σ2|Y,Z) ≤ δ for some δ ∈ (0, 1), then also∥∥Π0

(
σ2 ∈ ·

∣∣Y,Z)−Π1(σ2 ∈ ·
∣∣Y,Z)

∥∥
TV
≤ δ

1− δ
.

As h is the Radon-Nikodym derivative up to a multiplicative factor, we can choose

h(σ2) =
π(σ2)

∫
B2
e`(σ

2+θ2|Z)γ(θ2)dθ2

inf
σ̃2∈B1,θ̃2∈B2

π(σ̃2)γ(θ̃2)
∫
B2
e`(σ2+θ2|Z)dθ2

1(σ2 ∈ B1).

Then,

1 ≤ h(σ2) ≤
supσ2∈B1,θ2∈B2

π(σ2)γ(θ2)

inf
σ̃2∈B1,θ̃2∈B2

π(σ̃2)γ(θ̃2)
. (1.A.28)

Using the argument above, it remains to prove that supσ2∈B1
|h(σ2) − 1| → 0 for n → ∞.

By the definition of An and due to δn ≤ ζn,

B1 ⊆ B′1 := [κnσ
∗2, κ−1

n σ∗2] with κn :=
1− ζn
1 + ζn

= 1− 2ζn +O(ζ2
n). (1.A.29)

Recall that K is a compact set. Since π is positive and uniformly continuous,

sup
σ∗2∈K

sup
σ2,σ̃2∈[κnσ∗2,κ

−1
n σ∗2]

∣∣∣π(σ2)

π(σ̃2)
− 1
∣∣∣→ 0. (1.A.30)
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Similarly, we have on the event An,

B2 ⊆ B′2 :=
[ µ∗2

1 + ζn
+
(
κn −

1

κn

)
σ∗2,

µ∗2

1− ζn
+
( 1

κn
− κn

)
σ∗2
]
. (1.A.31)

Since µ∗i ∈ K ′ for all i, the average of the squares µ∗2 lies in the convex hull of K ′ and

sup
σ∗2∈K,µ∗i∈K′,∀i

sup
θ2,θ̃2∈B′2

∣∣∣γ(θ2)

γ(θ̃2)
− 1
∣∣∣→ 0.

For real numbers u, v, uv = (u− 1)(v− 1) + (u− 1) + (v− 1) + 1. We therefore obtain with

(1.A.28) and (1.A.30), supσ2∈B1
|h(σ2) − 1| → 0 for n → ∞. This completes the proof of

(iii).

Proof of (iv): We use the same strategy as in the proof of part (iii), applying Lemma

1.A.2 to

h(σ2) = 1(σ2 ∈ B1)e`(σ
2|Y)−`(Y2|Y)+

n1
4σ∗4

(σ2−Y2)2
∫
B2
e`(σ

2+θ2|Z)−`(Z2|Z)dθ2∫
B2
e
− n2

4(σ∗2+µ∗2)2
(θ2+σ2−Z2)2

dθ2

,

which is a constant multiple of the likelihood ratio of Π1(σ2 ∈ ·|Y,Z) and Π2(σ2 ∈ ·|Y,Z).

To verify the assumptions of Lemma 1.A.2, we have to show that supσ∗2∈K |h(σ2)−1| → 0

for n→∞. Using again the identity uv = (u− 1)(v− 1) + (u− 1) + (v− 1) + 1 and the fact

that |
∫
f/
∫
g− 1| ≤ sup |f/g− 1|, we find that it is enough to prove that on the event An,

sup
σ∗2∈K

sup
σ2∈B1

∣∣∣`(σ2|Y)− `(Y2|Y) +
n1

4σ∗4
(σ2 −Y2)2

∣∣∣→ 0. (1.A.32)

sup
σ∗2∈K,µ∗i∈K′,∀i

sup
σ2∈B1,θ2∈B2

∣∣∣`(σ2 + θ2|Z)− `(Z2|Z) +
n2(θ2 + σ2 − Z2)2

4(σ∗2 + µ∗2)2

∣∣∣→ 0. (1.A.33)

To verify (1.A.32), differentiating (1.5.6) gives

∂σ2`(σ2|Y) =
n1

2σ4
(Y2 − σ2), ∂σ2`(Y2|Y) = 0,

∂2
σ2`(σ

2|Y) =
n1

2σ6
(σ2 − 2Y2), ∂2

σ2`(Y2|Y) = − n1

2Y2
2 < 0,

∂3
σ2`(σ

2|Y) =
n1

σ8
(3Y2 − σ2),

and by a third-order Taylor expansion around the maximum Y2,

`(σ2|Y)− `(Y2|Y)

=
1

2
∂2
σ2`(Y2|Y)(σ2 −Y2)2 +

1

6
∂3
σ2`(s

2|Y)(σ2 −Y2)3

= − n1

4Y2
2 (σ2 −Y2)2 +

n1

6s8
(3Y2 − s2)(σ2 −Y2)3

= − n1

4σ∗4
(σ2 −Y2)2 +

n1(Y2 + σ∗2)

4σ∗4Y2
2 (Y2 − σ∗2)(σ2 −Y2)2

+
n1

6s8
(3Y2 − s2)(σ2 −Y2)3,
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for some s2 between σ2 and Y2. We now control the smaller order terms uniformly over

σ2 ∈ B1. Observe that also Y2, s2 ∈ B1. With (1.A.29), supσ2,σ̃2∈B1
|σ2 − σ̃2| = O(ζn) and

σ∗2/2 ≤ σ2 ≤ 2σ∗2 for all σ2 ∈ B1. Moreover, since K ⊂ (0,∞) is compact, inf σ∗2 ∈ K > 0.

Together this shows that

sup
σ∗2∈K

sup
σ2∈B1

∣∣∣`(σ2|Y)− `(Y2|Y) +
n1

4σ∗4
(σ2 −Y2)2

∣∣∣ = O(n1ζ
3
n)→ 0,

establishing (1.A.32). To prove (1.A.33) we argue similarly. Differentiating (1.5.6) gives

∂θ2`(σ
2 + θ2|Z) =

n2

2(σ2 + θ2)2
(Z2 − σ2 − θ2), ∂θ2`(Z

2|Z) = 0,

∂2
θ2`(σ

2 + θ2|Z) =
n2

2(σ2 + θ2)3
(θ2 + σ2 − 2Z2), ∂2

θ2`(Z
2|Z) = − n2

2Z2
2 < 0,

∂3
θ2`(σ

2 + θ2|Z) =
n2

(σ2 + θ2)4
(3Z2 − σ2 − θ2),

and by a third-order Taylor expansion around the maximum θ2
∗ = Z2 − σ2,

`(σ2 + θ2|Z)− `(Z2|Z)

=
1

2
∂2
θ2`(Z

2|Z)(θ2 + σ2 − Z2)2 +
1

6
∂3
θ2`(σ

2 + s2|Z)(θ2 + σ2 − Z2)3

= − n2

4Z2
2 (θ2 + σ2 − Z2)2 +

n2

6(σ2 + s2)4
(3Z2 − σ2 − s2)(θ2 + σ2 − Z2)3

= − n2

4(σ∗2 + µ∗2)2
(θ2 + σ2 − Z2)2 +

n2(Z2 + σ∗2 + µ∗2)

4(σ∗2 + µ∗2)2Z2
2 (Z2 − σ∗2 − µ∗2)(θ2 + σ2 − Z2)2

+
n2

6(σ2 + s2)4
(3Z2 − σ2 − s2)(θ2 + σ2 − Z2)3,

for some s2 between θ2 and Z2 − σ2. If (σ2, θ2) ∈ B1 × B2, then, on An, both Z2 − σ2

and s2 are in B′2. With (1.A.29) and (1.A.31), we have supu,v∈B′2 |u − v| = O(ζn) and

(σ∗2 +µ∗2)/2 ≤ σ2 + s2 ≤ 2(σ∗2 +µ∗2) for sufficiently large n. Together with the reasoning

for (1.A.32), this leads to

sup
σ∗2∈K,µ∗i∈K′,∀i

sup
σ2∈B1,θ2∈B2

∣∣∣`(σ2 + θ2|Z)− `(Z2|Z) +
n2

4(σ∗2 + µ∗2)2
(θ2 + σ2 − Z2)2

∣∣∣
being bounded by . nζ3

n and thus converging to zero.

Proof of (v): Define Π3(·|Y,Z) as the distribution on (0,∞)2, with density (1.5.14),

that is,

π3(σ2, θ2|Y,Z) ∝ 1(σ2 ≥ 0, θ2 ≥ 0)e−
n1

4σ∗4
(σ2−Y2)2e

− n2

4(σ∗2+µ∗2)2
(θ2+σ2−Z2)2

.

and Π̃3(·|Y,Z) as the localization of Π3(·|Y,Z) on B1 × B2, that is, the distribution with

density

π̃3(σ2, θ2|Y,Z) ∝ 1(σ2 ∈ B1, θ
2 ∈ B2)e−

n1
4σ∗4

(σ2−Y2)2e−
n2
4

(σ∗2+µ∗2)−2(θ2+σ2−Z2)2 .

33



1.A. Proofs

Here B1, B2 are as defined in (1.A.15). The marginal distributions of Π̃3(·|Y,Z) and

Π3(·|Y,Z) with respect to σ2 are Π2(·|Y,Z) and Π∞(·|Y,Z), respectively. Applying

(1.A.27) yields∥∥Π2(·|Y,Z)−Π∞(·|Y,Z)
∥∥

TV
≤
∥∥Π̃3(·|Y,Z)−Π3(·|Y,Z)

∥∥
TV

≤ 2Π3

({
σ2 /∈ B1

}
∪
{
θ2 /∈ B2

}∣∣Y,Z
)
.

(1.A.34)

To prove (v), it remains to show that for n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

Π3

({
σ2 /∈ B1

}
∪
{
θ2 /∈ B2

}∣∣Y,Z
)
1
(
(Y,Z) ∈ An

)
→ 0. (1.A.35)

By Lemma 1.5.4, it is enough to prove that on An,

sup
σ∗2∈K,µ∗i∈K′,∀i

P
(
ξ /∈ B1

∣∣(0 ≤ ξ ≤ η)
)

+ P
(
η − ξ /∈ B2

∣∣(0 ≤ ξ ≤ η)
)
→ 0, (1.A.36)

for independent ξ ∼ N (Y2, 2σ∗4/n1), η ∼ N (Z2, 2(σ∗2 +µ∗2)2/n2). Recall that this and all

the following statements in (v) should be understood conditionally on Y,Z.

To bound the terms, we heavily rely on the exponential bounds for tail probabilities of

Gaussian variables given by Mill’s ratio [45](
x2

1 + x2

)
e−x

2/2

√
2πx

≤ P
(
N (0, 1) > x

)
≤ e−x

2/2

√
2πx

, ∀x > 0. (1.A.37)

In a first step we derive a lower bound on P (0 ≤ ξ ≤ η). Using that on An, Y2/(1 +

δn/2) ≤ Z2 = E[η], the definition of ξ, the symmetry properties of the N (0, 1) distribution,

σ∗2/2 ≤ Y2 ≤ 2σ∗2 on An, and Mill’s ratio, we find

P
(
0 ≤ ξ ≤ η

)
≥ P

(
0 ≤ ξ ≤ Y2

1 + δn/2

)
P
(
Z2 ≤ η

)
=

1

2
P

(
N (0, 1) ∈

[
−
√
n1Y2

√
2σ∗2

,−
√
n1δnY2

2
√

2(1 + δn/2)σ∗2

])
=

1

2
P

(
N (0, 1) ∈

[ √
n1δnY2

2
√

2(1 + δn/2)σ∗2
,

√
n1Y2

√
2σ∗2

])
≥ 1

2
P

(
N (0, 1) ∈

[√
n1δn√

2
,

√
n1

2
√

2

])
= P

(
N (0, 1) ≥

√
n1δn√

2

)
− P

(
N (0, 1) ≥

√
n1

2
√

2

)
≥ 1

2
√
πn1δn

e−
n1δ

2
n

4 − 2
√
πn1

e−
n1
16 .

(1.A.38)

where in the last inequality we used that x2/(1 + x2) > 1
2 for x > 1.

We now derive an upper bound for P (ξ /∈ B1). Using the definition of ξ, ζn ≤ 1,
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1.A. Proofs

Y2 ≥ σ∗2/2, and Mill’s ratio (1.A.37),

P (ξ /∈ B1) = P

(
N (0, 1) /∈

[
−

√
n1ζnY2

√
2(1 + ζn)σ∗2

,

√
n1ζnY2

√
2(1− ζn)σ∗2

])
≤ 2P

(
N (0, 1) >

√
n1ζnY2

√
2(1 + ζn)σ∗2

)
≤ 2P

(
N (0, 1) >

√
n1ζn

4
√

2

)
≤ 8
√
πn1ζn

e−
n1ζ

2
n

64 .

(1.A.39)

Next, we obtain a similar bound for P (η−ξ /∈ B2, ξ ≤ η, ξ ∈ B1). If we define the difference

of two sets U, V as U−V := {u−v : u ∈ U, v ∈ V }, then, B2 = ([Z2/(1+ζn),Z2/(1−ζn)]−
B1)∩R+. On the event ξ ≤ η, ξ ∈ B1, we have that η ∈ [Z2/(1+ζn),Z2/(1−ζn)] implies that

η−ξ ∈ B2, which is equivalent to saying that η−ξ /∈ B2 implies η /∈ [Z2/(1+ζn),Z2/(1−ζn)].

On An, |Z2 − µ∗2 − σ∗2| ≤ σ∗2δn by definition. Because of δn ≤ 1/2, we obtain Z2 ≥
(µ∗2 + σ∗2)/2. Together with the symmetry properties of the normal distribution, ζn ≤ 1,

and Mill’s ratio (1.A.37), this yields

P
(
η − ξ /∈ B2, ξ ≤ η, ξ ∈ B1

)
≤ P

(
η /∈

[
Z2

1 + ζn
,

Z2

1− ζn

])
= P

(
N (0, 1) /∈

[
−

√
n2ζnZ2

√
2(µ∗2 + σ∗2)(1 + ζn)

,

√
n2ζnZ2

√
2(µ∗2 + σ∗2)(1− ζn)

])
≤ 2P

(
N (0, 1) >

√
n2ζn

4
√

2

)
≤ 8
√
πn2ζn

e−
n2ζ

2
n

64 .

(1.A.40)

To prove (1.A.36), we bound

P
(
ξ /∈ B1

∣∣(0 ≤ ξ ≤ η)
)
≤ P (ξ /∈ B1)

P (0 ≤ ξ ≤ η)

and

P
(
η − ξ /∈ B2

∣∣(0 ≤ ξ ≤ η)
)
≤ P (η − ξ /∈ B2, ξ ∈ B1, 0 ≤ ξ ≤ η) + P (ξ /∈ B1)

P (0 ≤ ξ ≤ η)
.

Now (1.A.36) (and therefore (1.A.35)) follow from the inequalities (1.A.38), (1.A.39),

(1.A.40) and the definition of δn. This completes the proof of (v).

Proof of (vi): Recall the definitions of the densities

π∞(σ2|Y,Z) ∝ 1(σ2 ≥ 0) exp
(
− n1

4σ∗4
(σ2 −Y2)2

)(
1− Φ

(√n2(σ2 − Z2)
√

2(σ∗2 + µ∗2)

))
,

π̃∞(σ2|Y) ∝ 1(σ2 ≥ 0) exp
(
− n1

4σ∗4
(σ2 −Y2)2

)
,
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and let

π∞,B1(σ2|Y,Z) ∝ π∞(σ2|Y,Z)1(σ2 ∈ B1),

π̃∞,B1(σ2|Y) ∝ π̃∞(σ2|Y)1(σ2 ∈ B1),

be their localised versions on B1. It is enough to show that, on An,

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥Π∞(·|Y,Z)−Π∞,B1(·|Y,Z)
∥∥

TV

n→∞−−−→ 0, (1.A.41)

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥Π̃∞(·|Y)− Π̃∞,B1(·|Y)
∥∥

TV

n→∞−−−→ 0, (1.A.42)

sup
σ∗2∈K,µ∗i∈K′,∀i

∥∥Π∞,B1(·|Y,Z)− Π̃∞,B1(·|Y)
∥∥

TV

n→∞−−−→ 0. (1.A.43)

For (1.A.41), we apply (1.A.27) and the fact that Π∞(·|Y,Z) is the marginal distribution

of Π3(·|Y,Z), finding∥∥Π∞(·|Y,Z)−Π∞,B1(·|Y,Z)
∥∥

TV
≤ 2Π∞(Bc

1|Y,Z) = 2Π3(Bc
1|Y,Z).

In (v) we proved that the right hand side converges to zero uniformly over σ∗2 ∈ K,µ∗i ∈
K ′,∀i. For (1.A.42), we argue similarly, using that∥∥Π̃∞(·|Y)− Π̃∞,B1(·|Y)

∥∥
TV
≤ 2Π̃∞(Bc

1|Y) = 2P (ξ /∈ B1),

with ξ ∼ N (Y2, 2σ∗4/n1). Using (1.A.39), we see that the right hand side converges to

zero, uniformly over σ∗2 ∈ K,µ∗i ∈ K ′,∀i.
For (1.A.43), we apply Lemma 1.A.2. On An, the likelihood ratio of Π∞,B1(·|Y,Z) and

Π̃∞,B1(·|Y) is given by

h(σ2|Y,Z) :=

(
1− Φ

(√
n2(σ2 − Z2)
√

2(µ∗2 + σ∗2)

))
1(σ2 ∈ B1).

On An,

sup
σ2∈B1

σ2 − Z2 =
Y2

1− ζn
− Z2 ≤ σ∗2(1 + δn)

1− ζn
− µ∗2 − σ∗2(1− δn).

Uniformly over σ∗2 ∈ K and infµ∗i∈K′ |µ
∗
i |2 � ζn, the right hand side can be further upper

bounded by −µ∗2/2 for sufficiently large n. Thus,

|h(σ2|Y,Z)− 1| = P

(
N (0, 1) ≤

√
n2(σ2 − Z2)
√

2(µ∗2 + σ∗2)

)
≤ P

(
N (0, 1) ≥

√
n2µ∗2

2
√

2(µ∗2 + σ∗2)

)
.

Since nµ∗2 � nζn →∞ for n→∞,

sup
σ∗2∈K,µ∗i∈K′,∀i

P

(
N (0, 1) ≥

√
n2µ∗2

2
√

2(µ∗2 + σ∗2)

)
n→∞−−−→ 0.

This concludes the proof of (vi).
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Proof of Theorem 1.5.2. We insert 1 = 1((Y,Z) ∈ An)+1((Y,Z) /∈ An) in the expectation.

Since the total variation distance of probability measures is bounded, the result follows from

Proposition 1.A.1.

Proof of Corollary 1.5.3. Recall that the posterior is the marginal distribution of Π̃(·|Y,Z)

with respect to σ2. By Proposition 1.A.1 (ii), we have that

sup
σ∗2∈K,µ∗i∈K′,∀i

Π

(
σ2 /∈

[
Y2

1 + ζn
,

Y2

1− ζn

]∣∣∣∣Y,Z

)
1
(
(Y,Z) ∈ An

)
→ 0.

Using that on An, σ
∗2(1 − δn) ≤ Y2 ≤ σ∗2(1 + δn), and δn = C−1ζn = O(

√
log n/n), we

obtain

sup
σ∗2∈K,µ∗i∈K′,∀i

Π

(∣∣∣∣ σ2

σ∗2
− 1

∣∣∣∣ ≥M
√

log n

n

∣∣∣∣Y,Z

)
1
(
(Y,Z) ∈ An

)
→ 0

for a constant M = M(α) that is chosen to be sufficiently large. The claim follows by

splitting the expected posterior, inserting 1 = 1((Y,Z) ∈ An) + 1((Y,Z) /∈ An) in the

expectation and using Proposition 1.A.1 (i).

Proof of Lemma 1.5.4. To prove the result, we derive an expression for the joint density of

(ξ, η − ξ)
∣∣(0 ≤ ξ ≤ η). Observe that

P
(
ξ ≤ s, η − ξ ≤ t

∣∣(0 ≤ ξ ≤ η)
)

=
P (ξ ≤ s, η − ξ ≤ t, 0 ≤ ξ ≤ η)

P (0 ≤ ξ ≤ η)

∝ P
(
(η − t) ∨ 0 ≤ ξ ≤ η ∧ s

)
.

The right hand side is zero if s ≤ 0. Suppose now that 0 ≤ s ≤ t. Conditioning on η, the

right hand side can be rewritten as

=

∫ s

0
P
(
0 ≤ ξ ≤ u

)
fη(u)du+

∫ t

s
P
(
0 ≤ ξ ≤ s

)
fη(u)du

+

∫ t+s

t
P
(
u− t ≤ ξ ≤ s

)
fη(u)du.

Taking derivatives ∂s∂t, the density of (ξ, η − ξ)
∣∣(0 ≤ ξ ≤ η) at point (s, t) equals up to a

multiplicative constant fξ(s)fη(t+ s). Which completes the proof for the case 0 ≤ s ≤ t.
The case 0 ≤ t ≤ s is similar and the proof for this case therefore omitted.

Since the posterior limit distribution is the marginal over the first component of the

joint distribution in (1.5.14), it must coincide with the distribution of ξ
∣∣(0 ≤ ξ ≤ η).
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Chapter 2

Posterior contraction for deep

Gaussian process priors

This chapter is based on:

G. Finocchio and J. Schmidt-Hieber. Posterior contraction for deep Gaussian process priors.

Arxiv preprint, arXiv:2105.07410 (2021).

Abstract

We study posterior contraction rates for a class of deep Gaussian process

priors applied to the nonparametric regression problem under a general compo-

sition assumption on the regression function. It is shown that the contraction

rates can achieve the minimax convergence rate (up to log n factors), while being

adaptive to the underlying structure and smoothness of the target function. The

proposed framework extends the Bayesian nonparametrics theory for Gaussian

process priors.

2.1 Introduction

In the multivariate nonparametric regression model with random design supported on

[−1, 1]d, we observe n i.i.d. pairs (Xi, Yi) ∈ [−1, 1]d × R, i = 1, . . . , n, with

Yi = f(Xi) + εi, i = 1, . . . , n (2.1.1)

and εi independent and standard normal random variables that are independent of the

design vectors (X1, . . . ,Xn). We aim to recover the true regression function f : [−1, 1]d → R
from the sample. Here it is assumed that the regression function f itself is a composition of

a number of unknown simpler functions. This comprises several important cases including

(generalized) additive models. In [76] it has been shown that sparsely connected deep neural

networks are able to pick up the underlying composition structure and achieve near minimax

estimation rates. On the contrary, wavelet thresholding methods are shown to be unable to

adapt to the underlying structure resulting in potentially much slower convergence rates.
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2.1. Introduction

Deep Gaussian process priors (DGPs), cf. [68, 33, 32], can be viewed as a Bayesian

analogue of deep networks. While deep nets are build on a hierarchy of individual network

layers, DGPs are based on iterations of Gaussian processes. Compared to neural networks,

DGPs have moreover the advantage that the posterior can be used for uncertainty quan-

tification. This makes them potentially attractive for AI applications with a strong safety

aspect, such as automated driving and health.

In the classical Bayesian nonparametric regression setting, Gaussian process priors are a

natural choice and a comprehensive literature is available, see for instance [82] or Section 11

in [41]. In this work we extend the theory of Gaussian process priors to derive posterior

contraction rates for DGPs. Inspired by model selection priors, we construct classes of DGP

priors in a hierarchical manner by first assigning a prior to possible composition structures

and smoothness indices. Given a composition structure with corresponding smoothness

indices, we then generate the prior distribution by putting suitable Gaussian processes on

all functions in this structure. It is shown that for such a DGP prior construction the

posterior contraction rate matches nearly the minimax estimation rate. In particular, if

there is some low-dimensional structure in the composition, the posterior will not suffer

from the curse of dimensionality.

Stabilization enhancing methods such as dropout and batch normalization are crucial

for the performance of deep learning. In particular, batch normalization guarantees that

the signal sent through a trained network cannot explode. We argue that for deep Gaussian

processes similar effects play a role. In Figure 2.1 below we visualize the effect of composing

independent copies of a Gaussian process, the resulting trajectories are rougher and more

versatile than those generated by the original process alone. This may however lead to

wild behavior of the sample paths. As we aim for a fully Bayesian approach, the only

possibility is to induce stability through the selection of the prior. We enforce stability by

conditioning each individual Gaussian process to lie in a set of ’stable’ paths. To achieve

near optimal contraction rates, these sets have to be carefully selected and depend on the

optimal contraction rate itself.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

Iterated standard Brownian motion

Figure 2.1: Composition of Gaussian processes results in rougher and more versatile sample

paths. On the left: trajectories of two independent copies of a standard Brownian motion.

On the right: the composition (red ◦ blue) of the trajectories.
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2.2. Composition structure on the regression function

Compared to the well-established nonparametric Bayes theory for Gaussian processes,

posterior contraction for compositions of Gaussian processes raises some theoretical chal-

lenges, such as bounding the decentered small ball probabilities of the DGPs. We show that

this can be done by using an extension of the concentration function for Gaussian processes

introduced in [82]. To our knowledge, the closest results in the literature are bounds on

the centred small ball probabilities of iterated processes. They have been obtained for self-

similar processes in [4] and for time-changed self-similar processes in [52]. A good reference

on the literature of iterated processes is given by [3]. In a different line of research, iter-

ated Brownian motions (IBMs) occur in [38] as solutions of high-order parabolic stochastic

differential equations (SDEs) and the path properties are studied in [15]. The composition

of general processes in relation with high-order parabolic and hyperbolic SDEs has been

studied in [48]. More recently, the ad libitum (infinite) iteration of Brownian motions has

been studied in [31, 16].

The article is structured as follows. In Section 2.2 we formalize the model and give an

explicit parametrization of the underlying graph and the smoothness index. Section 2.3

provides a detailed construction of the deep Gaussian process prior. In Section 2.4 we state

the main posterior contraction results. In Section 2.5 we present a construction achieving

optimal contraction rates and provide explicit examples in Section 2.6. Section 2.7 compares

Bayes with DGPs and deep learning. All proofs are deferred to Section 2.A.

Notation: Vectors are denoted by bold letters, e.g. x := (x1, . . . , xd)
>. For S ⊆

{1, . . . , d}, we write xS = (xi)i∈S and |S| for the cardinality of S. As usual, we define

|x|p := (
∑d

i=1 |xi|p)1/p, |x|∞ := maxi |xi|, |x|0 :=
∑d

i=1 1(xi 6= 0), and write ‖f‖Lp(D) for

the Lp norm of f on D. If there is no ambiguity concerning the domain D, we also write

‖ · ‖p. For two sequences (an)n and (bn)n we write an . bn if there exists a constant C such

that an ≤ Cbn for all n. Moreover, an � bn means that (an)n . (bn)n and (bn)n . (an)n.

For positive sequences (an)n and (bn)n we write an � bn if an/bn tends to zero when n

tends to infinity.

2.2 Composition structure on the regression function

We assume that the regression function f in the nonparametric regression model (2.1.1)

can be written as the composition of q+ 1 functions, that is, f = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0, for

functions gi : [ai, bi]
di → [ai+1, bi+1]di+1 with d0 = d and dq+1 = 1. It should be clear that

we are interested in reconstruction of f but not of the individual components g0, . . . , gq.

If f takes values in the interval [−1, 1], rescaling hi = gi(‖gi−1‖∞·)/‖gi‖∞ with

‖g−1‖∞ := 1 leads to the alternative representation

f = hq ◦ hq−1 ◦ . . . ◦ h1 ◦ h0 (2.2.1)

for functions hi : [−1, 1]di → [−1, 1]di+1 . We also write hi = (hij)
>
j=1,...,di+1

, with hij :

[−1, 1]di → [−1, 1]. The representation can be modified if f takes values outside [−1, 1], but

to avoid unnecessary technical complications, we do not consider this case here. Although

41



2.2. Composition structure on the regression function

the function hi in the representation of f is defined on [−1, 1]di , we allow each component

function hij to possibly only depend on a subset of ti variables for some ti ≤ di.
To define suitable function classes and priors on composition functions, it is natural to

first associate to each composition structure a directed graph. The nodes in the graph are

arranged in q + 2 layers with q + 1 the number of components in (2.2.1). The number of

nodes in each layer is given by the integer vector d := (d, d1, . . . , dq, 1) ∈ Nq+2 storing the

dimensions of the components hi appearing in (2.2.1). As mentioned above, each component

function hij might only depend on a subset Sij ⊆ {1, . . . , di} of all di variables. We call Sij
the active set of the function hij . In the graph, we draw an edge between the j-th node

in the i + 1-st layer and the k-th node in the i-th layer iff k ∈ Sij . For any i, the subsets

corresponding to different nodes j = 1, . . . , di+1, are combined into Si := (Si1, . . . ,Sidi+1
)

and S := (S0, . . . ,Sq). By definition of ti, we have ti := maxj=1,...,di+1
|Sij | and we define

t := (t0, . . . , tq, 1). We summarize the previous quantities into the hyper-parameter

λ := (q,d, t,S), (2.2.2)

which we refer to as the graph of the function f in (2.2.1). The set of all possible graphs is

denoted by Λ.

x1

x2

x3

x4

x5

g1

g2

g3

h

Figure 2.2: Graph representation of the exam-

ple function f.

As an example consider the function

f(x1, . . . , x5) = h(g1(x1, x3, x4),

g2(x1, x4, x5), g3(x2)) with corresponding

graph representation displayed in Figure

2.2. In this case, we have q = 1, d0 = 5, d1 =

3, d2 = 1 and t0 = t1 = 3. The active sets

are S11 = {1, 3, 4},S12 = {1, 4, 5},S13 =

{2}, and S21 = {1, 2, 3}.
We assume that all functions in the com-

position are Hölder smooth. A function has

Hölder smoothness index β > 0 if all par-

tial derivatives up to order bβc exist and

are bounded, and the partial derivatives of

order bβc are (β − bβc)-Hölder. Here, the

ball of β-smooth Hölder functions of radius K is defined as

Cβr (K) =
{
f : [−1, 1]r → [−1, 1] :

2r
∑

α:|α|<bβc

‖∂αf‖∞ + 2β−bβc
∑

α:|α|=bβc

sup
x,y∈[−1,1]r

x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|β−bβc∞

≤ K
}
,

(2.2.3)

where α = (α1, . . . , αr) ∈ Nr is a multi-index, |α| := |α|1 and ∂α = ∂α1 . . . ∂αr . The

factors 2r and 2β−bβc guarantee the embedding Cβr (K) ⊆ Cβ
′

r (K) whenever β′ ≤ β, see

Lemma 2.A.1.

For any subset of indexes S, we write (·)S : x 7→ xS = (xi)i∈S and (·)−1
S for the inverse.

Since hij depends on at most ti variables, we can think of the function hij := hij ◦ (·)−1
Sij as
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2.3. Deep Gaussian process prior

a function mapping [−1, 1]ti to [−1, 1] and assume that hij ∈ Cβiti (K), with βi ∈ [β−, β+],

for some known and fixed 0 < β− ≤ β+ < +∞. The smoothness indexes of the q + 1

components are collected into the vector

β := (β0, . . . , βq) ∈ [β−, β+]q+1 =: I(λ). (2.2.4)

Combined with the graph parameter λ in (2.2.2), the function composition is completely

described by

η := (λ,β) = (q,d, t,S,β). (2.2.5)

We refer to η as the composition structure of the regression function f in (2.2.1). The set

of all possible choices of η = (λ,β) with λ ∈ Λ and β ∈ I(λ) is denoted by Ω.

Throughout the following, we assume that the true regression function belongs to the

function space F(η,K) where

F
(
η,K

)
:=
{
f = hq ◦ hq−1 ◦ . . . ◦ h1 ◦ h0 : hi = (hij)j : [−1, 1]di → [−1, 1]di+1 ,

hij ◦ (·)−1
Sij
∈ Cβiti

(
K
)}
,

(2.2.6)

for some known K > 0 and unknown η ∈ Ω. In fact, the regression function f might belong

to the space F(η,K) for several choices of η. Since different choices of η lead to different

posterior contraction rates, the regression function will always be associated with an η that

leads to the fastest contraction rate.

2.3 Deep Gaussian process prior

In this section, we construct the deep Gaussian process prior as prior on composition func-

tions. Because of the complexity of the underlying graph structure, the construction is split

into several steps. The final DGP prior consists of a prior on the graph describing the

composition structure and, given the graph, a prior on all the individual functions that

occur in the representation. To achieve fast contraction rates, the prior weight assigned to

a specific composition structure depends on the smoothness properties and the sample size.

Therefore, the composition structure can not be decoupled from the estimation problem.

STEP 0. Choice of Gaussian processes. For a centered Gaussian process X =

(Xt)t∈T , the covariance operator viewed as a function on T × T, that is, (s, t) 7→ k(s, t) =

E[XsXt] is a positive semidefinite function. The reproducing kernel Hilbert space (RKHS)

generated by k is called the RKHS corresponding to the Gaussian process X, see [83] for

more details.

For any r = 1, 2, . . . , and any β > 0, let G̃(β,r) = (G̃(β,r)(u))u∈[−1,1]r be a centered

Gaussian process on the Banach space of continuous functions from [−1, 1]r to R equipped

with the supremum norm. Write ‖ · ‖H(β,r) for the RKHS-norm of the reproducing kernel

Hilbert space H(β,r) corresponding to G̃(β,r). For positive Hölder radius K, we call

ϕ(β,r,K)(u) := sup
f∈Cβr (K)

inf
g:‖g−f‖∞≤u

‖g‖2H(β,r) − logP
(∥∥G̃(β,r)

∥∥
∞ ≤ u

)
, (2.3.1)
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the concentration function over Cβr (K). This is the global version of the local concentration

function appearing in the posterior contraction theory for Gaussian process priors [82]. For

any 0 < α ≤ 1, let εn(α, β, r) be such that

ϕ(β,r,K)
(
εn(α, β, r)1/α

)
≤ nεn(α, β, r)2. (2.3.2)

STEP 1. Deep Gaussian processes. We now define a corresponding DGP G(η) on a

given composition structure η = (q,d, t,S,β). Let B∞(R) := {f : supx∈[−1,1]r |f(x)| ≤ R}
be the supremum unitary ball with radius R. For simplicity, we suppress the dependence on

r. Recall that K is assumed to be known. With αi :=
∏q
`=i+1(β` ∧ 1), we define the subset

of paths

Di(η,K) := B∞(1) ∩
(
Cβiti (K) + B∞

(
2εn(αi, βi, ti)

1/αi
))
, (2.3.3)

containing all functions that belong to the supremum unitary ball B∞(1) and are at most

2εn(αi, βi, ti)
1/αi-away in supremum norm from the Hölder-ball Cβiti (K). With G̃(β,r) the

centred Gaussian process in Step 0, write G
(βi,ti)
i for the process G̃(βi,ti) conditioned on

the event {G̃(βi,ti) ∈ Di(η,K)}. Recall that for an index set S, the function (·)S maps a

vector to the components in S. For each i = 0, . . . , q, j = 1, . . . , di+1, define the component

functions G
(η)
ij to be independent copies of the processes G

(βi,ti)
i ◦ (·)Sij : [−1, 1]di → [−1, 1].

Finally, set G
(η)
i := (G

(η)
ij )

di+1

j=1 and define the deep Gaussian process G(η) := G
(η)
q ◦ . . .◦G(η)

0 :

[−1, 1]d → [−1, 1]. We denote by Π(·|η) the distribution of G(η).

STEP 2. Structure prior. We now construct a hyper-prior on the underlying com-

position structure. For each graph λ, we have β ∈ I(λ) = [β−, β+]q+1 with known lower

and upper bounds 0 < β− ≤ β+ < +∞. For any function a(η) = a(λ, β), it is convenient to

define ∫
a(η) dη :=

∑
λ∈Λ

∫
I(λ)

a(λ, β) dβ.

Let γ be a probability density on the possible composition structures, that is,
∫
γ(η) dη = 1.

We can construct such a measure γ by first choosing a distribution on the number of compo-

sitions q. Given q one can then select distributions on the ambient dimensions d, the efficient

dimensions t, the active sets S and finally the smoothness β ∈ [β−, β+]q+1 via the condi-

tional density formula γ(η) = γ(λ)γ(β|λ) = γ(q)γ(d|q)γ(t|d, q)γ(S|t,d, q)γ(β|S, t,d, q).
For a sequence εn(η) satisfying

εn(η) ≥ max
i=0,...,q

εn(αi, βi, ti), with αi :=

q∏
`=i+1

(
β` ∧ 1

)
, (2.3.4)

and |d|1 = 1 +
∑q

i=0 di, consider the hyper-prior

π(η) :=
e−Ψn(η)γ(η)∫
e−Ψn(η)γ(η) dη

, with Ψn(η) := nεn(η)2 + ee
|d|1

. (2.3.5)

The denominator is positive and finite, since 0 < e−Ψn(η) ≤ 1 and
∫
γ(η) dη = 1.
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STEP 3. DGP prior. We define the deep Gaussian process prior as

Π(df) :=

∫
Ω

Π(df |η)π(η) dη, (2.3.6)

where Ω is the set of all valid composition structures, Π(·|η) is the distribution of the DGP

G(η) and π(η) is the structure prior on η.

Lemma 2.5.1 shows that it is often enough to check (2.3.2) for α = 1 only. Con-

ditioning the Gaussian process to the set Di(η,K) is well-defined since Di(η,K) ⊃
B∞
(
2εn(αi, βi, ti)

1/αi
)

and Gaussian processes with continuous sample paths give positive

mass to B∞(R) for any R > 0. The inequality in (2.3.4) provides the flexibility to choose

sequences that also satisfy Assumption 2.4.2. The prior π(η) on the composition structure

η should be viewed as a model selection prior, see also Section 10 in [41]. As always, some

care is required to avoid that the posterior concentrates on models that are too large and

consequently leads to sub-optimal posterior contraction rates. This is achieved by the care-

fully chosen exponent Ψn in (2.3.5), which depends on the sample size and penalizes large

composition structures.

2.4 Main results

Denote by Π
(
·|X,Y

)
the posterior distribution corresponding to a DGP prior Π constructed

as above and (X,Y) = (Xi, Yi)i a sample from the nonparametric regression model (2.1.1).

For normalizing factor Zn :=
∫
pf/pf∗(X,Y) Π(df) and any Borel measurable A in the

Banach space of continuous functions on [−1, 1]d,

Π
(
A|X,Y

)
= Z−1

n

∫
A

pf
pf∗

(X,Y) Π(df), Π(df) :=

∫
Ω

Π(df |η)π(η) dη, (2.4.1)

where (pf/pf∗)(X,Y) denotes the likelihood ratio. With a slight abuse of notation, for any

subset of composition structures M⊆ Ω, we set

Π
(
η ∈M|X,Y

)
:= Z−1

n

∫
pf
pf∗

(X,Y)

∫
M

Π(df |η)π(η) dη, (2.4.2)

which is the contribution of the composition structures M⊆ Ω to the posterior mass.

Before we can state the results, we first need to impose some conditions. The first

condition is on the graph prior from Step 2 in the DGP prior construction. It states that

all graphs have to be charged with non-negative mass and also requires
∫ √

γ(η) dη to be

finite. The latter somehow requires that the prior mass decreases quickly enough as the

graphs become more complex.

Assumption 2.4.1. We assume that, for any graph λ, the measure γ(·|λ) is the uniform

distribution on the hypercube of possible smoothness indices I(λ) = [β−, β+]q+1. Further-

more, we assume that the distribution γ is independent of n, that it assigns positive mass

γ(η) > 0 to all composition structures η, and that it satisfies
∫ √

γ(η) dη < +∞.
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The second assumption guarantees that the rates εn(α, β, r) are not too fast and controls

the local changes of the rates under perturbations on the smoothness indices.

Assumption 2.4.2. We assume the following on the rates appearing in the construction

of the prior.

(i) For any positive integer r, any β > 0, let Q1(β, r,K) the constant from Lemma 2.A.5.

Then, the sequences εn(α, β, r) solving the concentration function inequality (2.3.2)

are chosen in such a way that

εn(α, β, r) ≥ Q1(β, r,K)
β

2β+rn
− βα

2βα+r . (2.4.3)

(ii) There exists a constant Q ≥ 1 such that the following holds. For any n > 1, any graph

λ = (q,d, t,S) with |d|1 = 1 +
∑q

i=0 di ≤ log(2 log n), and any β′ = (β′0, . . . , β
′
q),β =

(β0, . . . , βq) ∈ I(λ) satisfying β′i ≤ βi ≤ β′i + 1/ log2 n for all i = 0, . . . , q, the rates

relative to the composition structures η = (λ,β) and η′ = (λ,β′) satisfy

εn(η) ≤ εn(η′) ≤ Qεn(η). (2.4.4)

The rate εn(η) associated to a composition structure η can be viewed as measure of the

complexity of this structure, where larger rates εn(η) correspond to more complex models.

Our first result states that the posterior concentrates on small models in the sense that all

posterior mass is asymptotically allocated on a set

Mn(C) :=
{
η : εn(η) ≤ Cεn(η∗)

}
∩
{
η : |d|1 ≤ log(2 logn)

}
(2.4.5)

with sufficiently large constant C. This shows that the posterior not only concentrates on

models with fast rates εn(η) but also on graph structures with number of nodes in each

layer bounded by log(2 log n). The proof is given in Section 2.A.1.

Theorem 2.4.3 (Model selection). Let Π
(
· |X,Y

)
be the posterior distribution corre-

sponding to a DGP prior Π constructed as in Section 2.3 and satisfying Assumptions 2.4.1

and 2.4.2. Let η∗ = (λ∗,β∗) for some β∗ ∈ [β−, β+]q
∗+1 and suppose εn(η∗) ≤ 1/(4Q).

Then, for a positive constant C = C(η∗),

sup
f∗∈F(η∗,K)

Ef∗
[
Π
(
η /∈Mn(C)

∣∣X,Y)] n→∞−−−→ 0,

where Ef∗ denotes the expectation with respect to Pf∗ , the true distribution of the sample

(X,Y).

Denote by µ the distribution of the covariate vector X1 and write L2(µ) for the weighted

L2-space with respect to the measure µ. The next result shows that the posterior distribu-

tion achieves contraction rate εn(η∗) up to a log n factor. The proof is given in Section 2.A.1.

Theorem 2.4.4 (Posterior contraction). Let Π
(
· |X,Y

)
be the posterior distribution corre-

sponding to a DGP prior Π constructed as in Section 2.3 and satisfying Assumptions 2.4.1
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and 2.4.2. Let η∗ = (λ∗,β∗) for some β∗ ∈ [β−, β+]q
∗+1 and suppose εn(η∗) ≤ 1/(4Q).

Then, for a positive constant L = L(η∗),

sup
f∗∈F(η∗,K)

Ef∗
[
Π
(
‖f − f∗‖L2(µ) ≥ L(log n)1+logKεn(η∗)

∣∣X,Y)] n→∞−−−→ 0,

where Ef∗ denotes the expectation with respect to Pf∗ , the true distribution of the sample

(X,Y).

Remark 2.4.5. Our proving strategy allows for the following modification to the construc-

tion of the DGP prior. The concentration functions ϕ(β,r,K) in (2.3.1) are defined globally

over the Hölder-ball Cβr (K). The concentration function inequality in (2.3.2) essentially

requires that the closure H(β,r)
of the RKHS of the underlying Gaussian process G̃(β,r) con-

tains the whole Hölder ball. There are classical examples for which this is too restrictive,

and one might want to weaken the construction by considering a subset Hβr (K) ⊆ Cβr (K).

This can be done by replacing Cβiti (K) with the corresponding subset Hβiti (K) in the definition

of the conditioning sets Di(η,K) in (2.3.3) and the function class F(η,K) in (2.2.6). As

a consequence, this also reduces the class of functions for which the posterior contraction

rates derived in Theorem 2.4.4 hold.

We would like to stress, that we do not impose an a-priori known upper bound on the

complexity of the underlying composition structure (2.2.1). While we think that this is

natural in practice, it causes some extra technical complications. If we additionally assume

that the true composition structure satisfies |d|1 ≤ D for a known upper bound D, then

the factor ee
|d|1 in (2.3.5) can be avoided. Moreover, the (log n)1+logK-factor occurring in

the posterior contraction rate is somehow an artifact of the proof, and could be replaced

by KD, see the proof of Lemma 2.A.6 for more details. A trade-off regarding the choice of

K appears. To allow for larger classes of functions and a weaker constraint induced by the

conditioning on (2.3.3), we want to select a large K. On the contrary, large K results in

slower posterior contraction guarantees.

We view the proposed Bayesian analysis rather as a proof of concept than something that

is straightforward implementable or computationally efficient. The main obstacles towards

a scalable Bayesian method are the combinatorial nature of the set of graphs as well as

conditioning the sample paths to neighborhoods of Hölder functions. Regarding the first

point, considerable progress has been made recently to construct fast Bayesian methods

for model selection priors in high-dimensional settings with theoretical guarantees, see for

instance [13, 74]. To avoid a large number of composition graphs, it might be sufficient to

restrict to small structures with number of compositions q below five, say, and |d|1 in the

tens. Moreover, in view of the achievable contraction rates, there are plenty of redundant

composition structures. Lemma 2.5.4 below shows this in a very specific setting.

Concerning the conditioning of the sample paths in Step 1 of the deep Gaussian pro-

cess prior construction, it is, in principle, possible to incorporate the conditioning into an

accept/reject framework, where we always reject if the generated path is outside the condi-

tioned set. To avoid that the acceptance probability of the algorithm becomes too small, one
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needs to ensure that a path of the Gaussian process falls into the conditioned set with pos-

itive probability that does not vanish as the sample size increases. Lemma 2.6.3 establishes

this for a Gaussian wavelet series prior.

2.5 On nearly optimal contraction rates

Theorem 2.5 in [39] ensures existence of a frequentist estimator converging to the true pa-

rameter with the posterior contraction rate. This implies that the fastest possible posterior

contraction rate is the minimax estimation rate. For the prediction loss ‖f − g‖L2(µ), the

minimax estimation rate over the class F(η,K) is, up to some logarithmic factors,

rn(η) = max
i=0,...,q

n
− βiαi

2βiαi+ti , with αi :=

q∏
`=i+1

(
β` ∧ 1

)
, (2.5.1)

see [76]. This rate is attained by suitable estimators based on sparsely connected deep neural

networks. It is also shown in [76] that wavelet estimators do not achieve this rate and can

be sub-optimal by a large polynomial factor in the sample size. Below we derive conditions

that are simpler than Assumption 2.4.2 and ensure posterior contraction rate rn(η) up to

log n-factors. Inspired by the negative result for wavelet estimators, we conjecture moreover

that there are composition structures such that any Gaussian process prior will lead to a

posterior contraction rate that is suboptimal by a polynomial factor compared with rn(η).

The first result shows that the solution to the concentration function inequality for arbi-

trary 0 < α ≤ 1 can be deduced from the solution for α = 1. The proof is in Section 2.A.2.

Lemma 2.5.1. Let εn(1, β, r) be a solution to the concentration function inequality (2.3.2)

for α = 1. Then, any sequence εn(α, β, r) ≥ εmn(1, β, r)α where mn is chosen such that

mnεmn(1, β, r)2−2α ≤ n, solves the concentration function inequality for arbitrary α ∈ (0, 1].

The following result makes the construction in Lemma 2.5.1 explicit, when the solution

εn(1, β, r) for α = 1 is at most by a log n factor larger than n−β/(2β+r). The proof is given

in Section 2.A.2.

Lemma 2.5.2. Let n ≥ 3.

(i) If the sequence εn(1, β, r) = C1(log n)C2n−β/(2β+r) solves the concentration function

inequality (2.3.2) for α = 1, with constants C1 ≥ 1 and C2 ≥ 0, then, any sequence

εn(α, β, r) ≥ C2
1 (2β + 1)2C2(log n)C2(2β+2) n

− βα
2βα+r

solves the concentration function inequality for arbitrary α ∈ (0, 1].

(ii) If there are constant C ′1 ≥ 1 and C ′2 ≥ 0 such that the concentration function satisfies

ϕ(β,r,K)(δ) ≤ C ′1(log δ−1)C
′
2δ
− r
β , for all 0 < δ ≤ 1, (2.5.2)

then, any sequence

εn(α, β, r) ≥ C ′1(log n)C
′
2 n
− βα

2βα+r

solves the concentration function inequality (2.3.2) for arbitrary α ∈ (0, 1].
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To verify Assumption 2.4.2 (ii), we need to pick suitable sequences εn(η) ≥
maxi=0,...,q εn(αi, βi, ti). If εn(α, β, r) = C1(β, r)(log n)C2(β,r)n−βα/(2βα+r) for some con-

stants C1(β, r) ≥ 1 and C2(β, r) ≥ 0, then, a suitable choice is

εn(η) = C̃1(η)(log n)C̃2(η)rn(η), (2.5.3)

provided the constants C̃j(η) := maxi=0,...,q supβ∈[β−,β+]Cj(β, ti), j ∈ {1, 2} are finite. In

the subsequent examples, this will be checked by verifying that β 7→ Cj(β, r), j ∈ {1, 2} are

bounded functions on [β−, β+].

Lemma 2.5.3. The rates εn(η) in (2.5.3) satisfy condition (ii) in Assumption 2.4.2 with

Q = eβ+ .

Let Π be a DGP prior constructed with the Gaussian processes and rates given in this

section. Then, the corresponding posterior satisfies Theorem 2.4.4 and contracts with rate

rn(η∗) up to the multiplicative factor L(η∗)C̃1(λ∗,K)(log n)1+logK+C̃2(λ∗,K).

To complete this section, the next lemma shows that there are redundant composition

structures. More precisely, conditions are provided such that the number of compositions q

can be reduced by one, while still achieving nearly optimal posterior contraction rates.

Lemma 2.5.4. Suppose that f is a function with composition structure η = (q,d, t,S,β)

and assume that β+ = K = 1. If there exists an index j ∈ {1, . . . , q} with tj =

tj−1 = 1, then, f can also be written as a function with composition structure η′ :=

(q − 1,d−j , t−j ,S−j ,β′), where d−j , t−j ,S−j denote d, t,S with entries dj , tj ,Sj removed,

respectively, and β′ := (β0, . . . , βj−2, βj−1βj , βj+1, . . . , βq). Moreover the induced posterior

contraction rates agree, that is, rn(η) = rn(η′).

A more complete notion of equivalence classes on composition graphs that maintain the

optimal posterior contraction rates is beyond the scope of this work.

2.6 Examples of DGP priors

The construction of the deep Gaussian process prior requires the choice of a family of

Gaussian processes {G̃(β,r) : β ∈ [β−, β+]}. In this section we show that standard families

appearing in the Gaussian process prior literature achieve near optimal posterior contraction

rates. To show this, we rely on the conditions derived in the previous section.

2.6.1 Lévy’s fractional Brownian motion

Assume that the upper bound β+ on the possible range of smoothness indices is bounded

by one. A zero-mean Gaussian process Xβ is called a Lévy fractional Brownian motion of

order β ∈ (0, 1) if

Xβ(0) = 0, E
[
|Xβ(u)−Xβ(u′)|2

]
= |u− u′|2β2 , ∀u,u′ ∈ [−1, 1]r.
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The covariance function of the process is E[Xβ(u)Xβ(u′)] = 1
2(|u|2β2 + |u′|2β2 − |u− u′|2β2 ).

Chapter 3 in [27] provides the following representation for a r-dimensional β-fractional

Brownian motion. Denote by f̂(ξ) := (2π)−r/2
∫
Rr e

iu>ξf(u)du the Fourier transform of

the function f . For W = (W (u))u∈[−1,1]r a multidimensional Brownian motion, and Cβ a

positive constant depending only on β, r,

Xβ(u) =

∫
Rr

e−iu
>ξ − 1

C
1/2
β |ξ|

β+r/2
2

Ŵ (dξ),

in distribution, where Ŵ (dξ) is the Fourier transform of the Brownian random measure

W (du), see Section 2.1.6 in [27] for definitions and properties. The same reference defines,

for all ϕ ∈ L2([−1, 1]r), the integral operator

(Iβϕ)(u) :=

∫
Rr
ϕ̂(ξ)

e−iu
>ξ − 1

C
1/2
β |ξ|

β+r/2
2

dξ

(2π)r/2
.

As a corollary, the RKHS Hβ of Xβ is given in Section 3.3 in [27] as

Hβ =
{
Iβϕ : ϕ ∈ L2([−1, 1]r)

}
, 〈Iβϕ, Iβϕ′〉Hβ = 〈ϕ,ϕ′〉L2([−1,1]r).

Since the process Xβ is always zero at u = 0, we release it at zero. That is, let Z ∼ N (0, 1)

independent of Xβ and consider the process u 7→ Z + Xβ(u). The RKHS of the constant

process u 7→ Z is the set HZ of all constant functions and, by Lemma I.18 in [41], the

RKHS of Z +Xβ is the direct sum HZ ⊕Hβ.

The next result is proved in Section 2.A.3 and can be viewed as the multidimensional

extension of the RKHS bounds in Theorem 4 in [17]. Whereas the original proof relies on

kernel smoothing and Taylor approximations, we use a spectral approach. Write

Wβ
r (K) :=

{
h : [−1, 1]r → [−1, 1] :

∫
Rr
|ĥ(ξ)|2(1 + |ξ|2)2β dξ

(2π)r/2
≤ K

}
, (2.6.1)

for the β-Sobolev ball of radius K.

Lemma 2.6.1. Let β ∈ [β−, β+] and Z+Xβ = (Z+Xβ(u))u∈[−1,1]r the fractional Brownian

motion of order β released at zero. Fix h ∈ Cβr (K) ∩Wβ
r (K). Set φσ = σ−rφ(·/σ) with φ

a suitable regular kernel and σ < 1. Then, ‖h ∗ φσ − h‖∞ ≤ KRβσβ and ‖h ∗ φσ‖2HZ⊕Hβ ≤
K2L2

βσ
−r for some constants Rβ, Lβ that depend only on β, r.

The next lemma shows that for Lévy’s fractional Brownian motion released at zero

near optimal posterior contraction rates can be obtained. For that we need to restrict the

definition of the global concentration function to the smaller class Cβr (K) ∩ Wβ
r (K). The

proof of the lemma is in Section 2.A.3.

Lemma 2.6.2. Let β+ ≤ 1 and work on the reduced function spaces Hβr (K) = Cβr (K) ∩
Wβ
r (K) as outlined in Remark 2.4.5. For {G̃(β,r) : β ∈ [β−, β+]} the family of Levy’s

fractional Brownian motions Z + Xβ released at zero, there exist sequences εn(η) =

C1(η)(log n)C2(η)rn(η) such that Assumption 2.4.2 holds.
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2.6.2 Truncated wavelet series

Let {ψj,k : j ∈ N+, k = 1, . . . 2jr} be an orthonormal wavelet basis of L2([−1, 1]r). For

any ϕ ∈ L2([−1, 1]r), we denote by ϕ =
∑∞

j=1

∑2jr

k=1 λj,k(ϕ)ψj,k its wavelet expansion. The

quantities λj,k(ϕ) are the corresponding real coefficients. For any β > 0, we denote by

B∞,∞,β the Besov space of functions ϕ with finite

‖ϕ‖∞,∞,β := sup
j∈N

2j(β+ r
2

) max
k=1,...2jr

|λj,k(ϕ)|.

We assume that the wavelet basis is s-regular with s > β+. For i.i.d. random variables

Zj,k ∼ N (0, 1), consider the Gaussian process induced by the truncated series expansion

Xβ(u) :=

Jβ∑
j=1

2jr∑
k=1

2−j(β+ r
2

)

√
jr

Zj,kψj,k(u),

where the maximal resolution Jβ is chosen as the integer closest to the solution J of the

equation 2J = n1/(2β+r), see Section 4.5 in [82]. The RKHS of the process Xβ is given in

the proof of Theorem 4.5 in [82] as the set Hβ of functions ϕ =
∑Jβ

j=1

∑2jr

k=1 λj,k(ϕ)ψj,k with

coefficients λj,k(ϕ) satisfying ‖ϕ‖2Hβ :=
∑Jβ

j=1

∑2jr

k=1 jr2
2j(β+r/2)λj,k(ϕ)2 <∞.

For this family of Gaussian processes, it is rather straightforward to verify that con-

ditioning on a neighbourhood of β-smooth functions as in Step 1 of the deep Gaussian

process prior construction is not a restrictive constraint. The next result shows that, with

high probability, the process Xβ belong to the B∞,∞,β-ball of radius (1 +K ′)
√

2 log 2, with

K ′ >
√

3. Since the Besov space B∞,∞,β contains the Hölder space Cβr for any β > 0, the

process belongs to the Hölder-ball Cβr (K) for some suitable K ′ only depending on K.

Lemma 2.6.3. Let Xβ be the truncated wavelet process. Then, for any K ′ >
√

3,

P
(
‖Xβ‖∞,∞,β ≤ (1 +K ′)

√
2 log 2

)
≥ 1− 4

2rK′
2 − 4

.

The proof is postponed to Section 2.A.3. The probability in the latter display converges

quickly to one. As an example consider K ′ = 2. Since r ≥ 1, the bound implies that more

than 2/3 of the simulated sample paths u 7→ Xβ(u) lie in the Hölder ball B∞,∞,β(3
√

2 log 2).

The next lemma shows that for the truncated series expansion, near optimal posterior

contraction rates can be achieved. The proof of the lemma is deferred to Section 2.A.3.

Lemma 2.6.4. For {G̃(β,r) : β ∈ [β−, β+]} the family of truncated Gaussian processes Xβ

there exist sequences εn(η) = C1(η)(log n)C2(η)rn(η) such that Assumption 2.4.2 holds.

2.6.3 Stationary process

A zero-mean Gaussian process Xν = (Xν(u))u∈[−1,1]r is called stationary if its covariance

function can be represented by a spectral density measure ν on Rr as

E[Xν(u)Xν(u′)] =

∫
Rr
e−i(u−u

′)>ξν(ξ)dξ,
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see Example 11.8 in [41]. We consider stationary Gaussian processes with radially decreasing

spectral measures that have exponential moments, that is,
∫
ec|ξ|2ν(ξ)dξ < +∞ for some

c > 0. Such processes have smooth sample paths thanks to Proposition I.4 in [41]. An

example is the square-exponential process with spectral measure ν(ξ) = 2−rπ−r/2e−|ξ|
2
2/4.

For any ϕ ∈ L2(ν), set (Hνϕ)(u) :=
∫
Rr e

iξ>uϕ(ξ)ν(ξ)dξ. The RKHS of Xν is given in

Lemma 11.35 in [41] as Hν = {Hνϕ : ϕ ∈ L2(ν)} with inner product 〈Hνϕ,Hνϕ′〉Hν =

〈ϕ,ϕ′〉L2(ν).

For every β ∈ [β−, β+], take G̃(β,r) to be the rescaled process Xν(a·) = (Xν(au))u∈[−1,1]r

with scaling

a = a(β, r) = n
1

2β+r (log n)
− 1+r

2β+r . (2.6.2)

The process G̃(β,r) thus depends on n. We prove the next result in Section 2.A.3.

Lemma 2.6.5. For {G̃(β,r) : β ∈ [β−, β+]} the family of rescaled stationary processes

Xν(a·), there exist sequences εn(η) = C1(η)(log n)C2(η)rn(η) such that Assumption 2.4.2

holds.

2.7 DGP priors, wide neural networks and regularization

In this section, we explore similarities and differences between deep learning and the

Bayesian analysis based on (deep) Gaussian process priors. Both methods are based on

the likelihood. It is moreover known that standard random initialization schemes in deep

learning converge to Gaussian processes in the wide limit. Since the initialization is crucial

for the success of deep learning, this suggests that the initialization could act in a similar

way as a Gaussian prior in the Bayesian world. Next to a proper initialization scheme,

stability enhancing regularization techniques such as batch normalization are widely stud-

ied in deep learning and a comparison might help us to identify conditions that constraint

the potentially wild behavior of deep Gaussian process priors. Below we investigate these

aspects in more detail.

It has been argued in the literature that Bayesian neural networks and regression with

Gaussian process priors are intimately connected. In Bayesian neural networks, we generate

a function valued prior distribution by using a neural network and drawing the network

weights randomly. Recall that a neural network with a single hidden layer is called shallow,

and a neural network with a large number of units in all hidden layers is called wide. If the

network weights in a shallow and wide neural network are drawn i.i.d., and the scaling of the

variances is such that the prior does not become degenerate, then, it has been argued in [68]

that the prior will converge in the wide limit to a Gaussian process prior and expressions

for the covariance structure of the limiting process are known. One might be tempted to

believe that for a deep neural network one should obtain a deep Gaussian process as a limit

distribution. If the width of all hidden layers tends simultaneously to infinity, [63] proves

that this is not true and that one still obtains a Gaussian limit. The covariance of the
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2.7. DGP priors, wide neural networks and regularization

limiting process is, however, more complicated and can be given via a recursion formula,

where each step in the recursion describes the change of the covariance by a hidden layer.

[63] shows moreover in a simulation study that Bayesian neural networks and Gaussian

process priors with appropriate choice of the covariance structure behave indeed similarly.

... ...

...
... ...

...

Input InputHidden HiddenOutput Output

Figure 2.3: Schematic stacking of two shallow neural networks.

It is conceivable that if one keeps the width of some hidden layers fixed and let the width

of all other hidden layers tend to infinity, the Bayesian neural network prior will converge,

if all variances are properly scaled, to a deep Gaussian process. By stacking for instance two

shallow networks as indicated in Figure 2.3 and making the first and last hidden layer wide,

the limit is the composition of two Gaussian process and thus, a deep Gaussian process.

In the hierarchical deep Gaussian prior construction in Section 2.3, we pick in a first step

a prior on composition structures. For Bayesian neural networks this is comparable with

selecting first a hyperprior on neural network architectures.

Even more recently, [71, 46] studied the behaviour of neural networks with random

weights when both depth and width tend to infinity.

While the discussion so far indicates that Bayesian neural networks and Bayes with

(deep) Gaussian process priors are similar methods, the question remains whether deep

learning with randomly initialized network weights behaves similarly as a Bayes estima-

tor with respect to a (deep) Gaussian process prior. The random network initialization

means that the deep learning algorithm is initialized approximately by a (deep) Gaussian

process. Since it is well-known that the initialization is crucial for the success of deep learn-

ing, this suggests that the initialization indeed acts as a prior. Denote by −` the negative

log-likelihood/cross entropy. Whereas in deep learning we fit a function by iteratively de-

creasing the cross-entropy using gradient descent method, the posterior is proportional to

exp(`)×prior and concentrates on elements in the support of the prior with small cross

entropy. Gibbs sampling of the posterior has moreover a similar flavor as coordinate-wise

descent methods for the cross-entropy. The only theoretical result that we are aware of

examining the relationship between deep learning and Bayesian neural networks is [72].

It proves that for a neural network prior with network weights drawn i.i.d. from a suit-
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able spike-and-slab prior, the full posterior behaves similarly as the global minimum of

the cross-entropy (that is, the empirical risk minimizer) based on sparsely connected deep

neural networks.

As a last point we now compare stabilization techniques for deep Gaussian process priors

and deep learning. In Step 1 of the deep Gaussian process prior construction, we have

conditioned the individual Gaussian processes to map to [−1, 1] and to generate sample

paths in small neighborhoods of a suitable Hölder ball. This induces regularity in the

prior and avoids the wild behaviour of the composed sample paths due to bad realizations

of individual components. We argue that this form of regularization has a similar flavor

as batch normalization, cf. Section 8.7 in [44]. The purpose of batch normalization is to

avoid vanishing or exploding gradients due to the composition of several functions in deep

neural networks. The main idea underlying batch normalization is to normalize the outputs

from a fixed hidden layer in the neural network before they become the input of the next

hidden layer. The normalization step is now different than the conditioning proposed for

the compositions of Gaussian processes. In fact, for batch normalization, the mean and the

variance of the outputs are estimated based on a subsample and an affine transformation

is applied such that the outputs are approximately centered and have variance one. One

of the key differences is that this normalization invokes the distribution of the underlying

design, while the conditioning proposed for deep Gaussian processes is independent of the

distribution of the covariates. One suggestion that we can draw from this comparison is

that instead of conditioning the processes to have sample paths in [−1, 1], it might also

be interesting to apply the normalization f 7→ f(t)/ supt∈[−1,1]r |f(t)| between any two

compositions. This also ensures that the output maps to [−1, 1] and is closer to batch

normalization. A data-dependent normalization of the prior cannot be incorporated in the

fully Bayesian framework considered here and would result in an empirical Bayes method.

Appendix 2.A Proofs

2.A.1 Proofs for Section 2.4

Information geometry in the nonparametric regression model. The following re-

sults are fairly standard in the nonparametric Bayes literature. As we are aiming for a

self-contained presentation of the material, these facts are reproduced here. Let Pf be the

law of one observation (Xi, Yi). The Kullback-Leibler divergence in the nonparametric re-

gression model is

KL
(
Pf , Pg

)
=

∫
(f(x)− g(x))2dµ(x) ≤ ‖f − g‖L∞([−1,1]d)

with µ the distribution of the covariates X1. Using that Ef [log dPf/dPg] = KL(Pf , Pg),

Var(Z) ≤ E[Z2], Ef [Y |X] = f(X) and Ef [Y 2|X] = 1, we also have that

V2(Pf , Pg) := Ef
[∣∣∣ log

dPf
dPg
−KL(Pf , Pg)

∣∣∣2]
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≤ Ef
[∣∣∣ log

dPf
dPg

∣∣∣2]
= Ef

[(
Y
(
f(X)− g(X))− 1

2
f(X)2 +

1

2
g(X)2

)2]
=

∫ (
f(x)− g(x)

)2
+

1

4

(
f(x)− g(x)

)4
dµ(x).

In particular, for ε ≤ 1, ‖f − g‖∞ ≤ ε/2 implies that V2(Pf , Pg) ≤ ε2 and therefore

B2(Pf , ε) =
{
g : KL(Pf , Pg) < ε2, V2(Pf , Pg) < ε2

}
⊇
{
g : ‖f − g‖∞ ≤

ε

2

}
. (2.A.1)

We derive posterior contraction rates for the Hellinger distance. This can then be related

to the ‖ · ‖L2(µ)-norm as explained below. Using the moment generating function of a

standard normal distribution, the Hellinger distance for one observation (X, Y ) becomes

dH(Pf , Pg) = 1−
∫ √

dPfdPg = 1−
∫ √

dPf/dPg dPg

= 1− Eg
[
e

1
4

(Y−g(X))2− 1
4

(Y−f(X))2
]

= 1− E
[
Eg
[
e

1
2

(Y−g(X))(f(X)−g(X))
∣∣∣X]e− 1

4
(f(X)−g(X))2

]
= 1− E

[
e−

1
8

(f(X)−g(X))2
]

= 1−
∫
e−

1
8

(f(x)−g(x))2 dµ(x).

Since 1 − e−x ≤ x and µ is a probability measure, we have that dH(Pf , Pg) ≤ 1
8

∫
(f(x) −

g(x))2 dµ(x). Due to 1− e−x ≥ e−xx, we also find

dH(Pf , Pg) ≥
e−Q

2/2

8

∫ (
f(x)− g(x)

)2
dµ(x), for all f, g, with ‖f‖∞, ‖g‖∞ ≤ Q.

(2.A.2)

By Proposition D.8 in [41], for any f, g, there exists a test such that Efφ ≤
exp(−n

8dH(Pf , Pg)
2) and suph:dH(Ph,Pg)<dH(Pf ,Pg)/2 Eh[1 − φ] ≤ exp(−n

8dH(Pf , Pg)
2). This

means that for the Hellinger distance, the test condition in (8.2) in [41] holds for ξ = 1/2.

Function spaces. The next result shows that the Hölder-balls defined in this paper

are nested.

Lemma 2.A.1. If 0 < β′ ≤ β, then, for any positive integer r and any K > 0, we have

Cβr (K) ⊆ Cβ
′

r (K).

Proof of Lemma 2.A.1. If bβ′c = bβc the embedding follows from the definition of the

Hölder-ball and the fact that supx,y∈[−1,1]r |x−y|β−β
′

∞ = 2β−β
′
. If bβ′c < bβc, it remains to

prove Cβ(K) ⊆ Cbβ′c+1(K). This follows from first order Taylor expansion,

2
∑

α:|α|=bβ′c

sup
x,y∈[−1,1]r

x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|∞

≤ 2
∑

α:|α|=bβ′c

∥∥∣∣∇(∂αf)
∣∣
1

∥∥
∞

≤ 2r
∑

α:|α|=bβ′c+1

∥∥∂αf∥∥∞,
and the definition of the Hölder-ball in (2.2.3).
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The following is a slight variation of Lemma 3 in [76].

Lemma 2.A.2. Let hij : [−1, 1]ti → [−1, 1] be as in (2.2.1). Assume that, for some K ≥ 1

and ηi ≥ 0, |hij(x) − hij(y)|∞ ≤ ηi + K|x − y|βi∧1
∞ for all x,y ∈ [−1, 1]ti . Then, for any

functions h̃i = (h̃ij)
>
j with h̃ij : [−1, 1]ti → [−1, 1],

∥∥hq ◦ . . . ◦ h0 − h̃q ◦ . . . ◦ h̃0

∥∥
L∞[−1,1]d

≤ Kq
q∑
i=0

ηαii +
∥∥|hi − h̃i|∞∥∥αi∞.

with αi =
∏q
`=i+1 β` ∧ 1.

Proof of Lemma 2.A.2. We prove the assertion by induction over q. For q = 0, the result

is trivially true. Assume now that the statement is true for a positive integer k. To show

that the assertion also holds for k + 1, define Hk = hk ◦ . . . ◦ h0 and H̃k = h̃k ◦ . . . ◦ h̃0. By

triangle inequality,∣∣hk+1 ◦Hk(x)− h̃k+1 ◦ H̃k(x)
∣∣
∞

≤ |hk+1 ◦Hk(x)− hk+1 ◦ H̃k(x)
∣∣
∞ + |hk+1 ◦ H̃k(x)− h̃k+1 ◦ H̃k(x)

∣∣
∞

≤ ηk+1 +K
∣∣Hk(x)− H̃k(x)

∣∣βk+1∧1

∞ + ‖|hk+1 − h̃k+1|∞‖∞.

Together with the induction hypothesis and the inequality (y + z)α ≤ yα + zα which holds

for all y, z ≥ 0 and all α ∈ [0, 1], the induction step follows.

The next result is a corollary of Theorem 8.9 in [41].

Lemma 2.A.3. Denote the data by Dn and the (generic) posterior by Π(·|Dn). Let (An)n

be a sequence of events and B2(Pf∗ , ε) as in (2.A.1). Assume that

e2na2n
Π(An)

Π(B2(Pf∗ , an))

n→∞−−−→ 0, (2.A.3)

for some positive sequence (an)n. Then,

Ef∗
[
Π(An|Dn)

] n→∞−−−→ 0,

where Ef∗ is the expectation with respect to Pf∗ .

We now can prove Theorem 2.4.3.

Proof of Theorem 2.4.3. By definition (2.4.2), the quantity Π
(
η /∈ Mn(C)|X,Y

)
denotes

the posterior mass of the functions whose models are in the complement ofMn(C). In view

of Lemma 2.A.3, it is sufficient to show condition (2.A.3) for An = {η /∈Mn(C)} =:Mc
n(C)

and an proportional to εn(η∗). We now prove that

e2na2n

∫
Mc

n(C) π(η) dη

Π(B2(Pf∗ , an))
→ 0, (2.A.4)

for an = 4Kq∗(q∗+1)Qεn(η∗) and Π the deep Gaussian process prior. The next result deals

with the lower bound on the denominator. For any hypercube I, we introduce the notation

diam(I) := supβ,β′∈I |β − β′|∞.
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Lemma 2.A.4. Let Π be a DGP prior that satisfies the assumptions of Theorem 2.4.3.

With Q the universal constant from Assumption 2.4.2, R∗ := 4Kq∗(q∗+1)Q and sufficiently

large sample size n, we have

Π
(
B2

(
Pf∗ , 2R

∗εn(η∗)
))
≥ e−|d∗|1Q2nεn(η∗)2π(λ∗, I∗n),

where I∗n ⊂ [β−, β+]q
∗+1 is a hypercube containing β∗ with diam(I∗n) = 1/ log2 n.

Proof of Lemma 2.A.4. By construction (2.A.1), the set B2(Pf∗ , 2R
∗εn(η∗)) is a superset

of {g : ‖f∗ − g‖∞ ≤ R∗εn(η∗)}, so that

Π
(
B2

(
Pf∗ , 2R

∗εn(η∗)
))
≥ Π

(
f∗ + B∞ (R∗εn(η∗))

)
.

We then localize the probability in the latter display in a neighborhood around the true

β∗ = (β∗0 , . . . , β
∗
q ). More precisely, let I∗n := {β = (β0, . . . , βq∗) : βi ∈ [β∗i − bn, β∗i ], ∀i} with

bn := 1/ log2 n. Since β ∈ I(λ∗) = [β−, β+]q
∗+1, we can always choose n large enough such

that I∗n ⊆ I(λ∗). With f∗ = h∗q∗ ◦ . . . ◦ h∗0 and R∗ = 4Kq∗(q∗ + 1)Q,

Π
({
g : ‖f∗ − g‖∞ ≤ R∗εn(η∗)

})
≥
∫
I∗n

P
(∥∥h∗q∗ ◦ . . . ◦ h∗0 −G(λ∗,β)

q∗ ◦ . . . ◦G(λ∗,β)
0

∥∥
∞ ≤ R

∗εn(η∗)
)
π(λ∗,β)dβ.

(2.A.5)

Fix any β ∈ I∗n. Both G
(λ∗,β)
ij and h∗ij map [−1, 1]d

∗
i into [−1, 1]. They also depend on the

same subset of variables S∗ij . By construction, the process G
(λ∗,β)
ij := G

(λ∗,β)
ij ◦ (·)−1

S∗ij
is an

independent copy of G
(βi,t

∗
i )

i : [−1, 1]t
∗
i → [−1, 1] and G

(βi,t
∗
i )

i is the conditioned Gaussian

process G̃(βi,t
∗
i )|{G̃(βi,t

∗
i ) ∈ Di(λ∗,β,K)}. The function h

∗
ij := h∗ij◦(·)

−1
S∗ij

belongs by definition

to the space Cβ
∗
i
t∗i

(K) and satisfies |h∗ij(x) − h∗ij(y)| ≤ K|x − y|β
∗
i ∧1
∞ for all x,y ∈ [−1, 1]t

∗
i

and all i = 0, . . . , q∗; j = 1, . . . , d∗i+1. By Lemma 2.A.2 with ηi = 0, we thus find

∥∥f∗ −G(λ∗,β)
∥∥
∞ ≤ K

q∗
q∗∑
i=0

max
j=1,...,d∗i+1

∥∥h∗ij −G(λ∗,β)
ij

∥∥α∗i
∞ ,

where α∗i =
∏q∗

`=i+1 β
∗
` ∧ 1. Since α∗i ≥ αi =

∏q∗

`=i+1(β` ∧ 1) for β ∈ I∗n, if ‖h∗ij −G
(λ∗,β)
ij ‖∞

is smaller than one, the latter display is bounded above by

∥∥f∗ −G(λ∗,β)
∥∥
∞ ≤ K

q∗
q∗∑
i=0

max
j=1,...,d∗i+1

∥∥h∗ij −G(λ∗,β)
ij

∥∥αi
∞.

Set δin := εn(αi, βi, t
∗
i )

1/αi . By Assumption 2.4.2, we have δin ≤ (Qεn(α∗i , β
∗
i , t
∗
i ))

1/αi

and so 4δin < 1 since we are also assuming εn(η∗) < 1/(4Q). Together with the definition of

εn(η∗) in (2.3.4), imposing ‖h∗ij −G
(λ∗,β)
ij ‖∞ ≤ 4δin for all i = 0, . . . , q∗ and j = 1, . . . , d∗i+1

implies ‖f∗ −G(λ∗,β)‖∞ ≤ R∗εn(η∗). Consequently,

P
(∥∥h∗q∗ ◦ . . . ◦ h∗0 −G(λ∗,β)

q∗ ◦ . . . ◦G(λ∗,β)
0

∥∥
∞ ≤ R

∗εn(η∗)
)

≥
q∗∏
i=0

d∗i+1∏
j=1

P
(∥∥h∗ij −G(λ∗,β)

ij

∥∥
∞ ≤ 4δin

)
.

(2.A.6)
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We now lower bound the probabilities on the right hand side. If h
∗
ij ∈ C

β∗i
t∗i

(K), then,

(1 − 2δin)h
∗
ij ∈ C

β∗i
t∗i

((1 − 2δin)K) and by the embedding property in Lemma 2.A.1, we

obtain (1− 2δin)h
∗
ij ∈ C

βi
t∗i

(K).

When ‖(1− 2δin)h
∗
ij − G̃(βi,t

∗
i )‖∞ ≤ 2δin, the Gaussian process G̃(βi,t

∗
i ) is at most 2δin-

away from (1 − 2δin)h
∗
ij ∈ C

βi
t∗i

(K). Consequently, {‖(1 − 2δin)h
∗
ij − G̃(βi,t

∗
i )‖∞ ≤ 2δin} ⊆

{G̃(βi,t
∗
i ) ∈ Di(λ∗,β,K)}, where the bound for the unitary ball follows from the triangle

inequality. Since ‖(1 − 2δin)h
∗
ij − G̃(βi,t

∗
i )‖∞ ≤ 2δin implies ‖h∗ij − G̃(βi,t

∗
i )‖∞ ≤ 4δin, by

the concentration function property in Lemma I.28 in [41] and the concentration function

inequality in (2.3.2), we find

P
(∥∥h∗ij −G(λ∗,β)

ij

∥∥
∞ ≤ 4δin

)
≥

P
(
‖(1− δin

)
h
∗
ij − G̃(βi,t

∗
i )‖∞ ≤ 2δin)

P
(
G̃(βi,t∗i ) ∈ Di(λ∗,β,K)

)
≥ P

(∥∥(1− δin)h
∗
ij − G̃(βi,t

∗
i )
∥∥
∞ ≤ 2δin

)
≥ exp

(
− ϕ(βi,t

∗
i ,K)

(
δin
))

≥ exp
(
− nεn(αi, βi, t

∗
i )

2
)

≥ exp
(
−Q2nεn(η∗)2

)
,

here Q is the universal constant from Assumption 2.4.2. With |d∗|1 = 1 +
∑q∗

j=0 d
∗
j , (2.A.5),

(2.A.6) and the previous display we recover the claim.

The latter result shows that

Π
(
B2

(
Pf∗ , 4K

q∗(q∗ + 1)Qεn(η∗)
))
≥ e−|d∗|1Q2nεn(η∗)2

∫
I∗n

π(λ∗,β) dβ, (2.A.7)

with I∗n = {β = (β0, . . . , βq∗) : βi ∈ [β∗i − bn, β∗i ],∀i} and bn = 1/ log2 n. Recall that, by

construction (2.3.5), π(η) ∝ e−Ψn(η)γ(η) with Ψn(η) = nεn(η)2 + ee
|d|1 . For any β ∈ I∗n,

we have Ψn(λ∗,β) ≤ Ψn(λ∗,β∗), and Assumption 2.4.1 gives γ(λ∗,β) = γ(λ∗)γ(β|λ∗) with

γ(λ∗) > 0 independent of n and γ(·|λ∗) the uniform distribution over I(λ∗) = [β−, β+]q
∗+1.

Thus, γ(I∗n|λ∗) = |I∗n|/|I(λ∗)| and |I∗n| = (1/ log2 n)q
∗+1, so that

π(η)∫
I∗n
π(λ∗,β) dβ

≤ eΨn(η∗)−Ψn(η)γ(η)

γ(λ∗)γ(I∗n|λ∗)
=
|I(λ∗)|
γ(λ∗)

eΨn(η∗)−Ψn(η)e2(q∗+1) log lognγ(η). (2.A.8)

Both γ(λ∗) and |I(λ∗)| = (β+ − β−)q
∗+1 are constants independent of n. Furthermore,

eΨn(η∗) = exp(ee
|d∗|1 )enεn(η∗)2 and the quantity exp(ee

|d∗|1 ) is independent of n as well. We

can finally verify condition (2.A.4) by showing that, with a∗ = 4Kq∗(q∗ + 1)Q,

e2a2∗nεn(η∗)2enεn(η∗)2+2(q∗+1) log logn
∑
λ

∫
β:(λ,β)/∈Mn(C)

e−Ψn(η)γ(η) dβ → 0.

By the lower bound in Assumption 2.4.2 (i), we have nεn(η∗)2 ≥ nrn(η∗)2 � 2(q∗ +

1) log log n, since the quantity nrn(η∗)2 is a positive power of n by definition (2.5.1). The
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complement of the set Mn(C) is the union of {η : εn(η) > Cεn(η∗)} and {η : |d|1 >

log(2 logn)}. Over these sets, by construction (2.3.5), we have either Ψn(η) > C2nεn(η∗)2

or Ψn(η) > n2. Therefore, the term e−Ψn(η) decays faster than either e−C
2nεn(η∗)2 or e−n

2
.

In the first case, the latter display converges to zero for sufficiently large C > 0. In the

second case, the latter display converges to zero since εn(η∗) < 1 and nεn(η∗)2 < n � n2.

This completes the proof.

We need some preliminary notation and results before proving Theorem 2.4.4.

Entropy bounds. Previous bounds for the metric entropy of Hölder-balls, e.g. Proposi-

tion C.5 in [41], are of the form logN
(
δ, Cβr (K), ‖·‖∞

)
≤ Q1(β, r,K)δ−r/β for some constant

Q1(β, r,K) that is hard to control. An exception is Theorem 8 in [14] that, however, only

holds for β ≤ 1. We derive an explicit bound on the constant Q1(β, r,K) for all β > 0. The

proof is given in Section 2.A.1.

Lemma 2.A.5. For any positive integer r, any β > 0 and 0 < δ < 1, we have

N
(
δ, Cβr (K), ‖ · ‖∞

)
≤
(

4eK2rβ

δ
+ 1

)(β+1)r (
2β+2eKrβ + 1

)4r(β+1)rrr(2eK)
r
β δ
− r
β

≤ eQ1(β,r,K)δ
− r
β

with Q1(β, r,K) := (1 + eK)4r+1(β + 3)r+1rr+1(8eK2)r/β . For any 0 < α ≤ 1 and any

sequence δn ≥ Q1(β, r,K)β/(2β+r)n−βα/(2βα+r), we also have

logN
(
δ1/α
n , Cβr (K), ‖ · ‖∞

)
≤ nδ2

n. (2.A.9)

Support of DGP prior and local complexity. For any graph λ = (q,d, t,S) and

any β ∈ [β−, β+]q+1, denote by Θn(λ,β,K) the space of functions f : [−1, 1]d → [−1, 1]

for which there exists a decomposition f = hq ◦ . . . ◦ h0 such that hij : [−1, 1]di → [−1, 1]

and hij = hij ◦ (·)−1
Sij ∈ Di(λ,β,K), for all i = 0, . . . , q; j = 1, . . . , di+1 and Di(λ,β,K) as

defined in (2.3.3). Differently speaking

Θn(λ,β,K) := Θq,n(λ,β,K) ◦ · · · ◦Θ0,n(λ,β,K) (2.A.10)

with

Θi,n(λ,β,K) :=
{
hi : [−1, 1]di → [−1, 1]di+1 : hij ◦ (·)−1

Sij ∈ Di(λ,β,K), j = 1, . . . , di+1

}
.

By construction, the support of the deep Gaussian process G(η) ∼ Π(·|η) is contained in

Θn(λ,β,K). For a subset B ⊆ [β−, β+]q+1 we also set Θn(λ,B,K) := ∪β∈BΘn(λ,β,K).

The next lemma provides a bound for the covering number of Θn(λ,B,K). Recall that

diam(B) = supβ,β′∈B |β − β′|∞. We postpone the proof to Section 2.A.1.

Lemma 2.A.6. Suppose that Assumption 2.4.2 holds and let λ be a graph such that

|d|1 ≤ log(2 log n). Let B ⊆ [β−, β+]q+1 with diam(B) ≤ 1/ log2 n. Then, with Rn :=

5Q(2 log n)1+logK ,

sup
β∈B

logN (Rnεn(λ,β),Θn(λ,B,K), ‖ · ‖∞)

nεn(λ,β)2
≤ R2

n

25
.
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We now prove Theorem 2.4.4 by following a classical argument in [41], namely Theo-

rem 8.14, which recovers the posterior contraction rates by means of partition entropy.

Proof of Theorem 2.4.4. For any ρ > 0, introduce the complement Hellinger ball

Hc(f∗, ρ) := {f : dH(Pf , Pf∗) > ρ}. The convergence with respect to the Hellinger dis-

tance dH implies convergence in L2(µ) thanks to (2.A.2). As a consequence, we show that

sup
f∗∈F(η∗,K)

Ef∗
[
Π
(
Hc
(
f∗, Lnεn(η∗)

)∣∣∣(X,Y)
)]
→ 0,

with Ln := MRn, Rn := 10QC(2 log n)1+logK and M > 0 a sufficiently large universal

constant to be determined. WithMn(C) = {η : εn(η) ≤ Cεn(η∗)}∩{η : |d|1 ≤ log(2 logn)}
the set of good composition structures, and the notation in (2.4.2), we denote by Π(· ∩
Mn(C)|X,Y) the contribution of the good structures to the posterior mass.

We denote by Ln(C) the set of graphs that are realized by some good composition

structure, that is,

Ln(C) :=
{
λ ∈ Λ : ∃β ∈ I(λ), η = (λ,β) ∈Mn(C)

}
. (2.A.11)

Condition (ii) in Assumption 2.4.2 holds for all the graphs in Ln(C). For any λ ∈ Ln(C),

partition I(λ) = [β−, β+]q+1 into hypercubes of diameter 1/ log2 n and let B1(λ), . . . , BN(λ)

be the N(λ) blocks that contain at least one β ∈ I(λ) that is realized by some composition

structure in Mn(C). The blocks may contain also values of β for which (λ,β) /∈ Mn(C).

Then, the set of good composition structures is contained in the enlargement

Mn(C) ⊆ M̃n(C) :=
⋃

λ∈Ln(C)

N(λ)⋃
k=1

(
{λ} ×Bk(λ)

)
.

Thanks to Theorem 2.4.3 and the enlarged set of structures M̃n(C), it is enough to show,

for sufficiently large constants M,C,

sup
f∗∈F(η∗,K)

Ef∗
[
Π
(
Hc
(
f∗,MRnεn(η∗)

)
∩ M̃n(C)

∣∣∣(X,Y)
)]
→ 0. (2.A.12)

Fix any f∗ ∈ F(η∗,K). Since there is no ambiguity, we shorten the notation to Hcn =

Hc(f∗,MRnεn(η∗)) and rewrite

Ef∗
[
Π
(
Hcn ∩ M̃n(C)

∣∣∣(X,Y)
)]

= Ef∗

∫Hcn Π(df ∩ M̃n(C)|X,Y)∫
Π(df |X,Y)

 .
We follow the steps of the proof of Theorem 8.14 in [41]. In their notation we use εn =

Rnεn(η∗) and ξ = 1/2 for contraction with respect to Hellinger loss. Set

A∗n =

{∫
Π(df |X,Y) ≥ Π

(
B2

(
f∗, Rnεn(η∗)

))
e−2R2

nnεn(η∗)2
}
.
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Then Pf∗(A∗n) tends to 1, thanks to Lemma 8.10 in [41] applied with D = 1. Since 1 =

1(A∗n) + 1(A∗,cn ), we have

Ef∗
[
Π
(
Hcn ∩ M̃n(C)

∣∣∣(X,Y)
)]
≤ Pf∗(A∗,cn ) + Ef∗

1(A∗n)

∫
Hcn

Π(df ∩ M̃n(C)|X,Y)∫
Π(df |X,Y)


and Pf∗(A∗,cn ) → 0 when n → +∞. It remains to show that the second terms on the right

side tends to zero.

Let φn,k(λ) be arbitrary statistical tests to be chosen later. Test are to be understood

as φn,k(λ) = φn,k(λ)(X,Y) measurable functions of the sample (X,Y), taking values in

[0, 1]. Then, 1 = φn,k(λ) + (1− φn,k(λ)). Using the definition of Π(df ∩ M̃n(C)|X,Y) and

Fubini’s theorem, we find

Ef∗
[
Π
(
Hcn ∩ M̃n(C)

∣∣∣(X,Y)
)]
≤ Pf∗(A∗,cn ) + Ef∗ [T1 + T2] , (2.A.13)

where

T1 := 1(A∗n)

∑
λ∈Ln(C)

∑N(λ)
k=1 φn,k(λ)

∫
Bk(λ) π(λ,β)

(∫
Hcn

pf
pf∗

(X,Y)Π(df |λ,β)
)
dβ∫

Π(df |X,Y)
,

T2 := 1(A∗n)

∑
λ∈Ln(C)

∑N(λ)
k=1

∫
Bk(λ) π(λ,β)

(∫
Hcn

(1− φn,k(λ))
pf
pf∗

(X,Y)Π(df |λ,β)
)
dβ∫

Π(df |X,Y)
.

We bound T1 by using 1(A∗n) ≤ 1, together with∫
Bk(λ) π(λ,β)

(∫
Hcn

pf
pf∗

(X,Y)Π(df |λ,β)
)
dβ∫

Π(df |X,Y)
≤ 1,

so that

Ef∗ [T1] ≤
∑

λ∈Ln(C)

N(λ)∑
k=1

Ef∗ [φn,k(λ)] . (2.A.14)

We bound T2 using the definition of A∗n, and obtain

T2 ≤

∑
λ∈Ln(C)

∑N(λ)
k=1

∫
Bk(λ) π(λ,β)

(∫
Hcn

(1− φn,k(λ))
pf
pf∗

(X,Y)Π(df |λ,β)
)
dβ

Π
(
B2

(
f∗, Rnεn(η∗)

))
e−2R2

nnεn(η∗)2
.

For large n, Rn = 10QC(2 log n)1+logK ≥ 4QKq∗(q∗ + 1). By Lemma 2.A.4, we find

Π
(
B2

(
f∗, Rnεn(η∗)

))
≥ e−R2

nnεn(η∗)2π(λ∗, I∗n), (2.A.15)

with I∗n := {β = (β0, . . . , βq∗) : βi ∈ [β∗i − bn, β∗i ], ∀i} and bn := 1/ log2 n. By the construc-

tion of the prior π in (2.3.5), the denominator term e−Ψn(η) is bounded above by 1 and∫
Ω γ(η) dη = 1, thus

π(λ∗, I∗n) =

∫
I∗n
e−Ψn(λ∗,β)γ(λ∗,β)dβ∫

Ω e
−Ψn(η)γ(η) dη

≥
∫
I∗n

e−Ψn(λ∗,β)γ(λ∗,β)dβ.
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Furthermore, by condition (ii) in Assumption 2.4.2, we have εn(λ∗,β) ≤ Qεn(λ∗,β∗) for

any β ∈ I∗n, which gives

π(λ∗, I∗n) ≥ exp(−ee|d
∗|1

) e−Q
2nεn(η∗)2γ(λ∗, I∗n),

with proportionality constant exp(−ee|d
∗|1 ) > 0 independent of n. Again by construction,

the measure γ(λ∗, I∗n) can be split into the product γ(λ∗)γ(I∗n|λ∗) where γ(·|λ∗) is the uni-

form measure on I(λ∗) = [β−, β+]q
∗+1 and the quantity γ(λ∗) > 0 is a constant independent

of n. Thus, with c(η∗) := exp(−ee|d
∗|1 )γ(λ∗)/|I(λ∗)|, π(λ∗, I∗n) ≥ c(η∗)|I∗n|e−Q

2nεn(η∗)2 . In

the discussion after (2.A.8) we have shown that nεn(η∗)2 is a positive power of n and so,

for a large enough n depending only on η∗, one has |I∗n| = (1/ log2 n)q
∗+1 > e−nεn(η∗)2 . This

results in

π(λ∗, I∗n) ≥ c(η∗)e−(Q2+1)nεn(η∗)2 ≥ c(η∗)e−R2
nnεn(η∗)2 . (2.A.16)

By putting together the small ball probability bound (2.A.15) and the hyperprior

bound (2.A.16), we recover

T2 ≤ c(η∗)−1

∑
λ∈Ln(C)

∑N(λ)
k=1

∫
Bk(λ) π(λ,β)

(∫
Hcn

(1− φn,k(λ))
pf
pf∗

(X,Y)Π(df |λ,β)
)
dβ

e−4R2
nnεn(η∗)2

,

(2.A.17)

with proportionality constant c(η∗)−1 independent of n and depending only on η∗, β−, β+.

We now bound the numerator of T2 using Fubini’s theorem and the inequality Ef∗ [(1 −
φn,k(λ))(pf/pf∗)(X,Y)] ≤ Ef [1− φn,k(λ)],

Ef∗

 ∑
λ∈Ln(C)

N(λ)∑
k=1

∫
Bk(λ)

π(λ,β)

(∫
Hcn

(1− φn,k(λ))
pf
pf∗

(X,Y)Π(df |λ,β)

)
dβ


=

∑
λ∈Ln(C)

N(λ)∑
k=1

∫
Bk(λ)

π(λ,β)

(∫
Hcn

Ef∗
[
(1− φn,k(λ))

pf
pf∗

(X,Y)

]
Π(df |λ,β)

)
dβ

≤
∑

λ∈Ln(C)

N(λ)∑
k=1

∫
Bk(λ)

π(λ,β)

∫
Hcn

Ef [(1− φn,k(λ))] Π(df |λ,β)dβ. (2.A.18)

With the supports Θn(λ,β,K) in (2.A.10) and any k = 1, . . . , N(λ), consider

Θn(λ,Bk(λ),K) = ∪β∈Bk(λ)Θn(λ,β,K). Now, for any fixed λ, k choose tests φn,k(λ) ac-

cording to Theorem D.5 in [41], so that for f ∈ Θn(λ,Bk(λ),K) ∩ Hc(f∗,MRnεn(η∗)) we

have, for some universal constant K̃ > 0,

Ef∗ [φn,k(λ)] ≤ ck(λ)N
(
Rnεn(η∗)

2
,Θn(λ,Bk(λ),K), ‖ · ‖∞

)
e−K̃M

2R2
nnεn(η∗)2

1− e−K̃M2R2
nnεn(η∗)2

,

Ef [1− φn,k(λ)] ≤ ck(λ)−1e−K̃M
2R2

nnεn(η∗)2 ,

with choice of coefficients

ck(λ)2 :=
π(λ,Bk(λ))

N
(
Rnεn(η∗)

2 ,Θn(λ,Bk(λ),K), ‖ · ‖∞
) .
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Let us denote by ρk(λ) the local complexities

ρk(λ) :=
√
π(λ,Bk(λ)) ·

√
N
(
Rnεn(η∗)

2
,Θn(λ,Bk(λ),K), ‖ · ‖∞

)
.

Combining this with the bound on T1 in (2.A.14) and the bounds on T2 in (2.A.17)–(2.A.18),

gives

Ef∗ [T1] ≤ e−K̃M
2R2

nnεn(η∗)2

1− e−K̃M2R2
nnεn(η∗)2

∑
λ∈Ln(C)

N(λ)∑
k=1

ρk(λ),

Ef∗ [T2] ≤ c(η∗)−1e(4−K̃M2)R2
nnεn(η∗)2

∑
λ∈Ln(C)

N(λ)∑
k=1

ρk(λ).

It remains to show that both expectations in the latter display tend to zero when n→ +∞.
Since M > 0 can be chosen arbitrarily large, we choose it in such a way that K̃M2 > 5

and the proof is complete if we can show that

∑
λ∈Ln(C)

N(λ)∑
k=1

ρk(λ) . eR
2
nnεn(η∗)2 , (2.A.19)

for some proportionality constant independent of n. Fix λ ∈ Ln(C) and k = 1, . . . , N(λ).

By construction, there exists β ∈ Bk(λ) such that (λ,β) ∈ Mn(C). Since Rn =

10QC(2 log n)1+logK , using Cεn(η∗) ≥ εn(η) together with Lemma 2.A.6, we find

logN
(
Rnεn(η∗)

2
,Θn(λ,B,K), ‖ · ‖∞

)
≤ R2

n

25
nεn(η∗)2.

This results in

∑
λ∈Ln(C)

N(λ)∑
k=1

ρk(λ) ≤ exp

(
1

50
R2
nnεn(η∗)2

) ∑
λ∈Ln(C)

N(λ)∑
k=1

√
π(λ,Bk(λ))

= exp

(
1

50
R2
nnεn(η∗)2

)
z
− 1

2
n

∑
λ∈Ln(C)

N(λ)∑
k=1

√
γ(λ,Bk(λ)),

where zn =
∑

λ

∫
I(λ) e

−Ψn(λ,β)γ(λ,β)dβ is the normalization term in (2.3.5). By the local-

ization argument in (2.A.16), we know that zn ≥ π(λ∗, I∗n) & e−R
2
nnεn(η∗)2 , with proportion-

ality constant independent of n. Thus,

∑
λ∈Ln(C)

N(λ)∑
k=1

ρk(λ) . exp

(
26

50
R2
nnεn(η∗)2

) ∑
λ∈Ln(C)

N(λ)∑
k=1

√
γ(λ,Bk(λ)).

Since Rn = 10QC(2 log n)1+logK � 1, it is sufficient for (2.A.19) that

∑
λ∈Ln(C)

N(λ)∑
k=1

√
γ(λ,Bk(λ)) . e

1
2
nεn(η∗)2 , (2.A.20)
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for some proportionality constant that can be chosen independent of n. To see this, ob-

serve that by Assumption 2.4.1, we have γ(λ,β) = γ(λ)γ(β|λ) with γ(·|λ) the uniform

distribution over I(λ). Thus

∑
λ∈Ln(C)

N(λ)∑
k=1

√
γ(λ,Bk(λ)) =

∑
λ∈Ln(C)

N(λ)∑
k=1

√
|Bk(λ)|

√
γ(λ,βk(λ)),

where βk(λ) is the center point of the hypercube Bk(λ). Since |Bk(λ)| = (1/ log2 n)q+1 and

(q+1) ≤ |d|1 ≤ log(2 log n), we have log(|Bk(λ)|−1) = 2(q+1)(log n) ≤ 4 log2 n� nεn(η∗)2.

Therefore, for a sufficiently large n depending only on η∗, we find |Bk(λ)|−1 ≤ enεn(η∗)2 .

The above discussion yields the following bound on the latter display,

∑
λ∈Ln(C)

N(λ)∑
k=1

√
γ(λ,Bk(λ)) =

∑
λ∈Ln(C)

N(λ)∑
k=1

1√
|Bk(λ)|

|Bk(λ)|
√
γ(λ,βk(λ))

≤ e
1
2
nεn(η∗)2

∑
λ∈Ln(C)

N(λ)∑
k=1

|Bk(λ)|
√
γ(λ,βk(λ)).

This is enough to obtain (2.A.20) since, by Assumption 2.4.1,

∑
λ∈Ln(C)

N(λ)∑
k=1

|Bk(λ)|
√
γ(λ,βk(λ)) ≤

∑
λ∈Λ

∫
I(λ)

√
γ(λ,β)dβ =

∫
Ω

√
γ(η) dη

is a finite constant independent of n.

Since all bounds are independent of the particular choice of f∗ and only depend on the

function class F(η∗,K), this concludes the proof of the uniform statement (2.A.12).

Proofs of auxiliary results

Proof of Lemma 2.A.5. We follow the proof of Theorem 2.7.1 in [84] and provide explicit

expressions for all constants. We start by covering the interval [−1, 1]r with a grid of width

τ = (δ/c(β))1/β, where c(β) := erβ + 2K. The grid consists of M points x1, . . . ,xM with

M ≤ vol([−2, 2]r)

τ r
= 4rc(β)

r
β δ
− r
β . (2.A.21)

For any h ∈ Cβr (K) and any α = (α1, . . . , αr) ∈ Nr with |α|1 = α1 + . . .+ αr ≤ bβc, set

Aαh :=

(⌊
∂αh(x1)

τβ−|α|1

⌋
, . . . ,

⌊
∂αh(xM )

τβ−|α|1

⌋)
. (2.A.22)

The vector τβ−|α|1Aαh consists of the values ∂αh(xi) discretized on a grid of mesh-width

τβ−|α|1 . Since ∂αh ∈ Cβ−|α|1r (K) and τ < 1 by construction, the entries of the vector in the

latter display are integers bounded in absolute value by⌊
|∂αh(xi)|
τβ−|α|1

⌋
≤
⌊

K

τβ−|α|1

⌋
≤
⌊
K

τβ

⌋
. (2.A.23)
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Let h, h̃ ∈ Cβr (K) be two functions such that Aαh = Aαh̃ for all α with |α|1 ≤ bβc. We

now show that ‖h− h̃‖∞ ≤ δ. For any x ∈ [−1, 1]r, let xi be the closest grid vertex, so that

|x− xi|∞ ≤ τ. Taylor expansion around xi gives

(h− h̃)(x) =
∑

α:|α|1≤bβc

∂α(h− h̃)(xi)
(x− xi)

α

α!
+R,

R =
∑

α:|α|1=bβc

[
∂α(h− h̃)(xξ)− ∂α(h− h̃)(xi)

](x− xi)
α

α!
,

(2.A.24)

with xξi = xi + ξi(x − xi) and a suitable ξi ∈ [0, 1]. With |∂α(h − h̃)|β−|α|1 the Hölder

seminorm of the function ∂α(h− h̃) ∈ Cβ−|α|1r (2K), we bound the remainder R by

|R| ≤
∑

α:|α|1=bβc

∣∣∣∂α(h− h̃)(xξ)− ∂α(h− h̃)(xi)
∣∣∣ τ |α|1
α!

≤
∑

α:|α|1=bβc

∣∣∣∂α(h− h̃)
∣∣∣
β−|α|1

τβ−|α|1
τ |α|1

α!

≤ 2Kτβ.

Plugging this into the bound (2.A.24) gives

|(h− h̃)(x)| ≤
∑

α:|α|1≤bβc

∣∣∣∂α(h− h̃)(xi)
∣∣∣ τ |α|1
α!

+Kτβ

=
∑

α:|α|1≤bβc

τβ−|α|1

∣∣∣∣∣∂α(h− h̃)(xi)

τβ−|α|1

∣∣∣∣∣ τ |α|1α!
+ 2Kτβ.

In view of definition (2.A.22), we denote Aα(h − h̃)(xi) = b∂α(h − h̃)(xi)/τ
β−|α|1c and

Bα(h − h̃)(xi) = ∂α(h − h̃)(xi)/τ
β−|α|1 − Aα(h − h̃)(xi). Thus Aα(h − h̃)(xi) = 0 by

assumption on h, h̃ and |Bα(h− h̃)(xi)| < 1. We now prove∑
α:|α|1≤bβc

1/α! ≤ erβ. (2.A.25)

In fact, for any positive integer k, consider the multinomial distribution induced by a

fair r-sided die over k independent rolls. The corresponding p.m.f. is α 7→ r−kk!/α! and is

supported on {α : |α|1 = k}. Since the p.m.f. sums to one, we have
∑

α:|α|1=k 1/α! = rk/k!.

By summing over k = 0, . . . , bβc, one finds
∑

α:|α|1≤bβc 1/α! =
∑bβc

k=0

∑
α:|α|1=k 1/α! ≤ erβ,

proving (2.A.25). Combining the discussion above together with the previous bounds, yields

|(h− h̃)(x)| ≤ τβ
∑

α:|α|1≤bβc

1

α!
+ 2Kτβ ≤ τβ

(
erβ + 2K

)
= δ, (2.A.26)

proving that, if two functions h, h̃ ∈ Cβr (K) have Aαh = Aαh̃ for all α with |α|1 ≤ bβc,
then ‖h− h̃‖∞ ≤ δ.
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The quantityN (δ, Cβr (K), ‖·‖) is bounded above by cardinality #A of the set of matrices

A =
{
Ah = (Aαh)>α:|α|1≤bβc : h ∈ Cβr (K)

}
.

The rows of the matrix Ah consist of the row vectors Aαh. Since we consider α : |α|1 ≤ bβc,
the matrix Ah can have at most (bβc+ 1)r rows. Any matrix Ah has moreover M columns.

To complete the counting argument, we first explain the underlying idea. If two neigh-

boring grid points xi,xj are selected such that |xi − xj |∞ < 2τ, say, then, ∂αh(xi) ≈
∂αh(xj), whenever |α|1 < β. Since the `-th column of Ah contains the discretized entries

(∂αh(x`))α:|α|1≤bβc, the number of possible realizations of the i-th and j-th column vector

can be bounded by the possible realizations of the i-th column vector times a factor that

describes the number of possible deviations of the values in the j-th column vector.

We now show that this factor is bounded by 2β+1c(β). To see this, observe that Taylor

expansion gives

∂αh(xj) =
∑

k:|α|1+|k|1<bβc

∂α+kh(xi)
(xj − xi)

k

k!
+

∑
k:|α|1+|k|1=bβc

∂α+kh(xξ)
(xj − xi)

k

k!
,

for some xξ on the line with endpoints xi,xj . By replacing h̃ by 0, h by ∂αh, β by β− |α|1
and τ by 2τ, we can argue as for (2.A.26) to find∣∣∣∣∣∣∂αh(xj)−

∑
k:|α|1+|k|1≤bβc

τβ−|α|1−|k|1Aα+kh(xi)
(xj − xi)

k

k!

∣∣∣∣∣∣ ≤ 2β−|α|1c(β − |α|1)τβ−|α|1

≤ 2βc(β)τβ−|α|1 .

This shows that, if the i-th column of Ah is fixed, the values ∂αh(xj) range over an interval

of length at most 2 · 2βc(β)τβ−|α|1 . The entry b∂αh(xj)/τ
β−|α|1c can attain therefore at

most 2β+1c(β)τβ−|α|1/τβ−|α|1 + 1 = 2β+1c(β) + 1 different values. As there are at most

(β + 1)r many rows, for fixed i-th column of Ah, the j-th column of Ah can attain at most

(2β+1c(β) + 1)(β+1)r different values.

Without loss of generality, assume that the points x1, . . . ,xM are ordered in such a way

that for each j > 1, there exists i < j, such that |xi − xj |∞ < 2τ. This determines then

also the ordering of the columns of the matrix Ah. In view of Equation (2.A.23), the first

column of Ah can attain at most (2Kτ−β + 1)(β+1)r different values. For each of the M − 1

remaining columns, we can use the argument above and find

N (δ, Cβr (K), ‖ · ‖∞) ≤ #A ≤ (2Kτ−β + 1)(β+1)r · (2β+1c(β) + 1)(M−1)(β+1)r .

Since x + y ≤ xy for all x, y ≥ 2, using c(β) = erβ + 2K ≤ 2eKrβ, the bound on M

in (2.A.21) and the definition of τ = (δ/c(β))1/β, the first assertion of the lemma follows.

For the bound on the constant Q1(β, r,K), we take the logarithm. With log(x + 1) ≤
log(2x) for all x > 1, we get

log

((
4eK2rβ

δ
+ 1

)(β+1)r (
2β+2eKrβ + 1

)4r(β+1)rrr(2eK)
r
β δ
− r
β
)

66



2.A. Proofs

≤ (β + 1)r log

(
8eK2rβ

δ

)
+ 4r(β + 1)rrr(2eK)

r
β δ
− r
β log

(
2β+3eKrβ

)
=: A1 +A2.

Observe that log(x) < xa/a for all a, x > 0, then

log

(
8eK2rβ

δ

)
≤ β

r
(8eK2rβ)

r
β δ
− r
β = βrr−1(8eK2)

r
β δ
− r
β ,

which yields A1 ≤ (β + 1)r+1rr−1(8eK2)r/βδ−r/β . Furthermore, using that log x < x for all

x > 0,

log
(

2β+3eKrβ
)
≤ 2(β + 3) + βr + eK ≤ (r + 2)(β + 3) + eK.

Since r > 1, the latter display is smaller than 4(β + 3)r + eK ≤ 4eK(β + 3)r and so

A2 ≤ 4eK(β+ 3)r · 4r(β+ 1)rrr(2eK)r/βδ−r/β . Putting together the bounds on A1 and A2,

we find

A1 +A2

δ
− r
β

≤ (β + 1)r+1rr−1(8eK2)
r
β + eK(β + 3)4r+1rr+1(β + 1)r(2eK)

r
β

≤ (1 + eK)4r+1(β + 3)r+1rr+1(8eK2)
r
β ,

which matches the definition of Q1(β, r,K) in the statement.

We now prove the entropy bound in (2.A.9). Let Q1 = Q1(β, r,K), C1 = Q
βα/(2βα+r)
1

and rn = n−βα/(2βα+r). By construction, r
−r/βα
n = nr2n and Q1C

−r/βα
1 = C2

1 . For any

sequence δn ≥ C1rn, the first part of the proof gives

logN
(
δ

1
α
n , Cβr (K), ‖ · ‖∞

)
≤ logN

(
(C1rn)

1
α , Cβiti (K), ‖ · ‖∞

)
≤ Q1C

− r
βα

1 r
− r
βα

n

= C2
1nr

2
n

≤ nδ2
n.

The proof is complete.

Proof of Lemma 2.A.6. Fix any β ∈ [β−, β+]q+1. In a first step we show that, with R :=

5Kq(q + 1) and δin(λ,β) = εn(αi, βi, ti)
1/αi , we have

N (Rεn(λ,β),Θn(λ,β,K), ‖ · ‖∞) ≤
q∏
i=0

N (3δin(λ,β),Θi,n(λ,β,K), ‖ · ‖∞) . (2.A.27)

For any i = 0, . . . , q, let gi,1, . . . , gi,Ni be the centers of a 3δin(λ,β)-covering of Θi,n(λ,β,K).

Then, any function gq ◦ · · · ◦ g0 ∈ Θn(λ,β,K) belongs to a ball around a composition of

centers gq,kq ◦ · · · ◦ g0,k0 for some k = (k0, . . . , kq) and such that ‖gi − gi,ki‖∞ ≤ 3δin(λ,β).

By definition of Θi,n(λ,β,K), the components (gij,ki)j of gi,ki satisfy |gij,ki(x)−gij,ki(y)| ≤
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2δin(λ,β) + K|x − y|βi∧1
∞ , for all x,y ∈ [−1, 1]di . Using Lemma 2.A.2, the definition of

δin(λ,β) and the fact that αi ≤ 1, gives

∥∥gq ◦ · · · ◦ g0 − gq,kq ◦ · · · ◦ g0,k0

∥∥
∞ ≤ K

q
q∑
i=0

(2δin(λ,β))αi + (3δin(λ,β))αi

≤ 5Kq(q + 1)εn(λ,β)

= Rεn(λ,β).

Since there are N0 × · · · ×Nq centers, this concludes the first part of the proof.

We now focus on the set Θn(λ,B,K) = ∪β∈BΘn(λ,β,K). Set β the infimum of B, that

is, for any β ∈ B we have β
i
≤ βi, for all i = 0, . . . , q. Since B is contained in the closed

hypercube [β−, β+]q+1, we have β ∈ [β−, β+]q+1. We now show that, for any i = 0, . . . , q and

β ∈ B, the set Θi,n(λ,β,K) is contained in the set Θi,n(λ,β,K). In fact, by definition, any

function hi ∈ Θi,n(λ,β,K) satisfies hij◦(·)−1
Sij ∈ Di(λ,β,K) and, as a consequence of the em-

bedding in Lemma 2.A.1 and the fact that δin(λ,β) ≤ δin(λ,β) by the rate comparison con-

dition (ii) in Assumption 2.4.2, one has Cβiti (K)+B∞(2δin(λ,β)) ⊆ C
β
i

ti
(K)+B∞(2δin(λ,β)).

Thus, Di(λ,β,K) ⊆ Di(λ,β,K) and Θi,n(λ,β,K) ⊆ Θi,n(λ,β,K). Together with (2.A.27),

we obtain

N
(
Rεn(λ,β),Θn(λ,B,K), ‖ · ‖∞

)
≤ N

(
Rεn(λ,β),Θn(λ,β,K), ‖ · ‖∞

)
≤

q∏
i=0

N
(
3δin(λ,β),Θi,n(λ,β,K), ‖ · ‖∞

)
.

We now use the definition of Θi,n(λ,β,K) and upper bound the metric entropy by removing

the constraint B∞(1) in the definition of Di(λ,β,K). This gives

N
(
3δin(λ,β),Θi,n(λ,β,K), ‖ · ‖∞

)
≤

di+1∏
j=i

N
(

3δin(λ,β), C
β
i

ti
(K) + B∞

(
2δin(λ,β)

)
, ‖ · ‖∞

)
.

Any function in C
β
i

ti
(K)+B∞(2δin

(
λ,β)

)
is at most, in sup-norm distance, 2δin(λ,β)-away

from some function in C
β
i

ti
(K). Therefore, by applying Lemma 2.A.5 with r = ti, β = β

i
,

α = αi, and δn = δin(η),

N
(

3δin(λ,β), C
β
i

ti
(K) + B∞

(
2δin(λ,β)

)
, ‖ · ‖∞

)
≤ N

(
δin(λ,β), C

β
i

ti
(K), ‖ · ‖∞

)
≤ enεn(λ,β)2 .

Assumption 2.4.2 ensures that εn(λ,β) ≤ Qεn(λ,β), thus combining the last inequalities

gives

logN (RQεn(λ,β),Θn(λ,B,K), ‖ · ‖∞) ≤ logN
(
Rεn(λ,β),Θn(λ,B,K), ‖ · ‖∞

)
≤

q∑
i=0

di+1∑
j=1

nεn(λ,β)2
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= |d|1nεn(λ,β)2

≤ Q2|d|1nεn(λ,β)2.

Since R = 5Kq(q+1), we use that (q+1) ≤ |d|1 ≤ log(2 log n), together with log(2 log n) ≤
2 log n. Thus, Kq(q + 1) ≤ (2 log n)1+logK and, with Rn = 5Q(2 log n)1+logK ,

logN (Rnεn(λ,β),Θn(λ,B,K), ‖ · ‖∞) ≤ R2
n

25
nεn(λ,β)2,

which concludes the proof.

2.A.2 Proofs for Section 2.5

Proof of Lemma 2.5.1. Fix β, r and let εT be such that ϕ(β,r,K)(εT ) ≤ Tε2
T for all T ≥ 1.

For this choice of (β, r), we show that the concentration function inequality (2.3.2) holds

for any 0 < α ≤ 1 with εn(α, β, r) := εαmn , where the sequence mn is chosen such that

mnε
2−2α
mn ≤ n. To see this, observe that

ϕ(β,r,K)
(
εn(α, β, r)1/α

)
= ϕ(β,r,K)

(
εmn

)
≤ mnε

2
mn ≤ nε

2α
mn = nεn(α, β, r)2.

By Lemma 3 in [17], the function u 7→ ϕ(β,r,K)(u) is strictly decreasing on u ∈ (0,+∞),

thus any εn(α, β, r) ≥ εn(α, β, r) satisfies

ϕ(β,r,K)
(
εn(α, β, r)1/α

)
≤ ϕ(β,r,K)

(
εn(α, β, r)1/α

)
≤ nεn(α, β, r)2 ≤ nεn(α, β, r)2,

which concludes the proof.

Proof of Lemma 2.5.2. (i): By Lemma 2.5.1, the sequence εn(α, β, r) can be obtained

from εn(1, β, r) via εn(α, β, r) = εmn(1, β, r)α, for any sequence mn such that

mnεmn(1, β, r)2−2α ≤ n. We verify this for the sequence mn = C3(log n)−C4n(2β+r)/(2βα+r)

with

C3 :=
[
C1(2β + 1)C2

]− (2−2α)(2β+r)
2βα+r and C4 :=

(2− 2α)(2β + r)

2βα+ r
C2.

Since C1 ≥ 1 and n ≥ 3, we must have C3 ≤ 1, (log n)−C4 ≤ 1 and thus also log(mn) ≤
(2β + 1) log(n). Consequently,

mnεmn(1, β, r)2−2α = mn

[
C1(logmn)C2m

− β
2β+r

n

]2−2α

= C2−2α
1 (logmn)C2(2−2α)m

2β+r−2β+2βα
2β+r

n

≤ C2−2α
1

(
(2β + 1) log(n)

)C2(2−2α)
m

2βα+r
2β+r
n

≤ C2−2α
1 (2β + 1)C2(2−2α)C

2βα+r
2β+r

3 (log n)
C2(2−2α)−C4

2βα+r
2β+r n

= n.
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By Lemma 2.5.1, any sequence εn(α, β, r) ≥ εn(α, β, r) is still a solution to the concentration

function inequality (2.3.2). We now derive a simple upper bound for εn(α, β, r). Using that

α ≤ 1 and log(mn) ≤ (2β + 1) log(n), we find

εn(α, β, r) = εmn(1, β, r)α

≤ Cα1 log(mn)αC2m
− βα

2β+r
n

≤ C1(2β + 1)C2C
− βα

2β+r

3 (log n)
C2+C4

βα
2βα+rn

− βα
2βα+r .

Using the definition of C3 together with 0 < α ≤ 1, (2 − 2α) ≤ 2 and 2βα/(2βα + r) ≤ 1

yields

C
− βα

2β+r

3 =
[
C1(2β + 1)C2

] (2−2α)βα
2βα+r ≤ C1(2β + 1)C2 .

Similarly, we get

C4
βα

2βα+ r
≤ C2

(2− 2α)(2β + r)

2βα+ r
· 1

2
≤ 2β + r

2βα+ r
≤ C2(2β + 1).

The two previous displays recover the first assertion.

(ii): By assumption, for any δ ∈ (0, 1), we have ϕ(β,r,K)(δ) ≤ C ′1(log δ−1)C
′
2δ
− r
β . We now

choose δ = εn(α, β, r)1/α and εn(α, β, r) = C ′1(log n)C
′
2n−βα/(2βα+r). Since C ′1 ≥ 1, C ′2 ≥ 0,

and log n ≥ 1,

log εn(α, β, r)−
1
α ≤ − 1

α
log n

− βα
2βα+r ≤ β

2β + r
log n ≤ log n.

Similarly,

εn(α, β, r)
− r
βα ≤

(
n
− βα

2βα+r

)− r
βα

= n · n−
2βα

2βα+r ≤ nεn(α, β, r)2

(C ′1)2(log n)2C′2
,

and therefore,

ϕ(β,r,K)
(
εn(α, β, r)

1
α

)
≤ C ′1

(
log εn(α, β, r)−

1
α

)C′2
εn(α, β, r)

− r
βα ≤ nεn(α, β, r)2.

Proof of Lemma 2.5.3. It is sufficient to show that for n > 1, any composition graph λ =

(q,d, t,S), and any β′ = (β′0, . . . , β
′
q),β = (β0, . . . , βq) ∈ I(λ) satisfying β′i ≤ βi ≤ β′i +

1/ log2 n for all i = 0, . . . , q, the rates relative to the composition structures η = (λ,β) and

η′ = (λ,β′) satisfy εn(η) ≤ εn(η′) ≤ eβ+εn(η).

Since εn(η) = C̃1(η)(log n)C̃2(η)rn(η) with C̃j(η) := maxi=0,...,q supβ∈[β−,β+]Cj(β, ti),

j ∈ {1, 2}, we have that C̃j(η) = C̃j(η
′) and it is thus sufficient to prove rn(η) ≤ rn(η′) ≤

eβ+rn(η).

Using that rn(η) = maxi=0,...,q n
−βiαi/(2βiαi+ti) and the fact that the function x 7→

x/(2x + ti) is strictly increasing for x > 0 (its derivative is x 7→ ti/(2x + ti)
2), the first
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inequality rn(η) ≤ rn(η′) follows. For the second inequality, rewriting the expressions and

simplifying the exponents gives

rn(η′)

rn(η)
≤ max

i=0,...,q
min

j=0,...,q
n
− β′iα

′
i

2β′
i
α′
i
+ti

+
βjαj

2βjαj+tj ≤ max
i=0,...,q

n
− β′iα

′
i

2β′
i
α′
i
+ti

+
βiαi

2βiαi+ti ≤ max
i=0,...,q

nβiαi−β
′
iα
′
i .

We conclude the proof by showing that |βiαi − β′iα
′
i| ≤ β+/ log n. For u, u′, v, v′ ≥ 0,

we have that |uv − u′v′| ≤ u|v − v′| + v′|u − u′|. In particular, if u, v′ ≤ 1, then also

|uv − u′v′| ≤ |v − v′|+ |u− u′|. By iterating this argument, we find that

|αi − α′i| ≤
q∑

`=i+1

∣∣(1 ∧ β`)− (1 ∧ β′`)
∣∣ ≤ q∑

`=i+1

∣∣β` − β′`∣∣ ≤ q − i
log2 n

and thus, βiαi−β′iα′i ≤ β+|αi−α′i|+α′i|βi−β′i| ≤ β+(q+1)/ log2 n. Since we are restricting

ourselves to graphs λ such that |d|1 = 1 +
∑q

i=0 di ≤ log(2 log n), we have as well q +

1 ≤ log(2 log n). Since log x ≤ x/2 for all x > 0, we find (q + 1) ≤ log n. This gives

(q + 1)/ log2 n ≤ 1/ log n and thus Assumption 2.4.2 (ii) holds with Q = eβ+ .

Proof of Lemma 2.5.4. For two functions gk ∈ Cβk1 (1), k = 1, 2, and β1, β2 ≤ 1, we have

that |g2(g1(x))− g2(g1(y))| ≤ |g1(x)− g1(y)|β2 ≤ |x− y|β1β2 . Hence, g2 ◦ g1 ∈ Cβ1β21 (1). We

now write

f = hq ◦ · · · ◦ h0 = hq ◦ · · · ◦ hj+1 ◦ h̃j ◦ hj−2 ◦ · · · ◦ h0,

with h̃j := hj ◦ hj−1. The right hand side can be written as composition structure η′ :=

(q − 1,d−j , t−j ,S−j ,β′), with d−j , t−j ,S−j ,β′ as defined in the statement of the lemma.

Due to β+ ≤ 1, we have rn(η) = maxi=0,...,q n
− γi

2γi+ti , with γi =
∏q
`=i β` and it follows that

rn(η) = rn(η′).

2.A.3 Proofs for Section 2.6

Proof of Lemma 2.6.1. For the first part of the proof, take a kernel φ with Rβ :=∫
Rr |v|

β
∞φ(v)dv < +∞. Using that h ∈ Cβr (K) and the change of variable v′ = v/σ,

we immediately get

|(h ∗ φσ)(u)− h(u)| ≤
∫
Rr
φσ(v)|h(u− v)− h(u)| dv

≤ K
∫
Rr
|v|β∞φσ(v) dv

= K

∫
Rr
|v|β∞σ−rφ(v/σ) dv

= K

∫
Rr
|σv′|β∞φ(v′) dv′

≤ KRβσβ.

This shows ‖h ∗ φσ − h‖∞ ≤ KRβσβ and concludes the first part of the proof.
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We now deal with the RKHS norm. Notice that

(h ∗ φσ)(u) =

∫
Rr
ĥ(ξ)φ̂σ(ξ)e−iu

>ξ dξ

(2π)r/2

= C
1/2
β

∫
Rr
ĥ(ξ)φ̂σ(ξ)|ξ|β+r/2

2

e−iu
>ξ − 1

C
1/2
β |ξ|

β+r/2
2

dξ

(2π)r/2
+ (h ∗ φσ)(0).

The RKHS of Z + Xβ is the direct sum of the space of constant functions HZ and Hβ. If

the term (h ∗ φσ)(0) is finite, it is a constant and thus belongs to HZ . Then, the function

h ∗ φσ is a candidate element of HZ ⊕ Hβ since h ∗ φσ − (h ∗ φσ)(0) has been represented

as a potential element of the RKHS of Xβ. We now bound their norm using the isometry

property of the norm ‖ · ‖Hβ , so that

‖h ∗ φσ‖2HZ⊕Hβ ≤ 2|(h ∗ φσ)(0)|2 + 2Cβ

∫
Rr
|ĥ(ξ)|2|φ̂σ(ξ)|2|ξ|2β+r

2

dξ

(2π)r/2
.

By the change of variable ξ′ = σξ, the fact that ξ 7→ (1+|ξ|2)βĥ(ξ) has L2-norm bounded by

K, the property φ̂σ(ξ) = φ̂(σξ), and choosing φ such that M2 := supξ∈Rr |φ̂(ξ)|2|ξ|r2 < +∞,
we can bound∫

|ĥ(ξ)|2|φ̂σ(ξ)|2|ξ|2β+r
2

dξ

(2π)r/2

= σ−2β−2r

∫
Rr
|ĥ(ξ/σ)|2|φ̂(ξ)|2|ξ|2β+r

2

dξ

(2π)r/2

= σ−2β−2r

∫
Rr

(1 + |ξ/σ|2)2β

(1 + |ξ/σ|2)2β
|ĥ(ξ/σ)|2|φ̂(ξ)|2|ξ|2β+r

2

dξ

(2π)r/2

≤ σ−2β−2r sup
ξ∈Rr

|φ̂(ξ)|2|ξ|2β+r
2

(1 + |ξ/σ|2)2β

∫
Rr

(1 + |ξ/σ|2)2β|ĥ(ξ/σ)|2 dξ

(2π)r/2

≤ σ−2β−2r sup
ξ∈Rr

|φ̂(ξ)|2|ξ|2β+r
2

|ξ/σ|2β2

∫
Rr
σr(1 + |ξ|2)2β|ĥ(ξ)|2 dξ

(2π)r/2

≤ K2M2σ−r.

Similarly, by choosing φ such that N2 := (2π)−r/2
∫
Rr |φ̂(ξ)|2 dξ < +∞, we obtain

|(h ∗ φσ)(0)|2 ≤
(∫

Rr
|ĥ(ξ)||φ̂σ(ξ)| dξ

(2π)r/2

)2

=

(∫
Rr
|ĥ(ξ)|(1 + |ξ|2)β

|φ̂(σξ)|
(1 + |ξ|2)β

dξ

(2π)r/2

)2

≤
(∫

Rr
|ĥ(ξ)|2(1 + |ξ|2)2β dξ

(2π)r/2

)(∫
Rr

|φ̂(σξ)|2

(1 + |ξ|2)2β

dξ

(2π)r/2

)
≤ K2σ−r

∫
Rr

|φ̂(ξ)|2

(1 + |ξ/σ|2)2β

dξ

(2π)r/2

≤ K2N2σ−r.

The proof is complete by taking L2
β := 2(Cβ + 1)(M2 ∨ N2). Since this will be useful for

the proof of Lemma 2.6.2, the explicit form of the constant Cβ is given in (3.67) in [27] as

Cβ =
π1/2Γ(β + 1/2)

2r/2βΓ(2β) sin(πβ)Γ(β + r/2)
,
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and depends only on β, r.

Proof of Lemma 2.6.2. We show that:

(1.) Lemma 2.5.2 (ii) holds for some C ′1(β, r) ≥ 1 and C ′2(β, r) = 0.

(2.) Any sequence εn(α, β, r) ≥ C ′1(β, r)n−βα/(2βα+r) solves (2.3.2).

(3.) Assumption 2.4.2 (i) holds for εn(α, β, r) = C1(β, r)n−βα/(2βα+r) with C1(β, r) :=

C ′1(β, r) ∨Q1(β, r,K)β/(2β+r).

(4.) supβ∈[β−,β+]C1(β, r) < +∞.
(5.) Assumption 2.4.2 (ii) holds for εn(η) of the form (2.5.3).

By Lemma 2.5.2, (1.) =⇒ (2.) =⇒ (3.) and by Lemma 2.5.3, (4.) =⇒ (5.). Thus it

remains to prove (1.) and (4.).

Proof of (1.): Fix β ∈ [β−, β+]. We have to show that, for all δ ∈ (0, 1), ϕ(β,r,K)(δ) ≤
C ′1(β, r)δ−r/β , for some constant C ′1(β, r) ≥ 1 depending only on β, r, K. We denote the

small ball probability term by ϕ
(β,r)
0 (δ) := − logP(‖Z +Xβ‖∞ ≤ δ) and show that

(A) : sup
δ∈(0,1)

δr/βϕ
(β,r)
0 (δ) < +∞, (B) : sup

δ∈(0,1)
δr/β

(
ϕ(β,r,K)(δ)− ϕ(β,r)

0 (δ)
)
< +∞.

To prove (A), observe that the process Z + Xβ is the sum of two independent processes,

thus its small ball probability can be bounded by logP(‖Z +Xβ‖∞ < δ) ≥ logP(‖Z‖∞ <

δ/2) + logP(‖Xβ‖∞ < δ/2). It is then sufficient to study the small ball probabilities of Z

and Xβ, separately. We now show the following condition, which implies (A),

sup
δ∈(0,1)

−δr/β logP(‖Xβ‖∞ < δ) < +∞, sup
δ∈(0,1)

−δr/β logP(|Z| < δ) < +∞. (2.A.28)

Sharp bounds are known, see Theorem 5.1 in [59], for the small ball probability of the

fractional Brownian motion Xβ. In particular, for 0 < δ < 1, we have − logP(‖Xβ‖∞ ≤
δ) ≤ cX(β, r)δ−r/β for a finite constant cX(β, r) depending only on β, r. Since Z is a

standard normal, we have P(|Z| ≤ δ) = (2π)−1/2
∫ δ
−δ e

−x2/2dx ≥ 2δe−δ
2/2/
√

2π. With the

universal constant c := 2/
√

2π, this gives − logP(|Z| ≤ δ) ≤ log(c−1δ−1) + δ2/2. Therefore,

using log(x) ≤ xa/a for all x > 1, a > 0, we get

sup
δ∈(0,1)

−δr/β logP(|Z| < δ) ≤ sup
δ∈(0,1)

δr/β
(β
r

(
1

cδ

)r/β
+
δ2

2

)
=

β

cr/βr
+

1

2
=: cZ(β, r).

This concludes the proof of (A).

To prove (B), we apply Lemma 2.6.1. In particular, with finite constants R(β, r), L(β, r)

depending only on β, r, take σ = (KR(β, r))−1/βδ1/β. Then, any function h ∈ Cβr (K) ∩
Wβ
r (K) can be well approximated by the convolution h ∗ φσ in such a way that ‖h − h ∗

φσ‖∞ ≤ δ and ‖h ∗ φσ‖2HZ⊕Hβ ≤ K
2L(β, r)2δ−r/β . This proves (B) because it gives

sup
δ∈(0,1)

ϕ(β,r,K)(δ)− ϕ(β,r)
0 (δ)

δ−r/β
≤ sup

δ∈(0,1)

K2L(β, r)2δ−r/β

δ−r/β
= K2L(β, r)2.
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We have thus concluded the proof of (1.), that is, for any β ∈ [β−, β+], condition (ii) in

Lemma 2.5.2 holds with finite constants

C ′1(β, r) := cX(β, r) + cZ(β, r) +K2L(β, r)2, C ′2(β, r) = 0.

Proof of (4.): With the definition of C1(β, r), we want to show that

sup
β∈[β−,β+]

C ′1(β, r) ∨Q1(β, r,K)β/(2β+r) < +∞.

The constant Q1(β, r,K) is given explicitly in Lemma 2.A.5 and depends continuously on

β > 0. Thus, supβ∈[β−,β+]Q1(β, r,K) =: Q̃1 < +∞. Since the function β 7→ β/(2β + r) is

increasing for β > 0, we also have Q1(β, r,K)β/(2β+r) ≤ Q̃β+/(2β++r)
1 .

In the previous part of the proof we have found C ′1(β, r) = cZ(β, r) + cX(β, r) +

K2L(β, r)2, thus it remains to prove

sup
β∈[β−,β+]

cZ(β, r) + cX(β, r) +K2L(β, r)2 < +∞. (2.A.29)

By examining the proof of Lemma 2.6.1, we know that supβ∈[β−,β+]K
2L(β, r)2 < +∞. The

explicit form of cZ(β) is given in (2.A.28) and so, with c = 2/
√

2π,

sup
β∈[β−,β+]

cZ(β, r) ≤ β+

rcβ+
+

1

2
< +∞.

We now show that the properties of cX(β, r) can be deduced from Theorem 5.2 in [59].

We observe that E[|Xβ(u) − Xβ(u′)|2] = |u − u′|2β2 . Furthermore, the function β 7→
E[Xβ(u)Xβ(u′)] is continuous for all fixed u,u′ ∈ [−1, 1]r. In the notation of Theo-

rem 5.2 in [59], we can take σβ(δ) := δβ and check that, with c1 := 1/2β+ and c2 := 1,

c1σβ(2δ ∧ 1) ≤ σβ(δ) ≤ c2σβ(2δ ∧ 1) for all δ ∈ (0, 1). The constants c1, c2 are chosen to

be independent of β in the compact interval [β−, β+]. From this, one obtains a constant

cX(r) that only depends on c1, c2 and such that − logP(‖Xβ‖∞ < δ) ≤ cX(r)δ−r/β for all

δ > 0. This shows that the quantity cX(β, r) in (2.A.29) can be replaced by cX(r) and thus

is bounded, concluding the proof of (4.).

Proof of Lemma 2.6.3. Using the definition of Xβ yields

‖Xβ‖∞,∞,β = max
j=1,...,Jβ

1√
jr

max
k=1,...,2jr

|Zj,k|.

It is known that E[maxk=1,...,2jr Zj,k] ≤
√

2 log(2jr), a reference is Lemma 2.3 in [62]. For

K ′ > 1, using symmetry of Zj,k and the Borell-TIS inequality, e.g. Theorem 2.1.1 in [1],

P
(

max
k=1,...,2jr

|Zj,k| ≥ (1 +K ′)
√

2 log(2jr)

)
≤ 2P

(
max

k=1,...,2jr
Zj,k ≥ (1 +K ′)

√
2 log(2jr)

)
≤ 4 exp

(
−K ′2 log(2jr)

)
.
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Combining this with the union bound and the formula for the geometric sum, we obtain

for any K ′ > 2/
√
r,

P
(
∃j = 1, . . . , Jβ, max

k=1,...,2jr
|Zj,k| ≥ (1 +K ′)

√
2 log(2jr)

)
≤

Jβ∑
j=1

2j(2−rK
′2) ≤ 1

1− 22−rK′2
− 1.

Therefore, with K ′ >
√

3, on an event with probability at least 1− 4/(2rK
′2 − 4), we find

‖Xβ‖∞,∞,β ≤ max
j=1,...,Jβ

(1 +K ′)
√

2 log(2jr)√
jr

= (1 +K ′)
√

2 log 2.

Proof of Lemma 2.6.4. In view of Section 4.3.6 in [42], the Besov space B∞,∞,β contains

the Hölder space Cβr for any β > 0, and they coincide whenever β /∈ N. Thus there exists

K ′ such that Cβr (K) ⊆ B∞,∞,β(K ′). We show that:

(1.) Lemma 2.5.2 (i) holds for some C ′1(β, r) ≥ 1 and C ′2(β, r) = 3/2.

(2.) Any sequence εn(α, β, r) ≥ C ′1(β, r)2(2β + 1)3(log n)3(β+1)n−βα/(2βα+r) solves the con-

centration function inequality (2.3.2).

(3.) Assumption 2.4.2 (i) holds by taking εn(α, β, r) = C1(β, r)(log n)C2(β,r)n−βα/(2βα+r)

with C1(β, r) := C ′1(β, r)2(2β + 1)3 ∨Q1(β, r,K)β/(2β+r) and C2(β, r) := 3(β + 1).

(4.) supβ∈[β−,β+]C1(β, r) < +∞ and supβ∈[β−,β+]C2(β, r) < +∞.
(5.) Assumption 2.4.2 (ii) holds for an εn(η) of the form (2.5.3).

By Lemma 2.5.2, (1.) =⇒ (2.) =⇒ (3.) and by Lemma 2.5.3, (4.) =⇒ (5.). Thus it

remains to prove (1.) and (4.).

Proof of (i.): We denote the small ball probability term by ϕ
(β,r)
0 (δ) := − logP(‖Xβ‖∞ ≤

δ) and the RKHS term by ϕ(β,r,K)(δ)−ϕ(β,r)
0 (δ). We start with the RKHS term. The proof

of Theorem 4.5 in [82] shows that any function h ∈ B∞,∞,β(K ′) can be well approximated

by its projection hJβ at truncation level Jβ. In fact, one has ‖h−hJβ‖∞ ≤ K ′2−Jββ/(2β−1)

and, with coefficients ωj = 2−j(β+r/2)/
√
jr,

‖hJβ‖2Hβ =

Jβ∑
j=1

2jr∑
k=1

λj,k(h)2ω−2
j ≤ K

′2rJβ

Jβ∑
j=1

2jr ≤ K ′2rJ2
β2Jβr.

Recall that Jβ is defined as the closest integer to the solution J of 2J = n1/(2β+r). By

definition, we always have Jβ ≤ 1 + log2 n/(2β + r) and so 2Jβ ≤ 2n1/(2β+r), 2−Jββ ≥
2−βn−β/(2β+r). With all the above, we choose

δn := K ′
(2β + 1)2

(2β − 1)

√
r2rJ

3/2
β 2−Jββ,

implying ‖h− hJβ‖∞ < δn and

ϕ(β,r,K)(δn)− ϕ(β,r)
0 (δn) ≤ K ′2rJ2

β2Jβr

≤ K ′2r2rJ2
βn

r
2β+r
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≤ K ′2 (2β + 1)2

(2β − 1)2
r2rJ2

βn
r

2β+r

≤ nK ′2 (2β + 1)4

(2β − 1)2
r2rJ2

β2−2Jββ

≤ nδ2
n.

We now study the small ball probability. The proof of Theorem 4.5 in [82] shows that,

for any sequence δn ∈ (0, 1),

ϕ
(β,r)
0 (δn) ≤ −

Jβ∑
j=1

2jr log

(
2Φ

(
δn2jβ

K̃(β) + j2r2

)
− 1

)
,

where K̃(β) is chosen in such a way that the function x 7→ xβ/r/(K̃(β) + log2
2(x)) is

increasing for x ≥ 1. Taking the derivative and imposing it to be positive for x > 1 yields

βK̃(β)/r + log2
2(x) − 2 log(x)/ log2

2(2) > 0, which is solved for any K̃(β) ≥ 4r/β. [82] also

shows that the function f(y) = − log(2Φ(y) − 1) is decreasing and can be bounded above

by f(y) ≤ 1 + | log y| on any interval y ∈ [0, c]. Thus we find

ϕ
(β,r)
0 (δn) ≤

Jβ∑
j=1

2jr

(
1 +

∣∣∣∣∣log

(
δn2jβ

K̃(β) + j2r2

)∣∣∣∣∣
)
.

Now, assume that our sequence satisfies δn ≤ (K̃(β) + J2
βr

2)2−Jββ, then

ϕ
(β,r)
0 (δn) ≤

Jβ∑
j=1

2jr

(
1 + log

(
K̃(β) + j2r2

δn2jβ

))

≤ Jβ2Jβr

(
1 + log

(
K̃(β) + r2

δn2β

))

≤ 2Jβ2Jβr

[
log

(
K̃(β) + r2

2β

)
+ log

(
1

δn

)]
.

We now show that indeed δn ≤ (K̃(β) + J2
βr

2)2−Jββ. In fact one has to check that

K ′
(2β + 1)2

(2β − 1)

√
r2rJ

3/2
β ≤ K̃(β) + J2

βr
2,

which holds for sufficiently large n since J
3/2
β � J2

β . Then, with the definition of δn,

ϕ
(β,r)
0 (δn) ≤ 2

[
log

(
K̃(β) + r2

2β

)
+ log

(
1

δn

)]
Jβ2Jβr

≤ 2

log

(
K̃(β) + r2

2β

)
+ log

 2Jββ

K ′ (2
β+1)2

(2β−1)

√
r2rJ3

β

 Jβ2Jβr

≤ 2

[
log

(
K̃(β) + r2

2β

)
+ log

(
2Jββ

)]
Jβ2Jβr
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≤ 2

[
log

(
K̃(β) + r2

2β

)
+ β log (2)

]
J2
β2Jβr

≤ 2

[
log

(
K̃(β) + r2

2β

)
+ β log (2)

]
2rJ2

βn
r

2β+r .

Since J2
β � J3

β , for large enough n the latter display is smaller than K ′2 (2β+1)2

(2β−1)2
2rJ3

βn
r

2β+r ≤
nδ2

n.

This concludes the proof of (1.), since we have shown that the sequence

εn(1, β, r) := K ′
(2β + 1)2

(2β − 1)

√
r2rJ

3/2
β 2−Jββ,

solves the concentration function inequality (2.3.2) for α = 1.

Proof of (4.): The constant Q1(β, r,K) is given explicitly in Lemma 2.A.5 and depends

continuously on β > 0, so supβ∈[β−,β+]Q1(β, r,K) =: Q̃1 < +∞. Since the function β 7→
β/(2β + r) is increasing for β > 0, we also have Q1(β, r,K)β/(2β+r) ≤ Q̃β+/(2β++r)

1 .

All the quantities involved in the construction of the rate εn(1, β, r) are explicit. It is

immediate to see that they are all bounded on the compact interval β ∈ [β−, β+] since

β− > 0.

This concludes the proof of (4.).

Proof of Lemma 2.6.5. We show that:

(1.) Lemma 2.5.2 (i) holds for some C ′1(β, r) ≥ 1 and C ′2(β, r) = (1 + r)β/(2β + r).

(2.) Any sequence εn(α, β, r) ≥ C ′1(β, r)2(2β + 1)2C′2(β,r)(log n)(2β+2)C′2(β,r)n−βα/(2βα+r)

solves the concentration function inequality (2.3.2).

(3.) Assumption 2.4.2 (i) holds for any εn(α, β, r) = C1(β, r)(log n)C2(β,r)n−βα/(2βα+r) with

C1(β, r) := C ′1(β, r)2(2β+ 1)2C′2(β,r) ∨Q1(β, r,K)β/(2β+r) and C2(β, r) := (2β+ 2)(1 +

r)β/(2β + r).

(4.) supβ∈[β−,β+]C1(β, r) < +∞ and supβ∈[β−,β+]C2(β, r) < +∞.
(5.) Assumption 2.4.2 (ii) holds for an εn(η) of the form (2.5.3).

By Lemma 2.5.2, (1.) =⇒ (2.) =⇒ (3.) and by Lemma 2.5.3, (4.) =⇒ (5.). Thus it

remains to prove (1.) and (4.).

Proof of (1.): Let ϕ
(β,r,K)
a the concentration function of the rescaled process Xν(a·),

then Lemma 11.55 and Lemma 11.56 in [41] show that, for all 0 < δ < 1,

ϕ(β,r,K)
a (δ) ≤

(
C(r)

(
log(aδ−1)

)1+r
+D(r)

)
ar,

where C(r) and D(r) are constants that only depend on r and the spectral measure ν of Xν .

It is sufficient to solve the concentration function inequality (2.3.2) for α = 1. The solution

is given in Section 11.5.2 in [41] as εn(1, β, r) = C ′1(β, r)(log n)(1+r)β/(2β+r)n−β/(2β+r), for

some constant C ′1(β, r) ≥ 1 depending on β, r, K.

Proof of (4.): The constant Q1(β, r,K) is given explicitly in Lemma 2.A.5 and depends

continuously on β > 0, so supβ∈[β−,β+]Q1(β, r,K) =: Q̃1 < +∞. Since the function β 7→
β/(2β + r) is increasing for β > 0, we also have Q1(β, r,K)β/(2β+r) ≤ Q̃β+/(2β++r)

1 .
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The dependence on β in the concentration function bound only appears in the scaling

a = a(β, r), since the constants C(r) and D(r) are independent of β. The right side of the

latter display depends continuously on the scaling a = a(β, r), which in turn is continuous

in β ∈ [β−, β+] by construction (2.6.2). This gives

sup
β∈β∈[β−,β+]

C1(β, r) < +∞, sup
β∈β∈[β−,β+]

C2(β, r) ≤ (2β+ + 1)(1 + r)
β+

2β+ + r
.
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Chapter 3

Robust-to-outliers square-root

Lasso, simultaneous inference with

a MOM approach

This chapter is based on:

G. Finocchio, A. Derumigny and K. Proksch. Robust-to-outliers square-root Lasso, simul-

taneous inference with a MOM approach. Arxiv preprint, arXiv:2103.10420 (2021).

Abstract

We consider the least-squares regression problem with unknown noise vari-

ance, where the observed data points are allowed to be corrupted by outliers.

Building on the median-of-means (MOM) method introduced by [55] in the case

of known noise variance, we propose a general MOM approach for simultaneous

inference of both the regression function and the noise variance, requiring only

an upper bound on the noise level. Interestingly, this generalization requires

care due to regularity issues that are intrinsic to the underlying convex-concave

optimization problem. In the general case where the regression function belongs

to a convex class, we show that our simultaneous estimator achieves with high

probability the same convergence rates and a similar risk bound as if the noise

level was known, as well as convergence rates for the estimated noise standard

deviation.

In the high-dimensional sparse linear setting, our estimator yields a

robust analog of the square-root Lasso. Under weak moment conditions,

it jointly achieves with high probability the minimax rates of estimation

s1/p
√

(1/n) log(p/s) for the `p-norm of the coefficient vector, and the rate√
(s/n) log(p/s) for the estimation of the noise standard deviation. Here n

denotes the sample size, p the dimension and s the sparsity level. We finally

propose an extension to the case of unknown sparsity level s, providing a jointly

adaptive estimator (β̃, σ̃, s̃). It simultaneously estimates the coefficient vector,
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the noise level and the sparsity level, with proven bounds on each of these three

components that hold with high probability.

3.1 Introduction

We consider the statistical learning problem of predicting a real random variable Y by means

of an explanatory variable X belonging to some measurable space X . Given a dataset D
of observations and a function class F , the goal is to choose a function f̂ ∈ F in such a

way that f̂(X) approximates Y as well as possible. In particular, we study the problem

of predicting Y with the mean-squared loss, which corresponds to the estimation of an

oracle function f∗ ∈ arg minf∈F E[(Y − f(X))2]. This setting has been formalized by [55]

in the context of robust machine learning. In this framework, one observes a (possibly)

contaminated dataset consisting of informative observations (sometimes called inliers) and

outliers. The statistician does not know which data points are corrupted and nothing is

usually assumed about the outliers, however one expects the informative observations to

be sufficient to solve the problem at hand, provided that the number of outliers is not too

large. When the inliers are a sample of i.i.d. observations with finite second-moment, such

a corrupted dataset can break naive estimators even in the simplest of problems: a single

big outlier can push an empirical average towards infinity when estimating the mean of a

real random variable. A much better choice of estimator in the presence of outliers is the

so-called median-of-means, which is constructed as follows: given a partition of the dataset

into some number K of blocks, one computes the empirical average relative to each block,

and then takes the median of all these empirical averages. The resulting object is robust

to K/2 outliers and has good performance even when the underlying distribution has no

second moment, see [37, Section 4.1]. Some of the key ideas behind the median-of-means

construction can be traced back to the work on stochastic optimization [69, 58], sampling

from large discrete structures [50], and sketching algorithms [2].

Our work builds on the MOM method introduced in [55], which solves the least-squares

problem by implementing a convex-concave optimization of a suitable functional. In the

sparse linear case, this problem can be rewritten as the estimation of β∗ in the model

Y = XTβ∗ + ζ for some noise ζ, where Fs∗ = {x 7→ xTβ : β ∈ Rd, |β|0 ≤ s∗} for

some sparsity level s∗ > 0 and |β|0 is the number of non-zero components of β. There, the

MOM-Lasso method [55] yields a robust version of the Lasso estimator, which is known to be

minimax optimal, see [7, 9, 8], but its optimal penalization parameter has to be proportional

to the noise standard deviation σ∗. However, in practical applications this noise level σ∗

is often unknown to the statistician, and, as a consequence, it may be difficult to apply

the MOM-Lasso. We extend this MOM approach to the case of unknown noise variance

and highlight the challenges that arise from this formulation of the problem. The main

contribution of our paper is the choice of a new functional in the convex-concave procedure

that yields, in the sparse linear case, a robust version of the square-root Lasso introduced

in [10], which was shown to be minimax optimal by [35], while its penalization parameter
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does not require knowledge of σ∗. Interestingly, intuitive and seemingly innocuous choices

of functional end up requiring too restrictive assumptions, such as a known level σ− > 0

bounding above and below the noise standard deviation as in [36], whereas in this article,

we only require a known (or estimated) upper bound σ+.

Our main results deal with the simultaneous estimation of the oracle function f∗ and

standard deviation σ∗ of the residual ζ := Y −f∗(X). In the high-dimensional sparse linear

regression setting with unknown σ∗, if the sparsity level s∗ ≤ d is known and the number of

outliers is no more than O(s∗ log(ed/s∗)), we prove that our MOM achieves the optimal rates

of estimation of β∗, using a number of blocks K of order O(s∗ log(ed/s∗)). We also prove

that our estimator of the noise standard deviation satisfies |σ̂K,µ − σ∗| . σ+

√
s∗

n log
(
ed
s∗

)
with high probability, improving the rates compared to the previous best estimator σ̂,

see [11, Corollary 2], which satisfies |σ̂2 − σ2| . σ∗2
(
s∗ log(n∨d logn)

n +

√
s∗ log(d∨n)

n + 1√
n

)
,

whenever the noise has a finite fourth moment. Note that these rates for the estimation

of σ∗ derived in [11] correspond to a different penalty level than the one used in [35] that

allows to derive optimal rates for the estimation of β∗. A related paper is [28], which studies

optimal noise level estimation for the sparse Gaussian sequence model.

Since the sparsity level may be unknown in practice, we provide an aggregated adaptive

procedure based on Lepski’s method, that is, we first infer an estimated sparsity s̃ and

then an estimated number of blocks K̃ of order O(s̃ log(ed/s̃)). We show that the resulting

adaptive estimator (β̃, σ̃, s̃) attains the minimax rates for the estimation of β∗ while still

being adaptive to the unknown noise variance σ∗2 and selecting a sparse model (s̃ ≤ s∗)

with high probability.

Estimator Rate on β Adapt. to s Rate and adapt. to σ∗ Robustness

Lasso Optimal [9] - - -

Aggreg. Lasso Optimal [9] Yes - -

Square-root Lasso Optimal [35] - Yes, complicated rate [11] -

Aggreg. Square-root Lasso Optimal [35] Yes Yes, but no rate -

MOM-Lasso Optimal [55] - - Yes

Aggreg. MOM-Lasso Optimal [55] Yes - Yes

Robust SR-Lasso Optimal (Th. 3.4.4) -
√

s∗

n log
(
ed
s∗

)
(Th. 3.4.4) Yes

Aggreg. Robust SR-Lasso Optimal (Th. 3.4.7) Yes
√

s∗

n log
(
ed
s∗

)
(Th. 3.4.7) Yes

Table 3.1: Comparison of estimators of sparse high-dimensional regressions and their main

theoretical properties. Names in bold print refer to the new estimators that we propose in

this article.

In Table 3.1 we detail a comparison of the Lasso-type estimators and their different

theoretical properties in this sparse high-dimensional regression framework. The two new

estimators that we propose solve the problem of minimax-optimal robust estimation of β.

Even in the setting where no outliers are present, our estimators still improve the best-

known bounds on the estimation of the noise variance σ∗2. Moreover, the second estimator

(β̃, σ̃, s̃) attains the same rate of simultaneous estimation of β∗ and σ∗ adaptively to the

sparsity level s∗. Finally, the estimator (β̃, σ̃) is robust to the same number of outliers as
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the estimator which uses the knowledge of the true sparsity level s∗. For every σ∗ > 0,

let P(σ∗) be a class of distributions of (X, ζ) such that the kurtosis of ζ is bounded,

Var[ζ] = σ∗2 and X is isotropic, satisfies a weak moment condition and is such that the

weighted norms L1(PX), L2(PX), and L4(PX) are equivalent on Rd. We work with a dataset

D = (Xi, Yi)i=1,...,n that might be contaminated by a set of outliers (Xi, Yi)i∈O (for some

O ⊂ {1, . . . , n}) in the sense that, for i ∈ O, (Xi, Yi) is an arbitrary outlier while for

i /∈ O, (Xi, Yi) is i.i.d. distributed as (X, Y ). We denote by D(N) the set of all possible

modifications of D by at most N observations. To sum up, our joint estimator (β̃, σ̃, s̃)

satisfies the following worst-case simultaneous deviation bound

inf
s∗=1,...,s+

inf
β∗ ∈ Fs∗
σ∗ < σ+

inf
PX,ζ∈P(σ∗)

P⊗nβ∗,PX,ζ

(
Aσ∗,β∗,s∗(D)

)
≥ 1− φ(s+, d),

where Fs is the set of s-sparse vectors, |·|p is the `p norm, φ(s, d) := 4(log2(s)+1)2(2s/ed)C
′s

for a universal constant C ′ > 0, the constants c, C > 0 only depend on the class P(σ∗),

|O| denotes the cardinality of the set O and Pβ∗,PX,ζ
is the distribution of (X, Y ) when

(X, ζ) ∼ PX,ζ and Y = X>β∗+ ζ. The event Aσ∗,β∗,s∗(D) describes the performance of the

aggregated estimator over a class of contaminations of the dataset D by arbitrary outliers.

Formally,

Aσ∗,β∗,s∗(D) :=
⋂

D′∈D
(
cs∗ log(ed/s∗)

)Aσ∗(D′) ∩ Aβ∗(D′) ∩ As∗(D′),

Aσ∗(D′) :=

{∣∣∣σ̃(D′)− σ∗∣∣∣ ≤ Cσ+

√
s∗

n
log
(ed
s∗

)}
,

Aβ∗(D′) :=

{∣∣∣β̃(D′)− β∗∣∣∣
p
≤ Cσ+s

∗1/p
√

1

n
log
(ed
s∗

)}
,

As∗(D′) :=
{
s̃
(
D′
)
≤ s∗

}
,

and (β̃(D′), σ̃(D′), s̃(D′)) is the aggregated estimator obtained from the perturbed dataset

D′. Our method only requires the knowledge of the upper bounds (σ+, s+).

The manuscript is organized as follows. In Section 3.2, we introduce the main framework

and notation, as well as the step-by-step construction of the MOM estimator. In Section 3.3

we present our results in the general situation of a convex class F of regression functions.

The results for the high-dimensional sparse linear regression framework are presented in

Section 3.4. In Section 3.5 we discuss the contraction rates, the construction of the MOM

estimator and some known results from the literature. The proofs are gathered in the

appendix.
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3.2 Notation and framework

3.2.1 General notation

Vectors are denoted by bold letters, e.g. x := (x1, . . . , xd)
>. For S ⊆ {1, . . . , d}, we write

|S| for the cardinality of S. As usual, we define |x|p := (
∑d

i=1 |xi|p)1/p, |x|∞ := maxi |xi|,
|x|0 :=

∑d
i=1 1(xi 6= 0), where 1 is the indicator function and write ‖f‖Lp(D) for the Lp

norm of f on D. If there is no ambiguity concerning the domain D, we also write ‖ · ‖p. We

set |x|2,n := |x|2/
√
n and, for a measure µ on Rd and a function f in a class of functions

F , we define ‖f‖2,ν := ‖f‖L2(ν). The expected value of a random variable X with respect

to a measure P is denoted PX = EP [X], or E[X] when the measure P is fixed. For two

sequences (an)n and (bn)n we write an . bn if there exists a constant C such that an ≤ Cbn
for all n. Moreover, an � bn means that (an)n . (bn)n and (bn)n . (an)n.

3.2.2 Mathematical framework

The goal is to predict a square-integrable random variable Y ∈ R by means of an explana-

tory random variable X, on a measurable space X , and a dataset D = {(Xi, Yi) ∈ X × R :

i = 1, . . . , n}. Let PX be the law of X and L2(PX) the corresponding weighted L2-space.

Let F ⊆ L2(PX) be a convex class of functions from X to R, so that, for any f ∈ F ,
‖f‖22,X :=

∫
X f(x)2dPX(x) is finite. We consider the least-squares problem, which requires

to minimize the risk Risk(f) := E[(Y − f(X))2] among all possible predictions f(X) for Y.

This minimizes the variance of the residuals ζf := Y −f(X). The best predictor on L2(PX)

is the conditional mean f(X) = E[Y |X], which can only be computed when the joint dis-

tribution of (X, Y ) is given. Therefore, one solves the least-squares problem by estimating

any oracle solution

f∗ ∈ F∗ := arg min
f∈F

E
[
(Y − f(X))2

]
, (3.2.1)

which is unique, i.e. F∗ = {f∗}, if the class F ⊆ L2(PX) is closed (on top of being convex).

The resulting representation is

Y = f∗(X) + ζ, ζ := Y − f∗(X), (3.2.2)

where the residual ζ and X may not be independent.

Assumption 3.2.1. We make the following assumptions on the residual ζ,

E[ζ] = 0, σ∗ := E[ζ2]
1
2 ≤ σ+, m∗ := E[ζ4]

1
4 ≤ m+ := σ+κ+, κ∗ :=

m∗4

σ∗4
≤ κ+, (3.2.3)

with possibly unknown σ∗,m∗, κ∗ and upper bounds σ+, κ+ either given or estimated from

the data. We use the convention that κ∗ = 0 if both σ∗ and m∗ are zero.

Without loss of generality we have σ+ ≤ m+, since any upper bound on m∗ is also an

upper bound on the standard deviation σ∗. The requirement of a known upper bound on
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the fourth moment of the noise is natural when dealing with MOM procedures, this is in line

with Assumption 3.1 in [61]. We aim at simultaneously estimating (f∗, σ∗) from the dataset

D, but the problem is made more difficult due to possible outliers in the observations.

Assumption 3.2.2. We assume the dataset D can be partitioned into an informative set

DI and an outlier set DO satisfying the following.

• Informative data. We assume that the pairs (Xi, Yi)i∈I =: DI with I ⊆ {1, . . . , n}
are independent and distributed as (X, Y ) in the regression model (3.2.2).

• Outliers. Nothing is assumed on the pairs (Xi, Yi)i∈O =: DO with O ⊆ {1, . . . , n}.
They might be deterministic or even adversarial, in the sense that they might depend

on the informative sample (Xi, Yi)i∈I defined above, or on the choice of estimator.

The i.i.d. requirement on the informative data can be weakened, as in [55], by assuming

that the observations (Xi, Yi)i∈I are independent and, for all i ∈ I

E[(Yi − f∗(Xi))(f − f∗)(Xi)] = E[(Y − f∗(X))(f − f∗)(X)],

E[(f − f∗)2(Xi)] = E[(f − f∗)2(X)].

In other words, the distributions of (Xi, Yi) and (X, Y ) induce the same L2-metric on the

function space F − f∗ = {f − f∗ : f ∈ F}.
By construction, I ∪O = {1, . . . , n} and I ∩O = ∅, but the statistician does not know

whether any fixed index i ∈ {1, . . . , n} belongs to I or O. Otherwise, one could just remove

this group from the dataset and perform the inference of the informative part. In order to

achieve robust inference, we implement a median-of-means approach.

The sparse linear case. We highlight the special case when X = Rd, with a fixed

dimension d > 0. For β ∈ Rd, set fβ : Rd → R the linear map fβ(x) = x>β. For any

1 ≤ s ≤ d, we define

F := {fβ : β ∈ Rd}, Fs :=
{
fβ ∈ F : β ∈ Rd, |β|0 ≤ s

}
,

here |β|0 is the number of non-zero entries of β ∈ Rd.

3.2.3 Convex-concave formulation

We follow the formalization made in [55]. For any function f ∈ F , and any (x, y) ∈ X ×R,
set `f (x, y) := (y − f(x))2. In our setting we find

f∗ ∈ arg min
f∈F

E
[
`f (X, Y )

]
, σ∗ = E

[
`f∗(X, Y )

] 1
2 ,

since E[`f∗(X, Y )] = E[ζ2] is the risk of the oracle function f∗. The oracle pair (f∗, σ∗) is

a solution of the convex-concave problem

f∗ ∈ arg min
f∈F

sup
g∈F

E
[
`f (X, Y )− `g(X, Y )

]
, σ∗ = E

[
`f∗(X, Y )

] 1
2 , (3.2.4)
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and the goal is to build an estimator (f̂ , σ̂) such that, with probability as high as possible,

the quantities

Risk(f̂)− Risk(f∗), ‖f̂ − f∗‖2,X, |σ̂ − σ∗|,

are as small as possible. The quantity Risk(f̂) − Risk(f∗) is the excess risk, whereas the

quantity ‖f̂−f∗‖2,X is the convergence rate in L2(PX)-norm of the random function f̂ to f∗.

Since f̂ is a function of the dataset D, we always mean that the expectation is conditional

on D, i.e. ‖f̂−f∗‖2,X = E[(f̂−f∗)2(X)|D]. Finally, the quantity |σ̂−σ∗| is the convergence

rate of σ̂ to σ∗.

3.2.4 Construction of the estimator

The starting point of our approach is the regularized median-of-means (MOM) tournament

introduced in [60], which has been proposed as a procedure to outperform the regularized

empirical risk minimizer (RERM)

f̂RERMλ := arg min
f∈F

{
1

n

n∑
i=1

(Yi − f(Xi))
2 + λ‖f‖

}
,

with ‖ · ‖ a penalization norm on the linear span of F and λ > 0 a penalization parameter.

The penalization term reduces overfitting by assigning a higher cost to functions that are

big with respect to ‖ · ‖. The RERM estimator above is susceptible to outliers since it

involves all the pairs (Xi, Yi) in the dataset D, whereas replacing the empirical average by

the corresponding median-of-means over a number of blocks leads to robustness. The MOM

method in [55] builds directly on the theory of the MOM tournaments and it exploits the

fact that f̂RERMλ is computed by minimizing n−1
∑n

i=1 `f (Xi, Yi) + λ‖f‖. From this, the

authors deal with the convex-concave equivalent

f̂RERMλ := arg min
f∈F

sup
g∈F

{
1

n

n∑
i=1

`f (Xi, Yi)−
1

n

n∑
i=1

`g(Xi, Yi) + λ(‖f‖ − ‖g‖)

}
,

by replacing the empirical average n−1
∑n

i=1

(
`f (Xi, Yi) − `g(Xi, Yi)

)
with the median-of-

means over a chosen number of blocks. Our goal is to extend the scope of this procedure

to the estimation of the unknown σ∗. To this end, we modify the convex-concave RERM

by replacing the functional R(`g, `f ) = `f − `g with a new Rc(`g, χ, `f , σ) that incorporates

χ, σ ∈ I+ = (0, σ+]. This leads to a generalized empirical estimator

(f̂µ, σ̂µ) := arg min
(f,σ)∈F×I+

sup
(g,χ)∈F×I+

{
1

n

n∑
i=1

Rc (`g(Xi, Yi), χ, `f (Xi, Yi), σ) + µ(‖f‖ − ‖g‖)

}
,

which we robustify using the MOM. The choice of the functional Rc is crucial for the

performance of the procedure and a main contribution of our paper is providing a suitable

Rc(`g, χ, `f , σ), we refer to Section 3.5 for a detailed discussion motivating our choice.

We give the step-by-step construction of a family of MOM estimators for (f∗, σ∗) from

model (3.2.1)–(3.2.3). We start with a preliminary definition.
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Quantiles. For any K ∈ N, set [K] = {1, . . . ,K}. For all α ∈ (0, 1) and x =

(x1, . . . , xK) ∈ RK , we call α-quantile of x any element Qα[x] of the set

Qα[x] :=
{
u ∈ R :

∣∣{k = 1, . . . ,K : xk ≥ u}
∣∣ ≥ (1− α)K,

and
∣∣{k = 1, . . . ,K : xk ≤ u}

∣∣ ≥ αK}. (3.2.5)

This means that Qα[x] is a α-quantile of x if at least (1−α)K components of x are bigger

than Qα[x] and at least αK components of x are smaller than Qα[x]. For all t ∈ R, we

write Qα[x] ≥ t when there exists J ⊂ [K] such that |J | ≥ (1 − α)K and, for all k ∈ J,
xk ≥ t. We write Qα[x] ≤ t if there exists J ⊂ [K] such that |J | ≥ αK and, for all k ∈ J,
xk ≤ t.

STEP 1. Partition of the dataset.

Let K ∈ N be a fixed positive integer. Partition the dataset D = {(Xi, Yi) : i = 1, . . . , n}
into K blocks D1, . . . ,DK of size n/K (assumed to be an integer). This corresponds to a

partition of {1. . . . , n} into blocks B1, . . . , BK .

STEP 2. Local criterion.

With c > 1 and f, g ∈ F , σ, χ ∈ R+, define the functional

Rc(`g, χ, `f , σ) := (σ − χ)

(
1− 2

`f + `g
(σ + χ)2

)
+ 2c

`f − `g
σ + χ

. (3.2.6)

Since `f (x, y) = (y − f(x))2 for all (x, y) ∈ X × R, the latter definition induces the map

(x, y) 7→ Rc(`g(x, y), χ, `f (x, y), σ) over X ×R. For each k ∈ [K], we define the criterion of

(f, σ) against (g, χ) on the block Bk as the empirical mean of the functional Rc(`g, χ, `f , σ)

on that block, that is,

PBk
(
Rc(`g, χ, `f , σ)

)
:=

1

|Bk|
∑
i∈Bk

Rc

(
`g(Xi, Yi), χ, `f (Xi, Yi), σ

)
, (3.2.7)

for all (g, χ, f, σ) ∈ F × R+ ×F × R+. Here |Bk| = n/K denotes the cardinality of Bk.

STEP 3. Global criterion.

For any α ∈ (0, 1) and number of blocks K, set

Qα,K

[
Rc(`g, χ, `f , σ)

]
:= Qα

[(
PBk

(
Rc(`g, χ, `f , σ)

))
k∈[K]

]
,

the α-quantile of the vector of local criteria defined in the previous step. For α = 1/2 we

get the median. We define the global criterion of (f, σ) against (g, χ) as

MOMK

(
Rc(`g, χ, `f , σ)

)
:= Q1/2,K

[
Rc(`g, χ, `f , σ)

]
, (3.2.8)

for all (g, χ, f, σ) ∈ F × R+ ×F × R+. With some norm ‖ · ‖ on the span of F , we denote

TK,µ(g, χ, f, σ) := MOMK

(
Rc(`g, χ, `f , σ)

)
+ µ(‖f‖ − ‖g‖), (3.2.9)

where µ > 0 is a tuning parameter, the functional TK,µ is the penalized version of the global

criterion.
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STEP 4. MOM estimator.

With σ+ the known upper bound in (3.2.3), we define the MOM−K estimator of (f∗, σ∗)

as

(f̂K,µ,σ+ , σ̂K,µ,σ+) := arg min
f∈F , σ≤σ+

max
g∈F , χ≤σ+

TK,µ(g, χ, f, σ), (3.2.10)

where TK,µ is the penalized functional in (3.2.9). Furthermore, set

CK,µ(f, σ) := max
g∈F , χ≤σ+

TK,µ(g, χ, f, σ). (3.2.11)

The estimator (f̂K,µ,σ+ , σ̂K,µ,σ+) only depends on the upper bound σ+, the number K of

blocks and the tuning parameter µ.

3.3 Results for a general class F

We assume the following regularity condition on the function class F and the inliers.

Assumption 3.3.1. There exist constants θ0, θ1 > 1 such that, for all i ∈ I and f ∈ F ,

1. ‖f − f∗‖22,X = E[(f − f∗)2(Xi)] ≤ θ2
0E[|f − f∗|(Xi)]

2 = θ2
0‖f − f∗‖21,X.

2. ‖f − f∗‖24,X = E[(f − f∗)4(Xi)]
1/2 ≤ θ2

1E[(f − f∗)2(Xi)] = θ2
1‖f − f∗‖22,X.

This assumption guarantees that the L1(PX), L2(PX), L4(PX)-norms are equivalent on

the function space F−f∗. The equivalence between ‖·‖1,X and ‖·‖2,X in the first condition

matches Assumption 3 in [55]. The equivalence between ‖ · ‖2,X and ‖ · ‖4,X in the second

condition, together with the finiteness of fourth moment of the noise in Assumption 3.2.1,

helps controlling the dependence between ζ and X; this also matches Assumption 3.1 in [61].

We do not necessarily assume that ζ is independent of X, but the Cauchy-Schwarz inequality

gives

‖ζ(f − f∗)‖22,X = E[ζ2(f − f∗)2(X)]

≤ E[ζ4]
1
2E[(f − f∗)4(X)]

1
2

≤ θ2
1m
∗2E[(f − f∗)2(X)].

The bound ‖ζ(f − f∗)‖22,X ≤ θ2
1m
∗2‖f − f∗‖22,X is Assumption 2 in [55] with θ2

m = θ2
1m
∗2,

whereas in our setting this is a consequence of Assumption 3.2.1 and Assumption 3.3.1.

3.3.1 Complexity parameters

With the introduction of MOM tournaments procedures, see [61] and references therein, the

authors have characterized the underlying geometric features that drive the performance of

a learning method. For any ρ > 0, r > 0, and f ∈ F , we set

B(f, ρ) :=
{
g ∈ F : ‖g − f‖ ≤ ρ

}
, B2(f, r) :=

{
g ∈ F : ‖g − f‖2,X ≤ r

}
,
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respectively the ‖ · ‖-ball of radius ρ and the ‖ · ‖2,X-ball of radius r, both centered around

f ∈ F . We denote by B(ρ) and B2(r) the balls centered around zero. We define the regular

ball around f∗ of radii ρ > 0, r > 0 as

B(f∗, ρ, r) := {f ∈ F : ‖f − f∗‖ ≤ ρ, ‖f − f∗‖2,X ≤ r}.

For any subset of inlier indexes J ⊆ I, we denote the standard empirical process on J as

f 7→ PJ(f − f∗) :=
1

|J |
∑
i∈J

(f − f∗)(Xi).

Similarly, we denote the quadratic and multiplier empirical processes on J as

f 7→ PJ
(
(f − f∗)2

)
:=

1

|J |
∑
i∈J

(f − f∗)2(Xi),

f 7→ PJ (−2ζ(f − f∗)) := − 2

|J |
∑
i∈J

ζi(f − f∗)(Xi),

where ζi = (Yi − f∗(Xi)). These processes arise naturally when dealing with the empirical

excess risk on J, which is

RiskJ(f)− RiskJ(f∗) : =
1

|J |
∑
i∈J

(Yi − f(Xi))
2 − 1

|J |
∑
i∈J

(Yi − f∗(Xi))
2

=
1

|J |
∑
i∈J

(f − f∗)2(Xi)−
2

|J |
∑
i∈J

ζi(f − f∗)(Xi)

= PJ
(
(f − f∗)2

)
+ PJ (−2ζ(f − f∗)) .

The empirical processes defined above only involve observations that are not contaminated

by outliers and we are interested in controlling them when the indexing function class is a

regular ball B(f∗, ρ, r).

Let ξi be Rademacher variables, that is, independent random variables uniformly dis-

tributed on {−1, 1}, and independent from the dataset D. For any r > 0 and ρ > 0,

consider the regular ball B(f∗, ρ, r) defined above. For every γP , γQ, γM > 0, we define the

complexity parameters

rP (ρ, γP ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E
[

sup
f∈B(f∗,ρ,r)

∣∣∣ 1

|J |
∑
i∈J

ξi(f − f∗)(Xi)
∣∣∣] ≤ γP r},

rQ(ρ, γQ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E
[

sup
f∈B(f∗,ρ,r)

∣∣∣ 1

|J |
∑
i∈J

ξi(f − f∗)2(Xi)
∣∣∣] ≤ γQr2

}
,

rM (ρ, γM ) := inf

{
r > 0 : sup

J⊂I,|J |≥n
2

E
[

sup
f∈B(f∗,ρ,r)

∣∣∣ 1

|J |
∑
i∈J

ξiζi(f − f∗)(Xi)
∣∣∣] ≤ γMr2

}
.

(3.3.1)

Let r = r(·, γP , γM ) be a continuous non-decreasing function r : R+ → R+ depending on

γP , γM , such that

r(ρ) ≥ max
{
rP (ρ, γP ), rM (ρ, γM )

}
, (3.3.2)
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for every ρ > 0. The definitions above depend on f∗ and require that |I| ≥ n/2. The function

r(·) matches the one defined in Definition 3 in [55]. We refer to Section 3.5 for a detailed dis-

cussion on the role of complexity parameters, here we only mention that in the sub-Gaussian

setting of [56], for some choice of γP , γM , the quantity r∗(ρ) = max{rP (ρ, γP ), rM (ρ, γM )}
is the minimax convergence rate over the function class B(f∗, ρ).

3.3.2 Sparsity equation

We follow the setup of [55], that we restate here for convenience.

Subdifferential. Let E be the vector space generated by F and ‖ · ‖ a norm on E .
We denote by (E∗, ‖ · ‖∗) the dual normed space of (E , ‖ · ‖), that is, the space of all linear

functionals z∗ from E to R. The subdifferential of ‖ · ‖ at any f ∈ F is denoted by

(∂‖ · ‖)f := {z∗ ∈ E∗ : ‖f + h‖ ≥ ‖f‖+ z∗(h), ∀h ∈ E}.

The penalization term of the functional TK,µ in Section 3.2.4 is of the form µ(‖f‖ − ‖g‖),
for f, g ∈ F , and the subdifferential is useful in obtaining lower bounds for ‖f‖− ‖f∗‖. For

any ρ > 0 and complexity parameter r(ρ) as in (3.3.2), we denote Hρ = {f ∈ F : ‖f−f∗‖ =

ρ, ‖f − f∗‖2,X ≤ r(ρ)}. Furthermore, we set

Γf∗(ρ) :=
⋃

f∈F : ‖f−f∗‖≤ρ/20

(
∂‖ · ‖

)
f
,

∆(ρ) := inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗).
(3.3.3)

The set Γf∗(ρ) is the set of subdifferentials of all functions that are close to f∗ (no more

than ρ/20) in penalization norm ‖ · ‖. The quantity ∆(ρ) measures the smallest level ∆ >

0 for which the chain ‖f‖ − ‖f∗‖ ≥ ∆ − ρ/20 holds. In fact, if f∗∗ ∈ F is such that

‖f∗ − f∗∗‖ ≤ ρ/20, then ‖f‖ − ‖f∗‖ ≥ ‖f‖ − ‖f∗∗‖ − ‖f∗∗ − f∗‖ ≥ z∗(f − f∗∗)− ρ/20, for

any subdifferential z∗ ∈ (∂‖ · ‖)f∗∗ .
Sparsity equation. The sparsity equation and its smallest solution are

∆(ρ) ≥ 4

5
ρ, ρ∗ := inf

{
ρ > 0 : ∆(ρ) ≥ 4ρ

5

}
. (3.3.4)

If ρ∗ exists, the sparsity equation holds for any ρ ≥ ρ∗.

3.3.3 Main result in the general case

We now present a result dealing with the simultaneous estimation of (f∗, σ∗) by means of

a family of MOM estimators constructed as in Section 3.2.4. Fix any constant c > 2 in the

definition on the functional Rc in (3.2.6) and, with σ+,m+, κ+ the known bounds on the
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moments of the noise ζ = Y − f∗(X), set

cµ := 200(c+ 2)κ
1/2
+ ,

ε :=
c− 2

192 θ2
0(c+ 2)

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
) ,

c2
α :=

3(c− 2)

5θ2
0

,

(3.3.5)

and γP = 1/(1488 θ2
0), γM = ε/744 and γQ = ε/372. Let ρ∗ be the smallest so-

lution of the sparsity equation in (3.3.4) and r(·) any function such that r(ρ) ≥
max{rP (ρ, γP ), rM (ρ, γM )} as in (3.3.2). Define K∗ as the smallest integer satisfying

K∗ ≥ nε2r2(ρ∗)

384 θ2
1m
∗2 , (3.3.6)

and, for any integer K ≥ K∗, also define ρK as the implicit solution of

r2(ρK) =
384 θ2

1m
∗2K

nε2
. (3.3.7)

Assumption 3.3.2. We assume that there exists an absolute constant cr ≥ 1 such that,

for all ρ > 0, we have r(ρ) ≤ r(2ρ) ≤ crr(ρ).

The role of the latter assumption is to simplify the statement of the main result. We are

mainly interested in the sparse linear case, where this holds with cr = 2 by construction of

the function r(·), see Section 3.5.4.

Theorem 3.3.3. With the notation above, let Assumptions 3.2.1–3.3.2 hold. With C2 :=

384 θ2
1c

2
rc

2
ακ

1/2
+ , suppose that nε2 > 32C2 and |O| ≤ nε2/(32C2). Then, for any inte-

ger K ∈
[
K∗ ∨ 32|O|, nε2/C2

]
, and for every ιµ ∈ [1/4, 4], the MOM−K estimator

(f̂K,µ,σ+ , σ̂K,µ,σ+) defined in (3.2.10) with K blocks and penalization parameter

µ := ιµcµε
r2(ρK)

m∗ρK
, (3.3.8)

satisfies, with probability at least 1− 4 exp(−K/8920), for any possible |O| outliers,

‖f̂K,µ,σ+ − f∗‖ ≤ 2 ρK , ‖f̂K,µ,σ+ − f∗‖2,X ≤ r(2ρK), |σ̂K,µ,σ+ − σ∗| ≤ cαr(2ρK),

(3.3.9)

R(f̂K,µ,σ+) ≤ R(f∗) +

(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ2
1

ε2

)
r2(2ρK)

+ 4 θ2
1ε
(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
.

(3.3.10)

The proof of Theorem 3.3.3 is given in Appendix 3.A. It provides theoretical guaran-

tees for the MOM−K estimator (f̂K,µ,σ+ , σ̂K,µ,σ+): this estimator recovers (f∗, σ∗), with

high probability, whenever the number K of blocks is chosen to be at least K∗ ∨ 32|O|
and at most nε2/C2. Specifically, the random function f̂K,µ,σ+ belongs to the regular ball
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3.4. The high-dimensional sparse linear regression

B(f∗, 2ρK , r(2ρK)), whereas the random standard deviation σ̂K,µ,σ+ is at most cαr(2ρK)

away from σ∗. The best achievable rates are obtained for K = K∗ when |O| ≤ K∗/32. Any

estimator (f̂K,µ,σ+ , σ̂K,µ,σ+) only depends on the penalization parameter µ, the number of

blocks K and the upper bound σ+, thus the result is mainly of interest when these quan-

tities can be chosen without knowledge of (f∗, σ∗). Our Theorem 3.3.3 extends the scope

of Theorem 1 in [55] to the case of unknown noise variance. In the latter reference, the

authors obtain the same convergence rates for a MOM−K estimator f̂K,λ defined by using

a penalization parameter λ that we compare to our µ,

λ := 16ε
r2(ρK)

ρK
, µ := cµε

r2(ρK)

m∗ρK
,

so that µ is proportional to λ/m∗. For the sparse linear case, [55] shows that the optimal

choice is λ ∼ m∗
√

log(ed/s∗)/n, which is proportional to the noise level σ∗. This in turn

guarantees that our penalization parameter can be chosen of the form µ ∼
√

log(ed/s∗)/n

to obtain the optimal rates, and that such a choice does not depend on the moments of the

noise.

3.4 The high-dimensional sparse linear regression

3.4.1 Results for known sparsity

In this section, we will give non-asymptotic bounds that will hold adaptively and uniformly

over a certain class of joint distributions for (X, ζ). We now define the class of interest PI ,
parametrized by an interval I. This interval I represents the set of possible values for the

standard deviation σ∗ of the noise ζ.

Definition 3.4.1 (Class of distributions of interest). For I ⊂ R+, θ0, θ1, c0, L, κ+ > 1, let

us define PI = PI(θ0, θ1, c0, L, κ+) to be the class of distributions PX,ζ on Rd+1 satisfying:

1. The standard deviation σ∗ of ζ belongs to I and the kurtosis of ζ is smaller than κ+.

2. For all β ∈ Rd, E
[
(X>β)2

] 1
2 ≤ θ0E

[
|X>β|

]
, and E

[
(X>β)4

] 1
2 ≤ θ2

1E
[
(X>β)2

]
.

3. X is isotropic: for all β ∈ Rd, ‖fβ‖2,X := E[(X>β)2] = |β|2, where fβ(x) = x>β.

4. X satisfies the weak moment condition: for all 1 ≤ p ≤ c0 log(ed), 1 ≤ j ≤ d,

E
[
|X>ej |p

] 1
p ≤ L√pE

[
|X>ej |2

] 1
2 .

The class PI only requires a finite fourth moment on ζ, allowing it to follow heavy-

tailed distributions. The weak moment condition only bounds moments of X up to the

order log(d), which is weaker than the sub-Gaussian assumption, see [56] and the references

therein for a discussion and a list of examples.

Definition 3.4.2 (Contaminated datasets). For a dataset D = (xi, yi)i=1,...,n ∈ R(d+1)×n

and for N ∈ [n], we denote by D(N) the set of all datasets D′ = (x′i, y
′
i)i=1,...,n ∈ R(d+1)×n
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3.4. The high-dimensional sparse linear regression

that differ from D by at most N observations, i.e.

D(N) :=
{
D′ ∈ R(d+1)×n :

∣∣D \ D′∣∣ ≤ N} ,
where D \ D′ is defined as the difference between the (multi-)sets D and D′, meaning that

if there exists duplicated observations in D that appear also in D′, they are removed from

D up to their multiplicities in D′. This encodes all the possible corrupted versions of D by

means of up to N arbitrary outliers.

Definition 3.4.3. Let Pβ∗,PX,ζ
be the distribution of (X, Y ) when (X, ζ) ∼ PX,ζ and Y :=

X>β∗ + ζ.

In the following, we will use the minimax rates of convergence for β∗ ∈ Fs∗ defined

for p ∈ [1, 2] by rp := s∗1/p
√

(1/n) log(ed/s∗). The allowed maximum number of outliers is

defined by rO := s∗ log(ed/s∗) = nr22.

Theorem 3.4.4. Assume that r2 < 1. For every θ0, θ1, c0, L, κ+ > 1, there exists universal

constants c̃1, . . . , c̃5 > 0 such that for every σ+ and for every (ιK , ιµ) ∈ [1/2, 2]2, setting

K = dιK c̃1s
∗ log(ed/s∗)e, µ = ιµc̃2

√
1

n
log

(
ed

s∗

)
,

the estimator (β̂K,µ,σ+ , σ̂K,µ,σ+) satisfies

inf
PX,ζ ∈ P[0, σ+]

β∗ ∈ Fs∗

PD∼P⊗n
β∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r−1
2

∣∣σ̂(D′)− σ∗
∣∣

∨ sup
p∈[1,2]

r−1
p

∣∣β̂(D′)− β∗
∣∣
p

}
≤ c̃4σ+

)
≥ 1− 4

( s∗
ed

)c̃5s∗
.

This theorem is proved in Section 3.B.1. Theorem 3.4.4 ensures that, with high probabil-

ity, the estimator (β̂K,µ,σ+ , σ̂K,µ,σ+) achieves the rates |β̂−β∗|p . σ+s
∗1/p√(1/n) log(ed/s∗)

and |σ̂−σ∗| . σ+

√
(s∗/n) log(ed/s∗), uniformly over the class of distributions P[0, σ+] with

bounded variance while being robust to up to c̃3s
∗ log(ed/s∗) arbitrary outliers. However,

the uniform constants appearing in the statement might be difficult to compute in practice;

to obtain precise values, one would need to quantify the constants in Theorem 1.6 in [67]

and Lemma 5.3 in [57]. As usual for MOM estimators, the maximum number of outliers is

of the same order as the number of blocks. Note that the estimator needs the knowledge of

an upper bound on the noise level σ+ and the sparsity level s∗.

In [9], it has been proved that the optimal minimax rate of estimation of β∗ in the

| · |p norm is σ∗
√

(s∗/n) log(ed/s∗) when σ∗ is fixed and the noise is sub-Gaussian. Our

theorem shows that the rate of estimation of β over P[0, σ+] is the optimal minimax rate of

estimation for the worst-case noise level σ+. In particular, this means that in the noiseless

case when σ∗ = 0, the estimator β̂K,µ,σ+ does not achieve perfect reconstruction of the

signal β∗. This is worse than the square-root Lasso [35] which achieves the minimax optimal
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3.4. The high-dimensional sparse linear regression

rate |β̂SR-Lasso − β∗|p . σ∗s∗1/p
√

(1/n) log(ed/s∗) adaptively over σ∗ ∈ R+. However, the

square-root Lasso is not robust to even one outlier in the dataset. Furthermore, this optimal

rate for the square-root Lasso has only been proved for sub-Gaussian noise ζ whereas in

Theorem 3.4.4, we allow for any distribution of ζ with finite fourth moment. The MOM-

Lasso [55] achieves the optimal rate |β̂MOM−Lasso − β∗|p . σ∗s∗1/p
√

(1/n) log(ed/s∗), but

needs the knowledge of σ∗. Therefore, this bound can uniformly hold only on a class of the

form P[C1σ∗,C2σ∗] for some fixed 0 < C1 ≤ C2.

To our knowledge, the estimator σ̂ is the first estimator of σ∗ that achieves robustness.

Its rate of estimation
√

(s∗/n) log(ed/s∗) is slower than the parametric rate 1/
√
n that one

would get if β∗ was known. Theorem 5 in [28] suggests that this rate r2 might be minimax as

well: the authors show that, albeit in a Gaussian sequence model, the factor
√
s∗ log(ed/s∗)

arises naturally in the estimation of σ∗ by means of any adaptive procedure in a setting

where the distribution of the noise ζ is unknown. Even in the case where no outliers are

present, we improve on the best known bound on the estimation of σ∗, obtained in [11,

Corollary 2] as
∣∣(σ̂SR-Lasso)2 − σ2

∣∣ . σ2
(
s∗ log(n∨d logn)

n +

√
s∗ log(d∨n)

n + 1√
n

)
.

Remark 3.4.5. When β∗ is not sparse but very close to a sparse vector, that is, |β∗ −
β∗∗|1 . σ∗

√
s∗ log(ed/s∗)/n for a sparse vector β∗∗ ∈ Fs∗, the complexity parameter r(ρ)

is in fact unchanged compared to the sparse case and the upper bounds on the rates of

estimation |β̂ − β∗|p . σ+s
∗1/p

√
(1/n) log(ed/s∗) and |σ̂ − σ∗| . σ+

√
(s∗/n) log(ed/s∗)

still hold, extending Theorem 3.4.4.

In practice, it may not be obvious to choose a good value for σ+. This means that the

(unknown) distribution belongs in fact to the class P[0,+∞] =
⋃
σ+>0 P[0,σ+]. A natural idea

is to cut the data into two parts. On the first half of the data, we estimate the variance

Var[Y ] by the MOM estimator σ̂2
K,+ := Q1/2,K

[
Y 2
]
−
(
Q1/2,K [Y ]

)2
. On the second half of

the data, we use σ̂K,+ as the ‘known’ upper bound σ+ and apply our algorithm as defined

in Equation (3.2.10). The following corollary, proved in Section 3.B.3, gives a bound on the

performance of this estimator on the larger class P[0,+∞].

Corollary 3.4.6 (Performance of the estimator with estimated σ+ on P[0,+∞]). Let s∗ > 0.

Then, for every PX,ζ ∈ P[0,+∞] and β∗ ∈ Fs∗, there exists a constant C > 0 such that, for

any n > Cs∗ log(p/s∗) the estimator (β̂K,µ,σ̂K,+ , σ̂K,µ,σ̂K,+) satisfies

PD∼P⊗n
β∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r−1
2

∣∣σ̂(D′)− σ∗
∣∣ ∨ sup

p∈[1,2]
r−1
p

∣∣β̂(D′)− β∗
∣∣
p

}

≤ 4 c̃4

√
1 + SNRσ∗

)
≥ 1− 4

( s∗
ed

)c̃5s∗
− 2
( s∗
ed

)c̃6s∗
,

where c̃6 is a universal constant and SNR denotes the signal-to-noise ratio, defined by

SNR := Var[X>β∗]/σ∗2 = β∗>Var[X]β∗/σ∗2.

This corollary ensures that, with high probability, the estimator (β̂K,µ,σ̂K,+ , σ̂K,µ,σ̂K,+)

achieves the rates of estimation

|β̂ − β∗|p .
√

1 + SNRσ∗s∗1/p
√

(1/n) log(ed/s∗),
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and

|σ̂ − σ∗| .
√

1 + SNRσ∗
√

(s∗/n) log(ed/s∗).

The factor
√

1 + SNR describes how the estimation rates of β∗ and σ∗ are degraded as

a function of the signal-to-noise ratio. Indeed, when the noise level is of the same order

or higher than the standard deviation of f∗(X), the rates are optimal. On the contrary,

when the noise level is very small (SNR � 1), the rates of estimation are dominated by√
Var

[
X>β

]
rp.

3.4.2 Adaptation to the unknown sparsity

We now provide an adaptive to s version of Theorem 3.B.1 by introducing an estimator

(β̃, σ̃, s̃) that simultaneously estimates the vector of coefficients, the noise standard devi-

ation and the sparsity level. This procedure is inspired by [35, Section 4] that proposes a

general Lepski-type method for constructing an adaptive to s estimator from a sequence of

estimators that attains the same rate for each value of s. This method is different from the

one proposed in [55] for making the MOM-Lasso estimator adaptive to the sparsity level s,

which seems difficult to adapt for the case of unknown noise level.

The main idea of this procedure is to compute different estimators for several possible

sparsity levels. Starting from a sparsity of 2, we try different estimators by increasing

each time the sparsity by a factor of 2 unless the difference between an estimator and

the next one is too small. We choose this stopping value as the estimated sparsity level,

and it gives directly an estimated number of blocks to use, since there exists an optimal

number of blocks for each sparsity level. More precisely, given a sparsity estimator s̃, we

take K̃ = dc̃2s̃ log(ed/s̃)e.
Given a known upper bound s+ ≤ d on the sparsity, we define the sequence of MOM−K

estimators (β̂(s),σ+ , σ̂(s),σ+)s=1,...,s+ by β̂(s),σ+ := β̂Ks,µs,σ+ , σ̂(s),σ+ := σ̂Ks,µs,σ+ and

Ks :=

⌈
c̃2s log

(
ed

s

)⌉
, µs := c̃µ

√
1

n
log

(
ed

s

)
. (3.4.1)

The adaptive procedure yields an estimator of the form s̃ = 2m̃ for some integer m̃ ∈
{1, . . . , dlog2(s+)e+ 1}, from which we get the simultaneous adaptive (to s∗ and σ∗) MOM

estimator (β̃σ+ , σ̃σ+ , s̃σ+) = (β̂(s̃),σ+ , σ̂(s̃),σ+ , s̃σ+).

Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as

follows.

• Set M := dlog2(s+)e.
• For every m ∈ {1, . . . ,M + 1}, compute (β̂(2m),σ+ , σ̂(2m), σ+) =(

β̂K2m ,µ2m ,σ+ , σ̂K2m ,µ2m ,σ+

)
, with K2m and µ2m as defined in Equation (3.4.1).

• For u ∈ {1, . . . , 2s+}, let rp(u) = u1/p
√

(1/n) log(ed/u) and

M :=

{
m ∈ {1, . . . ,M} : for all k ≥ m, |β̂(2k−1) − β̂(2k)|1 ≤ C1σ̂(2M+1)r1(2k),
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|β̂(2k−1) − β̂(2k)|2 ≤ C2σ̂(2M+1)r2(2k) and |σ̂(2k−1) − σ̂(2k)| ≤ C3σ̂(2M+1)r2(2k)

}
.

• Set m̃ := minM, with the convention that m̃ := M + 1 if M = ∅.
• Define s̃σ+ := 2m̃ and (β̃σ+ , σ̃σ+) := (β̂(s̃),σ+ , σ̂(s̃),σ+).

The following theorem is proved in Section 3.C.2 and gives uniform bounds for the

performance of the aggregated estimator (β̃σ+ , σ̃σ+ , s̃σ+).

Theorem 3.4.7. Let θ0, θ1, c0, L, κ+ > 1. Let s+ ∈ {1, . . . , d/(2e)} and assume that

r2(2s+) < 1. Then, the aggregated estimator (β̃σ+ , σ̃σ+ , s̃σ+) satisfies

inf
s∗=1,...,s+

inf
PX,ζ ∈ P[0, σ+]

β∗ ∈ Fs∗

P⊗nβ∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r2(s∗)−1

∣∣σ̂(D′)− σ∗
∣∣ ∨ sup

p∈[1,2]
rp(s

∗)−1
∣∣β̂(D′)− β∗

∣∣
p

}

≤ 4c̃4σ+

)
≥ 1− 4(log2(s+) + 1)2

(
2s+

ed

)2c̃5s+

and, for all D′ ∈ D(c̃3rO), s̃σ+(D′) ≤ s∗ on the same event.

This theorem guarantees that for every s∗ ∈ {1, . . . , s+}, both estimators β̃ and σ̃

converge to their true values at the rate σ+s
∗1/p√(1/n) log(ed/s∗) as if the true sparsity

level s∗ was known. However, the probability bounds are slightly deteriorated due to the

knowledge of an upper bound s+ only.

Note that the estimator presented above uses the knowledge of the upper bound on the

standard deviation σ+. If σ+ is not available, the estimator presented in Corollary 3.4.6 can

be aggregated in the same way. It will satisfy the same bounds up to some small degradation

in the probability of the event.

3.5 From the choice of the functional Rc to empirical process

bounds

Our construction in Section 3.2.4 produces a family of MOM estimators

(f̂K,µ,σ+ , σ̂K,µ,σ+) = arg min
f∈F , σ≤σ+

max
g∈F , χ≤σ+

{
MOMK

(
Rc(`g, χ, `f , σ)

)
+ µ

(
‖f‖ − ‖g‖

)}
,

where Rc is a carefully chosen functional in (3.2.6). As mentioned in Section 3.2.3, this

extends the scope of the MOM estimator in [55]

f̂K,λ = arg min
f∈F

max
g∈F

{
MOMK

(
R(`g, `f )

)
+ λ

(
‖f‖ − ‖g‖

)}
,

where R(`g, `f ) = `f − `g, which was constructed in the setting of known σ∗. In this section

we discuss in detail the role of the functional Rc. In Section 3.5.1 we motivate our choice

by showing that, in the sparse linear setting, we recover a robust version of the square-root

Lasso. In Section 3.5.2 we lay down our proving strategy and highlight the contribution of Rc

in recovering convergence rates and excess risk bounds in terms of complexity parameters.

In Section 3.5.3 and Section 3.5.4 we reproduce the main results on complexity parameters

in the sub-Gaussian and sparse linear case respectively.
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3.5.1 Adaptivity to σ∗: choice of the functional Rc and corresponding

conditions

Since we implement the same proving strategy as in [55], we introduce the following prop-

erties as natural assumptions that the functional Rc should satisfy.

P1. Anti-symmetry. For all f, g ∈ F , χ, σ ∈ R+ and (x, y) ∈ X × R, we have

Rc
(
`g(x, y), χ, `f (x, y), σ

)
= −Rc

(
`f (x, y), σ, `g(x, y), χ

)
,

in short, we write Rc(`g, χ, `f , σ) = −Rc(`f , σ, `g, χ).

The latter is a crucial requirement for the whole convex-concave procedure to work, as we

show in the next section. It is automatically satisfied when σ∗ is known, since R(`g, `f ) =

`f − `g = −R(`f , `g).

P2. Concavity in χ, given f = g. For any fixed f = g ∈ F , σ ∈ R+ and (x, y) ∈ X ×R,
the function χ 7→ Rc(`f (x, y), χ, `f (x, y), σ) is concave and has a unique maximum

for χ ∈ R+.

This is an additional requirement that has no counterpart when σ∗ is known. In fact, for

f = g, we have R(`g, `f ) = `f − `g ≡ 0.

P3. Maximization over g, given σ = χ. For any fixed f ∈ F and χ = σ ∈ R+, the

problems of maximizing the functionals

g 7→MOMK

(
Rc(`g, σ, `f , σ)

)
, g 7→MOMK

(
`f − `g

)
,

over g ∈ F are equivalent.

The latter condition requires that our functional Rc(`g, σ, `f , σ) behaves similarly to

R(`g, `f ) = `f − `g when viewed as a functional on g ∈ F .
As a consequence of anti-symmetry, the following properties are equivalent to P1–P3

above:

P1’. Anti-symmetry. For all f, g ∈ F and χ, σ ∈ R+, we have Rc(`g, χ, `f , σ) =

−Rc(`f , σ, `g, χ).

P2’. Convexity in σ, given f = g. For any fixed f = g ∈ F , χ ∈ R+ and (x, y) ∈ X ×R,
the function σ 7→ Rc(`f (x, y), χ, `f (x, y), σ) is convex and has a unique minimum for

σ ∈ R+.

P3’. Minimization over f , given σ = χ. For any fixed g ∈ F and χ = σ ∈ R+, the

problems of minimizing the functionals

f 7→MOMK

(
Rc(`g, σ, `f , σ)

)
, f 7→MOMK

(
`f − `g

)
,

over f ∈ F are equivalent.
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Consider the sparse linear setting, where we want to recover oracle solutions

β∗ ∈ arg min
β∈Rd

E
[
(Y −X>β)2

]
, σ∗ = E

[
(Y −X>β∗)2

] 1
2
.

Any linear function f : X → R can be identified with some βf ∈ Rd such that f(x) = x>βf

and `f (x, y) = `βf (x, y) = (y − x>βf )2. The MOM method in [55] yields a robust version

of the Lasso estimator

β̂L ∈ arg min
β∈Rd

{
1

n

n∑
i=1

(Yi −X>i β)2 + λ|β|1

}
,

which has been shown to be minimax optimal in [8, 7, 9], but its optimal tuning parameter

λ is proportional to σ∗. An adaptive version of the Lasso is the square-root Lasso introduced

in [10], which is also minimax optimal, as shown in [35]. This adaptive method uses

β̂SR-Lasso ∈ arg min
β∈Rd


(

1

n

n∑
i=1

(Yi −X>i β)2

) 1
2

+ µ|β|1

 ,

and its optimal tuning parameter µ does not require the knowledge of σ∗. The key insight

behind the square-root Lasso, see for example Section 5 in [43], is that when β is close to

β∗ one can approximate σ∗2 by E[(Y −X>β)2]. Thus, with λ = σ∗µ, one finds

E[(Y −X>β)2]

σ∗
+

λ

σ∗
|β|1 ' E[(Y −X>β)2]

1
2 + µ|β|1,

and the minimization problem is independent of σ∗.

In view of the discussion above, a candidate natural implementation of the robust

square-root Lasso is given by

R̃c(`g, χ, `f , σ) =
`f
σ

+ σ − `g
χ
− χ,

= (σ − χ)

(
1−

`f
σχ

)
+
`f − `g
χ

,

T̃K,µ(g, χ, f, σ) = MOMK

(
R̃c(`g, χ, `f , σ)

)
+ µ

(
‖f‖ − ‖g‖

)
,

since R̃c implements the idea that, in the linear setting, dividing `f by σ should lead to the

square-root of `f . Also, this choice satisfies the properties P1–P3:

• Anti-symmetry holds by construction.

• When f = g, replace `f (x, y) = `g(x, y) by some positive real number a2 > 0, then

the function

χ 7→ R̃c(a
2, χ, a2, σ) = (σ − χ)

(
1− a2

σχ

)
,

is concave and has a unique maximum for χ ∈ R+.
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• We compare MOMK(`f − `g) to MOMK(R̃c(`g, χ, `f , σ)) when σ = χ,

MOMK(`f − `g) =
1

|Bk|
∑
i∈Bk

(
`f (Xi, Yi)− `g(Xi, Yi)

)
,

MOMK

(
R̃c(`g, σ, `f , σ)

)
=

1

|Bk|
∑
i∈Bk

(
`f (Xi, Yi)− `g(Xi, Yi)

σ

)
,

where Bk is the block realizing the median. The block Bk is the same in both cases

because the multiplicative factor σ−1 is positive and does not depend on the observa-

tions. Therefore, for any fixed f ∈ F , maximizing the functionals in the latter display

over g ∈ F are equivalent problems.

This choice comes with a drawback. The proof of our main result is based on the argument

proposed in [55], which requires sharp bounds for the functional T̃K,µ(`g, χ, `f∗ , σ
∗) over

the possible values of (g, χ). This is done by carefully slicing the domain and assessing

the contribution of each term appearing in T̃K,µ. In particular, one finds a slice in which

χ < σ∗− cαr(2ρK) and the leading term of T̃K,µ is of the form 2ε/χ, with some small fixed

ε > 0. Since 2ε/χ→ +∞, for χ→ 0, we cannot control the supremum of T̃K,µ(`g, χ, `f∗ , σ
∗)

over this slice. The only way around it would be to assume from the start that σ∗ > σ−,

for some known lower bound σ− > 0, but this would be a stronger assumption than the

upper bound σ+ we use in (3.2.3). This issue is caused by the fact that the two terms of

R̃c(`g, χ, `f , σ) are

(`g, χ, `f , σ) 7→ (σ − χ)

(
1−

`f
σχ

)
, (`g, χ, `f , σ) 7→

`f − `g
χ

,

and the second one cannot be controlled if χ→ 0. A way to introduce stability is to replace

the denominator χ by the average (σ + χ)/2, which is always bounded away from zero

when σ is fixed. However, making this substitution alone breaks the anti-symmetry of the

functional, so we have to take care of both terms simultaneously. To this end, we use

Rc(`g, χ, `f , σ) = (σ − χ)

(
1− 2

`f + `g
(σ + χ)2

)
+ 2c

`f − `g
σ + χ

,

TK,µ(g, χ, f, σ) = MOMK

(
Rc(`g, χ, `f , σ)

)
+ µ

(
‖f‖ − ‖g‖

)
,

for all (f, g) ∈ F × F and (σ, χ) ∈ (0, σ+] × (0, σ+], which guarantees that Rc satisfies

properties P1–P3. In fact, anti-symmetry holds for both terms

(`g, χ, `f , σ) 7→ (σ − χ)

(
1− 2

`f + `g
(σ + χ)2

)
, (`g, χ, `f , σ) 7→ 2c

`f − `g
σ + χ

,

separately. Also, for any fixed f = g ∈ F , σ ∈ R+, we have

χ 7→ Rc(`f , χ, `f , σ) = (σ − χ)

(
1−

4`f
(σ + χ)2

)
,

which satisfies property P2. Finally, for any fixed f ∈ F , σ, χ ∈ R+, we can rewrite

g 7→MOMK (Rc(`g, χ, `f , σ))
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= MOMK

(
(σ − χ) +

2`f
σ + χ

(
c− σ − χ

σ + χ

)
− 2`g
σ + χ

(
c+

σ − χ
σ + χ

))
,

and the quantity c + (σ − χ)/(σ + χ) belongs to the interval [c − 1, c + 1] and c > 1 by

construction. We check property P3 by fixing σ = χ, this gives

MOMK (Rc(`g, χ, `f , σ)) =
1

|Bk|
∑
i∈Bk

c

σ

(
`f (Xi, Yi)− `g(Xi, Yi)

)
,

with Bk the block realizing the median. The block Bk is the same for MOMK(`f −`g) since

the factor c/σ is positive and independent of the observations. Therefore, maximizing the

two functionals over g ∈ F are equivalent problems.

3.5.2 From Rc to convergence rates and excess risk bounds

The choice of Rc induces a penalized functional TK,µ which characterizes the MOM−K
estimator

(f̂K,µ,σ+ , σ̂K,µ,σ+) = arg min
f∈F , σ∈I+

max
g∈F , χ∈I+

TK,µ(g, χ, f, σ), I+ = (0, σ+].

Our goal is to guarantee that, with as high probability as possible, the function estimator

f̂K,µ,σ+ recovers f∗ with as small as possible rates in ‖ ·‖ and ‖ ·‖2,X, and that the standard

deviation estimator σ̂K,µ,σ+ recovers σ∗ with as small as possible rates in absolute value.

With the same high probability, we also want that the excess risk Risk(f̂K,µ)−Risk(f∗) is

as small as possible.

Starting with the convergence rates, they can be obtained by showing that

(f̂K,µ,σ+ , σ̂K,µ,σ+) belongs to a bounded ball of the form

B∗(2ρ) :=
{

(f, σ) ∈ F × I+ : ‖f − f∗‖ ≤ 2ρ, ‖f − f∗‖2,X ≤ r(2ρ), |σ − σ∗| ≤ cαr(2ρ)
}
,

with appropriate radius ρ and complexity measure r(2ρ). In the proof of Theorem 3.3.3, we

show that this can be achieved with ρ = ρK and any r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )},
which only requires the complexities rP , rM . The convergence rates 2ρK , r(2ρK) are per-

fectly in line with those obtained with the MOM tournaments procedure in [61] and the

robust MOM method in [55]. The key idea behind this result is to essentially show that the

evaluation of TK,µ at the point (f̂K,µ,σ+ , σ̂K,µ,σ+ , f
∗, σ∗) is too big for (f̂K,µ,σ+ , σ̂K,µ,σ+) to

be outside of the bounded ball B∗(2ρK). Precisely, we show that, for some B1,1 > 0,

TK,µ(f̂K,µ,σ+ , σ̂K,µ,σ+ , f
∗, σ∗) ≥ −B1,1, sup

(g,χ)/∈B∗(2ρK ,r(2ρK))
TK,µ(g, χ, f∗, σ∗) < −B1,1,

which guarantees that (f̂K,µ,σ+ , σ̂K,µ,σ+ , f
∗, σ∗) ∈ B∗(2ρK). The problem of finding a suit-

able bound B1,1 is solved as follows.

• The problem is equivalent to −TK,µ(f̂K,µ, σ̂K,µ, f
∗, σ∗) ≤ B1,1.

• By the anti-symmetry property P1 of Rc, together with the quantile properties in

Lemma 3.D.2, we have −TK,µ(f, σ, f∗, σ∗) ≤ TK,µ(f∗, σ∗, f, σ) and it is sufficient to

find

TK,µ(f∗, σ∗, f̂K,µ,σ+ , σ̂K,µ,σ+) ≤ B1,1.
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• The evaluation at (f∗, σ∗) can be bounded with the supremum over the domain, that

is, we look for sup(g,χ)∈F×I+ TK,µ(g, χ, f̂K,µ,σ+ , σ̂K,µ,σ+) ≤ B1,1.

• By definition, the MOM−K estimator (f̂K,µ,σ+ , σ̂K,µ,σ+) minimizes the latter supre-

mum if we allow for other pairs (f, σ). In particular, with (f, σ) = (f∗, σ∗), it is enough

to find sup(g,χ)∈F×I+ TK,µ(g, χ, f∗, σ∗) ≤ B1,1.

• Finally, in Lemma 3.A.11 we show that the supremum is achieved on the bounded

ball B∗(ρK), that is, the solution to the problem is the sharpest bound such that

sup
(g,χ)∈B∗(ρK)

TK,µ(g, χ, f∗, σ∗) ≤ B1,1.

The argument we just sketched can be found in the proof of the main result in [55], it is

a clever exploitation of the convex-concave formulation of the problem. One key element

of the argument is that the computations only require lower bounds on the quantiles of

the quadratic and multiplier empirical processes, which in turn can be obtained by means

of the complexities rP and rM alone. These facts have been established in [57, 60] and we

provide them in Lemma 3.D.5, Lemma 3.D.6.

The fact that the estimator (f̂K,µ,σ+ , σ̂K,µ,σ+) belongs to the ball B∗(2ρK) is instrumental

in obtaining excess risk bounds. First, one writes

Risk(f̂K,µ,σ+)− Risk(f∗) = ‖f̂K,µ,σ+ − f∗‖22,X + E[−2ζ(f̂K,µ,σ+ − f∗)(X)],

and then bounds ‖f̂K,µ,σ+ − f∗‖22,X ≤ r2(2ρK). By applying a quantile inequality, see

Lemma 3.D.7, and adding the quadratic term (f̂K,µ,σ+−f∗)2, the expectation term becomes

E[−2ζ(f̂K,µ,σ+ − f∗)(X)] ≤ Q1/4,K

[
−2ζ(f̂K,µ,σ+ − f∗)

]
+ α2

M

≤ Q1/4,K

[
`
f̂K,µ,σ+

− `f∗
]

+ α2
M ,

since `f − `f∗ = (f − f∗)2 − 2ζ(f − f∗). Since the 1/4-quantile is always smaller than

the 1/2-quantile, which is the median, some algebraic manipulations allow to rewrite the

difference `
f̂K,µ,σ+

−`f∗ in terms of our functional Rc(`f∗ , σ
∗, `

f̂K,µ,σ+
, σ̂K,µ,σ+) and to recover

the penalized TK,µ(f∗, σ∗, f̂K,µ,σ+ , σ̂K,µ,σ+). Specifically, in Lemma 3.D.9 we find

E[−2ζ(f̂K,µ,σ+ − f∗)(X)] ≤
σ̂K,µ,σ+ + σ∗

2c
TK,µ(f∗, σ∗, f̂K,µ,σ+ , σ̂K,µ,σ+) + remainder,

≤
σ̂K,µ,σ+ + σ∗

2c
B1,1 + remainder,

where B1,1 is the upper bound we found when dealing with the convergence rates. It is

easy to show that B1,1 . r2(2ρK), the majority of the work is spent on bounding the

remainder terms. In the same lemma, we show that they are: the quantity µρK . r2(ρK)

where µ ' r2(ρK)/ρK is the penalization parameter, the quantity α2
M . r2(2ρK) related

to the quantiles of the multiplier process, the mixed terms

• |σ̂K,µ,σ+ − σ∗| ·Q15/16,K

[
(f̂K,µ,σ+ − f∗)2

]
,

• |σ̂K,µ,σ+ − σ∗| ·Q15/16,K

[
−2ζ(f̂K,µ,σ+ − f∗)

]
,
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involving the quantiles of the quadratic and multiplier processes. The standard deviation es-

timator satisfies |σ̂K,µ,σ+−σ∗| . r(2ρK). In Lemma 3.D.7 we show that Q15/16,K [−2ζ(f̂K,µ−
f∗)] ≤ E[−2ζ(f̂K,µ,σ+ − f∗)] + α2

M , so that the Cauchy-Schwarz inequality is sufficient for

E[−2ζ(f̂K,µ,σ+ − f∗)] ≤ 4σ∗‖f̂K,µ,σ+ − f∗‖2,X . r(2ρK). Finally, in Lemma 3.D.8 we find

Q15/16,K [(f̂K,µ,σ+ − f∗)2] ≤ r2(2ρK) + α2
Q . r2(2ρK) ∨ r2

Q(2ρK , γQ).

3.5.3 Complexity parameters in the sub-Gaussian setting

We follow the construction presented in [56]. Let G = (G(f) : f ∈ L2(PX)) the Gaussian

process indexed on L2(PX) and such that E[G(f)] = 0 and E[G(f)G(h)] = E[f(X)h(X)].

For any F ′ ⊆ F , we set

E
[
‖G‖F ′

]
:= sup

{
E
[

sup
h∈H

G(h)

]
: H ⊆ F ′ is finite

}
.

As an example, if F ′ = {x 7→ x>β : β ∈ T ⊂ Rd} and X is a random vector in Rd with

covariance matrix Σ, then G ∼ N (0,Σ) and

E
[
‖G‖F ′

]
= E

[
sup
β∈T

G>β

]
.

Sub-Gaussian class. We say that F is sub-Gaussian if there exists a constant L such

that, for all f, h ∈ F and p ≥ 2, one has ‖f − h‖p,X ≤ L
√
p‖f − h‖2,X.

Gaussian complexities. For any r ≥ 0, set B2(r) = {f ∈ L2(PX) : ‖f‖2,X ≤ r} and

F − F = {f − h : f, h ∈ F}. For any γ, γ′ > 0, take

s∗n(γ) := inf{r > 0 : E
[
‖G‖B2(r)∩(F−F)

]
≤ γr2√n},

r∗n(γ′) := inf{r > 0 : E
[
‖G‖B2(r)∩(F−F)

]
≤ γ′r

√
n}.

(3.5.1)

The goal of this section is to provide the following bounds.

Lemma 3.5.1. Under the sub-Gaussian assumption, there exist absolute constants c2, c3

such that the complexity parameters rP , rQ, rM defined in (3.3.1) satisfy

rP (ρ, γP ) ≤ r∗n
(
γP
c2L2

)
, rQ(ρ, γQ) ≤ r∗n

(
γQ
c2L2

)
, rM (ρ, γM ) ≤ s∗n

(
γM

c3Lm∗

)
. (3.5.2)

In particular, any continuous non-decreasing function ρ 7→ r(ρ) with

r(ρ) ≥ max

{
r∗n

(
γP
c2L2

)
, s∗n

(
γM

c3Lm∗

)}
,

is a valid choice in (3.3.2).

Proof of Lemma 3.5.1. We invoke Lemma 3.5.2, Lemma 3.5.3 and Lemma 3.5.4 below.

Their proofs are based on a symmetrization argument in [66], which controls the processes

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − f∗)(Xi)− E[(f − f∗)(X)]

∣∣∣∣,
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sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − f∗)2(Xi)− E[(f − f∗)2(X)]

∣∣∣∣,
sup

f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ζi(f − f∗)(Xi)− E[ζ(f − f∗)(X)]

∣∣∣∣,
in terms of the processes

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ξi(f − f∗)(Xi)

∣∣∣∣,
sup

f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ξi(f − f∗)2(Xi)

∣∣∣∣,
sup

f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ξiζi(f − f∗)(Xi)

∣∣∣∣,
with Rademacher variables (ξi)i=1,...,n. The latter play a role in the definition of the com-

plexities in (3.3.1).

Lemma 3.5.2 below shows that, for any r > r∗n(γ′),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − h)(Xi)− E[(f − h)(X)]

∣∣∣∣ ≤ c2γ
′Lr,

with probability bigger than 1−2 exp(−c1γ
′2n). Choosing γ′ = γP /(c2L) and h = f∗ gives,

for all r > r∗n(γQ/(c2L)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − f∗)(Xi)− E[(f − f∗)(X)]

∣∣∣∣ ≤ γQr.
By definition, the complexity rP (ρ, γP ) is the smallest level r at which the latter display

holds for all functions f in the smaller set B(f∗, ρ, r). Thus rP (ρ, γP ) ≤ r∗n(γP /(c2L)).

Lemma 3.5.3 below shows that, for any r > r∗n(γ′),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − h)2(Xi)− E[(f − h)2(X)]

∣∣∣∣ ≤ c2γ
′L2r2,

with probability bigger than 1 − 2 exp(−c1γ
′2n). Choosing γ′ = γQ/(c2L

2) and h = f∗

gives, for all r > r∗n(γQ/(c2L
2)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − f∗)2(Xi)− E[(f − f∗)2(X)]

∣∣∣∣ ≤ γQr2.

By definition, the complexity rQ(ρ, γQ) is the smallest level r at which the latter display

holds for all functions f in the smaller set B(f∗, ρ, r). Thus rQ(ρ, γQ) ≤ r∗n(γQ/(c2L
2)).

With E[ζ4]1/4 = m∗, Lemma 3.5.4 below shows that, for any r > s∗n(γ),

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ζi(f − h)(Xi)− E[ζ(f − h)(X)]

∣∣∣∣ ≤ c3γm
∗Lr2,
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with probability bigger than 1− 4 exp(−c1nmin{γ2r2, 1}). Choosing γ = γM/(c3Lm
∗) and

h = f∗ gives, for all r > s∗n(γM/(c3Lm
∗)),

sup
f∈F :‖f−f∗‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ζi(f − f∗)(Xi)− E[ζ(f − f∗)(X)]

∣∣∣∣ ≤ γMr2.

By definition, the complexity rM (ρ, γM ) is the smallest display r at which the latter display

holds for all functions f in the smaller set B(f∗, ρ, r). Thus rM (ρ, γM ) ≤ s∗n(γM/(c3Lm
∗)).

Lemma 3.5.2 (Corollary 1.8 in [66]). There exist absolute constants c1, c2 for which the

following holds. Let F be an L-sub-Gaussian class, assume that F−F is star-shaped around

0. If γ′ ∈ (0, 1) and r > r∗n(γ′), then with probability at least 1− 2 exp(−c1γ
′2n), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − h)(Xi)− E[(f − h)(X)]

∣∣∣∣ ≤ c2γ
′Lr.

Lemma 3.5.3 (Lemma 2.6 in [56]). There exist absolute constants c1, c2 for which the

following holds. Let F be an L-sub-Gaussian class, assume that F−F is star-shaped around

0. If γ′ ∈ (0, 1) and r > r∗n(γ′), then with probability at least 1− 2 exp(−c1γ
′2n), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

(f − h)2(Xi)− E[(f − h)2(X)]

∣∣∣∣ ≤ c2γ
′L2r2.

Lemma 3.5.4 (Corollary of Theorem 2.7 in [56]). Let F be an L-sub-Gaussian class,

assume that F −F is star-shaped around 0. Let E[|ζ|q]1/q = m∗ for some q > 2, there exists

an absolute constant c3(q), depending on q only, for which the following holds. For some

γ > 0 and r > s∗n(γ), with probability at least 1− 4 exp(−c1nmin{γ2r2, 1}), we have

sup
f,h∈F :‖f−h‖2,X≤r

∣∣∣∣ 1n
n∑
i=1

ζi(f − h)(Xi)− E[ζ(f − h)(X)]

∣∣∣∣ ≤ c3(q)γm∗Lr2.

3.5.4 Complexity parameters in the sparse linear setting

The next result shows that, in the linear setting, it is possible to weaken the sub-Gaussian

assumption and still be able to control the complexity parameters rP , rM as in (3.5.2).

Theorem 3.5.5 (Theorem 1.6 in [67]). There exists an absolute constant c1 and for K ≥ 1,

L ≥ 1 and q0 > 2 there exists a constant c2 that depends only on K,L, q0 for which the

following holds. Consider

• V ⊂ Rd for which the norm ‖ · ‖V = supv∈V |〈v, ·〉| is K-unconditional with respect to

the basis {e1, . . . , ed};

• m∗ = E
[
|ζ|q0

]1/q0 < +∞;
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• an isotropic random vector X ∈ Rd which satisfies the weak moment condition: for

some constants c0, L > 1, for all y ∈ Rd, 1 ≤ p ≤ c0 log(ed), 1 ≤ j ≤ d,

E
[
|X>ej |p

] 1
p ≤ L√pE

[
|X>ej |2

] 1
2 .

If (Xi, ζi)
n
i=1 are i.i.d. copies of (X, ζ), then

E

[
sup
v∈V

∣∣∣∣∣ 1√
n

n∑
i=1

(
ζiX

>
i v − E[ζX>v]

)∣∣∣∣∣
]
≤ c2m

∗E[‖G‖V ].

Since this result deals with the multiplier empirical process and, when ζ ≡ 1, with the

standard empirical process, by arguing as in the proof of Lemma 3.5.1 we find that any

function

ρ 7→ r(ρ) ≥ max

{
r∗n

(
γP
c2

)
, s∗n

(
γM
c2m∗

)}
,

is a valid choice in (3.3.2). Our Definition 3.4.1 restricts our analysis to settings where the

assumptions of the previous theorem are satisfied.

By following Section 4 in [56], we provide bounds for the complexity parameters r∗n, s
∗
n

in (3.5.2). For any β ∈ Rd, set fβ : Rd → R the linear map fβ(x) = x>β, consider

F =
{
fβ : β ∈ Rd

}
and, for any ρ > 0,

B1(ρ) =
{
fβ ∈ F : |β|1 ≤ ρ

}
.

Assume that X is an isotropic random vector that satisfies the weak moment condition of

Theorem 3.5.5, recall that m∗ = E[ζ4]1/4. By symmetry, B1(ρ) − B1(ρ) = B1(2ρ) and it is

sufficient to control the function r 7→ E
[
‖G‖B1(2ρ)∩B2(r)

]
. One finds, for every 2ρ/

√
d ≤ r,

E
[
‖G‖B1(2ρ)∩B2(r)

]
= E

[
sup

β∈Rd:|β|1≤2ρ,|β|2≤r

∣∣∣∣ d∑
i=0

giβi

∣∣∣∣] ∼ ρ√log
(
edmin{r2/ρ2, 1}

)
,

and if r ≤ 2ρ/
√
d, then

E
[
‖G‖B1(2ρ)∩B2(r)

]
= E

[
sup

β∈Rd:|β|1≤2ρ,|β|2≤r

∣∣∣∣ d∑
i=0

giβi

∣∣∣∣] ∼ ρ√d.
With CγP some constants only depending on L and γP , one finds

r∗2n

(
γP
c2

)
≤ C2

γP
×


ρ2

n log
(
ed
n

)
if n ≤ c3d,

ρ2

d if c3d ≤ n ≤ c4d,

0 n > c4d,

the constants c3, c4 depend only on L. Similarly, with CγM some constants only depending

on L and γM ,

s∗2n

(
γM
c2m∗

)
≤ C2

γM
×


ρm∗

√
log d
n if ρ2n ≤ m∗2 log d,

ρm∗
√

1
n log

(
ed2m∗2

ρ2n

)
if m∗2 log d ≤ ρ2n ≤ m∗2d2,

m∗2 dn ρ2n ≥ m∗2d2.
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The bounds given above are valid for any regime of n and d, but we continue the discussion

for the more interesting high-dimensional case, that is d� n. This simplifies the notation

and allows to choose, for some constant CγP ,γM only depending on L, γP , γM ,

r2(ρ) = C2
γP ,γM


max

{
ρm∗

√
log d
n , ρ2

n log
(
ed
n

)}
, if ρ ≤ m∗

√
log d√
n

,

max
{
ρm∗

√
1
n log

(
ed2m∗2

ρ2n

)
, ρ2

n log
(
ed
n

)}
, if m∗

√
log d√
n
≤ ρ ≤ m∗d√

n
,

(3.5.3)

which coincides with the function obtained in Section 4.4 in [55].

Solution of the sparsity equation. We study the case n ≥ s log(ed/s) and assume there

exists a s-sparse vector in β∗ + B1(ρ/20). In the proof of Theorem 1.4 in [57], it is shown

that the smallest solution of the sparsity equation (3.3.4) is

ρ∗ = C∗γP ,γMm∗s∗

√
1

n
log

(
ed

s∗

)
,

for some constant C∗γP ,γM only depending on L, γP , γM . We now compute r2(ρ∗). Up to

multiplying ρ∗ by a big constant, we have ρ∗ & m∗
√

log d/
√
n, since s∗

√
log(ed/s∗) >

√
log d

for all 1 < s∗ ≤ d. By definition, we have

r2(ρ∗) = C2
γP ,γM

max

{
ρ∗m∗

√
1

n
log

(
ed2m∗2

ρ∗2n

)
,
ρ∗2

n
log

(
ed

n

)}

= C2
γP ,γM

ρ∗m∗

√
1

n
log

(
ed2m∗2

ρ∗2n

)

= C2
γP ,γM

C∗γP ,γM
m∗2s∗

n

√
log

(
ed

s∗

)√
log

(
ed2

C∗2γP ,γM s
∗2 log

(
ed
s∗

))
≤
√

2C2
γP ,γM

C∗γP ,γM
m∗2s∗

n
log

(
ed

s∗

)
,

in the last inequality we have used that log(a2) = 2 log(|a|) and C∗γP ,γM > 1/
√

log(ed/s∗).

The latter is true without loss of generality in the high-dimensional setting d � n ≥
s∗ log(ed/s∗). The quantity r(ρ∗) is the convergence rate of the Lasso estimator with pe-

nalization parameter λ ∼ r2(ρ∗)/ρ∗ ∼ m∗
√

log(ed/s∗)/n. This choice of λ requires the

knowledge of the true sparsity parameter s∗.

Appendix 3.A Proof of Theorem 3.3.3

The structure of the proof is as follows. First, we control the supremum of the functional

TK,µ(g, χ, f∗, σ∗) over possible values of (g, χ) by partitioning the domain in slices. Each slice

is treated separately by the results from Lemma 3.A.2 to Lemma 3.A.10. Then, we compare

the bounds over different slices in Lemma 3.A.11 and show that the leading contribution

comes from a bounded ball of the form

B∗(ρK) =
{

(g, χ) ∈ F × (0, σ+] : ‖g − f∗‖ ≤ ρK , ‖g − f∗‖2,X ≤ r(ρK), |χ− σ∗| ≤ cαr(ρK)
}
.
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In Lemma 3.A.12 we translate the supremum bounds into convergence rates by showing

that the MOM−K estimator belongs to a bounded ball B∗(2ρK). We finalize the proof by

computing the excess risk bound in Lemma 3.A.13.

In the notation of Theorem 3.3.3, for any c > 2 we have

cµ := 200(c+ 2)κ
1/2
+ ,

ε :=
c− 2

192θ2
0(c+ 2)

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
) ,

c2
α :=

3(c− 2)

5θ2
0

,

furthermore, we use the auxiliary parameters

γP =
1

1488θ0
, γQ =

ε

360
, γM =

ε

744
, η =

1

16
, γ =

31

32
, α = x =

1

93
.

We denote by r(·) a function such that r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}. By Assump-

tion 3.3.2, there exists an absolute constant such that r(ρ) ≤ r(2ρ) < crr(ρ). With

C2 = 384θ2
1c

2
rc

2
ακ

1/2
+ , we allow for K ∈

[
K∗ ∨ 32|O|, nε2/C2

]
. We denote by Ω(K) the

intersection of the event Ω1(K) in Lemma 3.D.4, the event Ω2(K) in Lemma 3.D.7 and the

event Ω3(K) in Lemma 3.D.8. The probability of Ω(K) = Ω1(K) ∩ Ω2(K) ∩ Ω3(K) is at

least 1−P(Ω1(K))−P(Ω2(K))−P(Ω3(K)) ≥ 1− 4 exp(−K/8920). For any cρ ∈ {1, 2}, we

denote

αK,cρ := cαr(cρρK), δ2
K,n :=

25m∗4K

n
, r2(ρK) =

384θ2
1δ

2
K,n

25m∗2ε2
, (3.A.1)

the last equation rewrites the implicit definition of ρK in (3.3.7).

The next lemma checks that the choices made in Theorem 3.3.3 satisfy a set of sufficient

conditions that are required by our proving strategy. In principle, our main result is valid

for different choices as long as the relevant quantities satisfy the conditions below.

Lemma 3.A.1. The assumptions of Theorem 3.3.3 imply, with c2
K = 384 and any ιµ ∈

[1/4, 4],

nε2 > Kc2
Kθ

2
1c

2
rc

2
ακ

1/2
+ , (3.A.2)

ιµcµ >
1600κ

3/4
+ ε

c2
Kθ

2
1

+ 48κ
1/2
+ (c+ 2), (3.A.3)

c− 2

24θ2
0

>
800κ

1/2
+ ε2

c2
Kθ

2
1

+ 16(c+ 2)ε+

(
1 + σ+

σ∗

3
∨ 36

10

)
ιµcµε, (3.A.4)

c2
α >

1800κ
1/2
+ ε2

c2
Kθ

2
1

+ 108(c+ 2)ε+
144ιµcµε

10
. (3.A.5)

Conditions (3.A.2) and (3.A.5) imply 4δK,n/σ
∗ < αK,cρ < σ∗. Condition (3.A.4) implies

both

1

16θ2
0

> 4ε+
(σ∗ + σ+)ιµcµε

2(c− 2)m∗
, (3.A.6)
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c− 2

24θ2
0

>
800κ∗1/2ε2

c2
Kθ

2
1

+ 16(c+ 2)ε+
36ιµcµε

10
. (3.A.7)

Proof of Lemma 3.A.1. Condition (3.A.2) is equivalent to the upper bound K ≤ nε2/C2

on the number of blocks, which is itself an assumption of Theorem 3.3.3.

We now show that (3.A.2) implies αK,cρ < σ∗. By Assumption 3.3.2, we have r2(ρK) =

c2
Kθ

2
1m
∗2K/(ε2n) and r2(2ρK) ≤ c2

rr
2(ρK). Since αK,2 = cαr(2ρK), then also αK,2 ≤ crαK,1

and, by using condition (3.A.2) in the last inequality,

α2
K,1

σ∗2
≤
α2
K,2

σ∗2
≤
c2
rα

2
K,1

σ∗2
= c2

rc
2
α

c2
Kθ

2
1m
∗2K

σ∗2nε2
= c2

rc
2
α

c2
Kθ

2
1κ
∗1/2K

nε2
< 1,

thus αK,cρ < σ∗. Condition (3.A.5) implies 4δK,n/σ
∗ < αK,cρ , since it gives the inequality

16δ2
K,n

σ∗2
=

400m∗4K

σ∗2n
= κ∗1/2

400m∗2K

n
< c2

α

384θ2
1m
∗2K

nε2
= αK,1.

We now show (3.A.3). By definition of cµ in (3.3.5), we have

ιµcµ ≥
cµ
4

= 50(c+ 2)κ
1/2
+ = 2(c+ 2)κ

1/2
+ + 48(c+ 2)κ

1/2
+ ,

thus (3.A.3) holds since, by construction (3.3.5),

ε <
c2
Kθ

2
1(c+ 2)

800κ
1/4
+

=
12θ2

1(c+ 2)

25κ
1/4
+

.

We now deal with (3.A.4), which we rewrite using c2
K = 384,

50κ
1/2
+ θ2

0ε
2

(c− 2)θ2
1

+
384θ2

0(c+ 2)ε

c− 2
+

(
1 + σ+

σ∗

3
∨ 36

10

)
24θ2

0ιµcµε

c− 2
< 1.

With the definition of cµ in (3.3.5) and ιµ = 4, this becomes

50κ
1/2
+ θ2

0

(c− 2)θ2
1

ε2 +
48θ2

0(c+ 2)

c− 2

(
8 +

400κ
1/2
+

3

((
1 +

σ+

σ∗

)
∨ 12

10

))
ε < 1.

The inequality above has the form Aε2 + Bε < 1, which is satisfied by any ε smaller

than min{1/
√

2A, 1/2B}. The definition of ε in (3.3.5) coincides with imposing ε = cε ·
min{1/

√
2A, 1/2B} = cε/2B, with cε = 1/2 and

1√
2A

=
√
c− 2

θ1

10θ0κ
1/4
+

,

1

2B
=

c− 2

96θ2
0(c+ 2)

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
) ,

we have used that 400/3 < 134. Thus, condition (3.A.4) is satisfied. It is immediate to

verify that this implies both (3.A.6) and (3.A.7).

We conclude by showing (3.A.5). With c2
K = 384, the definition of cµ in (3.3.5) and

ιµ = 4, we rewrite this as

c2
α >

75κ
1/2
+

16θ2
1

ε2 + 108(c+ 2)

(
1 +

320

3
κ

1/2
+

)
ε.
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By the discussion on ε above, it is sufficient that, with cε = 1/2 and 320/3 < 107,

c2
α >

75κ
1/2
+

16θ2
1

· c
2
ε(c− 2)θ2

1

100θ2
0κ

1/2
+

+ 108(c+ 2)
(

1 + 107κ
1/2
+

) cε(c− 2)

96θ2
0(c+ 2)

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
) .

This is equivalent to

c2
α >

15(c− 2)

320θ2
0

c2
ε +

27(c− 2)(1 + 107κ
1/2
+ )

24θ2
0

(
8 + 134κ

1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
)cε,

and, with

1 + 107κ
1/2
+

8 + 134κ
1/2
+ ((1 + σ+

σ∗ ) ∨ 6
5)
< 1,

and cε = 1/2, condition (3.A.5) holds if

c2
α ≥

15(c− 2)

320θ2
0

c2
ε +

27(c− 2)

24θ2
0

cε =
(c− 2)

16θ2
0

(
15

80
+

27

3

)
=

441(c− 2)

768θ2
0

.

This is exactly the case from the definition of cα in (3.3.5), since 3/5 > 441/768. The proof

is complete.

3.A.1 Control of the supremum of TK,µ(g, χ, f
∗, σ∗)

With σ+ the known upper bound on σ∗, set I+ = (0, σ+] and, with r(·) any function such

that r(ρ) ≥ {rP (ρ, γP ), rM (ρ, γM )}, any cρ ∈ {1, 2} and αK,cρ = cαr(cρρK), let us define

F (cρ)
1 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), |σ∗ − χ| ≤ αK,cρ}

F (cρ)
2 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), |σ∗ − χ| ≤ αK,cρ}

F (cρ)
3 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , |σ∗ − χ| ≤ αK,cρ}

F (cρ)
4 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ > σ∗ + αK,cρ}

F (cρ)
5 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ > σ∗ + αK,cρ}

F (cρ)
6 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ > σ∗ + αK,cρ}

F (cρ)
7 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ < σ∗ − αK,cρ}

F (cρ)
8 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ < σ∗ − αK,cρ}

F (cρ)
9 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ < σ∗ − αK,cρ}.

The sets above are a partition of the domain F × I+ where the functional

TK,µ(g, χ, f∗, σ∗) = MOMK

(
Rc(`g, χ, `f∗ , σ

∗)
)

+ µ(‖f∗‖ − ‖g‖)

takes inputs. For cρ ∈ {1, 2} and i = 1, . . . , 9, we set Bi,cρ some upper bound for the

supremum of TK,µ(g, χ, f∗, σ∗) over (g, χ) ∈ F (cρ)
i . That is,

sup
(g,χ)∈F(cρ)

i

TK,µ(g, χ, f∗, σ∗) ≤ Bi,cρ , (3.A.8)
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and the goal of this section is to give sharp bounds for each slice separately. Using the

definition of Rc(`g, χ, `f∗ , σ
∗) in (3.2.6), and `g = `f∗ + `g − `f∗ , we find

Rc(`g, χ, `f∗ , σ
∗) = (σ∗ − χ)

(
1− 2

`f∗ + `g
(σ∗ + χ)2

)
+ 2c

`f∗ − `g
σ∗ + χ

= (σ∗ − χ)

(
1−

4`f∗

(σ∗ + χ)2

)
+ 2

(
c+

σ∗ − χ
σ∗ + χ

)
`f∗ − `g
σ∗ + χ

= Rc(`f∗ , χ, `f∗ , σ
∗) + 2∆c(χ, σ

∗)
`f∗ − `g
σ∗ + χ

,

with

∆c(χ, σ) :=

(
c+

σ − χ
σ + χ

)
∈ [c− 1, c+ 1], ∀σ, χ ∈ (0,+∞),

and c > 2 by construction. We plug this into the functional TK,µ(g, χ, f∗, σ∗), so that

TK,µ(g, χ, f∗, σ∗) = MOMK

(
Rc(`f∗ , χ, `f∗ , σ

∗) + 2∆c(χ, σ
∗)
`f∗ − `g
σ∗ + χ

)
+ µ(‖f∗‖ − ‖g‖).

For all (x, y) ∈ X × R, we have the decomposition

`f (x, y)− `g(x, y) = 2
(
y − f(x)

)(
g(x)− f(x)

)
−
(
g(x)− f(x)

)2
,

and this gives `f∗ − `g = 2ζ(g − f∗) − (g − f∗)2. By the triangular quantile property in

Lemma 3.D.2, we can write

TK,µ(g, χ, f∗, σ∗)

= Q1/2,K

[
Rc(`f∗ , χ, `f∗ , σ

∗) + 2∆c(χ, σ
∗)
`f∗ − `g
σ∗ + χ

]
+ µ(‖f∗‖ − ‖g‖)

≤ Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

+
2∆c(χ, σ

∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+ µ(‖f∗‖ − ‖g‖).

(3.A.9)

By arguing as in the proof of Lemma 3.D.9, see discussion after (3.D.2) for bounding (3.D.3),

the quantity

Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

= Q3/4,K

[
(σ∗ − χ)

(
1−

4`f∗

(σ∗ + χ)2

)]
is bounded above, when χ ≥ σ∗, by

Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]
≤ (χ− σ∗)

(4σ∗2 + 4δK,n
(σ∗ + χ)2

− 1
)
, (3.A.10)

or, when χ ≤ σ∗, by

Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]
≤ (σ∗ − χ)

(
1−

4σ∗2 − 4δK,n
(σ∗ + χ)2

)
. (3.A.11)

The following lemmas give, on the event Ω(K), the bounds Bi,cρ in (3.A.8) for i =

1, . . . , 9 and cρ ∈ {1, 2}.
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Lemma 3.A.2. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
1 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B1,cρ :=
16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Proof of Lemma 3.A.2. Let (g, χ) ∈ F (cρ)
1 . Using the bound obtained in (3.A.9), the in-

equality (g − f∗)2 ≥ 0 and the triangular inequality, the quantity TK,µ(g, χ, f∗, σ∗) is

bounded above by

Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

+
2∆c(χ, σ

∗)

σ∗ + χ
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+ µ(‖f∗‖ − ‖g‖)

≤ Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

+
2∆c(χ, σ

∗)

σ∗ + χ
Q3/4,K

[
2ζ(g − f∗)

]
+ µ‖f∗ − g‖.

By Lemma 3.D.7, Q3/4,K [2ζ(g − f∗)] ≤ α2
M ≤ 4εr2(cρρK) and, with ∆c(χ, σ

∗) ≤ c+ 2 and

our choice µ = (cµε/m
∗)r2(ρK)/ρK , we find

TK,µ(g, χ, f∗, σ∗) ≤ Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

+
8(c+ 2)ε

2σ∗ − αK,cρ
r2(cρρK) + µcρρK

= Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

+
8(c+ 2)ε

2σ∗ − αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

We now bound the quantile term appearing in the latter display. Directly from (3.A.10)

and (3.A.11), we get

Q3/4,K

[
Rc(`f∗ , χ, `f∗ , σ

∗)
]

≤ max

{
sup

χ∈[σ∗,σ∗+αK,cρ ]
|σ∗ − χ|

(4σ∗2 + 4δK,n
(σ∗ + χ)2

− 1
)
, sup
χ∈[σ∗−αK,cρ ,σ∗]

|σ∗ − χ|
(

1−
4σ∗2 − 4δK,n

(σ∗ + χ)2

)}
.

By arguing as in the proof of Lemma 3.D.9, see bound (3.D.4) with αK,cρ > 2δK,n/σ
∗, we

obtain

TK,µ(g, χ, f∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK),

which is what we wanted.

Lemma 3.A.3. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
2 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B2,cρ :=
16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + 2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

110



3.A. Proof of Theorem 3.3.3

Proof of Lemma 3.A.3. Let (g, χ) ∈ F (cρ)
2 . The space F (cρ)

2 shares with F (cρ)
1 the conditions

‖g−f∗‖ ≤ cρρK and |χ−σ∗| ≤ αK,cρ . By arguing as in the proof of Lemma 3.A.2, we know

already that

TK,µ(g, χ, f∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+
cµεcρ
m∗

r2(ρK).

The quantile properties in Lemma 3.D.2 give Q3/4,K [2ζ(g−f∗)−(g−f∗)2] ≤ Q7/8,K [2ζ(g−
f∗)]−Q1/8,K [(g− f∗)2]. An application of Lemma 3.D.7 bounds from above Q7/8,K [2ζ(g−
f∗)] ≤ α2

M ≤ 4εr2(cρρK) and from below Q1/8,K [(g−f∗)2] ≥ (4θ0)−2‖g−f∗‖22,X. Since 4ε <

1/(4θ0)2 by condition (3.A.6), we have α2
M −‖g− f∗‖22,X(4θ0)−2 ≤ (4ε− (4θ0)−2)r2(cρρK).

Together with ∆c(χ, σ
∗) ≥ c− 2,

TK,µ(g, χ, f∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)

(
α2
M − (4θ0)−2‖g − f∗‖22,X

)
+
cµεcρ
m∗

r2(ρK)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + 2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK),

which concludes the proof.

Lemma 3.A.4. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
3 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , |σ∗ − χ| ≤ αK,cρ},

is bounded above by

B3,cρ := max

{
16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + cρ

(
8(c+ 2)ε

2σ∗ − αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + cρ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
.

Proof of Lemma 3.A.4. Let (g, χ) ∈ F (cρ)
3 . The space F (cρ)

3 shares with F (cρ)
1 ,F (cρ)

2 the

constraint |χ−σ∗| ≤ αK,cρ . By arguing as in the proofs of Lemma 3.A.2 and Lemma 3.A.3,

together with an application of Lemma 3.D.1 with ρ = ρK , the bound in (3.A.9) becomes

TK,µ(g, χ, f∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
+ µ(‖f∗‖ − ‖g‖)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

2∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(g − f∗)− (g − f∗)2

]
− µ sup

z∗∈Γf∗ (ρK)
z∗(g − f∗) +

µρK
10

.
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We follow now the proof of Lemma 5 in [55]. Let us define f := f∗ + ρK(g − f∗)/‖g − f∗‖,
this function belongs to the function class F by convexity. Let Υ := ‖g − f∗‖/ρK . By

construction, ‖f − f∗‖ = ρK and g − f∗ = Υ(f − f∗). Then,

TK,µ(g, χ, f∗, σ∗)

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n +

2Υ∆c(χ, σ
∗)

(σ∗ + χ)
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]
− µΥ sup

z∗∈Γf∗ (ρK)
z∗(f − f∗) +

µρK
10

.

From here, we separate the cases ‖f − f∗‖2,X ≤ r(ρK) and ‖f − f∗‖2,X > r(ρK).

We start with ‖f − f∗‖2,X ≤ r(ρK). Since ‖f − f∗‖ = ρK , we have f ∈ HρK with

HρK = {f ∈ F : ‖f − f∗‖ ≤ ρK , ‖f − f∗‖2,X ≤ r(ρK)} defined in Section 3.3.2. Recall that

K∗ is defined as the smallest integer satisfying K∗ ≥ nεr2(ρ∗)/c2
Kθ

2
m, with ρ∗ the smallest

value ρ > 0 satisfying the sparsity inequality

inf
f∈Hρ

sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≥ 4

5
ρ.

Since K ≥ K∗, we get ρK ≥ ρ∗ and ρK satisfies the sparsity inequality

sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≥ 4

5
ρK .

Using our choice of µ = (cµε/m
∗)r2(ρK)/ρK , we get

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4cµε

5m∗
r2(ρK).

The latter display, the fact that (f−f∗)2 ≥ 0, the bound ∆c(χ, σ
∗) ≤ c+2, and the quantile

bound Q3/4,K [2ζ(f − f∗)] ≤ α2
M ≤ 4εr2(ρK) in Lemma 3.D.7, all together yield

TK,µ(g, χ, f∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + Υ

(
8(c+ 2)ε

2σ∗ − αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

µρK
10

.

By condition (3.A.3), the term multiplied by Υ is negative. This is true because κ
1/4
+ ≥

κ∗1/4 = m∗/σ∗ > 1 and αK,cρ < σ∗, by Lemma 3.A.1, so that

cµ >
5m∗(c+ 2)

σ∗
=⇒ 4cµε

5m∗
>

4(c+ 2)ε

σ∗
>

4(c+ 2)ε

2σ∗ − αK,cρ
.

Since Υ > cρ, we have

TK,µ(g, χ, f∗, σ∗) ≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + cρ

(
8(c+ 2)ε

2σ∗ − αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK).

This concludes the first part of the proof.

We now consider the case ‖f − f∗‖2,X > r(ρK). Since ‖f − f∗‖ = ρK and ∆c(χ, σ
∗) ≥

c − 2, an application of Lemma 3.D.7 bounds from above the quantiles of 2ζ(g − f∗) and

from below the quantiles of (g − f∗)2, this gives

TK,µ(g, χ, f∗, σ∗)
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≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + Υ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
r2(ρK) + µρK

)
+
µρK
10

≤ 16

σ∗(2σ∗ − αK,cρ)2
δ2
K,n + cρ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

using that Υ > cρ and that, as we show below, the term multiplied by Υ is negative. In

fact, by condition (3.A.6) one has

1

16θ2
0

> 4ε+
(σ∗ + σ+)cµε

2(c− 2)m∗

=⇒ 0 > 2(c− 2)
4ε− (4θ0)−2

σ∗ + σ+
+
cµε

m∗
> 2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,cρ
+
cµε

m∗
.

This concludes the second part of the proof.

Lemma 3.A.5. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
4 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ > σ∗ + αK,cρ},

is bounded above by

B4,cρ := − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Proof of Lemma 3.A.5. Let (g, χ) ∈ F (cρ)
4 . The space F (cρ)

4 shares with F (cρ)
1 the conditions

‖g − f∗‖ ≤ cρρK and ‖g − f∗‖2,X ≤ r(cρρK). By arguing as in the proof of Lemma 3.A.2

and using that χ > σ∗ + αK,cρ , from (3.A.10) we get

TK,µ(g, χ, f∗, σ∗)

≤ sup
χ>σ∗+αK,cρ

(χ− σ∗)
(4(σ∗2 + δK,n)

(σ∗ + χ)2
− 1
)

+
8(c+ 2)ε

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK)

= −αK,cρ
(

1−
8(σ∗2 + δK,n)

(2σ∗ + αK,cρ)
2

)
+

8(c+ 2)ε

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Since αK,cρ > 2δK,n/σ
∗, one has

1−
4(σ∗2 + δK,n)

(2σ∗ + αK,cρ)
2

=
4(σ∗αK,cρ − δK,n)

(2σ∗ + αK,cρ)
2

+
α2
K,cρ

(2σ∗ + αK,cρ)
2
>

4(σ∗αK,cρ − δK,n)

(2σ∗ + αK,cρ)
2

>
2σ∗αK,cρ

(2σ∗ + αK,cρ)
2
,

and

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

8(c+ 2)ε

2σ∗ + αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

This is enough to conclude.

Lemma 3.A.6. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
5 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ > σ∗ + αK,cρ},
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is bounded above by

B5,cρ := − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Proof of Lemma 3.A.6. Let (g, χ) ∈ F (cρ)
5 . The space F (cρ)

5 shares with F (cρ)
1 the condition

‖g−f∗‖ ≤ cρρK , with F (cρ)
2 the condition ‖g−f∗‖2,X > r(ρK), and with F (cρ)

4 the condition

χ > σ∗+αK,cρ . By arguing as in the proofs of Lemma 3.A.2, Lemma 3.A.3 and Lemma 3.A.5,

one gets

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
r2(cρρK) +

cµεcρ
m∗

r2(ρK),

where σ+ is the upper bound on χ.

Lemma 3.A.7. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
6 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ > σ∗ + αK,cρ},

is bounded above by

B6,cρ := max

{
− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
8(c+ 2)ε

2σ∗ + αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

− 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
.

Proof of Lemma 3.A.7. Let (g, χ) ∈ F (cρ)
6 . The space F (cρ)

6 shares with F (cρ)
3 the condition

‖g− f∗‖ > cρρK , and with F (cρ)
5 the condition χ > σ∗+αK,cρ . By arguing as in the proofs

of Lemma 3.A.4 and Lemma 3.A.6, we find

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ +

2Υ∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]
− µΥ sup

z∗∈Γf∗ (ρK)
z∗(f − f∗) +

µρK
10

,

with the function f = f∗+ρK(g−f∗)/‖g−f∗‖ and the quantity Υ = ‖g−f∗‖/ρK , as in the

proof of Lemma 3.A.4. By following the same argument, we split the cases ‖f − f∗‖2,X ≤
r(ρK) and ‖f − f∗‖2,X > r(ρK).

We start with ‖f − f∗‖2,X ≤ r(ρK). We find,

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4cµε

5m∗
r2(ρK).

Combining this with (f − f∗)2 ≥ 0, we get

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + Υ

(
8(c+ 2)ε

2σ∗ + αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

µρK
10
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≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
8(c+ 2)ε

2σ∗ + αK,cρ
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

using that the quantity multiplied by Υ is negative by condition (3.A.3), and Υ > cρ. This

concludes the first part of the proof.

We now consider ‖f − f∗‖2,X > r(ρK). We have,

TK,µ(g, χ, f∗, σ∗)

≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + Υ

(
2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
r2(ρK) + µρK

)
+
µρK
10

≤ − 2σ∗

(2σ∗ + αK,cρ)
2
α2
K,cρ + cρ

(
2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

using that the quantity multiplied by Υ is negative by condition (3.A.6), and Υ > cρ. This

concludes the proof.

Lemma 3.A.8. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
7 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X ≤ r(cρρK), χ < σ∗ − αK,cρ},

is bounded above by

B7,cρ := − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ +

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Proof of Lemma 3.A.8. Let (g, χ) ∈ F (cρ)
7 . The space F (cρ)

7 shares with F (cρ)
1 the conditions

‖g − f∗‖ ≤ cρρK and ‖g − f∗‖2,X ≤ r(cρρK). By arguing as in the proof of Lemma 3.A.2

and using χ < σ∗ − αK,cρ , from (3.A.11) we get

TK,µ(g, χ, f∗, σ∗)

≤ sup
χ<σ∗−αK,cρ

(σ∗ − χ)
(

1−
4(σ∗2 − δK,n)

(σ∗ + χ)2

)
+

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m∗

r2(ρK)

= −αK,cρ
( 4(σ∗2 − δK,n)

(2σ∗ − αK,cρ)2
− 1
)

+
8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Since 4δK,n/σ
∗ < αK,cρ < σ∗ by Lemma 3.A.1, we find

4(σ∗2 − δK,n)

(2σ∗ − αK,cρ)2
− 1 =

4σ∗αK,cρ − 4δK,n − α2
K,cρ

(2σ∗ − αK,cρ)2
>

2σ∗αK,cρ
(2σ∗ − αK,cρ)2

,

and

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ +

8(c+ 2)ε

σ∗
r2(cρρK) +

cµεcρ
m∗

r2(ρK),

which is sufficient to conclude.
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Lemma 3.A.9. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
8 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ cρρK , ‖g − f∗‖2,X > r(cρρK), χ < σ∗ − αK,cρ},

is bounded above by

B8,cρ := − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ + 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK).

Proof of Lemma 3.A.9. Let (g, χ) ∈ F (cρ)
8 . The space F (cρ)

8 shares with F (cρ)
1 the condition

‖g−f∗‖ ≤ cρρK , with F (cρ)
2 the condition ‖g−f∗‖ > r(cρρK), and with F (cρ)

7 the condition

χ < σ∗−αK,cρ . By arguing as in the proofs of Lemma 3.A.2, Lemma 3.A.3 and Lemma 3.A.8,

one finds

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ + 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,cρ
r2(cρρK) +

cµεcρ
m∗

r2(ρK),

which concludes the proof.

Lemma 3.A.10. On the event Ω(K), for all cρ ∈ {1, 2}, the supremum of TK,µ(g, χ, f∗, σ∗)

over the set

F (cρ)
9 := {(g, χ) ∈ F × I+ : ‖g − f∗‖ > cρρK , χ < σ∗ − αK,cρ},

is bounded above by

B9,cρ := max

{
− 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ +

(
8(c+ 2)εcρ

σ∗
− 4cµεcρ

5m∗
+

cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ + cρ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,cρ
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
.

Proof of Lemma 3.A.10. Let (g, χ) ∈ F (cρ)
9 . The space F (cρ)

9 shares with F (cρ)
6 the condition

‖g− f∗‖ > cρρK , and with F (cρ)
7 the condition χ < σ∗−αK,cρ . By arguing as in the proofs

of Lemma 3.A.7 and Lemma 3.A.8, we get

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ +

2Υ∆c(χ, σ
∗)

σ∗ + χ
Q3/4,K

[
2ζ(f − f∗)− (f − f∗)2

]
− µΥ sup

z∗∈Γf∗ (ρK)
z∗(f − f∗) +

µρK
10

,

with the function f = f∗ + ρK(g − f∗)/‖g − f∗‖ and the quantity Υ = ‖g − f∗‖/ρK . We

now split the cases ‖f − f∗‖2,X ≤ r(ρK) and ‖f − f∗‖2,X > r(ρK).

For ‖f − f∗‖2,X ≤ r(ρK), we find

−µ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≤ −4cµε

5m∗
r2(ρK).
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We combine this with (f − f∗)2 ≥ 0 and get

TK,µ(g, χ, f∗, σ∗) ≤ − 2σ∗

(2σ∗ − α2
K,cρ

)2
α2
K,cρ + Υ

(
8(c+ 2)ε

σ∗
− 4cµε

5m∗

)
r2(ρK) +

µρK
10

≤ − 2σ∗

(2σ∗ − α2
K,cρ

)2
α2
K,cρ + cρ

(
8(c+ 2)ε

σ∗
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

using that the quantity multiplied by Υ is negative by condition (3.A.3), and Υ > cρ. This

concludes the first part of the proof.

We now consider the case ‖f − f∗‖2,X > r(ρK). We find

TK,µ(g, χ, f∗, σ∗)

≤ − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ + Υ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,cρ
r2(ρK) + µρK

)
+
µρK
10

≤ − 2σ∗

(2σ∗ − αK,cρ)2
α2
K,cρ + cρ

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,cρ
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

using that the quantity multiplied by Υ is negative by condition (3.A.6), and Υ > cρ. This

concludes the proof.

3.A.2 Comparison between the bounds

This section compares the bounds B1,cρ , . . . , B9,cρ found above. We show that, for cρ = 1,

the quantity B1,1 dominates the bounds Bi,1 on the slices i = 2, . . . , 9. Furthermore, for

cρ = 2, the negative quantity −B1,1 is also bigger than any other bound Bi,2 on the slices

i = 2, . . . , 9. This implicitly shows that the bounds Bi,2 are negative and bounded away

from zero, if i 6= 1.

Lemma 3.A.11. We have B1,1 = maxi=1,...,9Bi,1 and −B1,1 > maxi=2,...,9Bi,2.

Proof of Lemma 3.A.11. We start by showing that B1,1 is bigger than the other Bi,1, i =

2, . . . , 9. In Lemma 3.A.2 we have found

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m∗
r2(ρK).

Take i = 2. By Lemma 3.A.3, we have

B2,1 =
16

σ∗(2σ∗ − αK,1)2
δ2
K,n + 2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,1
r2(cρρK) +

cµε

m∗
r2(ρK),

so that imposing B2,1 ≤ B1,1 is equivalent to

2(c− 2)
4ε− (4θ0)−2

2σ∗ + αK,1
≤ 8(c+ 2)ε

2σ∗ − αK,1
,

which is always true since 4ε− (4θ0)−2 < 0, by condition (3.A.6).

Take i = 3. By Lemma 3.A.4, we have

B3,1 = max

{
16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

(
8(c+ 2)ε

2σ∗ − αK,1
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),
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16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,1
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,

so that imposing B3,1 ≤ B1,1 requires both

8(c+ 2)ε

2σ∗ − αK,1
− 17cµε

10m∗
≤ 8(c+ 2)ε

2σ∗ − αK,1
,

2(c− 2)
4ε− (4θ0)−2

2σ∗ + αK,1
+

cµε

10m∗
≤ 8(c+ 2)ε

2σ∗ − αK,1
.

The first inequality is always true, whereas the second is equivalent to

8(c− 2)ε

2σ∗ + αK,1
− 8(c+ 2)ε

2σ∗ − αK,1
+

cµε

10m∗
≤ 2(c− 2)

(4θ0)−2

2σ∗ + αK,1
.

Since 2σ∗ + αK,1 > 2σ∗ − αK,1, the latter condition is implied by

cµε

10m∗
− 32ε

2σ∗ − αK,1
≤ c− 2

8θ2
0(2σ∗ + αK,1)

.

By Lemma 3.A.1, we have 0 < αK,1 < σ∗ and the above display is satisfied if

cµε

10m∗
≤ 16ε

σ∗
+

c− 2

24θ2
0σ
∗ .

We multiply by σ∗ and use that κ∗1/4 = m∗/σ∗ ≥ 1, so it is sufficient that

cµε

10
≤ 16ε+

c− 2

24θ2
0

,

which holds by condition (3.A.7).

Take i = 4. By Lemma 3.A.5, we have

B4,1 = − 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

8(c+ 2)ε

2σ∗ + αK,1
r2(ρK) +

cµε

m∗
r2(ρK),

so that imposing B4,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ + αK,1)2

α2
K,1

r2(ρK)
+

8(c+ 2)ε

2σ∗ + αK,1
≤ 16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which is always satisfied.

Take i = 5. By Lemma 3.A.6, we have

B5,1 = − 2σ∗

(2σ∗ + αK,1)2
α2
K,1 + 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
r2(ρK) +

cµε

m∗
r2(ρK),

so that imposing B5,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ + αK,1)2

α2
K,1

r2(ρK)
+ 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
≤ 16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which is always satisfied, since the term on the left is negative by condition (3.A.6).
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Take i = 6. By Lemma 3.A.7, we have

B6,1 = max

{
− 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

(
8(c+ 2)ε

2σ∗ + αK,1
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

− 2σ∗

(2σ∗ + αK,1)2
α2
K,1 +

(
2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,

so that imposing B6,1 ≤ B1,1 is equivalent to both

8(c+ 2)ε

2σ∗ + αK,1
− 7cµε

10m∗
≤ 2σ∗

(2σ∗ + αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m∗
,

which is always true, and

2(c− 2)
4ε− (4θ0)−2

σ∗ + σ+
+

11cµε

10m∗
≤ 2σ∗

(2σ∗ + αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)

+
8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m∗
.

The first term on the left side is negative, by condition (3.A.6). With the ratio δ2
K,n/r

2(ρK)

in (3.A.1), it is sufficient that

cµε

10m∗
≤ 2σ∗

(2σ∗ + αK,1)2
c2
α +

16

σ∗(2σ∗ − αK,1)2
· 25m∗2ε2

c2
Kθ

2
1

+
8(c+ 2)ε

2σ∗ − αK,1
.

By Lemma 3.A.1, we have 0 < αK,1 < σ∗, so it is enough that

cµε

10m∗
≤ 2c2

α

9σ∗
+

400m∗2ε2

4σ∗3c2
Kθ

2
1

+
8(c+ 2)ε

2σ∗
.

We now multiply by m∗ and use that κ∗1/4 = m∗/σ∗ ≥ 1, this gives the sufficient condition

9cµε

20
≤ c2

α +
450ε2

c2
Kθ

2
1

+ 18(c+ 2)ε,

which follows from condition (3.A.5).

Take i = 7. By Lemma 3.A.8, we have

B7,1 = − 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

8(c+ 2)ε

σ∗
r2(ρK) +

cµε

m∗
r2(ρK),

so that imposing B7,1 ≤ B1,1 is equivalent to

8(c+ 2)ε

σ∗
≤ 2σ∗

(2σ∗ − αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
.

We argue as for i = 6, we plug in the ratio δ2
K,n/r

2(ρK) from (3.A.1) and use 0 < αK,1 < σ∗

and 2σ∗ − αK,1 < 2σ∗ + αK,1, it is enough that

8(c+ 2)ε

σ∗
≤ 2c2

α

9σ∗
+

400m∗2ε2

4σ∗3c2
Kθ

2
1

+
8(c+ 2)ε

2σ∗
.
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We now multiply by σ∗ and use that κ∗1/4 = m∗/σ∗ ≥ 1, this gives the sufficient condition

8(c+ 2)ε ≤ 2c2
α

9
+ 100ε2 + 4(c+ 2)ε,

which is true if 18(c+ 2)ε ≤ c2
α + 450ε2, which holds thanks to condition (3.A.5).

Take i = 8. By Lemma 3.A.9, we have

B8,1 = − 2σ∗

(2σ∗ − αK,1)2
α2
K,1 + 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,1
r2(ρK) +

cµε

m∗
r2(ρK),

so that imposing B8,1 ≤ B1,1 is equivalent to

− 2σ∗

(2σ∗ − αK,1)2

α2
K,1

r2(ρK)
+ 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,1
≤ 16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which holds since the left side is negative, thanks to condition (3.A.6).

Take i = 9. By Lemma 3.A.10, we have

B9,1 = max

{
− 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

(
8(c+ 2)ε

σ∗
− 4cµε

5m∗
+

cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,1)2
α2
K,1 +

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,1
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,

so that imposing B9,1 ≤ B1,1 is equivalent to both

8(c+ 2)ε

σ∗
− 7cµε

10m∗
≤ 2σ∗

(2σ∗ − αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m∗
,

which is always true, and

2(c− 2)
4ε− (4θ0)−2

2σ∗ − αK,1
+

cµε

10m∗
≤ 2σ∗

(2σ∗ − αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
.

Arguing as in i = 6, the first term on the left side is negative by condition (3.A.6), then it

is sufficient that

cµε

10m∗
≤ 2σ∗

(2σ∗ − αK,1)2

α2
K,1

r2(ρK)
+

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
,

which coincides with the bound obtained in i = 6.

The first part of the proof is complete. We now show that −B1,1 is bigger than Bi,2, for

all i = 2, . . . , 9. We recall that Lemma 3.A.2 gives

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m∗
r2(ρK).

Take i = 2. By Lemma 3.A.3, we have

B2,2 =
16

σ∗(2σ∗ − αK,2)2
δ2
K,n + 2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,2
r2(2ρK) +

2cµε

m∗
r2(ρK),
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so that imposing B2,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,2)2
δ2
K,n +

8(c− 2)ε

2σ∗ + αK,2
r2(2ρK) +

2cµε

m∗
r2(ρK)

+
16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m∗
r2(ρK) < 2(c− 2)

(4θ0)−2

2σ∗ + αK,2
r2(2ρK).

Since r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1, it is sufficient to show

32

σ∗(2σ∗ − αK,2)2

δ2
K,n

r2(2ρK)
+

8(c− 2)ε

2σ∗ − αK,2
+

8(c+ 2)ε

2σ∗ − αK,2
+

3cµε

m∗
<

c− 2

8θ2
0(2σ∗ + αK,2)

.

By Lemma 3.A.1, we have 0 < αK,2 < σ∗ and, with the ratio δ2
K,n/r

2(ρK) in (3.A.1), it is

enough that

800m∗2ε2

σ∗2c2
Kθ

2
1

+ 8(c− 2)ε+ 8(c+ 2)ε+
3cµεσ

∗

m∗
<
c− 2

24θ2
0

.

Since κ∗1/4 = m∗/σ∗ ≥ 1, we find the sufficient condition

800κ∗1/2ε2

c2
Kθ

2
1

+ 16(c+ 2)ε+ 3cµε <
c− 2

24θ2
0

,

which is true by condition (3.A.7).

Take i = 3. By Lemma 3.A.4, we have

B3,2 = max

{
16

σ∗(2σ∗ − αK,2)2
δ2
K,n + 2

(
8(c+ 2)ε

2σ∗ − αK,2
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

16

σ∗(2σ∗ − αK,2)2
δ2
K,n + 2

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ + αK,2
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,

so that imposing B3,2 +B1,1 < 0 requires both

32

σ∗(2σ∗ − αK,2)2

δ2
K,n

r2(2ρK)
+

16(c+ 2)ε

2σ∗ − αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
<

cµε

2m∗
,

32

σ∗(2σ∗ − αK,2)2

δ2
K,n

r2(2ρK)
+

16(c− 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
+

31cµε

10m∗
<

c− 2

4θ2
0(2σ∗ + αK,2)

.

As for the previous point, we use that r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗

by Lemma 3.A.1, and the ratio δ2
K,n/r

2(ρK) in (3.A.1). It is sufficient that both

800κ∗1/2ε2

c2
Kθ

2
1

+ 16(c+ 2)ε+ 8(c+ 2)ε <
cµε

2κ∗1/4
,

800κ∗1/2ε2

c2
Kθ

2
1

+ 8(c− 2)ε+ 8(c+ 2)ε+
31cµε

10κ∗1/4
<
c− 2

12θ2
0

.

The first bound holds by condition (3.A.3), so we plug it into the second line using κ∗ ≥ 1,

we obtain the sufficient condition 36cµε/10 < (c − 2)/(12θ2
0), which follows from condi-

tion (3.A.7).
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Take i = 4. By Lemma 3.A.5, we have

B4,2 = − 2σ∗

(2σ∗ + αK,2)2
α2
K,2 +

8(c+ 2)ε

2σ∗ + αK,2
r2(2ρK) +

2cµε

m∗
r2(ρK),

so that imposing B4,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(2ρK)
+

8(c+ 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m∗
<

2σ∗

(2σ∗ + αK,2)2

α2
K,2

r2(2ρK)
.

Again, we use that r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by Lemma 3.A.1,

and the ratio δ2
K,n/r

2(ρK) in (3.A.1). It is sufficient that

400κ∗1/2ε2

c2
Kθ

2
1

+ 4(c+ 2)ε+ 8(c+ 2)ε+
3cµε

κ∗1/4
<

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+ 54(c+ 2)ε+
27cµε

2
< c2

α,

which follows from condition (3.A.5).

Take i = 5. By Lemma 3.A.6, we have

B5,2 = − 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
r2(2ρK) +

2cµε

m∗
r2(ρK),

so that imposing B5,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(2ρK)
+ 2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
+

3cµε

m∗
+

8(c+ 2)ε

2σ∗ − αK,1
<

2σ∗

(2σ∗ + αK,2)2

α2
K,2

r2(2ρK)
.

The second term in the latter display is negative by condition (3.A.6). We use that

r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by Lemma 3.A.1, and the ratio

δ2
K,n/r

2(ρK) in (3.A.1). It is sufficient that

400κ∗1/2ε2

c2
Kθ

2
1

+
3cµε

κ∗1/4
+ 8(c+ 2)ε <

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+
27cµε

2
+ 36(c+ 2)ε < c2α,

which is true thanks to condition (3.A.5).

Take i = 6. By Lemma 3.A.7, we have

B6,2 = max

{
− 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2

(
8(c+ 2)ε

2σ∗ + αK,2
− 4cµε

5m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK),

− 2σ∗

(2σ∗ + αK,2)2
α2
K,2 + 2

(
2(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,
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so that imposing B6,2 +B1,1 < 0 requires both

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

16(c+ 2)ε

2σ∗ + αK,2
+

8(c+ 2)ε

2σ∗ − αK,1
− cµε

2m∗
<

2σ∗

(2σ∗ + αK,2)2

α2
K,2

r2(ρK)
,

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+

31cµε

10m∗
+ 4(c− 2)

4ε− (4θ0)−2

σ∗ + σ+
<

2σ∗

(2σ∗ + αK,2)2

α2
K,2

r2(ρK)
.

By condition (3.A.6), the last terms on the left side of both equations are negative. As for

the previous point, we use that r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by

Lemma 3.A.1, and the ratio δ2
K,n/r

2(ρK) in (3.A.1). We find the sufficient conditions

400κ∗1/2ε2

c2
Kθ

2
1

+ 24(c+ 2)ε <
2c2
α

9
,

400κ∗1/2ε2

c2
Kθ

2
1

+ 8(c+ 2)ε+
31cµε

10κ∗1/4
<

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+ 108(c+ 2)ε < c2
α,

1800κ∗1/2ε2

c2
Kθ

2
1

+ 36(c+ 2)ε+ 14cµε < c2
α,

which follow from condition (3.A.5).

Take i = 7. By Lemma 3.A.8, we have

B7,2 = − 2σ∗

(2σ∗ − αK,2)2
α2
K,2 +

8(c+ 2)ε

σ∗
r2(2ρK) +

2cµε

m∗
r2(ρK),

so that imposing B7,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(2ρK)
+

8(c+ 2)ε

σ∗
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m∗
<

2σ∗

(2σ∗ − αK,2)2

α2
K,2

r2(2ρK)
.

Again, we use that r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by Lemma 3.A.1,

and the ratio δ2
K,n/r

2(ρK) in (3.A.1). It is sufficient that

400κ∗1/2ε2

c2
Kθ

2
1

+ 8(c+ 2)ε+ 8(c+ 2)ε+
3cµε

κ∗1/4
<

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+ 72(c+ 2)ε+
27cµε

2
< c2

α,

which follows from condition (3.A.5).

Take i = 8. By Lemma 3.A.9, we have

B8,2 = − 2σ∗

(2σ∗ − αK,2)2
α2
K,2 + 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,2
r2(2ρK) +

2cµε

m∗
r2(ρK),
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so that imposing B8,2 +B1,1 < 0 gives

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(2ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+

3cµε

m∗
+ 2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,2
<

2σ∗

(2σ∗ − αK,2)2

α2
K,2

r2(2ρK)
.

By condition (3.A.6), the last term on the left side is negative. We use that r2(2ρK) ≥
r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by Lemma 3.A.1, and the ratio δ2

K,n/r
2(ρK)

in (3.A.1). It is sufficient that

400κ∗1/2ε2

c2
Kθ

2
1

+ 8(c+ 2)ε+
3cµε

κ∗1/4
<

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+ 36(c+ 2)ε+
27cµε

2
< c2

α,

which holds thanks to condition (3.A.5).

Take i = 9. By Lemma 3.A.10, we have

B9,2 = max

{
− 2σ∗

(2σ∗ − αK,2)2
α2
K,2 +

(
16(c+ 2)ε

σ∗
− 8cµε

5m∗
+

cµε

10m∗

)
r2(ρK),

− 2σ∗

(2σ∗ − αK,2)2
α2
K,2 + 2

(
2(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,2
+
cµε

m∗

)
r2(ρK) +

cµε

10m∗
r2(ρK)

}
,

so that imposing B9,2 +B1,1 < 0 gives both

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

16(c+ 2)ε

σ∗
+

8(c+ 2)ε

2σ∗ − αK,1
− 5cµε

10m∗
<

2σ∗

(2σ∗ − αK,2)2

α2
K,2

r2(ρK)
,

16

σ∗(2σ∗ − αK,1)2

δ2
K,n

r2(ρK)
+

8(c+ 2)ε

2σ∗ − αK,1
+

32cµε

10m∗
+ 4(c− 2)

4ε− (4θ0)−2

2σ∗ − αK,2
<

2σ∗

(2σ∗ − αK,2)2

α2
K,2

r2(ρK)
.

By condition (3.A.6), the last terms on the left side in the latter display are negative. One

last time, we use that r2(2ρK) ≥ r2(ρK), αK,2 ≥ αK,1 and 0 < αK,2 < σ∗ by Lemma 3.A.1,

and the ratio δ2
K,n/r

2(ρK) in (3.A.1). It is sufficient that

400κ∗1/2ε2

c2
Kθ

2
1

+ 16(c+ 2)ε+ 8(c+ 2)ε <
2c2
α

9
,

400κ∗1/2ε2

c2
Kθ

2
1

+ 8(c+ 2)ε+
32cµε

10κ∗1/4
<

2c2
α

9
.

With κ∗ ≥ 1, it is enough that

1800κ∗1/2ε2

c2
Kθ

2
1

+ 108(c+ 2)ε < c2α,

1800κ∗1/2ε2

c2
Kθ

2
1

+ 36(c+ 2)ε+
144cµε

10
< c2

α,

which both follow from condition (3.A.5).
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3.A.3 Contraction rates and risk bound

In this section we obtain convergence rates and risk bounds by exploiting the re-

sults of the previous section. We recall that we are using a function r(·) such that

r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}. By Assumption 3.3.2, there exists an absolute con-

stant cr such that r(ρ) ≤ r(2ρ) < crr(ρ). With C2 = 384θ2
1c

2
rc

2
ακ

1/2
+ , we allow for

K ∈
[
K∗ ∨ 32|O|, nε2/C2

]
. We denote by Ω(K) the intersection of the event Ω1(K) in

Lemma 3.D.4, the event Ω2(K) in Lemma 3.D.7 and the event Ω3(K) in Lemma 3.D.8.

The probability of Ω(K) = Ω1(K)∩Ω2(K)∩Ω3(K) is at least 1−P(Ω1(K))−P(Ω2(K))−
P(Ω3(K)) ≥ 1− 4 exp(−K/8920).

Lemma 3.A.12. On the event Ω(K) defined above, the MOM−K estimator

(f̂K,µ,σ+ , σ̂K,µ,σ+) belongs to the slice

F (2)
1 = {(g, χ) ∈ F × I+ : ‖g − f∗‖ ≤ 2ρK , ‖g − f∗‖2,X ≤ r(2ρK), |σ∗ − χ| ≤ cαr(2ρK)},

thus recovering the convergence rates in (3.3.9).

Proof of Lemma 3.A.12. By definition (3.2.11), Lemma 3.A.11 gives the last inequality of

CK,µ(f̂K,µ, σ̂K,µ) ≤ CK,µ(f∗, σ∗) = sup
g∈F , χ<σ+

TK,µ(g, χ, f∗, σ∗) ≤ B1,1.

Then, with the property Q1/2[x] ≥ −Q1/2[−x] from Lemma 3.D.2,

B1,1 ≥ CK,µ(f̂K,µ, σ̂K,µ) = sup
g∈F , χ<σ+

TK,µ(g, χ, f̂K,µ, σ̂K,µ)

≥ TK,µ(f∗, σ∗, f̂K,µ, σ̂K,µ) ≥ −TK,µ(f̂K,µ, σ̂K,µ, f
∗, σ∗).

We deduce that, on the event Ω(K), TK,µ(f̂K,µ, σ̂K,µ, f
∗, σ∗) ≥ −B1,1. Applying

Lemma 3.A.11 again, we have −B1,1 > supi=2,...9Bi,2 and

max
i=2,...,9

sup
(g,χ)∈F(2)

i

TK,µ(g, χ, f∗, σ∗) ≤ max
i=2,...,9

Bi,2 < −B1,1.

Thus, the estimator (f̂K,µ,σ+ , σ̂K,µ,σ+) is outside ∪9
i=2F

(2)
i , which means that

(f̂K,µ,σ+ , σ̂K,µ,σ+) belongs to F (2)
1 . By definition of F (2)

1 , we have ‖f̂K,µ,σ+ − f∗‖ ≤ 2ρK ,

‖f̂K,µ,σ+ − f∗‖2,X ≤ r(2ρK), and |σ̂K,µ,σ+ − σ∗| ≤ αK,2 = cαr(2ρK). The proof is com-

plete.

Lemma 3.A.13. On the event Ω(K) defined above, the MOM−K estimator

(f̂K,µ,σ+ , σ̂K,µ,σ+) satisfies

R(f̂K,µ,σ+)−R(f∗) ≤

(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ2
1

ε2

)
r2(2ρK)

+ 4θ2
1ε
(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
,

thus recovering the excess risk bound in (3.3.10).
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Proof of Lemma 3.A.13. We apply Lemma 3.D.9 with ρ = 2ρK and αK,cρ = αK,2, which

gives

R(f̂K,µ)−R(f∗) = ‖f̂K,µ − f∗‖22,X + E[−2ζ(f̂K,µ − f∗)(X)]

≤ r2(2ρK) +
2σ∗ + αK,2

2c
TK,µ(f∗, σ∗, f̂K,µ, σ̂K,µ) +

2σ∗ + αK,2
c

µρK + α2
M

+
8(2σ∗ + αK,2)

cσ∗(2σ∗ − αK,2)2
δ2
K,n +

αK,2
c(2σ∗ − αK,2)

(
2σ∗r(2ρK) + r2(2ρK) + α2

Q + α2
M

)
.

In the proof of Lemma 3.A.12 we have shown that TK,λ(f∗, σ∗, f̂K,µ, σ̂K,µ) ≤
CK,λ(f̂K,µ, σ̂K,µ) ≤ B1,1. By Lemma 3.A.2, the ratio δ2

K,n/r
2(2ρK) in (3.A.1), m∗ ≥ σ∗

and αK,cρ < σ∗ by Lemma 3.A.1, we have

B1,1 =
16

σ∗(2σ∗ − αK,1)2
δ2
K,n +

8(c+ 2)ε

2σ∗ − αK,1
r2(ρK) +

cµε

m∗
r2(ρK)

=

(
25m∗2ε2

24θ2
1σ
∗(2σ∗ − αK,1)2

+
8(c+ 2)ε

2σ∗ − αK,1
+
cµε

m∗

)
r2(ρK)

≤

(
25κ∗1/2ε2

24θ2
1σ
∗ +

8(c+ 2)ε

σ∗
+
cµε

σ∗

)
r2(ρK).

This gives

2σ∗ + αK,2
2c

B1,1 ≤
3σ∗

2c

(
25κ∗1/2ε2

24θ2
1σ
∗ +

8(c+ 2)ε

σ∗
+
cµε

σ∗

)
r2(2ρK)

=

(
25κ∗1/2ε2

16θ2
1c

+
12(c+ 2)ε

c
+

3cµε

2c

)
r2(2ρK).

By construction, we have µ = (cµε/m
∗)r2(ρK)/ρK , so that

2σ∗ + αK,2
c

µρK ≤
3σ∗

c
· cµε
m∗

r2(ρK) ≤ 3cµε

c
r2(ρK).

By Lemma 3.D.7 we have α2
M ≤ 4εr2(2ρK), whereas by Lemma 3.D.8 we bound

α2
Q ≤ εmax

(
‖f − f∗‖22,X

1488θ4
1

ε2

K

n
, r2

Q(ρ, γQ), ‖f − f∗‖22,X
)

≤ ε
(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)

max

(
1488θ4

1K

nε2
, 1

)
≤ 4θ2

1ε
(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
,

using K ≤ nε2/C2, C2 = 384θ2
1c

2
rc

2
αk

1/2
+ and 1488/384 < 4.

With αK,2 < σ∗ and the ratio δ2
K,n/r

2(ρK) in (3.A.1), we find

8(2σ∗ + αK,2)

cσ∗(2σ∗ − αK,2)2
δ2
K,n ≤

24

cσ∗2
δ2
K,n ≤

25κ∗1/2ε2

16θ2
1c

r2(ρK).

By putting together all the previous bounds we have

R(f̂K,µ,σ+)−R(f∗) ≤ r2(2ρK) +

(
25κ∗1/2ε2

16θ2
1c

+
12(c+ 2)ε

c
+

3cµε

2c
+

3cµε

c
+ 4ε

)
r2(2ρK)
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+
25κ∗1/2ε2

16θ2
1c

r2(2ρK) +
cα
cσ∗

(
2σ∗r2(2ρK) + (1 + 4ε)r3(2ρK)

)
+

4θ2
1cαε

cσ∗
r(2ρK)

(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
.

Using cαr(2ρK) = αK,2 < σ∗ in the second and third lines of the latter display, we find

R(f̂K,µ)−R(f∗) ≤ r2(2ρK) +

(
25κ∗1/2ε2

16θ2
1c

+
12(c+ 2)ε

c
+

3cµε

2c
+

3cµε

c
+ 4ε

)
r2(2ρK)

+
25κ∗1/2ε2

16θ2
1c

r2(2ρK) +

(
cα
c

2r2(2ρK) +
1

c
(1 + 4ε)r2(2ρK)

)
+

4θ2
1ε

c

(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
.

With c > 1 and (c+ 2)/c < 3, this recovers

R(f̂K,µ)−R(f∗) ≤

(
2 + 2cα + (44 + 5cµ) ε+

25κ∗1/2

8θ2
1

ε2

)
r2(2ρK)

+ 4θ2
1ε
(
r2(2ρK) ∨ r2

Q(2ρK , γQ)
)
,

which completes the proof.

Appendix 3.B Proofs for the high-dimensional sparse linear

regression

3.B.1 Proof of Theorem 3.4.4

In Section 3.B.2, we prove the following Theorem 3.B.1. We show now how this theorem

can be used to derive our Theorem 3.4.4.

Theorem 3.B.1. Assume that PX,ξ ∈ P[0,σ+]. There exists universal constants c̃µ,

(c̃i)i=0,...,5 that only depend on θ0, θ1, γQ, γM such that the following holds. Assume that

|I| ≥ n/2, |O| ≤ c̃0s
∗ log(ed/s∗), n ≥ s∗ log(ed/s∗) and β∗ ∈ Fs∗.

For every (ιK , ιµ) ∈ [1/2, 2]2, let K = dιK c̃2s
∗ log(ed/s∗)e and let (β̂K,µ,σ+ , σ̂K,µ,σ+) be

the MOM−K estimator defined in (3.2.10) with penalization parameter

µ := ιµc̃µ

√
1

n
log

(
ed

s∗

)
.

Then, for all p ∈ [1, 2], we have

|β̂K,µ,σ+ − β∗|p ≤ c̃3ε
−1κ∗σ∗s∗

1
p

√
1

n
log

(
ed

s∗

)
,

|σ̂K,µ,σ+ − σ∗| ≤ cαc̃3ε
−1κ∗σ∗s∗

1
2

√
1

n
log

(
ed

s∗

)
,

(3.B.1)

with probability at least 1− 4 exp(−K/8920).
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3.B. Proofs for the high-dimensional sparse linear regression

With high probability, we have

|β̂K,µ − β∗|p ≤ c̃3ε
−1κ∗σ∗s∗

1
p

√
1

n
log

(
ed

s∗

)
.

We can explicit the value of ε−1 as

ε−1 =
192θ2

0(c+ 2)
(

8 + 134κ
1/2
+

(
(1 + σ+

σ∗ ) ∨ 6
5

))
c− 2

= C
(
(1 +

σ+

σ∗
) ∨ 6

5

)
,

for a constant C > 0, and therefore

|β̂K,µ − β∗|p .
(
(1 +

σ+

σ∗
) ∨ 6

5

)
σ∗s∗

1
p

√
1

n
log

(
ed

s

)
.

Since by assumption σ∗ < σ+, we deduce

|β̂K,µ − β∗|p . σ+s
∗ 1
p

√
1

n
log

(
ed

s

)
.

The proof for the bound on σ̂K,µ,σ+ follows the same computations as it involves a factor

of ε−1.

3.B.2 Proof of Theorem 3.B.1

In this section we use the results in Theorem 3.3.3 and the computations in Section 3.5.4

for the sparse linear setting. For any fixed ε ∈ (0, 1), the function

r2
ε(ρ) = C2

γP ,γM


max

{
ρm∗

√
log d
nε2

, ρ2

nε2
log
(
ed
nε2

)}
, if ρ ≤ m∗

√
log d√
nε2

,

max
{
ρm∗

√
1
nε2

log
(
ed2m∗2

ρ2nε2

)
, ρ2

nε2
log
(
ed
nε2

)}
, if m∗

√
log d√
nε2

≤ ρ ≤ m∗d√
nε2

,

(3.B.2)

is a strict upper bound on r2(ρ) defined in (3.5.3). The smallest solution of the sparsity

equation is of the form

ρ∗ = C∗γP ,γMm∗s∗

√
1

nε2
log

(
ed

s∗

)
, r2

ε(ρ
∗) = C∗2γP ,γM

m∗2s∗

nε2
log

(
ed

s∗

)
.

For any fixed constant C > 0, let K∗ be the smallest integer such that

K∗ ≥ nε2

C2m∗2
r2
ε(ρ
∗),

this matches definition (3.3.6) in Theorem 3.3.3 with C2 = 384θ2
1 and r = rε. By definition,

this is equivalent to

K∗ ≥
C∗2γP ,γM
C2

s log

(
ed

s

)
,
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which gives the heuristic that the minimum number of blocks is of order K∗ ∼ s log(ed/s).

For any integer K ≥ K∗, we compute the radii ρK solving

K =
nε2

C2m∗2
r2
ε(ρK),

which is a rearrangement of definition (3.3.7) in Theorem 3.3.3. For all ρ∗ ≤ ρK . m∗
√
nε2,

we have

r2
ε(ρK) = C2

γP ,γM
ρKm∗

√
1

nε2
log

(
ed2m∗2

ρ2
Knε

2

)
,

and the implicit solutions ρK are of the form

ρK = CKKm∗

√
1

nε2

[
log

(
ed2

K2

)]−1

,

with CK some absolute constant, for all K . nε2. To check this, let us compute

nε2

Km∗2
r2
ε(ρK) = C2

γP ,γM
CK

√[
log

(
ed2

K2

)]−1

log

(
ed2

C2
KK

2
log

(
ed2

K2

))

= C2
γP ,γM

CK

√√√√√ log
(
ed2

K2

)
+ log log

(
ed2

K2

)
− log

(
C2
K

)
log
(
ed2

K2

) ,

which we want to be equal to the given C2. Since d � n and K . nε2, without loss of

generality C2
K � d/n, thus

1

2
< 1−

log
(
C2
K

)
log
(
ed2

K2

) < log
(
ed2

K2

)
+ log log

(
ed2

K2

)
− log

(
C2
K

)
log
(
ed2

K2

) < 2−
log
(
C2
K

)
log
(
ed2

K2

) < 2,

which allows for an absolute constant CK ∈ [C2
γP ,γM

/(
√

2C2),
√

2C2
γP ,γM

/C2] recovering the

solution.

As mentioned earlier, we can write K∗ = dc̃s∗ log(ed/s∗)e with c̃ = C∗2γP ,γM /(384θ2
1)

and, without loss of generality, c̃ ≥ 1. Assume that the number of outliers is smaller than

c̃0s
∗ log(ed/s∗) with c̃0 = c̃/32, this results in 32|O| ≤ K∗ and the choice K = K∗ is valid

in Theorem 3.3.3. Then set c̃2 = 2c̃ and apply Theorem 3.3.3 separately for any choice

K = dιK c̃2s
∗ log(ed/s∗)e for all ιK ∈ [1/2, 2]. Then, for any ιµ ∈ [1/4, 4], any penalization

parameter of the form

µ = ιµcµε
r2
ε(ρK)

m∗ρK
= ιµcµC

2
γP ,γM

ε

√
1

nε2
log

(
ed2m∗2

ρ2
Knε

2

)
= ιµc̃µ

√
1

n
log

(
ed2

K2

)
,

with universal constant c̃µ = cµC
2
γP ,γM

, is a compatible choice. Furthermore, one finds

µ = ιµcµC
2
γP ,γM

√
1

n

(
log

(
ed2

s∗2

)
− 2 log log

(
ed

s∗

)
− 2 log(ιK c̃2)

)
.
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We observe that, since ιK c̃2 ≥ 1,

log

(
ed2

s2

)
− 2 log log

(
ed

s∗

)
− 2 log(ιK c̃2) ≤ log

(
ed2

s∗2

)
,

and, with log(ed/s∗) ≤ (
√
ed/s∗)1/2 and ιK c̃2 ≤ (ed/s∗)1/4,

log

(
ed2

s∗2

)
− 2 log log

(
ed

s∗

)
− 2 log(ιK c̃2) ≥ 1

2
log

(
ed2

s∗2

)
− 2 log(ιK c̃2) ≥ 1

4
log

(
ed2

s∗2

)
.

Therefore, any penalization parameter in the smaller interval

µ ∈

[
1

2
c̃µ

√
1

n
log

(
ed2

s∗2

)
, 2c̃µ

√
1

n
log

(
ed2

s∗2

)]
,

with absolute constant c̃µ = cµC
2
γP ,γM

, is valid. This matches the construction required by

Theorem 3.B.1 for any (ιK , ιµ) ∈ [1/2, 2]2 and shows that the penalization parameter µ can

be chosen without knowledge of the moments of the noise.

The convergence rates in Theorem 3.3.3 become

|β̃ − β∗|1 ≤ 2ρK = 2CKε
−1m∗K

√
1

n

[
log

(
ed2

K2

)]−1

,

|β̃ − β∗|2 ≤ rε(2ρK) ≤ 2Cε−1m∗
√
K

n
,

|σ̂K,µ − σ∗| ≤ cαrε(2ρK) ≤ 2cαCε
−1m∗

√
K

n
.

Finally, for K ' K∗, one gets

|β̃ − β∗|1 ≤ 2ρK∗ . 2C∗γP ,γM ε
−1m∗s∗

√
1

n
log

(
ed

s∗

)
,

|β̃ − β∗|2 ≤ rε(2ρK∗) . 2C∗γP ,γM ε
−1m∗

√
s∗

n
log

(
ed

s∗

)
,

|σ̂K,µ − σ∗| ≤ cαr(2ρK∗) . 2cαC
∗
γP ,γM

ε−1m∗

√
s∗

n
log

(
ed

s∗

)
.

The bounds in (3.B.1) for p ∈ [1, 2] are obtained by applying the interpolation inequality

|β|p ≤ |β|−1+2/p
1 |β|2−2/p

2 . This concludes the proof.

3.B.3 Proof of Corollary 3.4.6

Recall the definition of signal-to-noise ratio

SNR :=
Var(f∗)

Var(ζ)
=

Var(f∗)

σ∗2
,

and denote

A2
Y :=

Var(Y 2)

Var(Y )2
, B2

Y :=
E[Y ]2

Var(Y )
.

The following proposition allows us to bound above and below the estimator σ̂K,+ on

an event with high probability.
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Proposition 3.B.2. Assume that Var(Y ) > 0 and consider the quantities AY , BY defined

above. For any integer

K ∈
[
8|O|, nε

2

C2
∧ n

177A2
Y

∧ n

706B2
Y

]
,

there exists an event Ω(K) with probability at least 1− 2 exp(−7K/3600) such that, on this

event, the estimator

σ̂2
K,+ := Q1/2,K

[
Y 2
]
−
(
Q1/2,K [Y ]

)2
,

satisfies σ∗2 ≤ 8σ̂2
K,+ ≤ 16σ∗2(SNR+ 1).

Combining Proposition 3.B.2 and Theorem 3.4.4 by replacing σ+ by σ̂K,+ and reasoning

on the intersection of both events yields the conclusion.

We now prove Proposition 3.B.2.

Proof. We start with

Var(Y ) = Var(f∗(X) + ζ) = Var(f∗(X)) + σ∗2 + 2 Cov(f∗(X), ζ) = Var(f∗(X)) + σ∗2,

where in the last step we have used that f∗(X) = X>β∗ is the orthogonal projection of

the square-integrable random variable Y = X>β∗ + ζ onto the closed and convex set of

square-integrable random variables A := {X>β : β ∈ Rd}. Thus, Var(Y ) = σ∗2(SNR+ 1).

We apply Lemma 3.D.3 to the variable Z = Y 2. We choose η = 1/2 and γ = 7/8,

x = 1/15, δ2
K,n = a2

K,n := 15(K/n) Var(Y 2), so that γ(1− 1/15− x) ≥ 1/2, in fact

γ

(
1− 1

15
− x
)

=
7

8

(
1− 1

15
− 1

15

)
=

91

120
>

1

2
.

Therefore, on an event Ω1(K) with probability at least 1 − exp(−7K/3600), we have

Q1/2,K

[
Y 2
]
∈ [E[Y 2]− aK,n,E[Y 2] + aK,n].

We now repeat the argument for Z = Y. We choose again η = 1/2 and γ = 7/8,

x = 1/15, δ2
K,n = b2k,n := 15(K/n) Var(Y ), so that γ(1 − 1/15 − x) ≥ 1/2. Therefore, on

an event Ω2(K) with probability at least 1 − exp(−7K/3600), we have (Q1/2,K [Y ])2 ∈
[(E[Y ]− bK,n)2, (E[Y ] + bK,n)2].

We now work on the event Ω(K) = Ω1(K) ∩ Ω2(K) which has probability at least

1− 2 exp(−7K/3600). We have

σ̂2
K,+ ∈

[
Var(Y )− aK,n − 2E[Y ]bK,n − b2K,n, Var(Y ) + aK,n + 2E[Y ]bK,n − b2K,n

]
,

with a2
K,n = 15(K/n) Var(Y 2), b2K,n = 15(K/n) Var(Y ). We now show that

σ∗2

4
≤ 2σ̂2

K,+ ≤ 4 Var(Y ),

which would give the claim. We start with the lower bound, we want

1 ≤
2 Var(Y )− 2aK,n − 4E[Y ]bK,n − 2b2K,n

σ∗2/4
,
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and we show the stronger

max

{
2aK,n
σ∗2/4

,
4E[Y ]bK,n
σ∗2/4

,
2b2K,n
σ∗2/4

}
≤ 1

3

(
2 Var(Y )

σ∗2/4
− 1

)
.

By construction, we have

8aK,n
σ∗2

=

√
Var(Y 2)

σ∗2

√
960K

n
,

16E[Y ]bK,n
σ∗2

=
E[Y ]

√
Var(Y )

σ∗2

√
3840K

n
,

8b2K,n
σ∗2

=
Var(Y )

σ∗2
120K

n
,

and the quantities AY , BY are defined in such a way that
√

Var(Y 2) = AY Var(Y ) and

E[Y ] = BY
√

Var(Y ). Therefore, it is enough that

AY (SNR+ 1)

√
8640K

n
≤ 8(SNR+ 1)− 1,

BY (SNR+ 1)

√
34560K

n
≤ 8(SNR+ 1)− 1,

(SNR+ 1)
360K

n
≤ 8(SNR+ 1)− 1.

We now divide by (SNR+ 1) and use 1/(SNR+ 1) ≤ 1, the stronger condition

AY

√
8640K

n
≤ 7,

BY

√
34560K

n
≤ 7,

360K

n
≤ 7,

is then satisfied if K ≤ n/max{177A2
Y , 706B2

Y , 52}, which is true by assumption on the

upper bound on the number of blocks. This completes the proof of σ∗2 ≤ 8σ̂2
K,+ on the

event Ω(K).

We now deal with 2σ̂2
K,+ ≤ 4 Var(Y ). Since the quantity −b2K,n is negative, it is sufficient

that 2 Var(Y ) + 2aK,n + 2E[Y ]bK,n ≤ 2 Var(Y ) and, dividing by σ∗2,

2aK,n
σ∗2

+
2E[Y ]bK,n

σ∗2
≤ 2 Var(Y )

σ∗2
.

We show the stronger inequalities

2aK,n
σ∗2

≤ Var(Y )

σ∗2
,

2E[Y ]bK,n
σ∗2

≤ Var(Y )

σ∗2
,

by arguing as for the previous step. It is sufficient that

AY (SNR+ 1)

√
60K

n
≤ (SNR+ 1),
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BY (SNR+ 1)

√
60K

n
≤ (SNR+ 1),

which holds if K ≤ n/max{60A2
Y , 60B2

Y }, and the latter is true by assumption on the

upper bound on the number of blocks. This completes the proof of 2σ̂2
K,+ ≤ 4 Var(Y ) on

the event Ω(K).

Appendix 3.C Proofs for adaptivity to the sparsity level

3.C.1 A general algorithm for simultaneous adaptivity

In this section, we prove a more general theorem, that will yield Theorem 3.4.7 as a par-

ticular case.

Algorithm for adaptation to sparsity. The steps of the adaptive procedure are as

follows.

• Let w1, w2, w3 be three functions [1, d/e]→ R+ and set M := blog2(s+)c.

• For every m ∈ {1, . . . ,M + 1}, compute (β̂(2m), σ̂(2m)).

• Set

M :=

{
m ∈ {1, . . . ,M} : for all k ≥ m, |β̂(2k−1) − β̂(2k)|1 ≤ C1σ̂w1(2k),

|β̂(2k−1) − β̂(2k)|2 ≤ C2σ̂w2(2k) and |σ̂(2k−1) − σ̂(2k)| ≤ C3σ̂w3(2k)

}
.

• Set m̃ := minM, with the convention that m̃ := M + 1 if M = ∅.

• Define s̃ := 2m̃ and (β̃, σ̃) := (β̂(s̃), σ̂(s̃)).

Definition 3.C.1. Let Θ be a subset of Rd × R+ and ‖ · ‖ a norm on Θ. For a given

s ∈ {2, . . . , d/(2e)}, we say that an estimator θ̂(s) ∈ Θ robustly converges to θ∗ ∈ Θ in norm

‖ · ‖ with bound C1σ
∗w(s) if

inf
β∗∈Fs, σ∗>0

P⊗nβ∗,PX,ζ

(
∀D′ ∈ D(N), ‖θ̂(s)(D′)− θ∗‖ ≤ C1σ

∗w(s)
)
≥ 1− c̃6C2

( s
ed

)c̃5s
− un,

(3.C.1)

inf
β∗∈F̃2s, σ∗>0

P⊗nβ∗,PX,ζ

(
∀D′ ∈ D(N), ‖θ̂(s)(D′)− θ∗‖ ≤ C1σ

∗w(s)
)
≥ 1− c̃6C2

(
2s

ed

)2c̃5s

− un,

(3.C.2)

and if the function w(·) : [1, d/e]→ R+ satisfies the following conditions:

1. w(·) is increasing on [1, d/e] ;

2. There exists a constant C ′ > 0 such that, for all m = 1, . . . , blog2(s+)c, we have

m∑
k=1

w(2k) ≤ C ′ · w(2m) ;
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3. There exists a constant C ′′ > 0 such that, for all b = 1, . . . , s+,

w(2b) ≤ C ′′w(b).

Theorem 3.C.2 (Joint adaptation of (β̂, σ̂) to s). Let s+ ∈ {2, . . . , d/(2e)} and for s =

1, . . . , 2s+, let (β̂(s), σ̂(s)) be a joint estimator of (β∗, σ∗) such that

1. β̂(s) robustly converges to β∗ in | · |1-norm with bound C1σ
∗w1(s);

2. β̂(s) robustly converges to β∗ in | · |2-norm with bound C2σ
∗w2(s);

3. σ̂(s) robustly converges to σ∗ in | · |-norm with bound C3σ
∗w3(s);

for some constants N > 0, c̃6 > 0 C1 > 0, un > 0 and for some functions w1, w2, w3

such that C3w3(2s+) ≤ 1/2. Then, there exists constants C̃1, C̃2, C̃3 such that, for all s∗ ∈
{1, . . . , s+} and β∗ ∈ F̃s∗ , the aggregated estimator (β̃, σ̃, s̃) satisfies

P⊗nβ∗,PX,ζ

(
∀D′ ∈ D(N), |β̃ − β∗|1 ≤ C̃1σ

∗w1(s∗), |β̃ − β∗|2 ≤ C̃2σ
∗w2(s∗), |σ̃ − σ∗| ≤ C̃3σ

∗w3(s∗)
)

≥ 1− 21(log2(s+) + 1)2

(
c̃5

(
2s∗

d

)2c̃6s∗

+ un

)
− 21 c̃6

(
2M+1

d

)c̃52M+1

− 21un

and

Pβ∗
(
∀D′ ∈ D(N), s̃ ≤ s∗

)
≥ 1− 6(log2(s+) + 1)2

(
c̃6

(
2s∗

d

)2c̃5s∗

+ un

)
− 6 c̃6

(
2M+1

d

)c̃52M+1

− 6un.

We adapt the proof given in [35, Section 7.3.1] to this new setting where the adaptation

is done on both estimators simultaneously. Proof of Theorem 3.C.2 is given in Section 3.C.3.

3.C.2 Proof of Theorem 3.4.7

To prove Theorem 3.4.7, we will apply Theorem 3.C.2. We first check that its assumption

are satisfied. We choose the functions w1(s) = s
√

(1/n) log(ed/s), w2(s) = w3(s) = w1(s) =

s1/2
√

(1/n) log(ed/s). By Lemma 4.4 in [35], w1, w2 and w3 satisfy the three conditions in

Definition 3.C.1.

It remains to check that the following bounds in probability (3.C.1) and (3.C.2) hold

for all s∗ = 1, . . . , s+. Applying Theorem 3.4.4 gives

inf
β∗∈Fs∗ , σ∗>0

P⊗nβ∗,PX,ζ

(
sup

D′∈D(c̃3rO)

{
r−1
2

∣∣σ̂(D′)− σ∗
∣∣ ∨ sup

p∈[1,2]
r−1
p

∣∣β̂(D′)− β∗
∣∣
p

}
≤ c̃4σ+

)
≥ 1− 4

( s∗
ed

)c̃5s∗
,

proving that the bound (3.C.1) is satisfied.

Furthermore, we have

K2s =

⌈
c̃22s∗ log

(
ed

2s∗

)⌉
=

⌈
c̃22s∗

(
log

(
ed

s∗

)
+ log(2)

)⌉
= γ(2s∗)Ks∗ ,
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µ2s∗ = c̃µ

√
1

n
log

(
ed

2s∗

)
= c̃µ

√
1

n
log

(
ed

s∗

)
− log(2)

n
= γ̃(2s∗)µs,

with some γ(2s∗), γ̃(2s∗) ∈ [1/2, 2]2. This gives β̂K2s∗/γ(2s∗), µ2s∗/γ̃(2s∗) = β̂Ks∗ ,µs∗ and,

applying Theorem 3.4.4 with 2s∗ instead of s∗, yields

inf
β∗∈F2s∗ , σ∗>0

P⊗nβ∗,PX,ζ

(
∀D′ ∈ D(c̃3rO),

{∣∣σ̂(D′)− σ∗
∣∣ ≤ c̃4σ+

√
2s∗

n
log

(
ed

2s∗

)

and ∀p ∈ [1, 2],
∣∣β̂(D′)− β∗

∣∣
1
≤ c̃4σ+(2s∗)1/p

√
1

n
log

(
ed

2s∗

))
≥ 1− 4

(2s∗

ed

)c̃52s∗

,

proving that the bound (3.C.2) is satisfied with c̃4 multiplied by 4.

3.C.3 Proof of Theorem 3.C.2

We choose s ∈ [1, s+] and assume that β∗ ∈ Fs. Define P := Pβ∗,σ∗ and m0 := blog2(s)c+1.

For p = 1, 2, define θ̂
(p)
(s) := β̂(s), θ̃

(p) := β̃, θ(p),∗ := β∗ and dp be the distance on R induced

by the norm | · |p. Define θ̂
(3)
(s) = σ̂(s), θ̃

(3) := σ̃, θ(3),∗ := σ∗ and d3 be the distance on R
induced by the absolute value.

Bound on σ̂ with high probability. Combining the definition σ̂ = σ̂2s+ with the

assumptions that C3w3(2s+) ≤ 1/2 and that σ̂(s) robustly converges to σ∗ in | · |-norm with

bound C3σ
∗w3(s), we get

P
(
∀D′ ∈ D(N), σ∗/2 ≤ σ̂ ≤ (3/2)σ∗

)
≥ 1− c̃6

(
2M+1

d

)c̃52M+1

− un. (3.C.3)

Bound on the probability P(∃D′ ∈ D(N), m̃ ≥ m0 + 1). We have

P(∃D′ ∈ D(N), m̃ ≥ m0 + 1) ≤
M∑

m=m0+1

P(∃D′ ∈ D(N), m̃ = m0 + 1)

≤
M∑

m=m0+1

M∑
k=m

P
(
∃D′ ∈ D(N), |β̂(2k−1) − β̂(2k)|1 > 4C1σ̂w1(2k)

or |β̂(2k−1) − β̂(2k)|2 > 4C2σ̂w2(2k) or |σ̂(2k−1) − σ̂(2k)| > 4C3σ̂w3(2k)

)
≤

M∑
m=m0+1

M∑
k=m

P
(
∃D′ ∈ D(N), ∃p ∈ [3], dp

(
θ̂

(p)

(2k−1)
, θ̂

(p)

(2k)

)
> 4Cpσ̂wp(2

k)

)

≤
3∑
p=1

M∑
m=m0+1

M∑
k=m

P
(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k−1)
, θ̂

(p)

(2k)

)
> 4Cpσ̂wp(2

k)

)

≤
3∑
p=1

M∑
m=m0+1

M∑
k=m

P
(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k−1)
, θ(p),∗) > 4Cpσ̂wp(2

k)

)
+ P

(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k)
, θ(p),∗) > 4Cpσ̂wp(2

k)

)
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≤ 2
3∑
p=1

M∑
m=m0+1

M∑
k=m−1

P
(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k−1)
, θ(p),∗) > 4Cpσ̂wp(2

k)

)

≤ 2

3∑
p=1

M∑
m=m0+1

M∑
k=m−1

P
(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k−1)
, θ(p),∗) > 4Cpσ̂wp(2

k), σ̂ ≥ σ

2

)
+ 6P

(
∃D′ ∈ D(N), σ̂ <

σ

2

)
.

Combining the previous equation with Equation (3.C.3), and then with the assumption on

the bound on the estimator θ̂
(p)

(2k−1)
for the distance dp, we get

P(∃D′ ∈ D(N), m̃ ≥ m0 + 1)

≤ 2

3∑
p=1

M∑
m=m0+1

M∑
k=m−1

P
(
∃D′ ∈ D(N), dp

(
θ̂

(p)

(2k−1)
, θ(p),∗) > 2Cpσ̂wp(2

k)

)

− 6c̃6

(
2M+1

d

)c̃52M+1

− 6un

≤ 6M2c̃6

((
2s

p

)2c̃5s

+ un

)
− 6c̃6

(
2M+1

d

)2M+1c̃5

− 6un

≤ 6(log2(s+) + 1)2c̃6

((
2s

p

)2c̃6s

+ un

)
− 6c̃6

(
2M+1

d

)c̃52M+1

− 6un. (3.C.4)

This gives the bound on s̃ as claimed.

Bound on the deviation probability of θ̃(p). For any a > 0, we have

P
(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥ a
)
≤ P

(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥ a, m̃ ≤ m0

)
+ P(∃D′ ∈ D(N), m̃ ≥ m0 + 1). (3.C.5)

On the event {m̃ ≤ m0}, we have the decomposition

dp(θ̃
(p), θ(p),∗) ≤

m0∑
k=m̃+1

dp

(
θ̂

(p)

(2k−1)
, θ̂

(p)

(2k)

)
+ dp(θ̂

(p)
(2m0 ), θ

(p),∗). (3.C.6)

Using the assumption on the function wp, we get that

m0∑
k=m̃+1

dp

(
θ̂

(p)

(2k−1)
, θ̂

(p)

(2k)

)
≤

m0∑
k=m̃+1

4σ̂C0w(2k)

≤ 4σ̂CpC
′wp(2

m0) ≤ 4σ̂CpC
′C ′′wp(s). (3.C.7)

We have 2m0 ≤ 2s, therefore applying Assumption (3.C.2) we have, with Pβ∗, σ∗-probability

at least 1− c̃5 (2s/p)2c̃6s − un, for all D′ ∈ D(N),

dp(θ̂
(p)
(2m0 ), θ

(p),∗) ≤ Cpσ̂w(2s) ≤ CpC ′′σ̂w(s). (3.C.8)

Combining Equations (3.C.6), (3.C.7), (3.C.8) and (3.C.3), we get with Pβ∗-probability at

least 1− c̃5(2s/p)2c̃6s − c̃5(2M+1/p)c̃62M+1 − 2un, for all D′ ∈ D(N),

dp(θ̃
(p), θ(p),∗) ≤

(
4CpC

′C ′′ + (3/2)CpC
′′)σw(s). (3.C.9)
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Combining Equation (3.C.4) with Equations (3.C.5) and (3.C.9), we finally get that

P
(
∃D′ ∈ D(N), dp(θ̃

(p), θ(p),∗) ≥
(
4CpC

′C ′′ + (3/2)CpC
′′)σwp(s))

≤ 7(log2(s+) + 1)2

(
c̃6

(
2s

p

)2c̃5s

+ un

)
− 7 c̃6

(
2M+1

d

)c̃52M+1

− 7un.

By a union bound, we then obtain

Pβ∗, σ∗

(
∀D′ ∈ D(N),∀p = 1, 2, 3, dp(θ̃

(p), θ(p),∗) ≥
(
4C ′C ′′ + (3/2)C ′′

)
Cpσwp(s)

)
≥ 1− 21(log2(s+) + 1)2

(
c̃6

(
2s

d

)2c̃5s

+ un

)
− 21 c̃6

(
2M+1

d

)c̃52M+1

− 21un,

as claimed.

Appendix 3.D Auxiliary results

In this section we give auxiliary results that are used in the proofs of the main results.

Lemma 3.D.1 (Lemma 6 in suppl. mat. of [55]). Let ρ ≥ 0 and denote Γf∗(ρ) :=⋃
f∈F : ‖f−f∗‖≤ρ/20

(
∂|| · ||

)
f
. For all g ∈ F , we have

‖f∗‖ − ‖g‖ ≤ ρ

10
− sup
z∗∈Γf∗ (ρ)

z∗(g − f∗).

We recall here the definition of quantiles we used in Section 3.2.4. For any K ∈ N, set

[K] = {1, . . . ,K}. For all α ∈ (0, 1) the α-quantile of a vector x = (x1, . . . , xK) ∈ RK is

any element Qα[x] of the set

Qα[x] :=
{
u ∈ R :

∣∣{k ∈ [K] : xk ≥ u}
∣∣ ≥ (1− α)K,

∣∣{k ∈ [K] : xk ≤ u}
∣∣ ≥ αK}.

For all t ∈ R, we write Qα[x] ≥ t when there exists J ⊂ [K] such that |J | ≥ (1− α)K and,

for all j ∈ J, xj ≥ t. We write Qα[x] ≤ t if there exists J ⊂ [K] such that |J | ≥ αK and,

for all j ∈ J, xj ≤ t.

Lemma 3.D.2. We have the following properties.

1. Monotonicity

For all α ∈ (0, 1), β ∈ (0, α] and x ∈ RK , Qβ[x] ≤ Qα[x].

2. Opposite

For all α ∈ (0, 1) and x ∈ RK , Qα[x] ≥ −Q1−α[−x].

3. Linearity

For all α ∈ (0, 1), x ∈ RK and a, b ∈ R, Qα[ax + b] = |a|Qα[sgn(a)x] + b.

4. Difference

For all α, β ∈ (0, 1) and x,y ∈ RK , Qα[x− y] ≤ Qα+β[x]−Qβ[y].
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5. Triangular

For all α, β ∈ (0, 1) and x,y ∈ RK , Qα[x + y] ≤ Qα+β[x] +Q1−β[y].

Proof of Lemma 3.D.2. We prove property 1. Write x = (xj)j∈[K]. The property Qβ[x] ≤
Qα[x] is true by construction, because Qα[x] ≤ u implies that there are at least αK ≥ βK
components such that xj ≤ u.

We prove property 2. Write x = (xj)j∈[K] and Qα[x] = u, then there are at least (1−α)K

components such that xj ≥ u and at least αK components such that xj ≤ u. We now show

that u ≥ −Q1−α[−x]. This is equivalent to Q1−α[−x] ≥ −u, which requires at least αK

components such that −xj ≥ −u, that is, xj ≤ u. The latter is true by construction.

We prove property 3. Write x = (xj)j∈[K]. The property Qα[ax+b] = Qα[ax]+b follows

from the definition, that is, if Qα[ax] = u then there are at least (1 − α)K components

such that axj ≥ u and at least αK components such that axj ≤ u. Thus, the same

components also satisfy axj +b ≥ u+b or axj +b ≤ u+b. It remains to show that Qα[ax] =

|a|Qα[sgn(a)x]. Let Qα[ax] = u. We show that we have at least (1 − α)K components

sgn(a)xj ≥ u/|a| and at least αK components sgn(a)xj ≤ u/|a|. The latter conditions

are equivalent to |a| sgn(a)xj ≥ u and |a| sgn(a)xj ≤ u. This is enough to conclude since

a = sgn(a)|a| and Qα[ax] = u.

We prove property 4. Write x = (xj)j∈[K], y = (yi)i∈[K] and Qα+β[x] = u, Qβ[y] = l.

By construction:

• there are at least (1− α− β)K components xj ≥ u;

• there are at least (α+ β)K components xj ≤ u;

• there are at least (1− β)K components yi ≥ l;
• there are at least βK components yi ≤ l.

With (x−y) = (xk−yk)k∈[K], we want to show that Qα[x−y] ≤ u−l, which means there are

αK components xk−yk ≤ u−l. We now count how many times this inequality fails. In order

for a component to be xk− yk ≥ u− l, it is necessary that either xk ≥ u, which can happen

at most (1−α−β)K times, or yk ≤ l, which can happen at most βK times. Therefore, the

inequality xk−yk ≥ u− l is satisfied by at most (1−α−β)K+βK = (1−α)K components,

leaving at least αK components where xk − yk ≤ u− l. This is enough to conclude.

Property 5 is a consequence of property 4 and property 2.

In the following, we use the notation [K] = {1, . . . ,K} and [K]I := {k ∈ [K] : Bk ⊂ I}.
We denote by KI the cardinality of [K]I .

Lemma 3.D.3. Let Z = Z(X, Y ) be a real-valued random variable. Let η ∈ (0, 1) and

γ, δK,n, x > 0 such that γ(1−KV ar(Z)/(nδ2
K,n)− x) ≥ max{η, 1− η}. Let K ∈ [|O|/(1−

γ), n]. There exists an event Ω = Ω(Z,K) with P(Ω) ≥ 1 − exp(−Kγx2/2) such that, on

this event ∣∣{k ∈ [K] : |PBk(Z)− E[Z]| ≤ δK,n}
∣∣ ≥ max{η, 1− η}K,

thus the quantiles Qη[Z], Q1−η[Z] belong to the interval [E[Z]− δK,n,E[Z] + δK,n].
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Proof of Lemma 3.D.3. We have

|{k ∈ [K] : |PBk(Z)− E[Z]| ≤ δK,n}| ≥
∑

k∈[K]I

1{|PBk(Z)− E[Z]| ≤ δK,n}

= KI −
∑

k∈[K]I

PX{|PBk(Z)− E[Z]| ≥ δK,n}

−
∑

k∈[K]I

(
1{|PBk(Z)− E[Z]| ≥ δK,n} − PX{|PBk(Z)− E[Z]| ≥ δK,n}

)
.

We bound the second term using Chebychev’s inequality∑
k∈[K]I

PX{|PBk(Z)− E[Z]| ≥ δK,n} ≤ KI
V ar[PBk(Z)− E[Z]]

δ2
K,n

= KI
V ar[Z]

|Bk|δ2
K,n

= KI
KV ar[Z]

nδ2
K,n

.

We bound the last term using Hoeffding’s inequality∑
k∈[K]I

(
1{|PBk(Z)− E[Z]| ≥ δK,n} − PX{|PBk(Z)− E[Z]| ≥ δK,n}

)
≤ xKI ,

on an event Ω(Z,K) of probability greater than 1−exp(−x2KI/2). Combining the previous

inequalities, we get that on Ω(Z,K),

|{k ∈ [K]I : |PBk(Z)− E[Z]| ≤ δK,n}| ≥ KI

(
1− KV ar[Z]

nδ2
K,n

− x

)
≥ Kγ

(
1− KV ar[Z]

nδ2
K,n

− x

)
,

and the last term is bigger than max{η, 1 − η}K by assumption. By definition, this also

means that the quantiles Qη[Z], Q1−η[Z] belong to the interval [E[Z]−δK,n,E[Z]+δK,n].

Lemma 3.D.4. Let K ∈ [16|O|, n]. On an event Ω(K) with probability P(Ω(K)) ≥ 1 −
exp(−K/4320), the quantiles Q1/8,K [ζ2], Q7/8,K [ζ2] belong to the interval [σ∗2− δK,n, σ∗2 +

δK,n], with δK,n defined in (3.A.1).

Proof of Lemma 3.D.4. We use Lemma 3.D.3 with η = 1/8, Z = ζ2, Var(Z) = E[ζ4] −
E[ζ2]2 = σ∗4(κ∗ − 1), η = 1/8, γ = 15/16, x = 1/45, and δ2

K,n ≥ 25(K/n) Var(Z). Then,

γ

(
1− x− KV ar(Z)

nδ2
K,n

)
≥ 15

16

(
1− 1

45
− 1

25

)
=

15

16
− 7

120
>

7

8
= 1− η.

The probability of the corresponding event is P(Ω(K)) ≥ 1 − exp(−Kγx2/2) = 1 −
exp(−K/4320).

Lemma 3.D.5 (Lemma 3 in suppl. mat. of [55]). Grant Assumption 3.3.1. Fix η ∈ (0, 1)

and ρ ∈ (0,+∞]. Let α, γ, γP , x be positive real numbers such that γ(1−α− x− 16γP θ0) ≥
1 − η. Assume that K is an integer in [|O|/(1 − γ), nα/4θ2

0]. Then, there exists an event

ΩQ(K) with probability P(ΩQ(K)) ≥ 1− 4 exp(−Kγx2/2) and, on this event: for all f ∈ F
with ‖f − f∗‖ ≤ ρ, if ‖f − f∗‖2,X ≥ rP (ρ, γP ) then∣∣{k ∈ [K] : PBk(f − f∗)2 ≥ (4θ0)−2‖f − f∗‖22,X

}∣∣ ≥ (1− η)K

In particular, Qη,K [(f − f∗)2] ≥ (4θ0)−2‖f − f∗‖22,X.
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Lemma 3.D.6 (Lemma 4 in suppl. mat. of [55]). Grant Assumption 3.3.1. Fix η ∈ (0, 1)

and ρ ∈ (0,+∞]. Let α, γ, γM , x be positive real numbers such that γ(1−α− x− 8γM/ε) ≥
1− η. Assume that K is an integer in [|O|/(1− γ), n]. Then, there exists an event ΩM (K)

with probability P(ΩM (K)) ≥ 1 − exp(−Kγx2/2) and, on this event: for all f ∈ F with

‖f − f∗‖ ≤ ρ, ∣∣{k ∈ [K] : |(PBk − E)(2ζ(f − f∗)| ≤ α2
M

}∣∣ ≥ (1− η)K,

with

α2
M := εmax

(
16θ2

m

ε2α

K

n
, r2

M (ρ, γM ), ‖f − f∗‖22,X
)
.

Lemma 3.D.7. Let K ∈
[
32|O|, n/(372θ2

0)
]
. There exists an event Ω(K) of probability

bigger than 1− 2 exp(−K/8928) such that, for all ρ ∈ {ρK , 2ρK}, and all f ∈ F such that

‖f − f∗‖ ≤ ρ, we have

1. if ‖f − f∗‖2,X ≥ rP (ρ, γP ), then Q1/16,K

(
(f − f∗)2

)
≥ (4θ0)−2‖f − f∗‖22,X,

2. Q15/16,K

[
− 2ζ(f − f∗)

]
≤ E[−2ζ(f − f∗)(X)] + α2

M ,

3. Q1/16,K [−2ζ(f − f∗)] ≥ E[−2ζ(f − f∗)(X)]− α2
M ,

4. Q15/16,K

[
2ζ(f − f∗)

]
≤ α2

M ,

with

α2
M := εmax

(
1488θ2

m

ε2

K

n
, r2

M (ρ, γM ), ‖f − f∗‖22,X
)
, θm = θ1m

∗.

Furthermore, for r(·) as in Theorem 3.3.3 and ‖f − f∗‖2,X ≤ r(ρ), we find α2
M ≤ 4εr2(ρ).

Proof of Lemma 3.D.7. The first property follows from applying Lemma 3.D.5 with η =

1/16, ρ ∈ {ρK , 2ρK}, α = x = 1/93, γ = 31/32, γP = 1/(1488θ0) and checking that

γ(1− α− x− 16γP θ0) ≥ 1− η. With our choices, we find

31

32

(
1− 1

93
− 1

93
− 16

1488

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
.

The corresponding event Ω1 has probability at least 1−exp(−Kγx2/2) = 1−exp(−K/8928).

The second and third properties follow from applying Lemma 3.D.6 with η = 1/16,

ρ ∈ ρK , 2ρK , α = x = 1/93, γ = 31/32, γM = ε/744 and checking that γ(1 − α − x −
8γM/ε) ≥ 1− η. With our choices, we find

31

32

(
1− 1

93
− 1

93
− 8

744

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
.

The corresponding event Ω2 has probability at least 1−exp(−Kγx2/2) = 1−exp(−K/8928).

The fourth property holds on the same event Ω2 given above, and is a consequence of

the nearest point theorem and the convexity of the function class F , which guarantee that

E[2ζ(f − f∗)(X)] ≤ 0.
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Given all the above, the probability of the event Ω(K) = Ω1∩Ω2 is at least 1−P(Ω1)−
P(Ω1) = 1− 2 exp(−K/8928).

We finally bound, with r2(ρK) = 384θ2
mK/(nε

2),

α2
M

r2(2ρK)
≤

α2
M

r2(ρK)
= εmax

(
1488θ2

m

ε2

K

n

1

r2(ρK)
, 1

)
= ε

1488

384
< 4ε.

Lemma 3.D.8. Let K ∈ [32|O|, n/(372θ2
0)]. There exists an event ΩQ(K) of probability

bigger than 1 − exp(−K/8928) such that, for all ρ ∈ {ρK , 2ρK}, and all f ∈ F such that

‖f − f∗‖ ≤ ρ, we have

Q15/16,K

[
(f − f∗)2

]
≤ ‖f − f∗‖22,X + α2

Q,

with

α2
Q := εmax

(
‖f − f∗‖22,X

1488θ4
1

ε2

K

n
, r2

Q(ρ, γQ), ‖f − f∗‖22,X
)
.

Proof of Lemma 3.D.8. Take η = 1/16, γ = 31/32, α = x = 1/93 and γQ = ε/372. We

follow the steps of the proof of Lemma 4 in the supplementary material of [55]. For all f ∈ F
and ρ > 0, set B(f, ρ) = {g ∈ F : ‖g − f‖ ≤ ρ}. For all k ∈ [K], set Dk = (Xi, Yi)i∈Bk and

gf (Dk) := (PBk − E)[(f − f∗)2],

α2
Q(f) := εmax

(
‖f − f∗‖22,X

4θ4
1

ε2α
· K
n
, r2
Q(ρ, γQ), ‖f − f∗‖22,X

)
.

Let [K]I = {k ∈ [K] : Bk ⊂ I} and consider any k ∈ [K]I . An application of Markov

inequality gives

P
(
2|gf (Dk)| ≥ α2

Q(f)
)
≤

4E
[
|gf (Dk)|2

]
α2
Q(f) · α2

Q(f)
.

The denominator of the last term in the previous display can be bounded below using

both α2
Q(f) ≥ ε‖f − f∗‖22,X and α2

Q(f) ≥ ‖f − f∗‖22,X4θ4
1K/(εαn). Since ‖f − f∗‖4,X ≤

θ1‖f − f∗‖2,X by Assumption 3.3.1, this gives

P
(
2|gf (Dk)| ≥ α2

Q(f)
)
≤

4E
[(

(PBk − PX)(f − f∗)2
)2]

‖f − f∗‖22,X
4θ41
α

K
n ‖f − f∗‖

2
2,X

≤
∑

i∈Bk Var
(
(f − f∗)2(Xi)

)
|Bk|2

θ41
α
K
n ‖f − f∗‖

4
2,X

≤ E[(f − f∗)4(X)]

|Bk|
θ41
α
K
n ‖f − f∗‖

4
2,X

≤
α‖f − f∗‖44,X
θ4

1‖f − f∗‖42,X
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≤ α.

Take J = ∪k∈[K]IBk and write rQ(ρ) = rQ(ρ, γQ). Take B(f∗, ρ, rQ(ρ)) the set of functions

f ∈ B(f∗, ρ) such that ‖f − f∗‖2,X ≤ rQ(ρ). With the argument in the proof of Lemma 4

in the supplementary material of [55], one finds

E
[

sup
f∈B(f∗,ρ)

∑
k∈[K]I

ξk
gf (Dk)
α2
Q(f)

]
≤ 2

εr2
Q(ρ)

E
[

sup
f∈B(f∗,ρ,rQ(ρ))

∣∣∣ ∑
k∈[K]I

ξk(PBk − E)(f − f∗)2
∣∣∣],

and, with the definition of rQ(·) and the symmetrization argument in the same reference,

E
[

sup
f∈B(f∗,ρ)

∑
k∈[K]I

ξk
gf (Dk)
α2
Q(f)

]
≤ 4K

εn
γQ|[K]I |

n

K
=

4γQ
ε
|[K]I |.

In the same proof, the authors define a suitable function ψ such that, on an event Ω(K)

with probability at least 1− exp(−Kγx2/2) = 1− exp(−K/8928),∑
k∈[K]I

1
(
|gf (Dk)| < α2

Q(f)
)

≥ (1− α)|[K]I | − 2E
[

sup
f∈B(f∗,ρ)

∑
k∈[K]I

ψ

(
|gf (Dk)|
α2
Q(f)

)]
+ |[K]I |x

≥ (1− α)|[K]I | − 2E
[

sup
f∈B(f∗,ρ)

∑
k∈[K]I

ξk
|gf (Dk)|
α2
Q(f)

]
− |[K]I |x

≥ |[K]I |
(

1− α− x−
4γQ
ε

)
≥ γK

(
1− α− x−

4γQ
ε

)
.

We now check that the latter is bigger than (1− η)K. With our choices, this gives

31

32

(
1− 1

93
− 1

93
− 4

372

)
=

31

32

(
1− 1

31

)
=

30

32
=

15

16
,

which is what we want. As a consequence, Q15/16,K [(f − f∗)2] ≤ ‖f − f∗‖22,X + α2
Q(f).

In the next result we use the event Ω(K) := Ω1(K) ∩ Ω2(K) ∩ Ω3(K) with

Ω1(K),Ω2(K) and Ω3(K) respectively defined as the events in Lemma 3.D.4, Lemma 3.D.7

and Lemma 3.D.8. The event Ω(K) has probability at least 1 − 4 exp(−K/8920). We also

denote by r(·) any function satisfying r(ρ) ≥ max{rP (ρ, γP ), rM (ρ, γM )}. For any integer

K and cρ ∈ {1, 2}, we will use the notation αK,cρ := cαr(cρρ) and δ2
K,n := 25m∗4K/n.

Lemma 3.D.9. Let C2 = 384θ2
1c

2
rc

2
ακ

1/2
+ and

K ∈
[
32|O|, n

372θ2
0

∧ n

25κ+
∧ nε

2

C2

]
.
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On the event Ω(K) defined above, for all f ∈ F such that ‖f − f∗‖ ≤ cρρK , ‖f − f∗‖2,X ≤
r(cρρK) and |σ − σ∗| ≤ αK,cρ ,

E[−2ζ(f − f∗)(X)] ≤
2σ∗ + αK,cρ

2c
TK,µ(f∗, σ∗, f, σ) +

2σ∗ + αK,cρ
2c

µρ+ α2
M

+
8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)2
δ2
K,n +

αK,cρ
c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
,

where α2
M , α

2
Q are given in Lemma 3.D.7 and Lemma 3.D.8.

Proof of Lemma 3.D.9. We start by applying Lemma 3.D.7, which gives

E[−2ζ(f − f∗)(X)] ≤ Q1/4,K [−2ζ(f − f∗)] + α2
M ≤ Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + α2

M ,

the second inequality follows from the fact that (f − f∗)2 is positive. Using the definition

of TK,µ(f∗, σ∗, f, σ) in (3.2.9) and the quantile properties in Lemma 3.D.2, we can rewrite

E[−2ζ(f − f∗)(X)]

≤ Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + α2
M

=
σ + σ∗

2c
Q1/4,K

[
2c
`f − `f∗
σ + σ∗

]
+ α2

M

=
σ + σ∗

2c
Q1/4,K

[
Rc(`f∗ , σ

∗, `f , σ)− (σ − σ∗)
(

1− 2
`f + `f∗

(σ + σ∗)2

)]
+ α2

M

≤ σ + σ∗

2c

(
Q1/2,K

[
Rc(`f∗ , σ

∗, `f , σ)
]
−Q1/4,K

[
(σ − σ∗)

(
1− 2

`f + `f∗

(σ + σ∗)2

)])
+ α2

M

≤ σ + σ∗

2c

(
Q1/2,K

[
Rc(`f∗ , σ

∗, `f , σ)
]

+ µ(‖f‖ − ‖f∗‖)
)

+
σ + σ∗

2c
µρ+ α2

M

− σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

`f + `f∗

(σ + σ∗)2

)]
=
σ + σ∗

2c
TK,µ(f∗, σ∗, f, σ) +

σ + σ∗

2c

(
µρ−Q1/4,K

[
(σ − σ∗)

(
1− 2

`f + `f∗

(σ + σ∗)2

)])
+ α2

M .

Since σ + σ∗ ≤ 2σ∗ + αK,cρ , it remains to show that

−σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

`f + `f∗

(σ + σ∗)2

)]
(3.D.1)

≤
8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)2
δ2
K,n +

αK,cρ
c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
.

First, by the quantile properties in Lemma 3.D.2, we have

−σ + σ∗

2c
Q1/4,K

[
(σ − σ∗)

(
1− 2

`f + `f∗

(σ + σ∗)2

)]
≤ σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
2
`f + `f∗

(σ + σ∗)2
− 1

)]
.
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By expanding `f = `f∗ + `f − `f∗ , we get

σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
2
`f + `f∗

(σ + σ∗)2
− 1

)]
=
σ + σ∗

2c
Q3/4,K

[
(σ − σ∗)

(
4`f∗

(σ + σ∗)2
− 1

)
+ (σ − σ∗)

2(`f − `f∗)
(σ + σ∗)2

]

≤ σ + σ∗

2c
Q7/8,K

[
(σ − σ∗)

(
4`f∗

(σ + σ∗)2
− 1

)]
+
Q7/8,K [(σ − σ∗)(`f − `f∗)]

c(σ + σ∗)

=
σ + σ∗

2c
T1 + T2.

(3.D.2)

Since the term (σ − σ∗) has different signs for σ < σ∗ and σ > σ∗, we need to account for

this in the bounds. We focus first on

T1 = Q7/8,K

[
(σ − σ∗)

(
4`f∗

(σ + σ∗)2
− 1

)]

≤ max

{
sup

σ∈(σ∗,σ∗+αK,cρ ]
(σ − σ∗)

(
4Q7/8,K [`f∗ ]

(σ + σ∗)2
− 1

)
, sup
σ∈[σ∗−αK,cρ ,σ∗)

(σ∗ − σ)

(
1−

4Q7/8,K [`f∗ ]

(σ + σ∗)2

)}
.

Thanks to Lemma 3.D.4, the quantile Q7/8,K [`f∗ ] = Q7/8,K [ζ2] is in the interval [σ∗2 −
δK,n, σ

∗2 + δK,n], therefore

T1 ≤ max

{
sup

σ∈(σ∗,σ∗+αK,cρ ]
(σ − σ∗)

(
4(σ∗2 + δK,n)

(σ + σ∗)2
− 1

)
, sup
σ∈[σ∗−αK,cρ ,σ∗)

(σ∗ − σ)

(
1−

4(σ∗2 − δK,n)

(σ + σ∗)2

)}
.

(3.D.3)

We denote a2
+ = σ∗2 + δK,n and a2

− = σ∗2 − δK,n. The first function in the latter display is

positive (or zero) for σ ∈ [σ∗, 2a+−σ∗]. Let σa+ be the point achieving the maximum, then

σa+ belongs to the same interval and |σa+ − σ∗| ≤ 2a+ − 2σ∗ = 2σ∗(
√

1 + δK,n/σ∗2 − 1).

By construction, the quantity δK,n/σ
∗2 is smaller than one, since

δ2
K,n

σ∗4
=

25µ∗4K

σ∗4n
=

25κ∗K

n
≤ 25κ+K

n
≤ 1

and K ≤ n/(25κ+). For all x ∈ (0, 1), the inequality
√

1 + x ≤ 1 + x holds, so that

|σa+ − σ∗| ≤ 2σ∗

(√
1 +

δK,n
σ∗2
− 1

)
≤ 2σ∗

(
1 +

δK,n
σ∗2
− 1

)
=

2δK,n
σ∗

.

Now we repeat the same argument for the second function in (3.D.3), using
√

1− x ≥ 1−x
for all x ∈ (0, 1), thus getting a point σa− achieving the maximum such that |σa− − σ∗| ≤
2δK,n/σ

∗. By Lemma 3.A.1, we have 2δK,n/σ
∗ < αK,cρ < σ∗. With δa = 2δK,n/σ

∗, this
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yields

Q7/8,K

[
(σ − σ∗)

(
4`f∗

(σ + σ∗)2
− 1

)]

≤ max

{
(σ∗ − σa−)

(
1−

4a2
−

(σa− + σ∗)2

)
, (σa+ − σ∗)

(
4a2

+

(σa+ + σ∗)2
− 1

)}
≤

2δK,n
σ∗

max

{
1−

4σ∗2 − 4δK,n
(2σ∗ − δa)2

,
4σ∗2 + 4δK,n
(2σ∗ + δa)2

− 1

}
=

2δK,n
σ∗

max

{
4σ∗δa + δ2

a + 4δK,n
(2σ∗ − δa)2

,
4δK,n − 4σ∗δa − δ2

a

(2σ∗ + δa)2

}
≤

16δ2
K,n

σ∗(2σ∗ − δa)2

≤
16δ2

K,n

σ∗(2σ∗ − αK,cρ)2
.

(3.D.4)

It remains to bound T2 in (3.D.2) in order to obtain (3.D.1). We only consider the

case when σ ∈ [σ∗, σ∗ + αK,cρ ], the case σ ∈ [σ∗ − αK,cρ , σ∗] follows the same steps. With

`f∗ − `f = 2ζ(f − f∗) − (f − f∗)2 and using Lemma 3.D.7 and Lemma 3.D.8 in the last

inequality, we get

T2 =
(σ − σ∗)
c(σ + σ∗)

Q7/8,K

[
(f − f∗)2 − 2ζ(f − f∗)

]
≤

αK,cρ
c(2σ∗ − αK,cρ)

(
Q15/16,K

[
(f − f∗)2

]
+Q15/16,K [−2ζ(f − f∗)]

)
≤

αK,cρ
c(2σ∗ − αK,cρ)

(
‖f − f∗‖22,X + α2

Q + E[−2ζ(f − f∗)(X)] + α2
M

)
.

By the Cauchy-Schwarz inequality, E[−2ζ(f − f∗)(X)] ≤ 2σ∗‖f − f∗‖2,X ≤ 2σ∗r(cρρK).

We now put together all the bounds found so far and conclude

E[−2ζ(f − f∗)(X)] ≤
2σ∗ + αK,cρ

2c
TK,µ(f∗, σ∗, f, σ) +

2σ∗ + αK,cρ
2c

µρ+ α2
M

+
8(2σ∗ + αK,cρ)

cσ∗(2σ∗ − αK,cρ)2
δ2
K,n +

αK,cρ
c(2σ∗ − αK,cρ)

(
2σ∗r(cρρK) + r2(cρρK) + α2

Q + α2
M

)
,

which gives the claim.
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Summary

This thesis investigates Bayesian and frequentist procedures for challenging high-

dimensional estimation problems.

In a Gaussian sequence model, we study the Bayesian approach to estimate the common

variance of the observations. A fraction of the means is known to be zero, whereas the non-

zero means are treated as nuisance parameters. This model is non-standard in the sense

that it induces inconsistent maximum likelihood. We show a general inconsistency result:

the posterior distribution does not contract around the true variance as long as the nuisance

parameters are drawn from an i.i.d. proper distribution. We also show that consistency is

retained by a hierarchical Gaussian mixture prior. For the latter, we recover the asymptotic

shape of the posterior in the Bernstein-von Mises sense and show it is non-Gaussian in the

case of small means.

In the nonparametric regression model, we study the Bayesian approach to the estima-

tion of a regression function that is characterized by some underlying composition structure,

parametrized by a graph and a smoothness index. This model is inspired by deep learning

methods, which work well when complex objects have to be built from simpler features.

In previous work, a frequentist estimator based on deep neural networks has been shown

to be adaptive with respect to the underlying structure and achieve minimax estimation

rates. We characterize the contraction rates of the posterior distribution arising from priors

induced by the composition of Gaussian processes. With a suitable model selection prior,

we show that the posterior achieves the minimax rates of estimation.

In the nonparametric least-squares regression model, we study a frequentist approach

to estimate the regression function and the standard deviation of the residuals. The dataset

consists of i.i.d. observations contaminated by a small number of outliers, and heavy-tailed

residuals. For the case of known standard deviation, robust median-of-means procedures

are available, and we extend them to the case of unknown standard deviation. In the

sparse linear regression case, the median-of-means estimator yields a robust version of the

Lasso, whereas our method yields a robust version of the square-root Lasso thanks to a

scale-invariance argument. We also provide an aggregated estimator achieving minimax

convergence rates while being adaptive to the unknown sparsity level.
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Samenvatting

Deze thesis onderzoekt Bayesiaanse en frequentistische procedures voor uitdagende hoog-

dimensionale schattingsproblemen.

We bestuderen de Bayesiaanse benadering om de gemeenschappelijke variantie van

waarnemingen in een Gaussiaans sequentiemodel te schatten. Een deel van de gemiddelden

is bekend en gelijk aan nul. De gemiddelden die niet gelijk zijn aan nul worden behandeld als

hinderlijke parameters. Dit model is niet-standaard aangezien het inconsistente maximale

waarschijnlijkheid veroorzaakt. We tonen een algemeen inconsistentieresultaat aan: de pos-

terieure verdeling vertoont geen contractie rond de werkelijke variantie zolang de hinderlijke

parameters worden gehaald uit een identieke en onderling onafhankelijke ‘proper’ verdeling.

We tonen ook aan dat de consistentie wordt behouden door een hiërarchisch Gaussiaans

mengsel prior. Voor dit laatste vinden we de asymptotische vorm van de posterior in de zin

van Bernstein-Van Mises en we tonen aan dat dit niet-Gaussiaans is in het geval van kleine

gemiddelden.

In het niet-parametrische regressiemodel bestuderen we de Bayesiaanse benadering van

de schatting van een regressiefunctie die wordt gekenmerkt door een onderliggende com-

positiestructuur, geparametriseerd door een grafiek en een gladheidsindex. Dit model is

gëınspireerd op deep learning-methoden, die goed werken wanneer complexe objecten wor-

den gebouwd met eenvoudigere functies. In eerder onderzoek is aangetoond dat een fre-

quentistische schatter op basis van neurale netwerken zich aanpast aan de onderliggende

structuur en dat deze schatter de minimax-schattingssnelheden bereikt. We karakteriseren

de contractiesnelheden van de posterior-verdeling die voortkomt uit de priors gëınduceerd

door de samenstelling van Gauss-processen. Met een geschikte prior modelselectie tonen we

aan dat de posterior de minimax schattingssnelheid bereikt.

In het niet-parametrische kleinste-kwadratenregressiemodel bestuderen we een frequen-

tistische benadering van de schatting van de regressiefunctie en de standaarddeviatie van

de residuen. De dataset bestaat uit onafhankelijke en identiek verdeelde waarnemingen die

worden vervuild met een paar uitschieters en residuen met een zware staart. In het geval

van een bekende standaarddeviatie zijn robuuste median-of-means procedures beschikbaar,

en wij breiden deze uit naar het geval van een onbekende standaarddeviatie. In het geval

van schaarse lineaire regressie levert de median-of-means-schatter een robuuste versie van

de Lasso, terwijl onze methode een robuuste versie van de wortel Lasso oplevert dankzij

een schaalinvariantie-argument. We geven ook een samengevoegde schatter die minimax-

convergentiesnelheden bereikt en zich ook aanpast aan het onbekende schaarsteniveau.
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