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Chapter 1

Introduction

The study of fluid mechanics covers a vast range of length-scales, spanning
from the smallest blood vessels found in the human body to large atmospheric
flows on Earth [1,2]. In this thesis, we focus on interfacial flow phenomena
with length-scales that are smaller than approximately one millimetre. Such
flows are typically driven by surface tension—a property of liquids that mani-
fests itself at interfaces. A liquid molecule at an interface experiences roughly
half the attractive interactions with other liquid molecules compared to a mo-
lecule in the bulk of the liquid. Nature therefore dictates that the surface
area of a liquid interface should always be minimised, such that the energetic
cost associated with the interface is minimal. Ample examples of the action

Figure 1.1: (a) A water strider at rest on the surface of a pond, its weight
is supported by surface tension. Image taken from [3]. (b) A raindrop on the
leaf of a lotus plant . The surface of the leaf is hydrophobic (water-repellent),
resulting in a large contact angle. Image taken from [4]. (c¢) Floating mosquito
eggs aggregate by capillary interactions to form egg clusters. Image taken
from [5].
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of surface tension can be found among the flora and fauna of nature: water
striders can walk on water due to surface tension (Fig. 1.1a), raindrops take
on a spherical shape when at rest on lotus plant leaves due to the minimisa-
tion of surface energy (Fig. 1.1b), and mosquito eggs aggregate by capillary
interactions (Fig. 1.1c) [5].

Surface tension-driven flows also play an important role in many indus-
trial applications. For example, the optical resolution of lithography in chip
manufacturing can be increased by putting water between the lens and the
silicon wafer, introducing a three-phase contact line [6]. Another example,
and the main source of inspiration for the work presented in this thesis, is
inkjet printing: a technology that allows controlled deposition of ink drops on
a substrate with applications reaching far beyond document printing [7-10].
Many processes involved in inkjet printing are predominantly driven by surface
tension. For example, an ink jet breaks up into drops by the Rayleigh-Plateau
instability to minimise its surface energy (Fig. 1.2), and ink is absorbed by
the porous structure of paper due to capillary action [11,12]. These flows,
by their nature, involve multiple phases (ink is composed of multiple complex
components), and are typically out of equilibrium [13,14]. A fundamental un-
derstanding of surface-tension driven multi-phase flows is therefore expected
to aid in the further development of inkjet printing technology.

lll&&ga

Figure 1.2: Time-sequence of picolitre-sized drops (diameter ~ 15 um) jetted
from an inkjet printing nozzle. The tail of the drop retracts during flight to
form a spherical drop, an example of the minimisation of surface energy. Image
taken from [15].



1.1. Wetting: from Young’s law to multi-phase flows

1.1 Wetting: from Young’s law to multi-phase flows

One of the key milestones in the study of surface tension was achieved by

Thomas Young in 1805, when he proposed that the angle between the liquid-

solid and the liquid-vapour interfaces of a drop resting on a solid substrate is

given by

sv *'YSL. (11)
YLV

cosf =

In this expression = is the surface tension, and the subscripts denote the solid-
vapour, solid-liquid, and liquid-vapour interfaces, respectively, see Fig. 1.3
[16]. An example of a drop with a large contact angle is the raindrop shown
in Fig. 1.1b, a striking feature of which is its spherical shape. Nearly all
drops take the shape of a spherical cap when at equilibrium, due to nature’s
ability to minimise surface energy—the shape with the smallest surface area
for any given volume is a sphere. There is, however, an important assumption
underlying this spherical shape: drops must be small enough for gravity not
to play a role. Gravity can be neglected when the length scale of the drop
(typically the drop radius) is smaller than the capillary length I. = (v/pg)"/?,
where p is the density of the liquid and ¢ is the gravitational acceleration.
The capillary length, more generally, puts an upper limit on the type of flow
problems that can be considered “small scale”, since [. is typically on the order
of a few millimetres (for example, . ~ 2.7 mm for water). In this thesis,
we restrict ourselves to small-scale flow phenomena with length scales smaller
than [..

While Young’s equation provides an elegant description of the contact line
of a static drop consisting of a simple liquid such as water resting on a perfectly
smooth substrate, it fails to predict the contact angle in many complex cases,

BinY

<
[
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Figure 1.3: Definition of the contact angle (6) of a sessile drop on an
undeformable solid substrate. The contact angle is given by Young’s equa-
tion, which describes the balance between the liquid-vapour (71 ), solid-liquid
(7s1), and solid-vapour (vsy) surface tensions at equilibrium.
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which often involve multi-component liquids or non-equilibrium states. For ex-
ample, the contact angles of drops in motion, drops on deformable substrates,
and multi-component drops are in general not described by Eq. 1.1, since
flow may arise near the contact line [17-19]. These cases, however, have an
enormous significance, since numerous liquids used in industrial applications
and everyday life, such as paints, pesticides, soaps, and various food products,
consist of multiple components. Likewise, the inks used in inkjet printing are
complex liquids containing various components such as water, pigments, vis-
cosity modifiers, surfactants, humectants, buffers, and biocides [13]. Each of
these components can affect the flow of the ink, be it during the jetting from a
nozzle, during the merging of two neighbouring ink drops, or during any other
stage of the printing process [7,8,20]. Separate components may also interact
with each other, resulting in entirely new flow phenomena [14]. Moreover,
ink drops are typically out of equilibrium, for example due to their motion or
due to their evaporation. A proper understanding of the joint effects of each
component on the wetting properties and flow dynamics of drops is therefore
crucial for the effective application of inkjet printing.

A key phenomenon in the study of multi-phase interfacial flows is the
so-called “Marangoni effect”, which arises when two liquids of different sur-
face tensions come into contact. The imbalanced surface tension introduces a
tangential stress on the surface, which drives an interfacial flow. In turn, the

Figure 1.4: (a) A dyed drop consisting of a water-alcohol mixture deposited
on a sunflower oil bath spontaneously fragments into smaller drops due to
Marangoni flow. Image taken from [21]. (b) A fingering instablity is observed
for a surfactant-containing drop deposited on a solvent-coated substrate. Im-
age taken from [22].
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interfacial flow often induces a bulk flow, such that flow dynamics are com-
pletely different when the Marangoni effect is present compared to when it is
not. Marangoni flow can also appear in initially well-mixed multi-component
drops due to selective evaporation [19]. This can lead to intricate phenom-
ena, such as phase segregation and pattern formation [23,24]. Another ex-
ample of evaporation-driven Marangoni flow is “Marangoni bursting”, see
Fig. 1.4a [21,25]. Here, a drop consisting of a water-alcohol mixture is de-
posited on an oil bath. The contact angle is initially equal to zero, such that
the drop takes a flat pancake-like shape. Evaporation strongly affects the
local composition of the drop due to its small thickness, with more alcohol
(low 7) evaporating at the contact line than water (high 7). The resulting
imbalance of surface tension drives a Marangoni flow across the interface to-
wards the edge of the drop, which breaks up into many small drops by the
Rayleigh-Plateau instability. The expelled drops, consisting mainly of water,
form contact angles larger than zero on oil, leading to intricate fragmentation
patterns that underline the importance of surface tension in multi-phase flows.

A commonly used method to induce Marangoni flow is the addition of
surfactant molecules (“surface-active agents”) to a base liquid. These mo-
lecules tend to adsorb at interfaces due to their amphiphilic nature (the mo-
lecule is partly hydrophilic, and partly hydrophobic), thereby decreasing the
surface tension of the liquid. Complex flow phenomena can be observed in
surfactant-containing liquids, often driven by the Marangoni effect. For ex-
ample, a surfactant drop deposited on a solvent-coated substrate forms mean-
dering structures called fingers, due to a surface-tension driven instability, see
Fig. 1.4b [22]. In inkjet printing, surfactants are often used to achieve good
jetting and spreading properties of the ink, though they can also disturb the
jetting process by causing unwanted Marangoni flow on the nozzle [13,26].

Finally, the physico-chemical interactions between separate components
must be taken into account for an accurate description of multi-phase drop
dynamics [14]. For example, the merging of two liquid chemical reactants can
lead to intricate precipitation patterns, which also affect the flow dynamics,
see Fig. 1.5a [27]. Similarly, ink is subject to physico-chemical processes dur-
ing the printing process. The colour of ink is provided by pigments—insoluble
colloidal particles. These particles, typically of the order of 100 nm to several
micrometres in size, are small enough to be transported by the flow in drops.
In evaporating drops, for example, particles aggregate at the contact line to
form the well-known “coffee-ring effect”, as shown in Fig. 1.5b [28,29]. In turn,
friction between the particles can also affect the flow inside the drop [30]. De-
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Figure 1.5: (a) Coalescence between two chemical reactants can lead to
intricate precipitation patterns. Image taken from [27]. (b) Evaporating col-
loidal drops leave ring-shaped particle deposits. This is known as the “coffee-
ring effect”. Image taken from [29].

position patterns such as the coffee-ring effect are a key area of research in
the context of inkjet printing, where small concentrated particle deposits are
desired and spread-out ring-shaped deposition patterns are unwanted [31-33].
Additionally, pigment particles may follow the flow of the liquid into the por-
ous structure of paper, resulting in pale colours [34]. Fast aggregation of
pigment particles is therefore expected to improve print quality, since large
particle clusters are less capable of following the flow of the liquid. Particle
aggregation rates can be controlled by physico-chemical mechanisms—they
can be increased by introducing electrolytes into the ink [34]. This is achieved
by printing the ink onto a salt-containing “primer layer”, such that pigment
particles cluster immediately upon deposition [13]. Unable to follow the flow
into the porous structure of the paper, the clustered pigment remains on the
paper surface, resulting in vibrant colours. Hence, physico-chemical hydro-
dynamics are at the heart of inkjet printing.

1.2 Drop break-up and coalescence: scaling laws
and self-similarity

Drops can undergo two elementary topological transitions. They can “break
up”, i.e., split up into two or more smaller drops (Fig. 1.6a). And, inversely,
two drops can “coalesce” to form a single larger drop (Fig. 1.6b). These
transitions are of fundamental importance in inkjet printing—ink jets break
up into ink drops (Fig. 1.2) that eventually land on the substrate, where
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(a) Q (b)
Figure 1.6: The two elementary topological transitions that drops can un-

dergo. (a) Break-up of a single drop into two separate smaller drops. (b) The
coalescence of two separate drops forms a single larger drop.

they coalesce with previously printed ink drops. A solid understanding of
drop break-up and coalescence is therefore of paramount importance for inkjet
printing technology.

Break-up (Fig. 1.6a) has been the subject of intense investigation over
the past decades [35,36]. When a drop splits into smaller drops, a liquid
thread that gradually thins over time is formed. Eventually this leads to a
singularity—when the thread approaches zero thickness, the local curvature
and Laplace pressure blow up [37]. When the thread reaches zero thickness
the drops separate completely. This is called pinch-off, see Fig. 1.7a. Like
many flow phenomena, pinch-off is strongly affected by the composition of the
liquid system. Figure 1.7b shows a pinch-off event of a dilute polymer solution
drop. The addition of a small amount of polymers fundamentally changes the
shape of the liquid thread (c.f., Fig. 1.7a), which is now of almost uniform
thickness along its entire length [38]. Dilute polymer solutions exhibit both
viscous and elastic responses to deformation, due to stretching and subsequent
relaxation of the polymer molecules present in the liquid, and thus have vis-
coelastic properties. In pinch-off, the polymers experience a diverging stress
due their stretching by the extensional flow, resulting in an exponentially thin-
ning thread, with minimum radius rpy, o« et/ (3)‘), where ) is the relaxation
time of the liquid (i.e., the timescale over which a stretched polymer returns
to its equilibrium state) [38-40]. This striking example highlights the import-
ance that each component (no matter how small or dilute) can have on the
flow dynamics of a multi-component system, especially when singularities are
present.

Coalescence (Fig. 1.6b), like break-up, has been an active field of research
in recent years [27,43-54]. Figure 1.8a shows an example of the initial stage of

7
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Figure 1.7: (a) Pinch-off of a water drop. Note the singularity at the connec-
tion of the thread to the drop. Image taken from [41]. (b) Pinch-off of a dilute
polymer solution. A thin liquid thread of approximately uniform thickness
forms. Image taken from [38].

coalescence, and reveals that a bridge that grows over time connects the two
drops. The same singularity that is present at the end of pinch-off appears
during coalescence, though in this case it appears at the start of the process,
when the drops first come into contact and the bridge size is zero (Fig. 1.8a,
at ¢ = 0). The dynamics of coalescence are typically expressed in terms of
the width wg and height hg of the connecting bridge. One usually finds that
these grow in time following a power law, i.e., wg o t* and hy o t°, where
the values of the exponents o and 8 depend primarily on the geometry and
the viscosity of the drops. For example, it was found that hg o< ¢ for highly
viscous sessile drops on a solid substrate with a small contact angle, whereas
ho o t3/3 for their low-viscosity counterpart [44, 50, 55, 56]. For spherical
drops (whose coalescence dynamics are expressed in terms of the bridge radius
ro due to axisymmetry) it was found that rg oc t Int for low viscosity
liquids, and 79 o 2 for high viscosity liquids, with a crossover separating
the two asymptotic regimes [45,57-59]. Apart from the temporal dynamics,
the viscosity of the liquid also affects the shape of the connecting bridge—
capillary waves, such as those shown in Fig. 1.8b, are universally present on
coalescing drops with low viscosity, but are not observed for high viscosities
[43,47,50,56,59-62].
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Figure 1.8: (a) Top-view of coalescing viscous drops on a solid substrate.
Image taken from [42]. (b) Coalescence of low-viscosity spherical drops. Note
the presence of capillary waves on the interface. Image taken from [43]. (c)
Rescaled bridge profiles at different times for the coalescence of sessile vis-
cous drops on a solid substrate. Collapse of the profiles indicates self-similar
dynamics. The black line is the similarity solution of Eq. 1.2. Figure taken
from [44].

Coalescence is by nature a three-dimensional problem. Nevertheless, it
has been described successfully by two-dimensional models because the main
flow direction in coalescing drops is towards the bridge [42,44,57,59]. Par-
ticular success for describing the dynamics of coalescing drops was achieved
using self similarity-based approaches. Such methods assume that the growth
dynamics of the bridge are determined by a small-scale region at the centre
of the coalescing drops; the large-scale features of the drop (such as its shape
far from the bridge and the outer contact lines) are assumed not to affect
the bridge growth dynamics. This allows for considerable simplification of the
Navier-Stokes equations. For sessile drops on solid substrates, for example, the
coalescence dynamics in the viscous regime are then described by the thin-film

equation
oh ~ O 303N
oy L2 | = 1.2

ot + 3n Ox (h 8353) 0 (1.2)

where h(z,t) is the shape of the bridge, t is the time, v is the surface tension,

9
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7 is the viscosity, and x is the lateral coordinate. Equation 1.2 is valid only
when the contact angle is small (i.e., when 0h/0z < 1), and the typical length
scale is smaller than [., such that gravity can be neglected. Furthermore, it
assumes a no-slip boundary condition at the solid-liquid interface. Since the
only relevant length scale in drop coalescence is the bridge height hg, Eq. 1.2
has a similarity solution of the form

h(z,t) = vtH(E), with &= i—f, (1.3)
where H (&) is the similarity profile of the bridge, and v is the coalescence
velocity such that hg = vt. Figure 1.8c shows experimentally obtained bridge
profiles at different times scaled (both vertically and horizontally) according
to Eq. 1.3; their collapse indicates the validity of the similarity solution [44].
Numerically solving Eq. 1.2 with the similarity solution Eq. 1.3 allows one
to find v = 0.8270*/(3n) and the bridge profile H(¢), which is shown as
the solid black line in Fig. 1.8c, in excellent agreement with the experiments
[44]. A comparable self-similarity approach has been used to describe the
coalescence of low viscosity drops [50]. This highlights the self-similar nature
of coalescence, and that this feature can be exploited to theoretically predict
the coalescence dynamics.

Many technological applications of drop coalescence involve liquids with
complex properties. For example, the addition of polymers to ink gives it
viscoelastic properties [65-67]. The effect of viscoelasticity on jet break-up is
well-understood, and it has been shown to play a large role near the singularity
that appears during pinch-off (Fig. 1.7) [38-40]. By contrast, the effect of vis-
coelasticity on the singularity that appears at the start of coalescence remains
unexplored, even though large effects are expected due to the diverging stress.

Figure 1.9: (a) When two drops of different surface tensions merge, liquid
from the low surface tension drop (black) engulfs the high surface tension
drop (green), imaged here using fluorescence. Image taken from [63]. (b)
Marangoni flow can delay the coalescence of sessile drops of different surface
tensions. Image taken from [64].

10
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Apart from viscoelastic effects, Marangoni flow can also present itself during
coalescence. When two drops of different surface tensions merge, the drop with
high surface tension is engulfed by the low surface tension liquid, to minimise
the energetic cost of the drop interface, see Fig. 1.9a [63,68]. This funda-
mentally changes the coalescence dynamics—for example, Marangoni flow can
hinder the coalescence of drops of different surface tensions in a process known
as “delayed coalescence”, which keeps the drops temporarily separated, see
Fig. 1.9b [46,49,52] A similar phenomenon was observed for the coalescence
between drops with different surfactant concentrations [53]. Such phenomena
are also expected to play a role in the coalescence of ink drops, since their
complex composition gives rise to intricate dynamics.

1.3 Fluid dynamics inspired by inkjet printing: a
guide through the thesis

The examples in the above sections illustrate that surface tension-driven multi-
phase flows are of both fundamental and industrial interest. Figure 1.10 gives
an overview of several surface tension-driven flow phenomena that appear
(and may lead to problems) in inkjet printing. These phenomena served as
inspiration for the work presented in this thesis.

Figure 1.10: (a) Black ink flows into yellow ink due to the difference between
their surface tensions, this is know as “bleeding”. The fingering instability of
the contact line leads to low print quality. (b) Ink drops deposited directly
onto paper. (c) Ink drops deposited onto paper that was coated with a primer
layer prior to ink deposition. Notice that the lines (indicated by the arrows)
are not as straight as in (b). Images (a)—(c) courtesy of Canon Production
Printing Netherlands B.V. (d) Ink on a nozzle plate. Marangoni flow drives
the ink toward one of the nozzles. Image taken from [26].

11
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Part I of this thesis deals with wetting phenomena. Consider the test
print shown in Fig. 1.10a, where a patch of yellow ink is printed next to a
patch of black ink. The interface between the different coloured inks is un-
stable, leading to fingering of the black ink into the yellow ink. This process
is known as “bleeding”. Printing on a salt-containing primer layer can prevent
bleeding, but introduces additional complexity, since the substrate is now li-
quid instead of solid and the physico-chemical interaction between the salt
and pigment needs to be taken into account [34]. The liquid nature of primer
layers introduces new undesired effects—Figs. 1.10b—c show two test prints;
the drop rows printed directly on paper (Fig. 1.10b) appear much straighter
than those printed on liquid primer layers (Fig. 1.10c). The effect of primer
layers on wetting dynamics is the focus of chapters 2 and 3 of this thesis.

Inspired by Figs. 1.10b—c, we experimentally study the mutual capillary
interaction between drops on a thin liquid film in chapter 2. We show that
the appearance of a visco-capillary wave on the surface of the liquid substrate
plays an important role in mediating the interaction between drops.

We study the physico-chemical interaction between the primer layer and
deposited ink drops in chapter 3. The simultaneous effects of hydrodynamic
flow and particle destabilisation result in intricate ring-shaped patterns, whose
dynamics we quantify.

In chapter 4, we investigate the wetting properties of water-based solu-
tions of alkane diols (surfactant-like liquids) on solid substrates. Alkane diols
are commonly used in inks, despite their surprisingly complex wetting beha-
viour. The wetting properties of inks on solid (silicon-based) substrates are a
crucial parameter for the reliable production of ink drops, since ink can wet
the nozzle plate (see Fig. 1.10d), which has the potential to cause nozzle fail-
ure [26]. We experimentally reveal that the contact angle of drops consisting of
such solutions is determined by two mechanisms—Marangoni contraction and
autophobing. Both mechanisms result in unexpectedly large contact angles.

Part II of this thesis deals with coalescence. In chapters 5 and 6, we
continue our investigation of drop dynamics on primer layers, such as those
shown in Figs. 1.10b—c, by studying the coalescence of drops on liquid sub-
strates. These drops are known as “liquid lenses” [69]. Compared to the
well-known case of coalescence on solid substrates, the coalescence dynamics
of liquid lenses are relatively unexplored [35]. In chapter 5, we experimentally
quantify the coalescence dynamics of liquid lenses for a wide range of viscos-
ities. The bridge that connects the coalescing lenses is found to grow with
self-similar dynamics—in both the viscous and inertial regimes.

12
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In chapter 6, we further develop our understanding of the coalescence
of liquid lenses, focusing on the dynamics in the viscous regime. The bridge
dynamics converge toward a self-similar solution, though this convergence can
be slow. We show that the fastest mode of coalescence involves a global
translation of the lenses, which is not observed for the coalescence of viscous
drops on a solid substrate.

Inspired by the viscoelastic properties of ink, we study the coalescence
of viscoelastic drops in chapter 7. The emergence of an elastic singularity is
investigated using experimental methods and scaling analysis.

Finally, in chapter 8, we study the mid-air coalescence of drops of dif-
ferent surface tensions. Using a combination of experiments and numerical
simulations, we investigate the asymmetrical shape of these drops during their
coalescence, with particular attention being paid to the role of capillary waves.

13
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Wetting
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Chapter 2

Printing wet-on-wet: Attraction and
repulsion of drops on a viscous film

Wet-on-wet printing is frequently used in inkjet printing for graphical and in-
dustrial applications, where substrates can be coated with a thin liquid film
prior to ink drop deposition. Two drops placed close together are expected
to interact via deformations of the thin viscous film, but the nature of these
capillary interactions is unknown. In this chapter, we show that the interac-
tion can be attractive or repulsive depending on the distance separating the
two drops. The distance at which the interaction changes from attraction to
repulsion is found to depend on the thickness of the film and increases over
time. We reveal the origin of the non-monotonic interactions, which lies in the
appearance of a visco-capillary wave on the thin film induced by the drops. Us-
ing the thin-film equation, we identify the scaling law for the spreading of the
waves and demonstrate that this governs the range over which the interaction
is observed.

0 Published as: Michiel. A. Hack, Maxime Costalonga, Tim Segers, Stefan Karpitschka,
Herman Wijshoff, and Jacco H. Snoeijer, Printing wet-on-wet: Attraction and repulsion of
drops on a viscous film, Appl. Phys. Lett. 113, 183701 (2018).
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2.1 Introduction

Solid particles at a liquid-gas interface have a tendency to form clusters due to
capillarity-driven interactions. This phenomenon is known as the “Cheerios
effect”, named after the floating cereals that form clusters at the milk-air
interface [70]. Manifestations of the Cheerios effect are also found in biology.
For instance, mosquito eggs aggregate on the surface of a pond to form rafts
[5]. Capillary interactions have also been observed between liquid drops and
between solid particles on soft gels [71-73]. Soft gels are solids but share many
properties, such as having a surface tension, with highly viscous liquids [74].
Capillary interactions are also relevant to technological applications, which
range from self-assembly to drop condensation [75-79].

In an industrial setting, capillary driven drop interactions play an im-
portant role in inkjet printing. Substrates are frequently covered by a first
layer of ink before a second ink layer is applied or can be coated with a thin
liquid primer layer prior to ink deposition [8]. Such primer layers contain salts
that destabilise the colloidal pigment particles and thereby increase their sed-
imentation rate, which enhances print quality [34]. Typically, the primer layer
thickness is similar to the size of the ink drops, since both are deposited us-
ing a similar printhead [10]. We have observed interaction between ink drops
deposited on such a primer layer, see Fig. 1.10b—c. However, the nature of
the capillary interactions between drops deposited on a thin liquid film is still

(a) (b)

t= 03 1.1 32 57 155 0.3 1.1 3.3 72 S
Figure 2.1: Interaction of water drops (R = 45 pum) printed on a thin
silicone oil film (hy = 5.7 pm). Two types of interactions are observed:

(a) Attractive interaction causes the drops to form drop pairs. (b) Repulsive
interaction results in a zigzag-like pattern of drops. The difference between
the two experiments is the initial distance between the drops in the printed
line. The scale bar represents 400 pm.

18



2.2. Drop-induced surface deformation

poorly understood.

In this chapter, we experimentally study capillary interactions between
drops on thin liquid films. We focus on the case where the drops and films
are immiscible, which eliminates mixing and Marangoni effects and isolates
the Cheerios-like interactions. The essence of our experiment is shown in
Fig. 2.1: a row of water drops (MilliQ, Millipore Corporation) with a radius
of R = 45 pm (which is the same in all experiments) is jetted onto a thin
silicone oil film (Basildon Chemical Co. Ltd.) with a thickness hg = 5.7 pm
and viscosity 7, = 1 Pa - s using a piezo-driven pipette (AD-K-501, Microdrop
Technologies). We observe both attractive (Fig. 2.1a) and repulsive (Fig. 2.1b)
drop interactions, where the only difference between these experiments is the
distance between the jetted drops. Attraction, as shown in Fig. 2.1a, results
in drop pairs. The entrainment of a thin oil film between the drops delays
their coalescence [80]. In Fig. 2.1b, by contrast, the drops are pushed out of
the initially straight line, resulting in a zigzag-like configuration. The increase
in drop distance clearly points to a repulsive interaction. The semi-coalesced
drop pairs in Fig. 2.1a also show a zigzag structure at ¢ = 15.5 s, which
indicates a possible repulsive interaction for ¢ > 3.2 s. Hence, we find that
drops on thin viscous films exhibit intricate non-monotonic interactions.

2.2 Drop-induced surface deformation

The non-monotonic nature of the interactions can be traced back to the sur-
face deformation induced by a single drop. In Fig. 2.2 we show the profile of
the viscous film (hg = 28 um) at various times after drop deposition, meas-
ured using digital holographic microscopy (abbreviated DHM, model R-~1000,
Lyncée Tec) [81]. The measured surface deformations are non-monotonic and
extend over a distance of approximately 1 mm, almost two orders of magnitude
larger than the size of the drop. The wave-like profile results from volume con-
versation: the liquid is pulled up to create a meniscus close to the drop, and a
capillary wave connects the meniscus to the flat film far away from the drop.
The perturbed profile of the liquid film continues to broaden over time as is
shown in Fig. 2.2a—-d.

Since the interactions between drops are induced by perturbations of the
viscous film, we expect the range of the interaction to increase over time.
Such a time-dependence in the interaction law is fundamentally different from
the usual Cheerios effect (particles at an interface of a deep pool) or the
“inverted Cheerios effect” (drops or particles on elastic layers) [70-73,82,83].
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(b) t=2.0s

Figure 2.2: Evolution of the profile of the viscous film (hg = 28 pm) around
a drop (R = 45 um) located at the origin. The film exhibits a wavelike de-
formation that broadens over time: (a)t = 0.3s, (b)t = 2.0s, (¢c)t = 6.05s,
and (d) ¢ = 10.1 s. The axes in (a) also apply to (b)—(d). The black circle in
the centre corresponds to a region where digital holographic microscopy can-
not properly resolve the film’s surface, and the blue circle denotes the drop’s
diameter and position in the xy plane.

In those cases, the deformation by a single particle reaches a steady state, so
the interaction law is constant over time. In the present case, by contrast, the
time-scale of the change in the deformation of the film is similar to the time-
scale of the induced drop motion. This makes it very challenging to quantify
the detailed interaction law. For this reason, we focus on finding the (time-
dependent) range of attractive interactions and correlate this to the evolution
of the profile of the viscous film.
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2.83. Interaction between two drops

2.3 Interaction between two drops

To reveal how the interaction range depends on time and film thickness, we
focus on the case of two drops, as sketched in the inset of Fig. 2.3a. Oil
films of initially uniform thickness hg were spin-coated on a hydrophobic glass
microscope slide (Menzel-Gléser). The thickness was varied by changing the
rotational speed and spinning time of the spin-coater. The hydrophobisa-
tion, performed by vapour deposition of trichloro(octadecyl)silane (Sigma-
Aldrich), resulted in a contact angle of water on glass sufficiently large to
prevent rupture of the silicone oil film underneath the drops through “rewet-
ting” [84]. The thickness of the silicone oil films was measured using reflec-
tometry (HR2000+ spectrometer with HL-2000-FHSA halogen light source,
Ocean Optics) [85]. The interfacial tension between the water drops, with
surface tension vy = 72 mN/m, and the silicone oil film, with surface tension
Yo = 21.2 mN/m, was Yo ~ 20 mN/m. Consequently, since ywo + Yo < VYw,
a thin silicone oil film engulfed the water drops [80,84,86,87]. The oil-coated
glass substrate was mounted on a linear motor to control the distance between
the drop centres D through the speed of the substrate and the jetting frequency
of the pipette. The time between the deposition of the two drops was typ-
ically around 10 ms, which is much shorter than the relevant timescale over
which the interaction is observed (from ¢ = 0.28 s onwards). The depos-
ited drops were imaged from below the substrate using a camera (Ximea XiQ
MQO013MG-ON) connected to a telecentric lens (Kowa LM50TC), and the ex-
periment was illuminated from above (Schott Ace light source with diffuser
plate). The spatial and temporal resolution were 3.5 pm/pixel and 20 ms,
respectively. The images were processed to extract the time-dependent drop
positions from which the separation distance D and the interaction type (i.e.,
attraction or repulsion) were determined.

From the experiments we determine the type of interaction between two
drops. In Fig. 2.3, we show a typical series of experiments with Ay = 46 pm,
varying the initial drop-drop separation distance D. In Fig. 2.3a, we report
whether the interaction is attractive (denoted A in the figure) or repulsive (de-
noted R) for varying distance D and at various times ¢ after deposition. Here,
each data point corresponds to one experiment with two drops. We observe
a sharp transition between attractive interactions (small D) and repulsive in-
teractions (large D), and we denote the range of attractive interaction by the
critical separation D*. We calculate D* by taking the mean of all D values
in the small region where attraction and repulsion overlap. The error in D*
comprises of the standard deviation of these data points and the pixel error
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®¢t=028s t=0.5s t=1s

0 0.25 0.5 0.75 1
r [mm]

Figure 2.3: (a) Interaction type of two drops separated by a distance D
(A = attraction, R = repulsion), at t = 0.28, 0.5, and 1 s (film thickness
ho = 46 pum). The distance D is measured centre-to-centre (inset). The
arrow indicates D* for t = 0.28 s. The horizontal bars indicate the error in
D*. The datapoints are slightly vertically shifted for clarity. (b) The surface
profile induced by a single drop (same conditions as panel (a)). The black line
indicates the position of D* at ¢t = 0.28 s, while the arrow indicates ryin.
The blue region close to r = 0 indicates the radius of the drop.

in D. The experiments show that D* is not a universal length, as it is ob-
served to increase over time. Deformation of the drops, as observed from the
top-view images, is small and occurs only when D < D* (i.e., in the case of
attracting drops that are in very close proximity of each other), and thus does
not affect the value of D*. Note that the drops in Fig. 2.1 remain circular
in shape, except when in close proximity. Here, we remark that D* is much
larger than both hy and R—for example, we measure D* = 0.61 mm at
t = 0.28 s. This observation is consistent with the behaviour observed for the
printed drop rows in Fig. 2.1, where the drop spacing is also the key factor
that determines the interaction type.

In a separate experiment, DHM was used to measure the drop-induced
surface deformation of the oil film under the same conditions as for Fig. 2.3a.
Figure 2.3b shows the surface profile of the oil film from the centre of the drop

22



2.83. Interaction between two drops

outward along a radial line with coordinate r, where r = 0 corresponds to the
drop centre, at various times . DHM is unable to measure the film profile
close to the drop because the slope of the surface is too steep in this region
(indicated by the black circle in Fig. 2.2). Comparison of Figs. 2.3a and 2.3b
shows that D* is indeed directly comparable to the extent of the deformation
of the film (approximately 0.1-1 mm), demonstrating that the interaction is
indeed governed by this deformation. Since the deformation of the film evolves
over time, the nature of the drop-drop interaction is time-dependent as well.

Since the broadening of the surface deformations is expected to change
with film thickness, we next study the dependence of D* on hg. The ex-
periments from Fig. 2.3a were repeated with oil films of varying hg, and the
results are shown in Fig. 2.4a. Clearly, the value of D* strongly depends on
ho. Indeed, this can be correlated to the dynamics of the deformed surface,
which exhibits a similar dependence on hg. To demonstrate this, we char-
acterise the film deformation for various film thicknesses using DHM. The
time-evolution of the position of the dimple ryiy, i.e., the first minimum in
the profile as defined in Fig. 2.3b, is plotted in Fig. 2.4b for several film thick-
nesses. Clearly, the dynamics are strongly affected by the thickness of the
film. This can be understood from the thin-film equation for the film profile
h(zx,y), which reads

oh Yo 32

— =———-V - (A°VV*h). 2.1
ot 37 ( ) (2.1)
The typical length-scale for the film thickness is hg, while the gradient V acts
along the lateral direction and is set by the radial distance to the drop r. With
this, the terms in Eq. 2.1 are expected to scale as

ho Yo h%
such that ,
1/4
T X (;;Ohgt) . (2.3)

Similar scaling laws have been observed for the flattening time of step-shaped
thin polymer films, and for the wavelike deformation of a liquid close to a
solid wall [88-90]. Figure 2.4c shows the same data as Fig. 2.4b, rescaled
using the scaling from Eq. 2.3, i.e., Tmin/(Voh3/n0)"%. The data collapses
onto a universal curve, in agreement with Eq. 2.3.
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Figure 2.4: (a) The interaction type of two drops separated by a distance D
at t = 0.28 s, for films of varying thickness hg. The solid lines indicate D*,
with the horizontal bars indicating the error in D*. (b) The position of the
dimple iy as a function of time. (c¢) The position of the dimple follows the
scaling predicted by Eq. 2.3. (d) The same data as in (a) and Fig. 2.3a, but
with D scaled according to Eq. 2.3. The solid black line shows the normalised
value of D*, which takes on a single value; the horizontal bar indicates the
standard deviation.
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Figure 2.5: (a) The distance at which the interaction transitions from at-
traction to repulsion D* as a function of the location of the inflection point
of the surface profile r; at t = 0.28 s. The solid black line indicates D* = r;
as a guide to the eye. (b) The surface profile close to the drop for various
film thicknesses normalised by the scaling law in Eq. 2.3. The solid black line
corresponds to the transition from Fig. 2.4c.

We now apply the same scaling law to quantify the range of interactions
between two drops. Figure 2.4d shows the drop interaction type as a function
of the drop spacing D normalised using Eq. 2.3 for a range of film thicknesses.
All data collapse on a single curve with the transition from attraction to
repulsion at D*/ (’yoh%t/no)l/ 4 ~ 4. Thus, the drop-induced deformation of
the surface of the thin liquid film is indeed at the origin of the interactions.

Finally, we wish to quantify what property of the deformation determ-
ines whether drops attract or repel. In the example shown in Fig. 2.3, the
transition between attraction and repulsion D* coincides with the inflection
point of the deformed surface r;i.! This is a general result, as can be seen
from Fig. 2.5a, where profiles of films with varying thickness have been res-
caled according to the lubrication prediction. Indeed, in all cases, the critical
distance D*/(yohit/n,)"/* ~ 4 corresponds to the inflection point. This is

We calculate 7; by finding the r-coordinate of the maximum of &h/dr, which corresponds
to 92h/dr® = 0. The error is determined by finding the two r-coordinates where dOh/Or
is equal to Oh/Or — 0.05 - Oh/Or|r=r, where the last term is typical of the noise in the
surface profile. Since the surface profiles flatten with increasing thickness, whereas the
noise remains unchanged with thickness, the error bars increase for increasing r; in Fig. 2.5.
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further quantified in Fig. 2.5b, showing the direct correspondence of D* and
1.2 Thus, we conclude that the interaction is determined by curvature of the
viscous film. Intriguingly, this result appears to be different from the interac-
tion between drops as observed on an elastic medium [71,72]. In that case, the
transition from attraction to repulsion was found to depend on whether the
separation distance D was small or large compared to the size of the drop R.
For the case considered here, for which D > R, the elastic interaction can be
described by a potential ~ V2h, and the change from attraction to repulsion
occurs when the potential has a maximum [83]. Yet, in our experiments we
find D* to occur when V2h =~ 0 (i.e., not at its maximum), for reasons that
remain to be identified. We emphasise once more that for the elastic case the
interaction law does not change over time, while, by contrast, the viscous film
evolves dynamically. These dynamics bring along additional viscous forces
that may be the cause for the unexpected role of the inflection point of the
profile.

2.4 Conclusion and outlook

In conclusion, we have observed non-monotonic capillary interactions between
liquid drops on thin liquid films, focusing on the case of immiscible liquids.
These non-monotonic interactions are due to visco-capillary waves on the vis-
cous films, induced by the presence of the drops on the film. The range of
the interaction increases with time, due to the broadening of the waves, which
makes this “viscous Cheerios effect” very different from the interactions ob-
served on deep pools or on elastic substrates. Additionally, we have shown
that the transition from attraction to repulsion coincides with the inflection
point of the deformed surface.

These results will be of importance for inkjet printing whenever drops
are deposited on primer layers: capillary waves are also observed when drops
are miscible, though in that case other factors such as mixing and Marangoni
flows are expected to play a role. Surface-mediated drop interactions that
appear due to the presence of a primer layer could be an explanation for
the quality difference between the example prints shown in Figs. 1.10b—c,

2Due to the limited ability of DHM to resolve areas of the surface with high slopes we were
unable to measure the deformation of the film at ¢ = 0.28 s for the three thinnest films (ho =
13, 20, 28 pm). We therefore measured at a time tmeasure > 0.28 s, and extrapolated back to
t = 0.28 s using the scaling law from Eq. 2.3 (in the form r(t) = (t/tmeasme)1/4r(tmeasme))
to obtain the value of r; at ¢ = 0.28 s. Measurements of the films with hy = 38 and
46 pm were performed at ¢ = 0.28 s and required no extrapolation.
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where the drop line that is printed on a primer layer (Fig. 1.10c) is not as
straight as the drop line that is printed directly onto paper (Fig. 1.10b). More
generally, drop interactions on thin films might be of use for applications such
as anti-fouling and self-assembly. For example, substrates could be fine-tuned
for fog harvesting, such that the interactions between drops lead to faster
condensation of water [79].
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Chapter 3

Ring-shaped colloidal patterns on
thin saline water films

In this chapter, we reveal that a colloidal drop forms a ring-shaped pattern
when deposited on a thin saline water film. Electrostatically stabilised col-
loidal particles in the drop destabilise when brought into contact with cations
from the saline water film, such that they form particle clusters. We ex-
perimentally demonstrate that this physico-chemical process, when combined
with hydrodynamic flow, can cause particle clusters to aggregate in an intric-
ate ring-shaped pattern. We show that the shape of the pattern is largely
determined by an undulation of the contact line that appears upon first con-
tact of the drop with the liquid film. Finally, we reveal that the clusters that
constitute the ring are transported radially outwards by Marangoni flow.

0 To be submitted as: Michiel A. Hack, Marjolein van der Linden, Herman Wijshoff,
Jacco H. Snoeijer, Tim Segers, Ring-shaped colloidal patterns on thin saline water films.
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3.1 Introduction

Multi-component flows are ubiquitous in technological applications and nature
alike. For example, multi-component liquids are often used in the context of
patterning, and the presence of salt in oceans leads to large-scale complex
flow structures [91,92]. The description of such flows is typically not com-
plete without taking the physico-chemical interactions into account that occur
between the separate components [14]. A technology where a strong coupling
between hydrodynamic flow and physico-chemical processes exists is inkjet
printing—a technique that allows the controlled deposition of liquid materials
on a substrate [7,8]. Capillary flow phenomena are present throughout the
entire inkjet printing process—small ink drops are generated by the Rayleigh-
Plateau instability, ink can spread on printing nozzles through Marangoni flow,
and ink is absorbed by the paper substrate through capillary action [11,12,26].
Furthermore, ink contains a multitude of components, such as surfactants,
pigments, polymers, and viscosity modifiers [13]. Each of these can affect the
flow dynamics of ink—the presence of colloidal particles and surfactants in
sessile drops leads to intricate drying dynamics, and the presence of polymers
significantly alters the jetting behaviour of ink [8,9, 30,32, 66].

One of the key challenges in inkjet printing is to obtain accurate control
of the deposition of pigment (colloidal particles that provide colour to ink)
on a substrate. This is particularly complicated by the fact that different
stages of the inkjet printing process require different ink properties for op-
timal performance [7]. For example, pigment particles need to be stabilised
(i.e., clustering needs to be prevented) and need to be small enough to be able
to jet the ink, since bubbles may nucleate on large particles, resulting in jet-
ting failure [93]. On the contrary, large pigment particles are desired for bright
colours, since small pigment particles follow the flow of the carrier liquid into
porous substrates (such as paper) resulting in pale colours [30,94]. A similar
dichotomy appears for the evaporation properties of ink—slow evaporation of
ink is desired at the nozzle, since the nozzle may get clogged if the particle
concentration increases due to fast evaporation. On the substrate, however,
slow evaporation can result in colour-to-colour bleeding (see Fig. 1.10a) when
different coloured ink drops merge, which significantly lowers print quality.
Additionally, fast evaporation is also required for further handling of the prin-
ted paper, to prevent ink smudging.

A solution to the above challenges is to cover the substrate with a coating
called a “primer layer” before printing the ink layer [8]. Such primer layers
typically consist of a salt dissolved in water [34]. Inks are, at their most
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1 cm
-~ ]

Figure 3.1: A typical ring-shaped pattern that appears upon the deposition
of a colloidal drop on a thin liquid film consisting of CaCly (a salt) dissolved
in water (top view). The dark unfocused line extending from the drop in the
centre to the rightmost side of the image is the shadow of the needle used to
deposit the drop.

basic description, stable suspensions of pigment particles. Stability can be
induced by, for example, attaching negatively charged molecular groups to the
pigment particles to induce suspension stability by electrostatic means [13].
The interaction between two pigment particles is then described by the DLVO
theory, which states that the particles experience two types of interactions: a
repulsive electrostatic interaction at relatively large distance, and a Van der
Waals attraction at close range [95,96]. The pigment particles do not have
sufficient energy to overcome the energy barrier that the negatively charged
molecular groups induce, hence the pigment suspension is stable. The purpose
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of the cations in the primer layer is to lower the energy barrier between pigment
particles upon first contact between the ink and primer layer [13]. In doing
so, the particles are destabilised (since they can now overcome the energy
barrier) and form clusters that are too large to follow the carrier liquid into
the porous structure of the substrate (such that the colours remain bright), or
into neighbouring ink drops (such that no bleeding occurs), resulting in better
print quality [34,97].

In this chapter, we study a model system that resembles the deposition
of an ink drop on a primer layer. In particular, we reveal that the combined
effects of hydrodynamic flow and colloidal destabilisation can lead to intricate
ring-shaped patterns. An example of such a pattern in presented in Fig. 3.1,
which shows the outcome of the deposition of a (millimetre-sized) colloidal
drop on a liquid substrate consisting of calcium chloride dissolved in water
(several micrometres thick). The drop leaves a large dense blot in the centre
of the image, and is surrounded by a ring-shaped pattern of clustered particles.

The chapter is structured as follows. In section 3.2 we describe the ex-
perimental methods. A general overview of the ring-shaped patterns in given
in section 3.3. In section 3.4 we quantify the dynamics of the patterns, and in
section 3.5 we propose a mechanism for the formation of the observed patterns.
We end with our conclusion and outlook in section 3.6.

3.2 Experimental methods

3.2.1 Colloidal suspensions

We used carbon black pigment (Cab-O-Jet 400, CABOT Corporation) as col-
loidal particles. These particles are functionalised with geminal bisphosphonic
acid groups that stabilise the suspension by means of electrostatic repulsion,
and their diameter is approximately 130 nm [98,99]. We controlled the mass
concentration cq of the colloids in the suspension through dilution of the stock
suspension (cqstock = 15 wt%) with water (MilliQ, Millipore Corporation).
The surface tension of the suspensions was measured using the pendant drop
method, and was found to be independent of the particle concentration, see
Fig. 3.2 [100].

3.2.2 Thin saline water films

Salt solutions were prepared by dissolving calcium chloride (CaCly, Sigma-
Aldrich) in water. The solutions were vigorously shaken until they were uni-

32



3.2.  Ezxperimental methods

90

T T
A Colloidal suspension @

B CaCls-solution &
85 - B

El
z
80 - .
el o
F\

B @ -

ALk
70?‘441'LI L

0 20 40

Figure 3.2: Surface tension () of the colloidal suspension and the CaCls-
solution as a function of their mass concentrations (c) as measured by the
pendant drop method. Every data point corresponds to an average of ten
measurements, each of a fresh drop. The error bars represent the standard
deviations of the ten measurements. We recorded 200 frames over a duration
of two seconds for each drop.

formly transparent, and were allowed to cool down to room temperature before
use. Glass microscope slides (76x26 mm, Menzel-Gléser) were used as base
substrates for the thin liquid films. These were cleaned with acetone and
water, blow-dried with nitrogren, and finally treated with plasma (PDC-002,
Harrick Plasma) to induce hydrophilicity before use. Uniform films were ob-
tained by spin-coating the glass substrates with the CaCls-solutions. The film
thickness was controlled through the spinning time of the spin-coater, and was
measured for each film using reflectometry (HR2000+ spectrometer with HL-
2000-FHSA halogen light source, Ocean Optics). We measured the thickness
of each film at five different spots to confirm uniformity of the film. The re-
fractive index (used for the thickness measurements) and viscosity were taken
from existing literature [101,102]. The surface tension of CaCls-solutions in-
creases significantly with the CaCly mass concentration ¢ due to the ionic
nature of CaCls-solutions, see Fig. 3.2. The density of the CaCls-solution,
which was used to determine the surface tension, was measured using a densi-
meter (DMA 35, Anton Paar). We have verified that the film thickness (and
thus the composition) remains approximately constant over time, and is not
strongly affected by evaporation of the liquid, see appendix 3.7.1.
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3.2.3 Experimental procedure

The experiment consists of depositing a colloidal drop (volume V' = 5 ulL)
on a thin saline water film and observing the subsequent pattern formation.
The experimental setup is shown in Fig. 3.3. Two high-speed cameras were
used to simultaneously record the dynamics from the top (Nova S12 camera,
Photron with LM50TC lens, Kowa) and side view (Nova S12 camera, Photron
with 12X zoom lens, Navitar) perspectives at 10 000 frames per second. The
top view perspective was used to observe the pattern formation process, while
the side view perspective was used to accurately determine the moment of first
contact between the drop and the film’s surface, and to measure the initial
spreading dynamics of the drop. Two light sources were used to illuminate the
experiment from the side (KL2500, Schott) and below (uniform LED backlight,
Phlox). A different bottom lighting technique using a divergent light source
(KL2500, Schott) was used for several experiments to image the curvature
of the liquid-air interface of the thin film. The drops were generated on a

top view camera

linear motor

A

colloidal drop ﬁzw—syringe pump
HI |

substrate
side view camera E—— ‘ light
tz . . . |
t;jnn saline water film LED diffuser
L

Figure 3.3: Schematic of the experimental setup. A (millimetre-sized) col-
loidal drop is deposited on a saline water film (several micrometres thick), and
its subsequent dynamics are recorded from the top and side view using two
high-speed cameras.

34



3.3. Ring-shaped patterns

needle (26 gauge, Hamilton Company) by a syringe pump (PHD2000, Harvard
Apparatus). To ensure reproducible and gentle deposition of the drops, the
needle was moved towards the surface of the thin film by a programmable
linear motor (T-LSR150B, Zaber) with a velocity (=~ 0.01 m/s) that was much
smaller than the typical contact line velocity during the initial spreading phase
(~0.42 m/s).

3.3 Ring-shaped patterns

We first provide a general description of the observed patterns, and determine
how their qualitative features depend on the properties of the colloidal drop
and the saline water film. Figure 3.4 shows the formation of a pattern for typ-
ical material properties (cq = 10 wt%, ¢t = 30 wt%, hg = 20 pm). When
the drop first touches the film (at ¢ = 0) it rapidly starts spreading. The
contact line develops an undulate shape during this initial spreading motion
(visible at t = 0.01 s). At the same time, colloidal particles are destabil-
ised by the presence of Ca®t cations in the liquid substrate, resulting in the
clustering of particles. These particle clusters are observed in Fig. 3.4 for
t > 0.02 s. Some particle clusters separate from the contact line of the centre
drop when it stops spreading (at t ~ 0.02 s), giving rise to the ring-shaped
pattern. Interestingly, the outer particle clusters in the ring move at a lower
radial velocity than the inner particle clusters. This means that small particle
clusters in the ring merge, and that the ring width decreases over time (c.f.,
t = 0.15sand ¢t = 2.00 s). The radius of the ring (and thus its perimeter)
grows over time. This eventually forces the ring to break up into separate
large clusters, since the network of clusters that constitutes the ring has finite
extensibility. This is observed at ¢ = 1.00 s, where gaps have appeared in
the ring, and t = 2.00 s where additional gaps have formed. Unsurprisingly,
the gaps appear where the ring width is thinnest, i.e., at the weakest points
of the ring with the smallest amount of contact between clusters. Finally, at
large times (¢ > 2.00 s), the particle cluster morphology does not undergo
major changes, and the clusters exhibit only radially outward motion.

The example shown in Fig. 3.4 indicates that the ring-shaped patterns
likely depend on three features of the system, namely: (i) the presence of
colloidal particles, (ii) a mechanism to destabilise these particles, and (iii)
hydrodynamic flow in the drop and the liquid substrate. We therefore system-
atically vary the properties of the colloidal drop and the liquid substrate to
determine the influence of each of these features on the ring-shaped patterns.
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0.15 s 0.50 s 1.00 s 2.00 s

Figure 3.4: Image sequence showing the deposition of a colloidal drop
(ca = 10 wt%) on a ¢t = 30 wt% film with hy = 20 pm, and sub-
sequent pattern formation.

0.00 s 0.01 s 0.02 s 0.04 s

Figure 3.5: Image sequence showing the deposition of a water drop (¢q = 0)
onac = 30 wt% film with hg = 20 pm. No contact line undulation is
observed.
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3.3. Ring-shaped patterns

3.3.1 Influence of the particle concentration

We start by verifying whether the presence of colloidal particles is strictly
required for the appearance of ring-shaped patterns, or whether the particles
simply make the pattern visible. Figure 3.5 shows an experiment under the
same conditions as the experiment shown in Fig. 3.4, but without colloidal
particles (cq = 0). We used a divergent backlight (KL2500, Schott) for this
experiment instead of the uniform (non-diverging) backlight that was used for
the experiment shown in Fig. 3.4. This illumination technique allows us to
visualise the curvature of the thin film’s surface from changes in the image
intensity. We observe no undulation of the contact line in the experiment
shown in Fig. 3.5. We do, however, observe radial spreading dynamics (which
we further quantify in section 3.4) similar to that of the ring in Fig. 3.4. While
a ring-like shape is observed, we note that the undulate shape that is observed
in the presence of particles is not present in Fig. 3.5. The presence of colloidal
particles is thus crucial for the appearance of the pattern, and for that reason
we investigate the influence of the particle concentration for ¢q > 0.

In Fig. 3.6 we show patterns obtained for various ¢q > O att¢ = 1.00s
while fixing the other parameters ¢ = 30 wt% and hg ~ 9 um. For very
small cq, such as ¢g = 0.1 wt% (Fig. 3.6a), the ring-shaped pattern is ab-
sent. The colloidal suspension is presumably too dilute at such small ¢q for
the particles to quickly come into contact with each other upon destabilisation
by Ca?T cations, such that the clusters that make up the ring are not formed.
While some clustering is visible in Fig. 3.6a, these clusters are very sparsely
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Figure 3.6: Patterns observed for (a) ¢g = 0.1 wt%, (b) ¢q = 1.0 wt%, (c)
ca = 25 wt%, (d) ca = 5.0 wt%, (e) ca = 7.5 wt%, and (f) cqa = 12.5 wt%.
For all cases t = 1.00s, ¢ = 30 wt%, and hy =~ 9 pum. The scale bar
applies to all images. The ring-shaped pattern only appears for sufficiently
high Cd-
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Chapter 3. Ring-shaped colloidal patterns

distributed. The ring-shaped pattern is universally present for ¢q > 1.0 wt%,
see Fig. 3.6b—f. The qualitative features of the patterns in Fig. 3.6b—f are
mostly independent of ¢q; for example, we find that the ring width (a promin-
ent feature of the patterns) does not increase with ¢q for ¢g > 2.5 wt%. We
hypothesise that, at such high cq, the colloidal particles are so densely distrib-
uted in the liquid that their destabilisation and clustering occurs on roughly
the same time scale for all ¢q. We note that the fluid dynamical properties
of the drop (e.g., surface tension and viscosity) are mostly independent of ¢4
(only p shows a small dependence on c¢q), such that the difference in the pat-
tern morphologies in Fig. 3.6 is the direct result of the particle destabilisation,
and not hydrodynamics. In short, Figs. 3.4-3.6 reveal that a sufficiently high
cq, and the appearance of the contact line undulation are both required for
the ring-shaped pattern to appear.

3.3.2 Influence of the CaCl; concentration and film thickness

We now turn to the role of the thin saline water films. The particle destabilisa-
tion rate depends on both the particle concentration as well as the CaClsy con-
centration c. We therefore expect significant effects of ¢¢ if the pattern form-
ation is (partly) governed by particle destabilisation, and not only by hydro-
dynamics. Figure 3.7 shows a series of experiments in which we varied ¢t while
keeping c¢q = 10 wt% fixed. When ¢t = 0 (i.e., when the substrate is pure
water), we observe neither an undulation of the contact line nor a ring-like
pattern (Fig. 3.7a). Instead, the drop spreads out uniformly, without the vis-
ible formation of particle clusters at any point in the spreading process. This

0 wt% 0 01 Wt% 0 1 wt% 1 wt% 5 wt% ) 10 wt%
3
. . 3
i
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Figure 3.7: Patterns observed for (a) ¢t = 0 wt%, (b) ¢t = 0.01 wt%, (c)
e = 0.1 wt%, (d) ¢ = 1 wt%, (e) ¢f = 5 wt%, and (f) ¢t = 10 wt%. For
all casest = 1.00s, ¢q = 10 wt%, and hg ~ 9 pum. The scale bar applies
to all images. The ring-shaped pattern only appears for sufficiently high c;.
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3.3. Ring-shaped patterns

is additional evidence for the importance of particle destabilisation for the
formation of the ring-like patterns.

Inspired by this result, we increase c; in small steps in Fig. 3.7b—f. Surpris-
ingly, even a very small amount of CaCls has a strong effect on the morphology
of the contact line—a deformation of the contact line (though non-periodic)
can be observed for concentrations as low as ¢ = 0.01 wt%. Further increase
of ¢ shows no significant effect (Fig. 3.7c-d) until ¢ > 5 wt% (Fig. 3.7e),
where clusters that separate from the centre drop are first observed. These
clusters, however, are not transported far away from the centre drop, such
that the ring-shaped pattern is still absent. For ¢ = 10 wt% (Fig. 3.7f) and
higher (Fig. 3.4) the ring-shaped pattern appears, and we note that (similar
to ¢q) the qualitative features of the ring do not strongly depend on ¢f for
ce > 5 wt%.

We note that the surface tension (see Fig. 3.2) and viscosity of the film
both depend on ¢¢, such that we cannot fully exclude hydrodynamic effects
to explain the differences between the patterns in Fig. 3.7. Nevertheless, the
difference between the patterns observed for ¢ = 0 and ¢ = 0.01 wt% is
strong evidence that particle destabilisation plays a critical role for the pattern
morphology, since the difference in surface tension and viscosity between these
¢ is small, yet the contact line behaves completely differently.

Another feature of the thin saline water film is its thickness hg, which
governs the flow inside the film. Figure 3.8 shows a series of experiments in
which we varied hg with cq and ¢f fixed, at 10 wt% and 30 wt%, respectively.
The ring-shaped pattern appears for all hg, and the width of the ring increases

(a)3pum (b) 5 um (c) 10 pum (d) 13 pm  (e) (f) 24 pm
0 | . )
1 cm

Figure 3.8: Patterns observed for (a) hg = 3 um, (b) hg = 5 um, (c)
ho = 10 pm, (d) hg = 13 pum, (e) hg = 21 pm, and (f) by = 24 pm. For
all casest = 1.00s, cq = 10 wt%, and ¢f = 30 wt%. The scale bar applies
to all images. The width of the ring shows a strong dependence on hy.
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Chapter 3. Ring-shaped colloidal patterns

with hg. The radius of the ring also shows a small dependence on hg, though
small variations in the initial drop volume also affect the radius of the ring.
The dependence of these features on hg indicate that hydrodynamic flow in the
film plays an important role for the morphology of the ring-shaped pattern.

3.4 Dynamical aspects of pattern formation

The results presented in section 3.3 reveal that pattern formation is governed
by delicate balance between hydrodynamic flow and particle destabilisation.
Based on Figs. 3.4 and 3.5, we identify a separation of time scales—the initial
spreading dynamics of the drop are O(1072 s), whereas the outward motion of
the ring is O(1 s). In this section, we therefore study the dynamics of each of
these two phases individually, to determine the effect of particle destabilisation
on the flow dynamics.

3.4.1 Rapid drop spreading

When the drop first makes contact with the thin saline water film it spreads
rapidly until it reaches an equilibrium shape (determined by surface energies).
An example measurement of a spreading colloidal drop on a liquid substrate is
shown in Fig. 3.9a. For low-viscosity liquids the spreading dynamics of a drop
are typically explained by a balance between the capillary pressure (ox yR/ r%)
and the inertial pressure (o< p(dr,/dt)?), such that

£\ 1/2 3
20((7_) , with T:Hp;};, (3.1)

where 7}, is the contact radius of the spreading drop (see Fig. 3.9a), R is
the initial radius of the drop before contact, t is the time, 7 is the inertio-
capillary time scale, p is the density of the drop, and -y is the surface tension
of the drop [103]. Importantly, Eq. 3.1 was found to be independent of the
substrate properties [104]. Indeed, it was found that Eq. 3.1 is also valid for
drop spreading on liquid substrates [84]. Since the surface tension of the thin
saline water film is higher than that of the drop, the drop is not engulfed by
liquid from the saline film, and thus the surface tension v in Eq. 3.1 is that of
the drop [84,86,87].

Figure 3.9b shows the contact radius as a function of time, scaled accord-
ing to Eq. 3.1, for several combinations of drop and film properties. The solid
black line in Fig. 3.9b is Eq. 3.1 with fitted pre-factor 1.46, which is found to
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Figure 3.9: (a) A typical side view experiment showing the initial rapid
spreading (here ¢cq = 10 wt%, ¢¢ = 30 wt%, and hg = 3 pm). (b)
Contact radius (rp, the definition is shown in the snapshot for 2.0 ms in (a))
versus time (t). For all experiments, the reference system was ¢q = 10 wt%,
ce = 30 wt%, and hy ~ 10 um, with one of the parameters being varied

in each of the experiment series (their values are indicated by the white lines
in the colour bars, 45 experiments are shown in total). The solid black line
shows Eq. 3.1 with pre-factor 1.46.

accurately describe the experimental data. A similar pre-factor was found for
drop spreading on liquid substrates without colloidal particles in the drop [84].
Surprisingly, we find that the presence of colloidal particles in the drop and
their destabilisation by the cations in the liquid substrate have no effect on
the spreading dynamics—not even in the pre-factor of Eq. 3.1. We note that
destabilisation of the particles occurs on the same time scale as drop spreading:
undulation of the contact line is visible at the ¢/7-values covered in Fig. 3.9b.
This indicates that particle destabilisation is limited to a small region close to
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Chapter 3. Ring-shaped colloidal patterns

the substrate surface, and that most of the colloidal particles in the bulk of the
drop have not yet clustered when the drop is spreading. This is to be expected
since diffusion governs the motion of cations into the pigment suspension [34].
The diffusion length scale associated with the time scale of inertial spreading
is L2 ~ Dt [69]. For typical values associated with diffusion and inertial
spreading (D = O(107° m?/s), and t = O(1072 s), see Fig. 3.4), we find
L = O(107% m), which is orders of magnitude smaller than the drop size.
Additionally, we expect that there is no significant flow-induced mixing of the
two liquids, since the Reynolds number Re = p(dry/dt)hg/n = O(1). Clus-
tering of particles is therefore limited to the regions of direct contact between
the colloidal suspension and the thin saline water film.

3.4.2 Slow translation of clusters

The second phase of the temporal evolution of the pattern involves a slow
radially outwards translation of the clustered particles in the ring. In Fig. 3.5
we showed that a ring forms regardless of the presence of particles, and that
(for ¢q = 0) a hole opens in the film at the centre. This is reminiscent of
“Marangoni spreading”—flow induced in the thin films by a surface tension
gradient [105]. We recall that the surface tension of the saline water film is al-
ways higher than that of the drop in our experiments (Fig. 3.2). In Marangoni
spreading, the liquid of the substrate that is displaced by the flow is collected
in a “rim” (c.f., Fig. 3.5 and Ref. [105]). We hypothesise that the particle
clusters in the ring are transported at the crest of this rim. Particles have
been shown to be transported by Marangoni waves [106]. If the particle ring
is indeed transported by the Marangoni rim, then the radial growth dynam-
ics of the cluster ring should be equal to the growth dynamics of Marangoni
spreading.

Following the method of Ref. [105] we can derive a scaling law for the
expected time evolution of the radius of the ring r,. The flow inside the liquid
substrate is driven by the Marangoni stress Avy/r, and opposed by the viscous
stress n(dry/dt)/h. Here, h is the characteristic thickness of the thin liquid film
that remains on the substrate for radii < r; (see the schematic in Fig. 3.10),
which is determined from volume conservation: the liquid volume in the thin
centre region is equal to the initial drop volume, such that 7r2h ~ V. By
balancing the stresses, we then find

1/4
vm> , (3.2)

roc KtY4) with K = (
n
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Figure 3.10: Ring radius (r;) versus time (¢). For all experiments, the
reference system was ¢q = 10 wt%, ¢t = 30 wt%, and hy ~ 10 pm, with
one of the parameters being varied in each of the experiment series. The solid
black line shows Eq. 3.2 with pre-factor 0.54. The colour bar legend from
Fig. 3.9 also applies to this figure. The schematic shows the definitions of h
and hg used in the derivation of Eq. 3.2. The snapshots show the definitions
of rp for ¢cg = 0 (top) and ¢g > 0 (bottom).

where 7, is the radius of the ring, V' is the drop volume, and 7 is the viscosity
of the liquid substrate.

In Fig. 3.10 we show the ring radius as a function of time, scaled according
to Eq. 3.2, for several combinations of drop and film properties. The images
show the definitions of r,. For ¢q > 0, where the pattern is visible, we measure
ry by fitting a circle to the ring. For ¢q = 0 this method cannot be used,
and we measure 7, by fitting a circle to the inner rim, i.e., the location where
the image intensity gradient is maximum. The solid black line in Fig. 3.10b
is Eq. 3.2 with fitted pre-factor 0.54. While Eq. 3.2 correctly predicts the
order of magnitude of 7, the experimental data does not precisely match the
predicted exponent 1/4. Rather, we find that an exponent of approximately
1/6 best matches the data. A possible reason for this is that Eq. 3.2 does
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Figure 3.11: Image sequence of the deposition of a 10 wt% colloidal drop
on a 30 wt% CaCl; solution film (hg = 15 pum), and the subsequent pattern
formation. The clustered particles in the ring are located on the crest of the
Marangoni rim. We used the same illumination technique as in Fig. 3.5.

not include the finite size of the centre drop—the drop eventually reaches
an equilibrium shape with a contact angle larger than zero (see for example
Fig. 3.9a at t = 2.0 s). Additionally, the initial inertial spreading dynamics
and subsequent crossover into the Marangoni spreading regime (described in
section 3.4.1) are also not included in Eq. 3.2. This crossover can be observed
for the ¢q = 0 data in Fig. 3.10 close to t ~ 1072 s, and is associated
with a slowing down of the radial growth. However, we note that the data for
various ¢¢ (with 3.5 mN/m < Ay < 11.1 mN/m) collapse with the scaling
predicted by Eq. 3.2. Further evidence that the particle clusters are surfing
on the Marangoni rim is provided by the overlap of the ring radius for c¢q > 0
with that of the ¢g¢ = 0 data.

Finally, in Fig. 3.11 we show the pattern formation dynamics for ¢q > 0
with diverging back illumination technique that was also used for ¢g = 0 in
Fig. 3.5. This measurement confirms that the particle clusters are transported
by the crest of the Marangoni rim. We do note that the presence of particles
seems to have a smoothing effect on the transition from the Marangoni rim to
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the thin central region (c.f., Fig. 3.5, where a sharp transition can be observed).
Hence, the presence of particle clusters does seem to affect the morphology of
thin film’s interface in the Marangoni spreading regime.

3.5 Cluster shape and proposed mechanism

Having identified the general qualitative features (section 3.3) and dynamics
(section 3.4) of the patterns, we now propose a mechanism that could lead to
the observed ring-shaped patterns. In particular, we provide an explanation
for the final shape of the individual clusters that constitute the ring.

The first spreading phase (section 3.4.1) is rapid, such that the destabilisa-
tion of the colloidal particles by Ca?* cations occurs mostly at areas of direct
contact between the drop and the film. At the contact line, the destabilised
particle clusters form an undulate shape, see Fig. 3.12a. These undulations
play a large role for the final pattern morphology. The spreading dynamics
slow down after the initial (inertial) spreading phase, and the radial growth
is then driven by Marangoni spreading (section 3.4.2). During the crossover
between the two spreading regimes, particle clusters separate from the centre
drop (see Fig. 3.12b), carried by the Marangoni rim (Fig. 3.11). This indicates
that liquid from the colloidal drop (or small particle clusters) is transported
onto the rim by Marangoni flow before the rim separates from the centre
drop (we recall that the surface tension of the colloidal drop is lower than
that of the saline water film). The small particle clusters that are trapped
on the Marangoni rim eventually aggregate to form the large clusters that
constitute the ring. This aggregation is illustrated in Fig. 3.12c—the radial
velocity of small clusters (the small circles indicated by (i) in Fig. 3.12c) close
to the centre drop is higher than the radial velocity of particles close to (or
at) advancing front, due to curvature-driven motion or capillary interactions
between particles [70,107]. Compare, for example, the width of the ring in
Fig. 3.12b—d.

As the radius (and thus also the circumference) of the Marangoni rim on
which the ring is trapped keeps growing, Van der Waals forces are no longer
able to keep the clustered particles at the advancing front together. This res-
ults in v-shaped cracks in the advancing front of the ring (Fig. 3.12¢), and,
eventually, break-up of the ring into a number of large clusters (Fig. 3.12d).
The location of the cracks is determined by the initial undulation of the con-
tact line. Compare, for example, the location of the cracks in Fig. 3.12¢ to the
maximum radial extent of the undulations in Fig. 3.12a (the white dashed lines
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Figure 3.12: Overview of the different phases of the pattern formation mech-
anism. (a) The contact line develops an undulating shape during the initial
inertial spreading phase. (b) Small particle clusters (light grey region) separ-
ate from centre drop (dark grey region). Particles at radius r; have a higher
velocity than particles are radius 1. The undulating shape of the outer edge
is maintained (the white dashed lines serve as guides to the eye). (c) The
separated clusters collect in a ring. (d) The ring breaks up into separate large
clusters. Break-up occurs at the thinnest parts of the ring.
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serve as guides to the eye). Cracks appear at places where the ring is thinnest
(i.e., the weakest parts of the ring), and these align with the undulation min-
ima. At the rear of the ring, however, there is a continuous addition of small
clusters to the ring, through the process described above. Since these clusters
move radially outward with no perpendicular motion, they are distributed
over an increasingly large circumference. This is illustrated in Fig. 3.12c—two
particles, indicated by (ii), a distance r; from the centre that are separated
by an angle Af will be separated by a distance I; = r;Af. Some time later,
when the particles are at a distance ry from the centre (with 72 > 71), their
distance is lo = 719A0 > [;. Hence, while the ring cracks at the advancing
front, the particles are evenly distributed at the rear of the ring (though the
particle density decreases with increasing radius). This leads to the distinct
trapezoidal shape of the particles, observed in Fig. 3.12d.

This mechanism also offers an explanation for the width w of the ring,
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Figure 3.13: (a) Average width of the particle clusters on the Marangoni rim
(w) as a function of film thickness (hg) for ¢q = 10 wt%. The inset show
the definition of w, which we measure for each individual particle cluster; the
reported value is an average of all these values, with the error bars indicating
the standard deviation. Note that the width of the Marangoni rim also in-

creases with hg, as indicated by the snapshots in (b) and (c), where ¢q = 0
(the rim width is indicated by the arrows). For all cases ¢t = 30 wt% was
fixed.
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which increases with hg (see Fig. 3.9). The total number of particles on the
Marangoni rim at the time of separation from the centre drop is set by the
width of the rim, which has been shown to depend on hg (in the absence of
particles) [105]. Hence, the final width of the ring w, which is determined by
the number of particles on the rim, is expected to scale with hg as well. This
is verified in Fig. 3.13a, where we report w as a function of hg. Figure 3.13b—c
show two snapshots of the Marangoni rim for different hy, and show that the
width of the Marangoni rim (in the absence of particles) indeed depends on
ho, in accordance with Ref. [105].

Finally, we remark that the precise origin of the undulate shape of the
contact line during the initial spreading phase remains unknown. We note,
however, that cracking of the contact line (similar to the mechanism described
above) could be a possible source of the undulation. Here, the contact line
forms a continuous chain of clustered particles. Since the radius of the drop
increases due to its inertial spreading, it is forced to break up. Subsequently,
new particles clusters join behind the (broken-up) contact line, giving rise to
its undulate shape.

3.6 Conclusion and outlook

In this chapter, we have revealed a novel pattern formation mechanism: ring-
shaped patterns appear when a colloidal suspension drop is deposited on a thin
saline water film. Using experiments, we have shown that the patterns appear
due to a simultaneous hydrodynamic flow and particle destabilisation. The
morphological features of the patterns depend on a number of parameters—
the particle concentration and salt concentration need to be sufficiently high
for the ring-shaped patterns to appear, and the width of the ring is strongly
affected by the thickness of the liquid substrate.

The contact line plays an important role in the formation of the pattern.
The contact line dynamics are initially well-described by inertial flow, until
the drop reaches its final radius. Then, clustered particles separate from the
drop and are transported at the crest of the Marangoni rim, resulting in the
final ring-shaped pattern.

We note that the exact moment of separation of the particles from the
centre drop is not yet well-understood—it is not yet clear if liquid from the sa-
line water film remains underneath the centre drop after the ring with particle
clusters separates, or how the presence of the particles affects the (three-
dimensional) morphology of the contact line region. Our current experimental
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method is not suited to study the flow dynamics in the liquid substrate dir-
ectly underneath the centre drop due to the opaque nature of the particle
suspension. Other techniques, such as digital holographic microscopy, con-
focal microscopy or even numerical simulations, may be more suited for such
explorations [81].

The results presented in this chapter show that physico-chemical hydro-
dynamics contains rich physics. In terms of applications, our results are par-
ticularly relevant for inkjet printing technology, where salt-containing primer
layers are often used to improve print quality. In chapter 2, we showed that
the presence of a primer layer can introduce unwanted interactions between
ink drops. Here, we show that the physico-chemical nature of ink and the
primer liquid can also induce unwanted effects that must be accounted for in
their design. We do note that the ratio between drop size R and film thickness
hg in our work is much larger than in inkjet printing, and it would therefore
be of interest to study patterns at smaller R/hg-ratios.

Future work should address the effect that the material properties of the
salt and the particles have on the observed patterns. For example, it has been
shown that using MgCls instead of CaClsy results in denser particle clusters,
which could in turn affect the pattern [34]. Furthermore, the destabilisation of
colloidal particles is also affected by the valency of the cations [108]. A more
detailed understanding of these properties could also provide better insight
into the appearance of the contact line undulation, which is expected to depend
on the (destabilisation) properties of the particles. A better understanding of
the effect of these material properties, and others such as the particle size
and shape, will also allow tailoring of the salt and particles to the desired
outcome: no appearance of the pattern, which is desired in inkjet printing, or
the contrary, which may have applications in micro-patterning.
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3.7 Appendix

3.7.1 Evaporation of the thin films

Figure 3.14 shows a typical example of a temporal thickness measurement of
a saline water film (¢f = 30 wt%). The film was immediately transferred to
the spectrometer setup upon completion of its preparation by spin-coating.
Here, t = 0 corresponds to the start of the reflectometry measurement. The
measurement was performed in ambient conditions, i.e., T = 20 =4 1°C,
RH = 64 +3% (measured with a Super EX Sensor, TFA).

We observe that the film thickness changes only slightly over the course
of several minutes, despite the volatile nature of water. We suspect that this
is due to the formation of a thin salt crust that blocks water molecules. Water
evaporates from the surface of a fresh film (i.e., without crust). This causes a
local increase of the CaCly concentration close to the surface, which eventually
results in the formation of a solid crust at the surface of the film when the
local CaCls concentration exceeds the solubility limit. A similar crust-forming
effect due to evaporation has been reported for spin-coated polymer films [109].
When a water drop is deposited on a thin saline water film that has been
exposed to ambient conditions, we observe radial lines that could be the result
of wrinkling of the salt crust, see Fig. 3.15. These patterns are very similar to
the wrinkling patterns that appear when an object is dropped on a thin elastic
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Figure 3.14: Thickness (hg) as a function of time (¢) for a thin saline wa-
ter film (¢f = 30 wt%) exposed to ambient conditions (T = 20 + 1°C,
RH = 64 + 3%).
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sheet floating on a deep liquid bath, c.f., Ref. [110]. Note that the wrinkling
pattern in Fig. 3.15 becomes less prominent with increasing film thickness.

The experiments described in the main text (including the film thickness
measurements) were completed within two minutes after completion of the
spin-coating procedure, such that evaporation of the film does not play a large
role in the experiments.

(a) 4 pm (b) 11 pm (c) 23 pm

Figure 3.15: Wrinkling-like pattern that is observed (at ¢ ~ 10 ms) when
a water drop is deposited on a thin saline water film (¢f = 30 wt%) that has

been exposed to ambient conditions, for (a) hg = 4 um, (b) hg = 11 um,
(¢) ho = 23 pm.
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Chapter 4

Wetting of two-component drops:
Marangoni contraction versus
autophobing

The wetting properties of multi-component liquids are crucial to numerous in-
dustrial applications. The mechanisms that determine the contact angles for
such liquids remain poorly understood, with many intricacies arising due to
complex physical phenomena, for example, due to the presence of surfactants.
In this chapter, we consider two-component drops that consist of mixtures
of vicinal alkanediols and water. These diols behave surfactant-like in water.
However, the contact angles of such mixtures on solid substrates are surpris-
ingly large. We experimentally reveal that the contact angle is determined by
two separate mechanisms of completely different nature, namely Marangoni
contraction (hydrodynamic) and autophobing (molecular). The competition
between these effects can even inhibit Marangoni contraction, highlighting the
importance of molecular structures in physico-chemical hydrodynamics.

O Published as: Michiel A. Hack®, Wojciech Kwiecinski®, Olinka Ramirez-Soto®, Tim
Segers, Stefan Karpitschka, E. Stefan Kooij, and Jacco H. Snoeijer, Wetting of Two-
Component Drops: Marangoni Contraction Versus Autophobing, Langmuir 37, 3605-3611
(2021). °*Contributed equally. M. A. H. performed the contact angle and surface tension
measurements, W. K. performed the ellipsometry measurements, O. R.-S. performed the
pPIV measurements.
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Chapter 4. Wetting of two-component drops

4.1 Introduction

Many industrial processes require a fundamental understanding of the wetting
properties of liquids on solid surfaces [111]. Examples are inkjet printing [7],
oil recovery [112], and lithography [6]. A key concept in the description of
wetting is the contact angle 6, as defined in Fig. 4.1a. Properties of the li-
quid together with the surface chemistry of the solid determine the value of
0 [16,113]. The wetting properties and contact angles of single-component
liquids have been extensively studied [69,114]. However, a large number of
industrial applications require mixtures of liquids [115] or the addition of a
surfactant to enhance the spreading properties of a liquid [116]. For complex
drops consisting of two or more components, the wetting properties are far
from understood. The components may phase separate [24,117], selectively
evaporate [118], emulsify [25], and adsorb at interfaces [29], and even grav-
ity can play a role [119,120], leading to intricate wetting properties on solid
surfaces.

In this chapter, we study the contact angle 6 of multi-component drops,
where the less volatile component acts as a surfactant, on OH-terminated sub-
strates that are fully wetted by water. Figure 4.1a shows the contact angle
of drops consisting of water—1,2-hexanediol (1,2-HD) mixtures on a piranha
solution-cleaned hydrophilic glass substrate (microscope coverslips, Menzel-
Gléaser) with minimal pinning. The reported angle is attained within seconds
after deposition of the drop, see Fig. 4.1b. The key result of Fig. 4.1a is that
0 continually increases with the 1,2-HD mass fraction ¢. This is surprising for
two reasons. First, 1,2-HD has been shown to exhibit surfactant-like properties
when mixed with water due to its amphiphilic molecular structure [121-124].
Increasing the mass fraction ¢ of 1,2-HD lowers the surface tension ~ry, see
Fig. 4.1c, which normally would lead to enhanced spreading. However, the
opposite trend is found: 6 increases with ¢. A second surprise is that this
increase continues above the critical micelle concentration (cmc) ¢eme ~ 0.1,
even though 4y is constant in this range [125]. Here we show that these un-
expected features are the result of two mechanisms of different origins—one
of hydrodynamic nature: Marangoni contraction, and the other of molecular
nature: autophobing. This resolves the relation between two controversial
models for Marangoni contraction [19, 126, 127] and, for the first time, de-
scribes quantitative limitations of the contracted state and its sensitivity to
the molecular structure of the surface active component.
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Figure 4.1: (a) Contact angle () of water-1,2-HD mixtures as a function
of the mass fraction (¢) of 1,2-HD for various relative humidities (RH). The
vertical dotted line indicates the cmc (¢eme = 0.1). Schematic: Definition of
0. The mass fraction of 1,2-HD (yellow) is higher near the contact line due to
selective evaporation. (b) Evolution of € over time (¢) for ¢ = 0.08 (bottom
three lines) and ¢ = 1 (top three lines) for various RH. The drops are gently
placed at ¢ = 0, after which a rapid decrease of # to a quasi-steady value is
observed. The horizontal black dashed lines and large markers (at ¢ = 20 s)
indicate averages of all values in the quasi-steady regions (from ¢ ~ 10 s
onwards) and correspond to the datapoints in (a). (c) Surface tension (y1v)
of water—1,2-HD mixtures, measured using the pendant drop method.
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4.2 Experimental methods

4.2.1 Contact angle measurements

The contact angle 6 was determined from the side-view images (obtained using
a Ximea XiQQ MQO013MG-ON camera with Zeiss Makro-Planar 1:2.8 f=60 mm
lens with Olympus ILP-2 light source). We determined € by fitting a circle to
the drop interface and a straight line to the substrate. The height H and base
radius R of the drop are extracted from the circle fit and used to calculate
the contact angle using § = 2tan~'(H/R). The uncertainty in the contact
angle, which originates from the pixel error and small variations in time, see
Fig. 4.1c, is estimated to be £1°. The RH was controlled using a home-built
apparatus (for details see Ref. [53]), and was constantly monitored along with
temperature T during the measurement using a sensor (Honeywell HIH6130)
in the setup. Example measurements of the time evolution of 8 for ¢ = 0.08
and ¢ = 1 are shown in Fig. 4.1b.

4.2.2 Surface tension measurements

The surface tension measurements were performed using the pendant drop
method [100]. For each aqueous solution of 1,2-HD, the surface tension of
ten drops of 2.5 uL. was measured (T = 20 °C, RH = 45%), with ten
images collected for each drop over a period of 1 s. The surface tensions 1y
reported in Fig. 4.1c are an average of these measurements (i.e., 100 images
per datapoint), with an average error of 0.57 mN/m.

4.2.3 Micro-particle image velocimetry measurements

The flow velocities within evaporating binary drops of 1,2-HD and water were
quantified by micro-particle image velocimetry. We used fluorescent poly-
styrene microspheres (Thermo Fisher Scientific F8809, 0.2 pm diameter, stock
solution concentration 2% w/v) as tracers, with a mass fraction of 7.8 x 107°
of the particle stock solution in the final mixture. The particles within the
drops were visualised with an inverted epifluorescence microscope (Nikon Ec-
lipse Ti2), equipped with a water immersion objective (Nikon CFI APO LWD
20x WI) with a numerical aperture of 0.95. Thin correlation depths (i.e., high
plane selectivity) require diffraction-limited imaging. To achieve this not only
close to the substrate but also in the bulk fluid, the refractive index of the
immersion medium has to be close to that of the working medium, for which
water immersion objectives are ideally suited. The focal plane was parallel to
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(a) ¢ =0.08, z=11 um (b) ¢=0.22, z=11 um
0.0 X ="

‘201
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Figure 4.2: Example velocity fields in the z plane for (a) ¢ = 0.08,

RH = 71% and (b) ¢ = 0.22, RH = 40%. The thick grey line denotes
the three-phase contact line at the substrate (z = 0). The dashed line indic-
ates the interface of the drop at z = 11 pm.

the substrate and moved in the vertical direction with the closed-loop focusing
stage of the microscope. The time required to switch between planes was less
than 100 ms. For each z plane, a sequence of approximately 500 frames was
recorded with a high speed camera (Phantom VEO 4K 990L, imaging speed
at 900-1000 fps). Thus, the time required for a full z-scan was on the order
of approximately 10 s, much shorter than the time scale on which the flow
velocities change for a quasi-stationary drop. This was checked by comparing
data from successive upward and downward scans. To evaluate the flow velo-
cities, the images were analysed with an in-house developed cross-correlation
based algorithm with adaptive interrogation window sizes and correlation aver-
aging over approximately 100 frames. The analysis was implemented through
the Python API of Tensor Flow, to enable fast computation on graphics pro-
cessing units. Example velocity fields in the z plane are shown in Fig. 4.2.
The velocities presented in Fig. 4.3 were obtained by azimuthally averaging
over approximately 100 ym. Additionally, simultaneous shadowgraphy of the
drop contour was performed to record the contact angle with a second cam-
era (Point Grey Grasshopper2, imaging speed at 27 fps) through a macro
lens (Thorlabs Bi-Telecentric lens, 1.0x, working distance 62.2 mm). Exper-
iments were conducted in a humidity-controlled chamber mounted on top of
the microscope. As substrates, we used piranha-cleaned microscope coverslips
(Menzel Gléser).
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Figure 4.3: Horizontal velocity component in the drops measured using high
resolution micro-particle image velocimetry. The blue line indicates the outer
surface of the drop. The horizontal lines indicate the velocity, where the
direction is indicated by the location with respect to the vertical dashed line.
(a) Velocity field for ¢ = 0.08 and RH = 71% (0 = 9°). (b) Velocity field
for ¢ = 0.22 and RH = 40% (0 = 14°), which is significantly weaker than
that in (a).

4.2.4 Ellipsometry measurements

The ellipsometry measurements (J. A. Woolam Co. VB-400-VASE ellipso-
meter with WVASE32 software) were performed on 2 x 2 cm? piranha solution-
cleaned silicon (100) substrates (Okmetic) in ambient conditions (7' = 21 °C,
RH = 40+ 5%). The thickness d of the layer of adsorbed molecules was ob-
tained by fitting the obtained ellipsometric spectrum to a model of a surface
composed of a silicon substrate with a native oxide layer and the Cauchy layer
on top. The thickness of the native oxide layer (typically 1.8 nm for these
substrates) was determined for each substrate separately before performing
the adsorption experiments. The Cauchy layer is an empirical model for the
dependence of the refractive index on the wavelength of a dielectric layer:

n(\) = A+ B/ N+ C/\ + .., (4.1)

where n is the refractive index, A is the wavelength of the light that is used,
and A, B, and C are the material-dependent empirical coefficients [128]. Here,
we used the values A = 1.45, B = 0.1, and C = 0, and all other higher order
terms were set to zero.
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During the measurement, the substrate is vertically placed above a Teflon
container. A sketch of this configuration is available in the appendix. A
dynamic scan (3.5 eV, 75°) is used to resolve the adsorption of molecules over
time. The measurement spot is located at a distance Ax = 1 mm from the
liquid interface, and has a diameter of approximately 1 mm. The obtained
thickness is an average over the area of the measurement spot. To obtain the
thickness of the adsorbed layer we perform a measurement of the ellipsometric
spectrum (1.2 - 4.5 eV, 75°), once the dynamic measurement indicates that
the adsorption has reached equilibrium. The normalised adsorption density
I'/T is calculated from the thickness using I'/T'c = d/dsat. The value of
dsat, the thickness of the adsorbed film under saturated vapour conditions, is
measured in a separate experiment in a closed chamber. The uncertainty in
the ellipsometry measurements originates from the uncertainty in the native
oxide layer thickness and the uncertainty in the Cauchy layer fit which is used
to determine the adsorbed layer thickness.

The substrate on which the adsorption is measured is never in direct
contact with the liquid. A similar technique was used by Novotny and Marmur
[129]. This means that all measurements only take into account the molecules
that are transported across the vapour phase separating the substrate and
liquid. We compare the measurement with a gap (i.e., the case where no
direct contact between the substrate and the liquid exists) to one without a
gap (i.e., the case where direct contact between the substrate and liquid exists;
the drop was placed directly on the substrate) in the appendix. Within the
error margin there is no significant difference between the two measurements,
indicating that the bulk of molecules adsorbed on the solid are transported
across the vapour, and not, for instance, by fluid flow in a precursor film on
the substrate.

4.3 Marangoni contraction

We first turn to the hydrodynamic mechanism, which is known as “Marangoni
contraction” [19]. Some multi-component drops (e.g., water—1,2-propanediol
(1,2-PrD) mixtures) can form non-zero contact angles on high-energy surfaces,
even though the individual liquids themselves perfectly wet the surface at
equilibrium (i.e. # = 0°) [19,115,126,127,130]. There are two requirements
that need to be satisfied for Marangoni contraction to occur: (i) one of the
two liquids must be significantly more volatile than the other and (ii) the
least volatile liquid should have the lowest surface tension of the two liquids.
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Chapter 4. Wetting of two-component drops

Selective evaporation at the contact line (where the evaporative flux is highest
[28]) of the volatile component (typically water) then leads to a composition
gradient in the drop and a surface tension gradient across the drop’s interface.
This in turn drives a Marangoni flow towards the centre of the drop, which
opposes the spreading of the drop, such that the drop is “contracted”. The
presence of Marangoni contraction invalidates Young’s law, which only holds
at equilibrium, that is, in the absence of flow [16,69], and its effect is opposite
to Marangoni spreading [131].

Water—1,2-HD mixtures are expected to contract, since 1,2-HD is consid-
erably less volatile than water [24], and has a surface tension lower than that
of water, see Fig. 4.1c. Figure 4.3a shows the flow field inside a ¢ = 0.08 drop,
as measured using high-resolution micro-particle image velocimetry. The blue
line indicates the outer surface of the drop, and the contact line is located
at y = 0. A strong inward flow exists near the surface of the drop, while an
outward flow towards the contact line is observed in the bulk of the drop. This
flow field is typical for Marangoni-contracted drops [19]. To further test the
hypothesis that the increase of # is due to Marangoni contraction, we varied
the relative humidity (RH). A low RH enhances the evaporation that drives
the flow inside the drop [132]. Indeed, Fig. 4.1a shows that with a lower RH,
the increase of # is significantly enhanced, and for small ¢ our data follows
the Marangoni contraction scaling law (see the appendix) [19]. Therefore, we
conclude that Marangoni contraction is responsible for the enhanced contact
angle of water-1,2-HD drops at a small ¢.

Marangoni contraction alone, however, cannot explain the full range of
data in Fig. 4.1a. At ¢ = 1 all surface tension gradients are removed, but nev-
ertheless a large (non-zero) 6 is observed. Furthermore, a monotonic increase
of # with ¢ is observed in Fig. 4.1a, even though a decrease in @ is expected
for ¢ 2 0.6, as is the case for 1,2-PrD which has been shown to contract due
to smaller surface tension gradients and weaker internal flow [19,127]. Fig-
ure 4.3b shows the velocity field in a drop at ¢ = 0.22, which is almost one
order of magnitude smaller than the velocity in the ¢ = 0.08 drop, which is
too weak to sustain a contracted drop.

4.4 Autophobing

Another mechanism must be responsible for the large 6 measured for a large
¢. We recall the surfactant-like nature of 1,2-HD molecules. Some surfactant-
containing liquids are known to be autophobic on selected substrates, a phe-
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nomenon where 6 increases due to modification of the solid surface energy
by a precursor of adsorbed surfactant molecules [133-138]. This layer of ad-
sorbed molecules, which is of (quasi)monolayer thickness, is of different origin
than the liquid precursor that is observed in “regular” wetting [113]. The sur-
face energy of a precursor depends on RH, the composition of the drop, and
the molecular nature of the adsorbing molecules [116,139,140]. To the best
of our knowledge, autophobing and Marangoni contraction have never been
reported to compete in a single multi-component system. Importantly, the
apparent shapes of the drops is indistinguishable between the two states, but
their dynamic behaviour, especially their mobility and internal flows, is very
different [127].

To induce autophobing, surfactant molecules have to adsorb on the solid-
liquid interface (inside the drop) or on the solid-vapour interface (the precursor
outside the drop), resulting in an overall decrease of ysy — vsp, where gy is
the surface tension of the solid-vapour interface, and gy, is the surface tension
of the solid-liquid interface. In Fig. 4.4a we report the adsorption properties
of water—1,2-HD mixtures on the solid-vapour interface under ambient con-
ditions, measured using ellipsometry [129]. Here, I' is the number density of
adsorbed 1,2-HD molecules, which we normalise by I's,, the number density of
adsorbed molecules corresponding to saturated coverage (measured in a closed
chamber with saturated 1,2-HD vapour). All values of I'/T's, were obtained
after equilibrium was reached, as determined by measuring the temporal evol-
ution of the adsorbed layer (Fig. 4.4b), typically within a few minutes after
deposition of the liquid. Complete desorption of the precursor upon removal
of the drop typically takes an order of magnitude longer than the time it takes
for the precursor to form, see Fig. 4.4c.

s Figure 4.4a shows clear evidence of the adsorption of 1,2-HD molecules
on the substrate. Additionally, it shows that I'/T's, decreases both with the
distance to the contact line Az and with ¢. This indicates that the concen-
tration of 1,2-HD in the vapour surrounding the drop is of key importance to
the equilibrium surface concentration of molecules adsorbed on the substrate.
As we increase Az or decrease ¢, the concentration of 1,2-HD molecules in
the vapour decreases. Hence, a lower number of 1,2-HD molecules is available
in the vapour to adsorb on the substrate, while water becomes more abund-
ant. Therefore, water coverage increases with increasing Ax and decreasing
¢, resulting in a lower I'/T'.

This indeed offers a direct explanation of the result in Fig. 4.1a, even
when ¢ > ¢cme, where 6 increases with ¢ and decreases with RH. An increase
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Figure 4.4: (a) Normalised adsorption density (I'/T'«) as a function of dis-
tance to the contact line (Az) for several water—1,2-HD mixtures. (b) Tem-
poral adsorption dynamics of pure 1,2-HD at Az =~ 5 mm. The liquid is
deposited at t = 0. (c) Temporal desorption dynamics of pure 1,2-HD at
Ax =5 mm. The container with liquid is removed at ¢ = 0, after which an
immediate change in I'/T's is visible. Complete desorption of the adsorbed
molecules takes at least one order of magnitude longer than adsorption.

in RH leads to a lower I'/T's, due to the increased water coverage. Conversely,
the 1,2-HD coverage increases by increasing ¢. The adsorbed molecules change
the surface energy of the substrate, making it more hydrophobic [141]. This
offers clear and direct evidence that the contact angles of autophobed drops
depend on the RH of the close surrounding of the contact line. We remind
that the internal flow is very weak at large ¢ (Fig. 4.3b), for which we thus
expect to recover the true equilibrium contact angle. In Young’s law, which
remains valid at equilibrium in the presence of surfactants [138], the increased
hydrophobicity of the substrate is reflected in the gy — g1, term, which be-
comes smaller with increasing I'/T's,. Consequently, # must increase, even
though ~ry remains constant above the cmc. This mechanism is reminiscent
of the “modified Young’s law” modelling approach used for multi-component
drops in Refs. [126] and [127]. Molecules may also adsorb on the solid-liquid
interface, which we are unable to measure using our experimental setup [142].
Such adsorption, if dominant, could lower gy, increase ysy — 7sr, and thus
lead to a decrease in #. The increase of § and the strong dependence of 6
on RH (Fig. 4.1a) indicate that adsorption on the solid-vapour interface is
dominant over adsorption on the solid-liquid interface, leading to a decrease
in vgv — st and an increase in 6 at large ¢.

Contrary to many previous works on autophobing [141-147], we do not
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see an initial spreading phase followed by a retraction to the quasi-steady 6
(see Fig. 4.1¢). This is likely due to the relatively high diffusion coefficient of
1,2-HD, which is a result of its small molecular size in comparison to other
more common surfactants [148]. The region of the substrate that is sampled
by the liquid in determining the stationary 6 is no larger than 10 pm [149].
The timescale associated with forming the equilibrium adsorption layer within
this region is smaller than the spreading timescale [150], which is relatively
long due to the high viscosity of 1,2-HD (n ~ 82 mPa - s [151]).

4.5 Effect of the molecular structure

Our experiments show that water—1,2-HD mixtures exhibit a competition
between Marangoni contraction and autophobing. How generic is the observed
competition between Marangoni contraction and authophobing and what is
the influence of the surface activity dyryv/d¢? Here, we address these ques-
tions by considering three shorter vicinal alkanediols: 1,2-PrD), 1,2-butanediol
(1,2-BD), and 1,2-pentanediol (1,2-PeD), which have three, four, and five car-
bon atoms in their aliphatic chain, respectively. These diols are non-volatile
and have a low vy [64]. The surfactant-like behaviour (i.e., the surface activity
dypv/d¢) depends on the length of the aliphatic chain. Short chain alkanediols
show weaker surfactant-like behaviour (smaller dyryv/d¢) due to the decreased
hydrophobicity of the molecule [64,152].

We study the properties of these diols using the same procedure as we
used for 1,2-HD. Figure 4.5a shows 6 as a function of ¢ at RH =~ 60%. Starting
at small ¢, we see that all diols follow a universal curve. This is perfectly con-
sistent with Marangoni contraction, as long as dvyry/d¢ is sufficiently smaller
than zero, and water remains more volatile in the mixture; the hydrodynamic
mechanism remains insensitive to molecular details, while absolute flow velo-
cities depend on the material parameters. Mixtures of other liquids are also
expected to contract as long as their volatility and surface tension contrasts
are in the same regime as those of water and carbon diols [126]. By con-
trast, the curves start to diverge and the length of the aliphatic chain matters
for larger ¢ — consistent with autophobing. The longest diol studied here,
1,2-HD, exhibits strong autophobing behaviour. As we move to short chain
diols, the autophobing strength becomes smaller, indicated by smaller values
of # at ¢ = 1. Additionally, Fig. 4.5a shows that Marangoni contraction is the
dominant mechanism up to a larger ¢ for shorter diols. While autophobing is
dominant for 1,2-HD starting from ¢ =~ 0.3, for 1,2-PrD, by contrast, the full
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Figure 4.5: (a) Contact angle () as a function of mass fraction (¢) for sev-
eral mixtures of water and vicinal alkanediols (RH = 60%). The schematics
show the structure of adsorbed 1,2-PrD molecules and 1,2-HD molecules. (b)
Normalised adsorption density (I'/T's) as a function of distance to the con-
tact line (Ax). (c) Thickness of the saturated film (dgy) for several vicinal
alkanediols.

range of ¢ is consistent with Marangoni contraction — there is no autophobing
at all. Hence, a higher surface activity does not necessarily lead to stronger
Marangoni contraction. In fact, the surface activity of the molecules may
inhibit contraction, leading to autophobed drops. For example, at large ¢,
1,2-HD (highest dypy/d¢) shows the strongest autophobing, whereas 1,2-PrD
(lowest dvry/d¢) drops are contracted. Thus, our results show that, in addi-
tion to the two requirements listed above, there is a third requirement that
needs to be satisfied for drops to contract: the contact angle achievable by
Marangoni contraction needs to be larger than the microscopic contact angle
as governed by molecular forces. However, the microscopic angle may be larger
than zero.

All four molecules adsorb on the substrate, as seen from the ellipsometry
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measurements presented in Fig. 4.5b. The reduced autophobing strength of
the shorter diols is caused by the shorter hydrophobic chain in these molecules.
The distance between the hydrophilic and hydrophobic parts of the molecule
is smaller in shorter chain molecules, meaning that the polar nature of the
hydroxyl groups becomes more relevant for the surface energy of an adsorbed
layer of a short chain molecule such as 1,2-PrD. The result is a more hy-
drophilic surface and therefore a smaller . Figure 4.5b shows that all diols
studied here adsorb onto the substrate with similar I'/I'. However, as shown
in Fig. 4.5¢, not all adsorb in the same way as 1,2-HD. Despite their smaller
size, the saturated thickness dg,t of 1,2-PrD and 1,2-BD is larger than that of
1,2-PeD and only slightly smaller than that of 1,2-HD, suggesting that they do
not form monolayers (an estimate of the size of each molecule is given in the
appendix), since a monotonic increase in dg,y with the chain length is expected
if monolayers are formed. Their hydroxyl groups remain partially exposed, al-
lowing them to form disordered multi-layered structures (see the schematic in
Fig. 4.5a) similar to layers of adsorbed water molecules [153]. Hence, they do
not strongly affect the surface energy. By contrast, 1,2-PeD and 1,2-HD likely
adsorb in a monolayer structure (see the schematic in Fig. 4.5a), indicated by
the increasing dg,¢ between 1,2-PeD and 1,2-HD in Fig. 4.5¢ and the decrease
in dgat between 1,2-PrD and 1,2-PeD. This means that their long aliphatic
chains are exposed, increasing the hydrophobicity of the surface. Therefore,
autophobing occurs at large ¢ for molecules with a long aliphatic chain due to
the strong effect of the adsorbed molecules on the surface energy of the solid.
By contrast, adsorbed molecules with a short aliphatic chain have little effect
on the surface energy of the solid, and Marangoni contraction dominates over
the full range of ¢. One can thus tune 6 over a large range by selecting the
correct diol and a particular combination of ¢ and RH.

4.6 Conclusion and outlook

Our results reveal that Marangoni contraction and autophobing both provide
valid descriptions for the wetting of two-component drops, albeit in differ-
ent regimes. A minute change in one of the control parameters is sufficient
to change the dominant wetting mechanism. While the visual appearance of
drops in either of the two wetting states is indistinguishable, Figure 4.3 demon-
strates a strong difference in their internal flows. We have shown (Fig. 4.1a and
4.5a) that Marangoni contraction is possible only if the microscopic contact
angle, as governed by molecular forces, is smaller than the angle achievable by
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contraction. Additionally, we show (Fig. 4.3) that the internal flows should
be used to determine the state of a drop rather than the contact angle or the
apparent drop shape. By systematically changing the molecular structure of
the volatile liquid, we show that a higher surface activity dvyry/d¢ does not
necessarily lead to stronger Marangoni contraction. In fact, excessive surface
activity may inhibit contraction and lead to drops whose contact angle is gov-
erned by molecular forces. Hence, the chemical structure of the liquid needs
to be taken into account when designing multi-component drop systems with
specific properties. Importantly, these mechanisms are generic and expected to
be present in most mixtures containing (volatile) surfactant-like liquids (e.g.,
single alcohols).

Marangoni-contracted drops are attractive for technological applications
due to their high mobility [126,127,154], which is suppressed for drops in the
autophobing or partial wetting states. Our result may also be of interest to
applications that require high contact angles of drops consisting of low surface
tension liquids, such as inkjet printing [8] or semiconductor processing [115].
In the context of inkjet printing our results are particularly relevant to nozzle
wetting (see Fig. 1.10d). Marangoni flow of ink on the nozzle of a printhead
often leads to print failure, since the nozzle is unable to reliable jet ink drops.
Non-wetting inks have been suggested as a remedy for this problem [26]. Our
results may be useful for the selection of the components of such inks.
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4.7 Appendix

4.7.1 Ellipsometry measurements

(a)

———— silicon substrate

adsorbed molecules

light beam

___—1,2-hexanediol

Teflon holder

Az [mm)]

Figure 4.6: (a) Ellipsometry setup. The substrate is mounted vertically, and
is not in direct contact with the liquid (here: 1,2-hexanediol). The adsorption
of molecules is measured at a small distance from the liquid’s interface. (b)
Adsorption close to pure 1,2-hexanediol drops. A ‘gap’ means that the sub-
strate on which the ellipsometry measurement is performed is not in direct
contact with the liquid (as sketched in (a)). Conversely, ‘no gap’ means that
there is direct contact between the liquid and the substrate.

4.7.2 Marangoni contraction scaling law

Figure 4.7a shows all data from Fig. 4.1a and Fig. 4.5a of the main text
scaled according to the scaling law 0(¢) o< (RHeq(¢) — RH)Y3 (ie. Eq. 1
from [19]). Figure 4.7b shows RHeq, the relative humidity at which a drop
spreads completely (i.e., § = 0°), as determined by a model equation (Eq. 7
from [19]), which is used in Fig. 4.7a. All data points below the red line (i.e.,
RH., — RH = 0) in Fig. 4.7c indicate experiments where the contact angle
should be zero if the contact angle is determined by Marangoni contraction,
yet, for most of these experiments, the contact angle is larger than zero due
to autophobing (c.f. Fig. 4.1a and Fig. 4.5a). This prevents us from experi-
mentally determining RHeq. The key point of Fig. 4.7 is the excellent collapse
of the data for ¢ < 0.2 in Fig. 4.7a, indicating that Marangoni contraction is
the dominant mechanism for these mass fractions.
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Figure 4.7: (a) Marangoni contraction scaling law (Eq. 1 from [19]) applied
to the data in (a). Note the excellent collapse for small ¢. (b) The relative
humidity at which the drop spreads completely (RH¢q) as a function of mass
fraction as determined by the model (Eq. 7 from [19]). (c) Difference between
RHeq and RH as a function of mass fraction. Any data point below the red
line (i.e., RHeq — RH = 0) should spread completely (i.e., § = 0°), but
autophobing prevents this.

4.7.3 Estimate of the molecular length

The length of a molecule can be estimated using

where M and p are the molar mass and density of the molecule, and N4 is the
Avogadro constant (6.022 140 76 x 10%3). An overview of the properties and
resulting molecular lengths is shown in Table 4.1. Note that these lengths are
approximations—the molecular length depends strongly on the confirmation
of the molecule, which is influenced by the surroundings of the molecule; this
is not accounted for in Eq. 4.2.
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molecule ‘ M [g/mol] ‘ p [kg/m?] ‘ 1 [A]
1,2-propanediol 76.09 1036 4.96
1,2-butanediol 90.12 1006 5.30
1,2-pentanediol 104.15 971 5.63
1,2-hexanediol 118.17 951 5.91

Table 4.1: Properties of several alkane diols and the resulting estimated
molecule lengths obtained using Eq. 4.2.
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Chapter 5

Self-similar liquid lens coalescence

A basic feature of liquid drops is that they can merge upon contact to form a
larger drop. In spite of its importance to various applications, drop coalescence
on pre-wetted substrates has received little attention. Here, we experimentally
and theoretically reveal the dynamics of drop coalescence on a thick layer of a
low viscosity liquid. It is shown that these so-called “liquid lenses” merge by
the self-similar vertical growth of a bridge connecting the two lenses. Using
a slender analysis, we derive similarity solutions corresponding to the viscous
and inertial limits. Excellent agreement is found with the experiments without
any adjustable parameters, capturing both the spatial and temporal structures
of the flow during coalescence. Finally, we consider the crossover between the
two regimes, and show that all data of different lens viscosities collapse on a
single curve capturing the full range of the coalescence dynamics.

O Published as: Michiel A. Hack, Walter Tewes, Qingguang Xie, Charu Datt,
Kirsten Harth, Jens Harting, and Jacco H. Snoeijer, Self-Similar Liquid Lens Coalescence,
Phys. Rev. Lett. 124, 194502 (2020).
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5.1 Introduction

The coalescence of liquid drops is an important part of many industrial pro-
cesses, such as inkjet printing and lithography [6,8]. It is also ubiquitously
observed in nature, for example, in the formation of rain drops and the self-
cleaning of plant leaves [155-157]. Coalescence, therefore, has been the fo-
cus of many studies, primarily for spherical drops [45,57-59,61], but also for
drops on a solid substrate [42, 44,48, 50, 158]. In contrast, little work exists
on the coalescence of drops on liquid substrates, despite its importance for
emerging applications such as fog harvesting, anti-icing, wet-on-wet printing,
enhanced oil recovery, emulsions, and wetting of lubricant-impregnated sur-
faces [25,35,79,86,159-166].

The dynamics of coalescence are strongly affected by the geometry of the
drops. Drops on a solid substrate (spherical caps) merge differently than freely
suspended drops (axisymmetric spheres), with different scaling exponents for
the growth of the bridge between the drops [42,44, 45,48, 50,57-59, 61, 158].
This is in contrast to the coalescence of drops floating on a liquid substrate
(Fig. 5.1a); such drops are referred to as “liquid lenses” [69,167]. For coales-
cing lenses, the growth of the bridge width based on a top-view experiment
was found similar to that of axisymmetric drops, which is surprising since,
geometrically, liquid lenses are spherical caps [35].

In this chapter, we study the coalescence dynamics of liquid lenses in
terms of the vertical bridge growth ho(t) (defined in Fig. 5.1a) and reveal a
strong departure from the coalescence of axisymmetric drops. We first ex-
perimentally establish the initial dynamics of coalescence of drops of varying
viscosity from the side-view perspective, identifying two distinct regimes—one
dominated by viscosity and the other by inertia. Subsequently, we develop
a fully quantitative slender description for each of these regimes based on
the self-similar nature of coalescence. In the spirit of recent work on spher-
ical drops, we identify the master curve for all data, including the crossover
between the two regimes [45,54]. Unlike for any other coalescence problem,
however, the master curve here is obtained without any adjustable parameter.

5.2 Experimental methods
Two small drops are placed on a deionised water surface (MilliQ, Millipore

Corporation) kept in a large container. The lenses consist of mineral oils
(RTM series, Paragon Scientific Ltd.), with viscosities between n = 18 mPa - s
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Figure 5.1: (a) Schematic view of two coalescing liquid lenses connected by
a bridge of height hg(¢). The lenses float on a pool with a depth that is much
larger than the size of the lenses. The zoomed region shows a typical snapshot
of the bridge region. (b) Measurements of the bridge height hg as a function
of time t for several viscosities. Two distinct power laws are identified.

and 115 Pa - s and surface tension v = 34 mN/m (measured by the pendant
drop method [100]). Additionally, we use dodecane lenses (Sigma-Aldrich,
n = 1.36 mPa - s, v = 25 mN/m). These liquids float on the water surface
since their densities (p = 850 kg/m? for mineral oil and p = 750 kg/m?> for
dodecane) are lower than the density of water (p = 997 kg/m?). Both liquids
have a negative spreading parameter, and thus form lenses with small but
finite contact angles § = 26°-37° [69]. Since the contact angle of the oil-water
interface is within 5° of the aforementioned values, we regard the lenses as
being top-down symmetric.

We image the coalescing lenses from the side using a high-speed camera
(Photron Nova S12) equipped with a microscopic lens (Navitar 12X zoom
lens). In order to obtain a sharp image of the oil-air interface of the liquid
lens, the container of the pool is filled such that a convex meniscus forms at
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the edges of the container. Frame rates between 250 and 100 000 frames/s are
used depending on the timescale of coalescence, with resolutions in the range
of 1.3-5.3 pm/pixel. A typical snapshot of the bridge region is shown in the
zoomed region in Fig. 5.1a.

The experiment is performed as follows: two pendant drops with volume
V = 2.5 uplb are formed on two identical blunt-ended metal needles using
a syringe pump (we have verified that drop size does not affect the initial
coalescence dynamics, as we will show below). Using a linear translation stage,
the drops are gently brought into contact with the water pool and subsequently
form lenses of radius R =~ 2.5 mm. The lenses are left to equilibrate for a
moment before the syringes are gently removed. Capillary interactions drive
the lenses toward each other and they coalesce upon first contact. We define
t = 0 as the first frame where the bridge connecting the two lenses is visible,
and h = 0 at the surface of the pool. The velocity of the approaching lenses
is orders of magnitude smaller than the velocity of the bridge growth.

5.3 Coalescence dynamics

The experiments reveal that the coalescence of liquid lenses is governed by
a self-similar power-law growth of the bridge that connects the two drops.
Figure 5.1b shows the minimum bridge height hg as a function of time after
contact t for coalescing lenses of different viscosities. We clearly distinguish
two regimes: a nonlinear regime for small viscosities where hy o t2/3, and a
linear regime where hg o ¢ for high viscosities. These exponents are typical for
pinch-off and coalescence of spherical caps on a solid substrate, though the pre-
factors are different; lens coalescence is much faster as will be discussed more
quantitatively below [36,44,50,168]. These growth dynamics, however, are
different from those of spherical drops and of those observed for lenses in top-
view [35]. To further investigate this, we now first focus on the case of viscous
coalescence. Figure 5.2a shows the temporal evolution of the bridge, which
grows at constant velocity. The bridge velocity decreases when hg becomes
of the order of the lens size, due to the finite height (=~ 0.5 mm) of the lens.
The spatial structure of coalescence is revealed in Fig. 5.2b, where we compare
the shape of the bridge at various times. We scale the horizontal and vertical
coordinates by hg, which is presumably the only relevant length scale in the
problem, and observe an excellent collapse of the data. This implies that the
bridge growth exhibits self-similar dynamics, that we now set out to describe
analytically.
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Figure 5.2: Coalescence in the viscous regime. (a) Height of the bridge
ho as a function of time after contact ¢ (mineral oil lenses, § = 33°,
n = 115 487 mPa - s, initial height ~ 0.5 mm). The solid line is the

prediction from Eq. 5.6. The error bars are only shown for one in every ten
datapoints for clarity. The horizontal dashed line indicates the resolution limit.
(b) Rescaled experimental profiles at different times, H = h(x,t)/ho(t) versus
& = x0/ho(t). The collapse of the profiles indicates self-similar dynamics. The
solid line is the similarity solution obtained from Egs. 5.4-5.5. (c) Rescaled
velocity profile. The solid line is the similarity solution. The coloured lines
are numerical simulations for different values of ho/R.

5.4 Viscous and inertial similarity solutions

The main assumptions of our analysis are that (i) the flow during the initial
stage of coalescence is predominantly parallel to the xz plane (rendering the
problem two-dimensional, following, e.g., [42,44, 158]) and (ii) the limiting
mechanism for coalescence is the flow inside the drops (i.e.. negligible flow
inside the sub-phase, which in all but one experiment is at least one order of
magnitude less viscous than the drop). Then, we can make use of the slender
geometry of the system and use the thin-sheet equations,

(uzh)s

P (5.2)

which represent mass conservation and momentum conservation, respectively

[169-171]. Here, h(z,t) is the shape of the bridge (Fig. 5.1a) and u(z,t) is the
horizontal velocity of the liquid inside the lenses (which is a plug flow to leading
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order in the slender approximation). The shape of the lens is assumed to be
top-down symmetric, with uncertainty owing to the weak differences in surface
tensions estimated to be less than 10% (see the appendix). We therefore take
~ as the surface tension of the lenses with respect to the surrounding air. The
effect of gravity is expected to be negligible because the bridge is initially much
smaller than the capillary length A = \/v/(Apg) = O(1) mm, and therefore
we exclude it from the analysis. Encouraged by the experiments, we search
for similarity solutions of the form

h(z,t) = kt®H(€), u(zx,t) = O‘Tf“tﬁu@), €= ;fT:i (5.3)
where H and U are the similarity functions for the bridge profile and flow
velocity. The choice of £ ensures that h(z,t) ~ 0z far away from the bridge,
in order to match a static solution with a contact angle 6.

We first examine the viscous regime, by setting p ~ 0 in Egs. 5.1-5.2.
Inserting Eq. 5.3 then readily leads to o = 1 and 8 = 0, and explains the
linear growth observed in the experiment. The parameter k = k, = dhg/dt
thus provides the dimensional bridge velocity and will be computed below.
Equations 5.1-5.2 further reduce to

H—EH + (HU)Y = 0, (5.4)
HH" + K,(UH) = 0, (5.5)
providing a fourth order system of ODEs, that contains a parameter

4dnk,
Kv = ’)/92 )

(5.6)

representing the dimensionless bridge velocity. Hence, the selection of a unique
solution requires five boundary conditions. We consider symmetric solutions
and normalise the bridge height to unity at & = 0, so that

HO)=1, H(0)=0, and U(0)=0. (5.7)

At large scale, this solution should match an initially static drop. This
implies that the leading order asymptotics for large &£ of H, U must correspond
to time-independent h, u. For the bridge profile, this implies H'(c0) — 1,
where we have also used the matching to the contact angle #. The velocity to
leading order isUf ~ C'log{ as { — oo; recalling that £ ~ x/t, a static drop at
t = 0 corresponds to C' = 0, which provides the fifth boundary condition. The
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resulting boundary value problem is solved numerically by a shooting method,
resulting in K, = 2.210. In chapter 6 we further study the viscous case, and
show that, depending on the the large-scale boundary conditions at x+ = R,
significant corrections to the similarity solution may arise.

We find excellent agreement between the experimental data and the simil-
arity solution. The solid line in Fig. 5.2a corresponds to the velocity prediction
Eq. 5.6 without any adjustable parameters. It is of interest to compare this
result to the merging of drops on a solid substrate: owing to the no-slip bound-
ary condition on a solid, coalescence is much slower on solid substrates with
coalescence velocity ~ 6% instead of ~ 62 observed for lenses [44]. As an ex-
ample, lens coalescence is approximately five times faster than coalescence on
a solid substrate for the parameters of the experiment shown in Fig. 5.2a. In
Fig. 5.2b we compare the rescaled bridge profiles to H (&), shown as the solid
line, and also find quantitative agreement. Figure 5.2c shows the self-similar
velocity U(§). Since the velocity inside the drop cannot be extracted from
our experiments, we numerically solve the time-dependent Eqs. 5.1-5.2 with
p = 0 using a finite element method (implemented using the library OOMPH-
LIB [172]) and compare the result to the similarity solution. Details of the
numerical method are found in the appendix. The numerical data in Fig. 5.2¢
indeed collapse and converge to the predicted similarity profile as hg/R — 0.

The same scheme is followed for the regime where inertia dominates over
viscosity, with the results outlined in Fig. 5.3. Once again, we insert Eq. 5.3,
with & = k;, in Egs. 5.1-5.2 but now in the inviscid limit (n = 0). The
exponents can then be computed as o = 2/3, f = —1/3, in agreement with
the experiment. The momentum balance Eq. 5.2 now gives

UU —U — 26U — K;'H" =0, (5.8)

with a dimensionless constant

29k}
L9NptT

(5.9)

Mass conservation is unchanged as compared to Eq. 5.4, so that we again
require five boundary conditions to close the problem. As in the viscous case,
four conditions follow from Eq. 5.7 and H'(o0) — 1. The fifth boundary
condition again comes from the large-¢ asymptotics—one finds U ~ C£~/2 as
¢ — oo [173]. This gives u ~ Cxz~'/2 which for a static outer drop at t = 0
implies C = 0. Numerically solving the boundary value problem then gives
K, =0.106.
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Figure 5.3: Coalescence in the inertial regime. (a) Height of the bridge hg as a
function of time after contact ¢ (dodecane lenses, § = 29°, n = 1.36 mPa - s,
initial height ~ 0.5 mm). The solid line is the prediction from Eq. 5.9. The
horizontal dashed line indicates the resolution limit. (b) Rescaled experimental
profiles at different times, H = h(z,t)/ho(t) versus { = x6/ho(t). The collapse
of the profiles indicates self-similar dynamics. The solid line is the similarity
solution obtained from Eqs. 5.4 and 5.8. (c) Rescaled velocity profile. The solid
line is the similarity solution. The coloured lines are numerical simulations for
different values of hg/R.

In Fig. 5.3a we compare Eq. 5.9 to experimental data of the lowest viscos-
ity and find excellent agreement, without adjustable parameters. The spatial
structure of the bridge also follows the predicted collapse, shown in Fig. 5.3b,
and agrees with the computed form H(§) (solid line). The dimensionless ve-
locity U(€) is again compared to numerical simulations of Eqgs. 5.1-5.2 with
n =~ 0, confirming the validity of the analysis. Interestingly, the velocity
exhibits oscillations (Fig. 5.3c) due to coalescence-induced inertio-capillary
waves [50,56]. These oscillations can indeed be predicted from the (higher or-
der) asymptotics of the similarity equations [173]. However, due to the small
amplitude of the waves in the similarity function #, these oscillations are dif-
ficult to observe in the experiments. Let us remark that we cannot directly
compare these results to inertial coalescence on solid substrates, since the
equivalent lubrication theory is not available owing to the no-slip condition.

80



5.5. Crossover

5.5 Crossover

Several coalescence events in Fig. 5.1b do not fit perfectly in either the viscous
or in the inertial regime. As a final step, we therefore describe the crossover
between these regimes and collapse the entire set of experimental data. An
estimate of the crossover height h. and crossover time t. can be obtained by
setting he = kyte = k;it2>, from which we find

K} T2K; n? k?  288K; n?

he = i — L/ A N
R OKZpy K K} py0?

(5.10)

Note that these are proportional to the intrinsic viscous scales I, = n?/(py)
and t, = 1% /(py?), known for drop pinch-off, but with pre-factors coming from
the similarity analysis [36]. Contrarily to pinch-off, however, we remark that
the ultimate early-time coalescence is purely viscous [174].

104 T T T T T T ,ll
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Figure 5.4: Crossover between the viscous and inertial regimes, shown by
a collapse of all experimental data on a master curve. Dashed line: viscous
theory. Dotted-dashed line: inertial theory. Solid line: interpolation based on
Eq. 5.11. The lime-coloured data points are with larger lens size (R ~ 4.1 mm,
compared to R ~ 2.5 mm for all other data, showing that the dynamics do
not depend on the drop size).
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Figure 5.4 shows coalescence events for different viscosities (varied over
five orders of magnitude), made dimensionless according to the crossover scales
Eq. 5.10. Tt is clear that the proposed scaling indeed collapses the data onto a
single master curve, transitioning from the viscous to the inertial regime. Note
that Fig. 5.4 also contains a data set with larger lens size, confirming that the
lens size does not matter. In the spirit of the work on spherical drops and
drop impact, we propose an empirical formula based on a Padé approximant
which describes the two asymptotic regimes as well as the crossover region
[45,54,175],

1 1 -1
ho/he = (t/t + (t/t)2/3) : (5.11)

We stress that, unlike the spherical drop case, the present interpolation Eq. 5.11
contains no free parameters since h. and ¢, derived in Eq. 5.10 follow from the
similarity solutions. The interpolation is superimposed as the solid line in
Fig. 5.4, providing an accurate description for all experiments.

5.6 Conclusion and outlook

Our results show that the coalescence of liquid lenses is accurately described
by self-similar solutions to the thin-sheet equations. We have identified the
crossover between the viscous regime and the inertial regime both experiment-
ally and analytically. These coalescence dynamics are naturally very different
from axisymmetric, spherical drops, though previous top-view experiments on
liquid lenses did observe axisymmetric-like dynamics—the relation between
horizontal and vertical growth remains to be understood [35]. Importantly,
the effect of the sub-phase viscosity is not included in our model—and appar-
ently it plays a subdominant role for the coalescence [43]. Future work should
be dedicated to more extreme cases, such as those where the viscosity of the
sub-phase is much larger or where the layer thickness becomes small. This
would be along the lines followed for the coalescence of circular nematic films,
where the influence of dissipation in the viscous sub-phase was systematically
investigated [159]. The present results provide a framework for such explora-
tions, in particular the quantitative success of the thin-sheet equations, which
will be of key interest to applications involving pre-wetted substrates.
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5.7 Appendix

5.7.1 Numerical simulations

In order to verify the similarity solutions obtained from the numerical solu-
tion of the ODEs Eqgs. 5.4-5.5 and Eqgs. 5.4 and 5.8, we conducted numerical
simulations of the time-dependent equations Eqgs. 5.1-5.2. This led to the nu-
merical velocity profiles reported in Fig. 5.2c and Fig. 5.3c. The simulations
were done in non-dimensional units, where Eqs. 5.1-5.2 are written as

hi + (uh), =0, (5.12)

We (us + vug) = hygr + 403(%}?)3;_ (5.13)
For the non-dimensionalisation, we rescaled both the height field h and the
x-coordinate by the height h; = OR/2 of the lens (R being the radius and 6 the
contact angle), the velocity by a typical velocity scale U, and time accordingly
by a scale h;/U;. Furthermore, we introduced the non-dimensional Weber
number We = pU?h;/~ and the capillary number Ca = nU, /7.
The considered geometry for the numerical simulations is illustrated by
a snapshot of the height field shown in Fig. 5.5. We simulated the bridge
evolution between two half drops assuming a negligible relative movement of
the drops in the early phase. The height field corresponding to the two half
drops of radius R is initialised by two parabolas of height h; = 1.0, which
are connected by a sixth-order polynomial at their minimal initial height.
The velocity field is initialised as v = 0. On the one-dimensional domain

(a) (b) ) x10~7
1.0
0.8
< 0.6
0.4

0.2
0.0 ' L 0 x10°
2100 -5.0 0.0 5.0 10.0 ~1 0 1
X X

Figure 5.5: (a) Snapshot of an early time (¢ = 2.5x 1078, viscous case) height
profile exhibiting the simulation geometry of the numerical simulations. We
impose no flux boundary conditions at both boundaries of the one-dimensional
simulation domain. (b) Close-up of the connection between the two drops.
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Figure 5.6: Bridge height as obtained from numerical simulations (blue
dots) of the time-dependent equations Eqs. 5.12-5.13 for (a) the viscous case
(We = 0, Ca= 1), and (b) the inertial case (We = 1, Ca = 107%).
The black lines show the evolution of the bridge height as predicted by the
similarity solutions of Eqs. 5.4-5.5 and Eqgs. 5.4 and 5.8.

[-R, R] = [-10,10] we impose the boundary conditions h; = hgz, = 0 and
u = 0 at ¢ = —R, R. To verify the similarity solutions for the viscous case,
we set We = 0 and Ca = 1. For the inertial case, we consider We = 1 and
Ca = 10~* (a small viscous contribution is retained for numerical reasons).
The simulations are conducted employing a finite element approach using the
generic C++ FEM framework OOMPH-LIB [172]. We employ a spatially non-
uniform mesh and a second order backward differentiation formula scheme for
the time stepping.

The time evolution of the bridge height as obtained for the two afore-
mentioned limiting cases is shown in Fig. 5.6 in comparison to the power law
prediction by the corresponding similarity equations Eqgs. 5.4-5.5 and Eqgs. 5.4
and 5.8. For both cases, the solutions very rapidly approach the similarity
solutions in the initial phase of the simulations. The resulting velocity profiles
are shown in Fig. 5.2c and Fig. 5.3c.

5.7.2 Asymmetric thin sheet equation

For the case of different oil-air and oil-water surface tensions (v # Yow), and
assuming no pressure gradients exist in the vertical direction inside the lens
(local equilibrium), a thin sheet equation for the distance between the two
interfaces h = hi + ho can be derived which has precisely the same mathem-
atical structure as the symmetric one employed in this chapter. Here, h; and
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ho are the distances from the centre of the lens to the oil-air and oil-water
interfaces, respectively. The surface tension appearing in this equation is a
reduced surface tension 4 = Yow?y/(Yow + ) which is also defined in the con-
text of equilibrium calculations for liquid lenses in de Gennes et al. [69]. As
usual in slender theory, the pressure is uniform across the sheet and thereby
the capillary pressure jumps must be the same on both interfaces, i.e.,

0?hy 0?hs 0h
oa = Yow =Y5> 5.14
Toa 922 ~ TV 922 ~ Va2 (5:.14)
The resulting asymmetric momentum equation is
ou ou 4n 0 ou 23h
— — | =—=—(h=— Vs 1
g (E)t +“ax> h Oz ( ax> g (5.15)

In our case, for example for mineral oil, 7w &~ 40 mN/m such that the re-
duced surface tension becomes 25 =~ 36.76 mN/m which is comparable to
Y = Yoa = 34 mN/m.
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Chapter 6

Theory for the coalescence of viscous
lenses

Drop coalescence occurs through the rapid growth of a liquid bridge that
connects the two drops. At early times after contact, the bridge dynamics are
typically self-similar, with details depending on the geometry and viscosity of
the liquid. In this paper we analyse the coalescence of two-dimensional viscous
drops that float on a quiescent deep pool; such drops are called liquid lenses.
The analysis is based on the thin-sheet equations, which were recently shown to
accurately capture experiments of liquid lens coalescence. It is found that the
bridge dynamics follow a self-similar solution at leading order, but, depending
on the large-scale boundary conditions on the drop, significant corrections may
arise to this solution. These dynamics are studied in detail using numerical
simulations and through matched asymptotics. We show that the liquid lens
coalescence can involve a global translation of the drops, a feature that is
confirmed experimentally.

0 Published as: Walter Tewes, Michiel A. Hack, Charu Datt, Gunnar G. Peng, and Jacco
H. Snoeijer, Theory for the coalescence of viscous lenses, J. Fluid Mech. 928, A11 (2021).

87



Chapter 6. Theory for the coalescence of viscous lenses

6.1 Introduction

Coalescence of drops is one of the most common capillarity-driven phenomena
which can be observed in multiphase fluid dynamics. The early-time dynamics
of coalescence are dependent on both the viscosity of the drops and their
geometry. Different power laws for the growth of the connecting structure
(referred to as “neck” or “bridge”) have been found for viscous and inviscid
freely suspended drops [45,57-59,61], as well as for sessile drops in the viscous
and inviscid limit [42,44, 48, 50, 158]. The study of coalescence phenomena
is also relevant for many applications where the underlying substrate of the
coalescing drops is a liquid. Some examples are wet-on-wet printing [162],
emulsions [165,166], and lubricant impregnated substrates [86,160].

Here, we focus on liquid lenses [69], consisting of liquid drops floating
on a quiescent pool of another liquid. This case was studied for Newtonian
drops [35] and liquid crystals [159], where the authors analysed the growth of
the bridge in top-view experiments. In chapter 5 we considered the coales-
cence of lenses using side-view experiments. This perspective is sketched in
Fig. 6.1, providing a quasi-two-dimensional view of the problem. The experi-
ments revealed self-similar dynamics of the bridge profiles, with scaling laws
for the bridge height hg with time ¢ that depend on the viscosity of the lenses,
see chapter 5. At low viscosity, the dominant balance during coalescence is
between surface tension and inertia, and it was found that ko ~ t2/3. At high
viscosity, the dominant balance between surface tension and viscosity leads to
ho ~ t. These scaling laws are the same as those described in the merging of
liquid wedges [56]. Owing to the slender geometry of the drops — typically the
contact angle 6 in Fig. 6.1 is small — the coalescence of liquid lenses can be
analysed using the thin-sheet equations [169,173]. Using a similarity analysis,
the experimentally observed inertial and viscous scaling laws are recovered,
see chapter 5. For example, the viscous coalescence speed was found to be
dhg /dt =~ Vi = 0.5525v62 /1, where v and 7 respectively are the drop surface
tension and viscosity (for consistency we here use overbars to indicate dimen-
sional variables). This prediction was found to be in very good agreement
with experiments.

The viscous similarity analysis, however, contains a salient feature that
remains to be explained: the obtained self-similar velocity profile does not
decay at large distance from the thin bridge region, but reaches a finite value.
This is rather unusual for problems involving coalescence (or drop breakup,
c.f., Ref. [171]). Namely, the similarity analysis is typically based on the
assumption that the flow remains confined to the scale of the bridge—at large
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scale, i.e. the scale of the drop, the flow is usually assumed to vanish. Such is
the case for the coalescence of sessile drops as illustrated in Fig. 6.2a. It shows
an experimental top-view sequence of merging drops that are in contact with
a solid substrate. During the initial growth of the bridge the global features of
the drops appear nearly stationary—away from the bridge region one observes
only a minute spreading of the drops. Figure 6.2b shows the equivalent top-
view sequence for liquid lenses, for which the situation is manifestly different.
Clearly, these floating drops do not remain stationary, but their centres of mass
exhibit an inward motion as soon as the drops establish contact. This inward
motion is not a small effect. Figure 6.2c compares the centre of mass velocity
U (measured in top view) to the bridge coalescence velocity V = dhg/dt
(measured in side view), showing that the two velocities are proportional.
These velocities were obtained using the experimental method described in
chapter 5. We remark that this inward motion does not at all arise for liquid
lenses of very low viscosity—this is in line with the inviscid similarity solutions,
whose velocity rapidly decays away from the bridge, see chapter 5.

In this chapter, we provide a detailed analysis of the coalescence of highly
viscous lenses and elucidate the coupling between the inner “bridge” solution
and the global dynamics of the drops. We treat the problem using the two-
dimensional thin-sheet equations, reflecting an analysis along the cross-section
shown in Fig. 6.1. Such a two-dimensional approximation turned out successful
for the geometry of spherical caps, since close to the bridge the length scale
in the third dimension, O((Rhq/6)'/?), is much larger than the horizontal and
vertical length scales of the bridge, O(ho/0) and O(hg) [42,44,176].

Figure 6.1: Side-view sketch of two coalescing lenses initial radius R and
equilibrium contact angle #. The drop profile is described by h(z,t), while the
minimal height in the neck region ho(t) = h(0,f). The coalescence velocity V
is defined as V = dhg/dt.
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=104
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Figure 6.2: Top-view coalescence of drops in the viscous regime. (a) sessile
drops in contact with a substrate, (b) liquid lenses floating on a water bath.
During lens coalescence we see a clear inward motion of the drops that does
not occur for sessile drops. (c¢) Comparison of the centre of mass velocity
U and the “bridge” coalescence velocity V = dhy /dt for liquid lenses, taken
for three oils of different viscosity and nearly identical contact angles (blue:
n = 115 Pa - s and 8 = 27°, green: n = 33 Pa - s and § = 32° red:
n = 9Pa - sand 6 = 31°, see chapter 5 for experimental details). The centre
of mass velocity U is not a small effect, as it is comparable in magnitude to
the coalescence velocity V.

We demonstrate that, in general, the coalescence velocity exhibits signi-
ficant logarithmic corrections, O(1/Int), where ¢ < 1 is the (dimensionless)
time after coalescence. On the other hand, the thin-sheet equations admit an
outer solution where the drop’s centre of mass can migrate freely, closely re-
sembling the motion observed in Fig. 6.2b. In this latter case, the corrections
to the leading-order result are much smaller. The analysis is confirmed in de-
tail by comparison to time-dependent numerical simulations of the thin-sheet
equations.

The chapter is organised as follows: The governing equations for coales-
cing lenses are presented in section 6.2. In section 6.3, we study the inner
scale dynamics, near the point of coalescence, followed in section 6.4 by an
analysis of the outer region, which is where the two different boundary condi-
tions manifest themselves. We end with our conclusion and outlook in section
6.5.
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6.2. The viscous thin-sheet equations

6.2 The viscous thin-sheet equations

6.2.1 Formulation

Following the approach of chapter 5, the process of coalescence is modelled by
the two-dimensional viscous thin-sheet equations [169,173]. The underlying
approximations are the following: (i) Similar to sessile drops [42,44] the flow
in the bridge region is quasi-two-dimensional in the early stage of coalescence.
(ii) The equilibrium contact angle 6 is small, such that a slender body ap-
proximation can be employed. (iii) The influence of the bath on the dynamics
is negligible, i.e., free slip boundary conditions can be employed at both in-
terfaces of the two-dimensional lenses. (iv) Due to negligible differences in
surface tension between the bath and liquid lens and the liquid lens and air,
the liquid lenses are assumed to be symmetrical with respect to the bath-air
interface — although asymmetric surface tensions can actually be mapped to
an “effective” symmetric surface tension (c.f., the appendix of chapter 5). We
note that these assumptions are in accordance to the previous experiments
of where the ratio of viscosities of the lenses and the bath is more than a
thousand and the corresponding surface tension asymmetry is only about ten
percent. The former justifies (iii) and the latter (iv).

The resulting model equations for negligible inertia of the flow, in dimen-
sionless variables, take the form

h+ (hu) =0, (6.1)
A" + 4(hu) = 0.

Here, h(z,t) and u(x,t), respectively, are the dimensionless interface
height and horizontal velocity, and dots and primes indicate derivatives with
respect to t and x, respectively. Dimensional variables (Z, h, u, t) are scaled as

%=Rzr, h=0Rh, = Ll0u, i= 14, (6.3)
7

where R is the initial lens radius and 6 is the contact angle (cf. Fig. 6.1).
The surface tension is denoted as v and 7 is the viscosity of the liquid inside
the lenses. The thin-sheet equations (Eq. 6.1-6.2) correspond to mass and
(horizontal) momentum conservation. The latter gives the balance between
capillary forces (first term) and viscous forces (second term), while inertia has
here been neglected.
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The momentum equation (Eq. 6.2) can be readily integrated to give the
horizontal force balance

1 1
hh'" — §h’2 + 4u'h = —5 T F(®). (6.4)

The terms on the left-hand side represent the horizontal force transmitted
through the thin drop by pressure, surface tension, and viscous stresses, re-
spectively. We have introduced the constant —1/2 on the right-hand side
corresponding to the total force in the static solution, see Eq. 6.7 below.
Therefore F(t) measures any additional horizontal force that arises during
the coalescence dynamics.

6.2.2 Two-dimensional numerical simulations

In order to illustrate the interplay between the dynamics of the small bridge
region and the large bulk of the drops, we simulate the coalescence of two-
dimensional lenses numerically. Due to symmetry about the point of coales-
cence x+ = 0, we can impose the boundary conditions h’ = u = 0 at
x = 0 and focus on the domain x > 0. We consider two different sets of
outer boundary conditions.

The first case corresponds to the experimentally realised setup of two
freely floating lenses. In this case, the length L(t) of each lens decreases with
time (as can be seen in Fig. 6.2) from its initial value L(t = 0) = 2, and
at the edge of the lens we impose the thickness h(L), the contact angle, and
conservation of mass

h(L) =0, K(L)=-1, wu(L)=L. (6.5)

Substitution into the momentum equation (Eq. 6.4) then yields F((t) = 0, i.e.,
the horizontal force transmitted through the lens is equal to its initial value
at all times. With F© = 0 in Eq. 6.4, the condition h'(L) = —1 is redundant
as it follows from h(L) = 0, so we are left with three boundary conditions
K(0) = w(0) = h(L) = 0 for the third-order governing equations and a
fourth condition I, = u(L) that determines the evolution of L(t).

The second case we consider is one where the lenses do not move, due to
a symmetry condition being imposed about the centres of the lenses, such as
in a periodic array of simultaneously coalescing lenses,

(1) = u(l) = 0. (6.6)
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This yields three boundary conditions A'(0) = u(0) = h/(1) = 0 on the
governing equations and a fourth condition u(1) = 0 that determines the
unknown F(t).

The key finding is that the different outer boundary conditions will lead
to different spatial and temporal dynamics also in the inner region, at the
scale of the bridge. As we shall see, the leading-order solution in the two cases
remains the same—however, the coalescence velocity can exhibit significant
corrections at the next order.

The theoretical initial condition is taken to be the static solution of
Eqgs. 6.1-6.2 with non-dimensional radius 1 and contact angle 1 (corresponding
to the dimensional values R and 6, respectively),

h(z,t = 0) = hy(z) = %x(Q ), (6.7)

but in the numerical simulations we add a small-scale perturbation, namely
(hoi—x/2) exp(—x/2hg;), to initialise the coalescence. The perturbation profile
is chosen to satisfy the symmetry boundary condition A’(0) = 0 and have
an initial bridge height hg; = ho(t = 0), which is taken to be 1070 unless
stated otherwise.

We solve the governing equations (Egs. 6.1-6.4) numerically in Matlab
using a finite difference method with a Crank-Nicolson time-stepping scheme.
Both the spatial and temporal grids are non-uniform with a relative resolution
of 1%, and the discretisation is second-order accurate in both space and time.
For the periodic lenses (Eq. 6.6), the computational domain is 0 < z < 1.
For the free lenses (Eq. 6.5), where the domain 0 < z < L(t) changes with
time, we use a rescaled position variable & = 2x/L(t) and solve the rescaled
equations on the fixed domain 0 < & < 2 instead. As explained above, four
boundary conditions are imposed on the third-order system of equations, in
order to determine the additional unknown L(t) or F(t).

Some snapshots of height and velocity profiles from the simulations are
shown in Fig. 6.3. The free-floating lenses immediately begin to move towards
each other at a constant velocity, and eventually merge into one larger lens with
double the volume (and hence v/2 times the radius and height). The periodic
lenses instead flatten out towards a uniform height of 1/3, determined by the
initial volume in the lens. Importantly, and this is one of the central points
of the paper, the velocity profiles are significantly different between the two
cases, even at very early times, due to the different outer boundary conditions.
We will show how this affects the coalescence velocity, hg.
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Figure 6.3: Numerical height profiles (solid lines) and velocity pro-
files (dashed lines) for the coalescence of (a) two free-floating lenses
(6.5) and (b) an array of periodic lenses (6.6), evaluated at the times
t = 107%, 0.1, 0.5, 1, 2, 10. The arrows indicate increasing time.

6.3 The inner region

In order to study the dynamics of the region close to the point of coalescence,
we rescale the variables as
€T .
£ = @)’ h(z,t) = ho(O)H(E,T), u(z,t) = ho(t) U, T), (6.8)
with 7 = ¢. In choosing the scaling used above, we are motivated by the fact

that in the inner region the length scale of importance is the bridge height hg.
The resulting governing equations become

ho -
VOH +H—EH + (HU)Y =0, (6.9)

HH" — %7_[/2 L AVHU + 1 — F(T) =0, (6.10)

2

where V' = hy is the unknown coalescence velocity that we wish to determine.

At & = 0, the definition h(0,t) = ho(t) and the symmetry about & = 0
yield

H(0) =1, H'(0)=U(0)=0. (6.11)

The system of Egs. 6.9-6.10 has three spatial derivatives and accordingly

three boundary conditions (Eq. 6.11). However, the equations contain two
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unknowns V and F' that are determined on matching to the outer solution.
The matching necessitates that we evaluate H and U as £ — o0, and from
Eqgs. 6.9-6.10 we obtain, on neglecting the time-derivative term,

F
U:Wlnf—ﬁ—i—(?(lnf/f), H=af+0(nf), asf—o0. (6.12)

These asymptotics contain two degrees of freedom « and  that are determined
during the solution process.!
section 6.4, but below we already anticipate some of the results necessary to
evaluate the inner solutions.

This matching will be performed explicitly in

6.3.1 The leading-order similarity solution

The leading-order solution to the foregoing equations is a steady self-similar
solution, which was previously obtained in chapter 5. The leading-order quant-
ities Ho(§), Up(&) and V| are independent of 7, so that Egs. 6.9-6.10 reduce
to

Ho — EHo + (Holo)' = 0, (6.13)
1 1
HoHg — SHG +4AVoHollg + 5 =0, (6.14)

where we have anticipated that F'(7) < 1-—this indeed is true as we see
later. The boundary conditions required to evaluate these quantities are given
by Eq. 6.11, complemented by Hy = 1las ¢ — oo (o = 1) set by
the leading-order outer solution given in Eq. 6.7. These equations (and also
the higher-order equations) are solved numerically in Mathematica using a
shooting method on the domain 0 < ¢ < 10°. We find the leading-order
coalescence and far-field translational velocities to be (see chapter 5)

Vo = 0.5525, Uy — —By = —0.5734, as & — oo. (6.15)

!Given that the system is third order in space, there should be a further degree of freedom
as £ — oo. However, it can be shown by perturbation analysis of Egs. 6.9-6.10 (c.f.,
Ref. [171]), that this degree of freedom appears as a pre-factor of a term decaying through
an exponential in £ as long as @ > 0, which is always the case in this coalescence problem.
The degree of freedom does thus not appear in our leading-order asymptotics.
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6.3.2 Next-order corrections

The solutions Hy and Uy are plotted in Fig. 6.4a—b, where they are compared
with the numerical solutions. The two columns correspond to the two types of
boundary conditions, free-floating lenses and periodic lenses. For both cases
an excellent agreement is found at early times after coalescence. However, the
velocity profiles in Fig. 6.3a—b revealed large differences between these two
situations. While these differences do not turn up in the leading-order inner

= = = Asymptotics

Numerics

(b)

O\F Uy -
0 1 2 3 4 5
E=uz/h E=uz/h
(0)0.4 T

Hi+E2/2 4 Bog |

0
E=x/h E=x/h

Figure 6.4: Similarity solution profiles —leading order (Eq. 6.15) and first
correction (Egs. 6.20-6.25)— for (a, c) free-floating lenses and (b, d) periodic
lenses. Rescaled numerical results are shown for comparison, evaluated at
(a,c)t = 1073, 1072, 10~ and (b, d) t = 107*, 1073, 10~2. The numerical
height profile is transformed as Honum = h/ho and Hi num = (h/ho —Hoasy)/€
where € = hg for free lenses and ¢ = F' for periodic lenses, and the velocity is
transformed similarly. In order to resolve the O(10~3) corrections in (c), the
numerical simulation was performed with a resolution of 0.1%, which restricted
ho; to the larger value 1076, The arrows indicate increasing time.
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solutions Hg and Uy, they impact the next-order corrections. As we will see,
this also has a strong effect on the evolution of the coalescence velocity V. We
therefore now address the inner solution beyond the leading order.

6.3.2.1 The case F(1) =0

In the case of free-floating lenses, for which F'(7) = 0, it turns out that we can
set up a consistent expansion based on the expansion parameter ho(7). On
substituting the expansions

{H(T),U(T), V(T)a 5(7—)} - {HO,Z/{(), ‘/07 /80}

+ ho(7) {1, Uy, Vi, B1} + O(h), (6.16)
(where the dependence of H and U on & is understood) into Egs. 6.9-6.11 we

obtain, at O(hy),
2H1 — 57'[/1 + (Holhy + 7-[1240)/ =0, (6.17)
HoM| + HiHo — HoH| + 4(VoHold] + VoHaldy + ViHoldy) =0,  (6.18)
H1(0) = Hi(0) = Uy (0) = 0. (6.19)
The differential equations for H; and U; are of third order with three bound-
ary conditions, so one further condition is required in order to determine the
unknown V;. This is obtained from a matching with the outer region. As
€ — 00, the generic solutions to Egs. 6.17-6.19 are quadratic, H; o &2, and so
will need to match the second derivative h”(0) = —1 (an O(hg) quantity when
expressed in inner variables) of the outer solution. We thus impose H{ — —1

as & — oo, and obtain the numerical solutions plotted in Fig. 6.4c, with the
coefficients

Vi =—0.7625, U — —B1 = —0.3492, as & — oco. (6.20)

6.3.2.2 The case of non-zero F(7)

When the horizontal force F'(7) is non-zero, the next-order corrections are at
O(F). As we shall see in the next section, these corrections dominate the
O(hg) corrections that arise due to time evolution of the outer solution, since
F, though unknown yet, is evaluated to be O(1/1In(hg)). For this reason, we
now expand the solution in terms of F, i.e.

{H(7), U(7),V(7), B(7)} = {Ho,Uo, Vo, Bo}
+ F(7) {H1,Us, Vi, B1} + O(F?). (6.21)
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After substituting into the governing equations, we obtain, at O(F),

Hy — EHY + (Holhy + Hallp) =0,  (6.22)
HoH! + HiHg — HoHy + A(VoHoly + VoH Uy + Violdg) =1, (6.23)
H(0) =U (0) = H1(0) =0.  (6.24)

Since the corrections to the outer solution at O(hg) are to be neglected when
matching the inner and outer solutions at O(F'), we now impose the condition
H) — 0 as £ — oo. On solving these equations numerically, we obtain the
solution profiles plotted in Fig. 6.4d and the coefficients

Vi = —0.6227, Bi = 0.7079. (6.25)

As F = O(1/Inhg) will typically not be very small, it is useful to calculate
the second-order O(F?) correction, which includes contributions proportional
to F? as well as contributions proportional to (ho/ ho)F . We perform this
calculation in appendix 6.6.1.

6.4 The outer region and matching

We now turn to the outer solution, and calculate the corrections to the initial
static profile hs (Eq. 6.7) that are generated by the coalescence in the bridge
region. Time integration of the evolution Eq. 6.1 from this initial condition
yields

h(z,t) = hy(z) — /Ot (u(. (e, D)) df. (6.26)

The outer solution, where h,u,x = O(1), is thus given by the initial profile
hs(z) with an O(t) = O(hg) correction. Integration of the momentum (Eq. 6.4)
using h = hs + O(hg) then yields the outer-region velocity profile

F(t) x

= 2\,
o= =My,

+ B(t) + O(ho). (6.27)

The coefficients B(t) and F'(t) are determined by boundary conditions and by
matching to the inner solution.
6.4.1 The case of freely floating lenses

For coalescing free lenses, the boundary conditions (Eq. 6.5) result in no ad-
ditional horizontal force, F'(t) = 0, and hence the leading-order velocity pro-
file (Eq. 6.27) is a uniform translation. The translation velocity is given by
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the far-field behaviour (Eq. 6.15) of the inner solution, so at leading order
U, &~ —Vp Py = —0.3168, which is independent of time.

The first corrections in the outer solution then come in at O(t) = O(hy).
Time integration of the mass conservation equation (6.1) yields the result

h(x,t) = hs(x) — tughl(z) + O(hE) = he(z — uot) + O(h3), (6.28)

which reveals that the first-order correction simply represents a translation
of the initial profile hs(z) by the steady leading-order velocity u, < 0. In
fact, it can be shown that to all orders in hg, the velocity profile is spatially
uniform and hence the drop is undergoing pure translation, with deformation
only occurring in the bridge region x = O(hyg).

In order to match with the bridge region, we substitute x = ho§ into
Eq. 6.28 and expand in powers of hg, making use of tu, ~ —VyBot ~ —Bohg.
This yields

2
h = hg [<£—h02>+50(1—h0§)+... , (6.29)

Comparing this with the definition of the inner variables (Eq. 6.8), we now
identify the appropriate far-field behaviour of the inner solution to be

2
’Hl(f)w—g—ﬁoﬁ—l—..., as £ — oo. (6.30)

This yields the condition H — —1 as & — oo that we anticipated in section
6.3.2.1, which was imposed to obtain the solution Eq. 6.20.

The resulting expression for the coalescence velocity is, from Eq. 6.15 and
Eq. 6.20,

ho(t) = 0.5525 — 0.7625hg 4+ O(h3), (6.31)

predicting a linear correction to the coalescence velocity. This prediction is
tested quantitatively in comparison with numerical simulations in Fig. 6.5.
The result (Eq. 6.31) is shown as a dashed line labelled “free”, while the solid
lines are numerics that were initialised at three different initial bridge heights
hoi. After a short time, the numerical curves for free lenses rapidly converge
to the predicted asymptotics (Eq. 6.31). Note that in typical experimental
conditions where hg ~ 1073 ---1072, the coalescence velocity is very close to
the leading-order value Vj.
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Figure 6.5: The dependence of the coalescence velocity V' = hy on the
bridge height hg, for both free-floating (Eq. 6.5) and periodic (Eq. 6.6) lenses.
Numerical results for three different values of the initial bridge height hg; are
shown (solid lines). The asymptotic results for the free-floating and periodic
lenses are given (dashed lines), respectively, by Eq. 6.31 and Eq. 6.35.

6.4.2 The case of periodic lenses

The periodic lenses come with the symmetry boundary condition (Eq. 6.6) on
the velocity profile (Eq. 6.27). This yields B(t) = 0 and hence

F
uo:—(t)ln T .
4 2—x

(6.32)

This logarithmic velocity at small x can indeed be matched to the velocity
at large £ from the inner region calculated in section 6.3.2.2. Specifically, we
equate Eq. 6.32 (taking the limit z < 1) with the far-field inner velocity profile
Eq. 6.12 (using v = VU and & = z/hy),

() ()

T T
—In-=—*In— — :
L ng 1 nh0 VB, (6.33)

where it is noted that V and (8 are expanded in F' themselves.
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Equation 6.33 finally enables us to express F' in terms of hg, which to
leading order gives the result

_ AV 4Vfo 4 2
= /) = ima/hg - O(/ho) ) (6.34)

This confirms the slow, logarithmic decay of the force term, suggesting strong
corrections with respect to the leading-order similarity solution. Most im-
portantly, this leads us to the sought-after coalescence velocity for periodic
drops
im:%+WF+0w%:%+—li—+0@@mwﬂ (6.35)
In(2/hg) ’

where V) = 0.5525, V; = —0.6227 and Vl = 4Vy8oV1 = 0.7892. The correction
to the coalescence velocity (O(In(2/hg)~2)) is calculated in appendix 6.6.1.

Once again, the asymptotic prediction is tested quantitatively in compar-
ison with numerical simulations in Fig. 6.5. The result Eq. 6.35 is shown as
a dashed line labelled “periodic”, while the solid lines are numerics that were
initialised at three different initial heights hg;; again the numerics are in excel-
lent agreement with the asymptotics. We notice a dramatic difference between
the coalescence velocities for periodic drops as compared to the free drops, ow-
ing to the logarithmic decay of F. At values where hg ~ 1073 ---1072, the
coalescence velocity for periodic drops is significantly below the leading-order
value Vj.

6.5 Conclusion

In this chapter, we have analysed the coalescence dynamics of viscous liquid
lenses using both matched asymptotics and numerical simulations. We restric-
ted our attention to the case where the flow in the bath is negligible, which is
a consistent approximation for lenses of high viscosity, and where the contact
angles are small to enable a slender thin-sheet description. In addition, fol-
lowing a previously used assumption in coalescence, we treated the problem
as quasi-two-dimensional. The common scenario in coalescence and pinch-off,
is that the flow remains localised into the narrow bridge region, while the far
field remains stationary. Here, we have found that this is not the case for
viscous lens coalescence, and demonstrated that the bridge region affects the
global dynamics, using both matched asymptotics and numerical simulations.
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Chapter 6. Theory for the coalescence of viscous lenses

For freely floating two-dimensional viscous lenses, as soon as the lenses
start coalescing there is a motion of the outer contact line towards the point
of coalescence. In dimensional form, the growth rate of the bridge height
ho(t) = h(z = 0,) (Eq. 6.31), and the horizontal translation velocity of the
drop’s centre of mass u, (Egs. 6.15 and 6.20) can be written as

_- R (0)h 0>

V =ho= <0.5525 +0.7625 8(92) 0 +. ) 77 (6.36)
_ R (0)h 0

U=iiy=— (0.3168 —0.2443 8(02) 0 +. ) % (6.37)

Here, we have eliminated the lens radius R in favour of the second derivative
h(0) = —0/R of the initial condition Eq. 6.7, in order to highlight that the
coalescence process depends only on the local shape of the lens near the bridge.

For a periodic array of two-dimensional viscous lenses, the centres of
mass of the drops do not move due to symmetry. Instead, a horizontal force
is generated that resists the inward motion towards the bridge, which results
in a logarithmic velocity profile in the lens. In dimensional form, the growth
rate of the bridge Eq. 6.35 and the additional force generated Eq. 6.34 are
then given by

- = 0.7892 762

V=hy={05525+———"+... | =—, 6.38
0 ( In(2R6/ho) ) 7 (6:38)

_ 1.267

F=|— 4. .. |~ 6.39
<1ﬂ(2R9/ho) )” (6:39)

A further, second-order, correction is calculated in appendix 6.6.1. It is im-
portant to note that the corrections are logarithmic in time, so these can be
significant even at the very early stages of coalescence. In fact, logarithmic
corrections also arise for viscous coalescence of freely suspended drops [57,177].
The structure of the problem is, however, different. In the freely suspended
case the neck grows as h ~ tInt, which in contrast to Eq. 6.38 does not exhibit
a finite velocity at early times.

It is of interest to compare these two-dimensional, slender predictions
with the experiments shown in Fig. 6.2c. In chapter 5 it was already shown
that the experimental vertical coalescence velocity V was in very good quant-
itative agreement with the leading-order prediction of Egs. 6.36-6.37. Indeed,
for freely floating drops, the higher-order terms are expected to be negligible
in the experimental range. The current theory predicts a ratio of horizontal
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6.5. Conclusion

to vertical velocity U/V = 0.57/6 for the freely moving drops, which for the
experimental contact angles amounts to U /V = 1.1. The experimentally meas-
ured ratio in Fig. 6.2c was found U/V =~ 1.7, which implies an even stronger
centre of mass motion than predicted. This quantitative disparity could be
due to three-dimensional effects, or due to the fact that the contact angles are
not very small. Still, our theory offers an explanation for the appearance of
a centre of mass motion for viscous lenses, and provides the relevant scaling
laws. This centre of mass motion is not observed for inertial drops, which
is in accordance with the decaying velocity in the inertial similarity solution
presented in chapter 5. For future experiments, it might be of interest to
study coalescence while the centres of the drop are prevented from translating
towards each other (e.g. by attaching the drops to fixed capillaries). In that
case, we expect the appearance of significant (logarithmic) corrections to the
coalescence velocity.

Besides three-dimensional effects, it is also of interest to discuss the influ-
ence of gravity. Gravity becomes important if the (dimensional) radius R of
the lenses is no longer small compared with the capillary length . = \/v/Apg,
where Ap is the difference in density between the lenses and either of the ex-
ternal fluids. In this case, we expect gravity to flatten the static lens profile
hs(x) (Eq. 6.7), but near the rim of the lens, when = < /., gravity becomes
negligible and the capillary thin-sheet equations (Egs. 6.1-6.2) and contact
angle @ are recovered, and hence the leading-order inner solution Eq. 6.15 will
still hold. For (two-dimensional) free lenses, which can undergo uniform trans-
lation even in the presence of gravity, the O(hg) correction Egs. 6.36-6.37 also
holds, but with a modified value of h(0) that simply follows from the static
drop. For periodic lenses, the correction becomes more involved as the outer
velocity profile Eq. 6.27 is affected by the change in hs.

More generally, the dynamical structure of the problem bears a strong
similarity with drop spreading on a rigid substrate, where the motion of the
contact line also induces a weak flow on the scale of the drop [113]. The spread-
ing velocity exhibits a logarithmic dependence on the scale separation between
drop size and the characteristic scale of the contact line in that case too. An
important difference, however, is that for drop spreading the universal leading-
order similarity solution for the inner problem captures the phenomenon, as
it has only algebraically small corrections. Here, we found that for viscous
lens coalescence, the corrections are themselves only logarithmically small,
and therefore can be significant.
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Chapter 6. Theory for the coalescence of viscous lenses

6.6 Appendix

6.6.1 Details of the inner solution for non-zero F

We calculate both the O(F) and O(F?) corrections to the leading-order result
Eq. 6.15 by expanding

ho -
H=Ho+ FHy+ F*Ho + h—OFHT + O(F%), (6.40)
0

and similarly for ¢4, V and S. Note that, since we anticipate that F' is
O(1/Int), the terms with subscript 2 and T are both O(F?).

We substitute the expansion into the equations Eqs. 6.9-6.11, together
with the matching condition H'(c0) = 1 which is accurate to all orders in F,
and identify coefficients. The resulting governing equations for the corrections
Ha, Un and Va, where A = 1,2,T, are given by

HA — f'HIA + (Holdn + HAU())/ _
HoHA + HaHy — HoH )\ + 4(VoHoldy + VoH AU + VaHollp)

0 —(Hathr)’ —H (6.41)
1)) \=HiH] + $HE — A(VoHally + ViHolli + ViHallg) )7\ 0 )7
—~ —

A=1 A=2 A=T

and the boundary conditions are H'y (0) = Ua(0) = Ha(0) = H/\(c0) = 0.
Solving these equations numerically using Mathematica yields the results

Vo =0.5525, Vi =-0.6227, Vo= -0.1267, Vpr = 0.3028, (6.42)
Bo = 0.5734, 1 =0.7079, B2 = 0.8728, pr = —0.5277,  (6.43)

for the coefficients in the far-field behaviour Eq. 6.12.
We can then use the matching (Eq. 6.34) to obtain the results

_ AV + ViF + O(F?))(Bo + BLF + O(F?))

i In(2/ho) (6.44)
_ 4AWfo 16Vo 5o (VoS + Vifo) B
~ In(2/ho) n(2/ho)? +0(In(2/ho) ™), (6.45)

104



6.6. Appendix

and
ho = Vo + ViF + VaF? + Vi (ho/ho) F + O(F?), (6.46)
T TR A
=Vo+7 (2/h0) * @/ O(In(2/ho)~?), (6.47)
—Vp + e/he) /h + O(n(2/hg) %), (6.48)

where Vy = 0.5525, Vi = 4V, 8,V4 = 0.7892, and

Va = 16V5 B3 Va + 16VoBo(VoBr + ViBo)Vi + 4VoBoVr = 0.07272,  (6.49)
¢ =2exp(—=Va/V1) = 2.19. (6.50)

The second-order coefficient Vs is coincidentally quite small when hj is expan-
ded in terms of In(2/hg), so including the second-order correction in Fig. 6.5
would not have a noticeable effect. However, when A is expanded in terms
of, e.g., In(1/hg) or In(1/t), the second-order correction yields a significant
improvement.
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Chapter 7

When elasticity affects drop
coalescence

The breakup and coalescence of drops are elementary topological transitions in
interfacial flows. The breakup of a drop changes dramatically when polymers
are added to the fluid. With the strong elongation of the polymers during the
process, long threads connecting the two drops appear prior to their eventual
pinch-off. Here, we demonstrate how elasticity affects drop coalescence, the
complement of the much studied drop pinch-off. We reveal the emergence
of an elastic singularity, characterised by a diverging interface curvature at
the point of coalescence. Intriguingly, while the polymers dictate the spatial
features of coalescence, they hardly affect the temporal evolution of the bridge.
These results are explained using a novel viscoelastic similarity analysis and
are relevant for drops created in bio-fluids, coating sprays and inkjet printing.

O Submitted as: Pim J. Dekker, Michiel A. Hack, Walter Tewes, Charu Datt, Ambre
Bouillant, Jacco H. Snoeijer, When elasticity affects drop coalescence.
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Chapter 7. When elasticity affects drop coalescence

7.1 Introduction

Viscoelastic liquids are materials that can flow like ordinary liquids, yet re-
spond elastically when excited by rapid deformations [178]. A prime example
is provided by a ball of silly putty—it bounces like a rubber ball, but spreads
out like a viscous liquid when left at rest on a table. Viscoelastic liquids are
ubiquitous in bio-fluids and in technologies such as coating, printing, and poly-
mer processing, and their low poses many challenges. Of particular interest is
how viscoelastic liquids behave near singularities, such as flows around sharp
edges, bubble cusps, or during the breakup of drops [39,179-191]. These flows
involve regions of extreme polymer stretching, which is why, for example, fluids
containing polymers can produce long and stable threads during drop breakup
(see Fig. 7.1a) [188]. Liquid threads are indeed observed for bio-fluids such as
saliva, where they play a role in the generation of aerosols [192].

In contrast to breakup (e.g., Refs. [36,193] and references therein), few
studies exist on the coalescence dynamics of viscoelastic drops (see Fig. 7.1b—
¢) [194]. Previous works exploring the effects of viscoelasticity on drop coales-
cence have focussed on film drainage as the two drops come together before
coalescence [195,196]. Here our focus is on the merging after initial con-
tact between drops, which is mediated by the growth of a bridge that typ-

(b)

Figure 7.1: Pinching and merging of viscoelastic polymer solutions. (a)
Pinch-off of a 2.0 wt% PEO drop gives rise to elongated threads. Coalescence
of (b) pure water drops, and (¢) 2.0 wt% PEO drops. Polymer stretching
inside the bridge markedly enhances the curvature of the connecting bridge.
The scale bars indicate 500 pm.
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ically grows as h ~ t“ where h is the bridge size and t is the time after
contact [42,44,45,50,54,57,58,60,177,197-199]. The corresponding rate-of-
deformation is estimated to diverge as h /h ~ 1/t, and one thus anticipates
a strongly elastic response during the initial phase of coalescence, when the
flow time scale is much shorter than the relaxation time of polymers in the
fluid—much like in the case of bouncing putty. It has thus far remained elusive
how polymers and the singularity at the moment of contact interact, and how
this affects the merging process.

In this chapter, we resolve the coalescence dynamics of viscoelastic li-
quids by experiments on aqueous polymer solutions of varying concentration.
We consider the coalescence of both freely suspended drops and of drops in
contact with a substrate, c.f., Fig. 7.2. For both cases it is found that poly-
mer stress dramatically changes the spatial structure of the bridge, as evident
in Figs. 7.1b—c. Yet, surprisingly, the temporal growth of the bridge is only
mildly affected by the polymers. These features are explained and quantified
by a similarity theory for sessile drops, revealing that viscoelastic coalescence
is very different in nature compared to pinch-off.

7.2 Experimental methods

The coalescence experiments were performed using viscoelastic solutions of
polyethylene oxide (PEO, My = 4.0 x 10° g/mol, Sigma-Aldrich) in water
(MilliQ, Millipore Corporation). Each solution was mixed with a magnetic
stirrer for at least 24 hours, resulting in highly homogeneous solutions. While
drop breakup is modified already for minute addition of polymer (c.f., Refs. [39,
191]), elastic effects in coalescence require very high concentrations—up to 1.0
wt% and 2.0 wt%. We measured the shear viscosities () of the solutions using
a rheometer (MCR 502 with CP50-1, Anton Paar), and the relaxation times
(M) using extensional thinning in a pendant drop geometry (e.g., Fig. 7.1a)
[188]. Calibrations are provided in appendix 7.8.1. A ratio of time scales
related to the material properties of the system can be defined as the material
Deborah number De,, = A/7, where 7 = /pR3/vy &~ 5.8 ms is the inertio-
capillary time scale based on the liquid density p, drop size R and surface
tension . In our experiments Dey, ranges from 0.08 to 10. We note, however,
that the relevant deformation rate during the early stages of coalescence scales
as 1/t, so that a more significant ratio is the “local instantaneous Deborah
number” \/t, which reaches values up to O(10%) at the smallest time scale
that we can experimentally resolve. A strong polymer stretching and elastic
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Chapter 7. When elasticity affects drop coalescence

effect is, therefore, anticipated during the early stages of coalescence.

Typical snapshots of coalescence experiments are shown in Fig. 7.2 for
“spherical” and “sessile” geometries. In both cases, two symmetric drops are
generated on needles (inner and outer diameters 0.52 mm and 0.82 mm, re-
spectively) by a syringe pump (PHD 2000, Harvard Apparatus). They are
brought into contact by very slowly increasing the drop volume, such that
the approach velocity (in the present experiments, three orders smaller than
the typical bridge velocity) can be neglected [50]. The coalescence dynamics
are recorded by a high speed camera (Nova S12, Photron, with 12X zoom
lens, Navitar), allowing for frame rates up to 200 000 frames per second, and
resolutions down to 1 pum/pixel. For sessile drops, we use glass substrates

0 ms 0.25 ms

0 ms 0.25 ms 0.50 ms

Figure 7.2: Coalescence of viscoelastic drops (PEO solution with concen-
tration 1.0 wt% in two geometries: (a) “spherical”, consisting of two freely
suspended drops, and (b) “sessile”; consisting of drops on a substrate. The
three snapshots show a close-up of the bridge at three different times. The
central bridge heigh ho(t) is defined with respect to the white dashed lines,
indicating (a) r = 0, and (b) y = 0.
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(Menzel-Gléser) that are made hydrophobic, and we use data with contact
angles 45° < 6 < 55°. We focus on the spatio-temporal evolution of the bridge
shape, h(x,t), as defined in Fig. 7.2. This profile is extracted using a custom
sub-pixel interface tracking code. Finding the initial time of coalescence from
direct imaging is challenging, yet important to determine the coalescence ex-
ponent «. Here ¢ = 0 is determined by extrapolating a power-law hg o t%,
c.f., appendix 7.8.2.

7.3 Time

The temporal evolution of the bridge growth is only mildly affected by the
presence of polymers. This is evident from the data in Fig. 7.3. In Fig. 7.3a
we show the growth of the minimal bridge radius hg(t) for spherical drops over
the full range of polymer concentrations. The data nearly fall on top of one
another, and closely follow the dynamics of pure water (included as dark blue
symbols). A weak trend is observed with increasing polymer concentration,
leading to slightly slower dynamics. Importantly, however, the exact same
power-law growth hg o< t® is found for all concentrations. The fitted values
of «, the coalescence exponent, are shown in Fig. 7.3b—all polymer concen-
trations are consistent with a ~ 1/2, which is the exponent for Newtonian
coalescence of low-viscosity spherical drops [45, 58, 59].

A similar behaviour is observed for sessile drops, see Fig. 7.3c—d. The
data in panel Fig. 7.3c appear more scattered, which we attribute to the “wet-
ting” nature of these experiments, for it is known that the variability of the
contact angle at the moment of coalescence affects the pre-factor of the power-
law growth [42,44]. Once again, however, the coalescence exponent is close to
that of pure water, which for sessile drops is a = 2/3 [50]. Only the highest
concentration exhibits a true departure from 2/3, giving a lower exponent. Im-
portantly, however, up to concentrations of 1 wt% there is no measurable effect
of polymers on the coalescence exponent. We recall that a minute amount of
polymer (down to 0.001 wt%) is already sufficient to dramatically change the
breakup of drops, from algebraic to exponential thinning [191]. It is therefore
truly remarkable that the coalescence exponent is completely unaffected by
the presence of polymers at such high concentrations.
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Figure 7.3: Temporal coalescence dynamics. (a) Minimum bridge radius
ho as a function of time for spherical drop coalescence, and (b) the fitted
exponent «; the dashed line indicates & = 1/2. (¢) Minimum bridge height hg
as a function of time for sessile drop coalescence (45° < 6 < 55°), and (d)
the fitted exponent «; the dashed line indicates « = 2/3. The error bars on
« arise from a combination of the uncertainty in determining ¢ = 0, and the
averaging of different experiments with the same liquid.

7.4 Space

Polymer stretching fundamentally alters the stress singularity during coales-
cence, and changes the spatial structure of the bridge. Indeed, one observes
a dramatic difference in bridge curvature in Fig. 7.1b—c. Laplace’s law of
capillarity implies that the enhanced curvature for PEO solutions is due to
strong polymer stresses. This polymer stretching in fact leads to a breakdown

112



7.4. Space

T T (b) T T
® 0.15 ms»© 1.00 ms ® 0.20 ms+»© 2.00 ms

2.0 2.0
Water PEO 2 wt%
o o
£ : 1\ OO
< 15 4 <15k 0 /o
0 ¢ . »
»
1 O L \ 1 / L 1 O L \ 1 / L
T2 0 2 T2 0 2
TR/h? TR/h?
©  [%%0.08msee 081 ms 4 D [i'e012ms» 722ms ¢
2.0 2.0 -4 i
Water Yt PEO1wt% ¢
\ Il
o o \ /
= = \ /
< 15} 4 <= 15F -
™,
1.0 LSt : 1.0 . :
-2 0 2 -2 0 2
tan(f)x/hg tan(f)x/hg

Figure 7.4: Spatial coalescence dynamics, for spherical drops (a, b) and
sessile drops (c, d). Bridge profiles at different times are rescaled according to
the Newtonian scaling laws. (a,c) For pure water, the rescaled bridge profiles
collapse. (b, d) A breakdown of this Newtonian self-similarity is found for
PEO solutions. (Spherical: 2 wt% PEO, t/A = 0.003 — 0.03, sessile: 1 wt%
PEO, t/A = 0.004 — 0.25.)

of the self-similarity observed for the coalescence of pure water drops. Fig-
ure 7.4 shows bridge profiles h(z,t) at various times, scaled according to the
Newtonian similarity solutions. The spherical and sessile cases have the same
vertical scaling h/hg, but call for a different scaling of the horizontal position,
respectively, as xR/h3 for spherical drops of radius R, and as tan(#)z/hg for
sessile drops with contact angle 6 [50].

Figure 7.4a and c correspond to the reference cases of pure water. The
scaled profiles exhibit a collapse, revealing the self-similar nature of Newto-
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nian coalescence. Figure 7.4b and d report the corresponding data for PEO
solutions, scaled in this Newtonian way. The selected data correspond to the
highest concentrations for which we still observed the Newtonian coalescence
exponents (2.0 wt% for the spherical case, and 1.0 wt% for the sessile case—see
Fig. 7.3b and d; for completeness, results for other concentrations are reported
in appendix 7.8.3). The coalescence profiles for PEO no longer collapse with
these scalings. The breakdown of Newtonian self-similarity emphasises the
importance of polymeric stresses, which we now elucidate.

7.5 Viscoelastic singularity

An explicit analysis of the elastic singularity can be performed for sessile drops,
where the geometry near coalescence is that of a wedge with angle 6 as sketched
in Fig. 7.5a, and the ensuing flow structure is considerably simple [42,44, 50].
The wedge geometry near the point of coalescence has only a single length
scale hg, and is more amenable to analytical treatment than a spherical one
which involves a distinct, horizontal scale h3/R. The wedge geometry for small
0 offers a further simplification, which is exploited below.

We start by noting that at the centre of the bridge (x = 0), the flow
is nearly purely extensional in the vertical direction, with an extensional rate
ho /ho ~ 1/t that is very large at early times. The stress at x = 0 at early
times, thus reads
— hO 7700
UNUOOhON P (7.1)
where 7] is the extensional viscosity at high rates [200,201]. At such high
stresses, non-linear polymer relaxation becomes important and can be cap-
tured by constitutive relations such as the FENE-P or the Giesekus model.

The amount of stretching will be much less pronounced away from x = 0
(c.f., Fig. 7.5a), and we wish to identify the characteristic distance £ over which
the singular polymer stress Eq. 7.1 decays. The central region of high polymer
stretching is bordered by a region where polymer relaxation is negligible for
t/\ < 1. This is a purely elastic region, where the polymer stretch can be
found kinematically from the flow field [190]. Specifically, this involves com-
paring the height near x = 0 to the original height 6z prior to deformation.
For small angles, the resulting polymer stress reads (c.f., appendix 7.8.5)

h
o~ %, for t <A, (7.2)
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Figure 7.5: Self-similarity of sessile viscoelastic coalescence. (a) Schematic
of the elastic singularity in wedge coalescence due to polymer stretching in the
vertical direction. The singular polymer stress (red line) decays over a char-
acteristic distance ¢ that is small compared to the bridge width. (b, ¢) Bridge
profiles scaled according to the viscoelastic self-similar prediction Eq. 7.4 for
(b) different times (PEO 1.0 wt%), and (c) different PEO concentrations at
t/X ~ 0.25 (profiles symmetrised by averaging left-right). The data collapse
on top of each other.

where the appearance of GG, the elastic modulus of the medium, underlines the
purely elastic nature. The extent x ~ ¢ of the central bridge region can be
found by matching stresses in Eqs. 7.1-7.2. This gives

Ghot  hot

O ~ X =/, (7.3)

where we have used that 7.o/G ~ A to express the result in terms of the
calibrated relaxation time. We note here that ¢ is much smaller, by a factor
t/A, than the horizontal coalescence scale hgy/6 for pure water.
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7.6 Viscoelastic self-similarity

The emergence of the length scale ¢ explains the breakdown of the self-similarity
in Fig. 7.4, and provides a new horizontal scale for viscoelastic coalescence.
However, we still need to identify the appropriate vertical scale. This is done
by balancing the polymer stress, 7 /t, to the capillary pressure, vh” in the
bridge region, which leads us to

th3G x
. 7.4
- (7.4)

h($at)_h0 ~ z

H(E), with &=

This predicts a new self-similar regime where the bridge is described by a
universal shape H(z/¢).

To test these scaling predictions, we accordingly rescale the experimental
data. Figure 7.5b shows the result for the 1.0 wt% solution (showing the
same experiment as in Fig. 7.4d). The data now exhibit a very good collapse
which validates the emergence of the new, viscoelastic, self-similarity. We also
compare the results from different polymer concentrations in Fig. 7.5c, each
taken at a dimensionless time ¢/A ~ 0.25 (arbitrarily chosen, while keeping
the experimental resolution in mind). Since GA/7 in Eq. 7.4 is expected
to vary with polymer concentration, the scaling of vertical axis involves an
adjustable parameter (reported in appendix 7.8.4), while the horizontal scale
¢ is left parameter-free. An excellent collapse can indeed be obtained, as seen
in Fig. 7.5c.

7.7 Conclusion and outlook

Elasticity affects drop coalescence in a remarkable fashion. While the spatial
structure of the bridge is affected in a fundamental way, with sharp bridge
profiles induced by polymer stretching, the temporal coalescence exponent
remains unaffected. This second feature can be rationalised from our sim-
ilarity analysis for sessile drops. The polymer stress in coalescence remains
confined to a very narrow region, whose size depends on the “local instantan-
eous Deborah number” A/¢. This narrow region turns out insufficient to alter
the inertio-capillary coalescence exponent. This scenario is markedly differ-
ent from drop breakup for which polymer elasticity acts everywhere along the
elongated filament. In breakup, the effective local Deborah number (relax-
ation time times the elongation rate) approaches a constant value along the
entire thread, and therefore is able to dictate the temporal evolution [39].
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As a future perspective, the next step would be to identify the structure
in spherical drop coalescence. The spherical case lacks a slender limit and
is therefore more intricate, also due to the two length scales that appear in
already in the Newtonian case. It would be of interest to numerically investig-
ate the initial phase of coalescence using different types of constitutive relations
and different coalescence geometries. Our experiments, however, show that the
scenarios for sessile and spherical drops are qualitatively similar. These find-
ings will be important for a plethora of applications involving the merging of
polymeric drops.
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7.8 Appendix

7.8.1 Rheological characterisation

A stock solution of polyethylene oxide (PEO, Sigma-Aldrich) with 2 wt% con-
centration was prepared by weighing and mixing PEO (My, = 4 x 10 g/mol)
into water (MilliQQ, Millipore Corporation). Lower concentrations (down to
0.01 wt%) were achieved by dilution of the stock solution. The physical prop-
erties of the fluid were characterised using two methods. The shear viscosity 0
was measured using a rheometer (MCR 502 with CP50-1 cone-plate geometry
spindle, Anton Paar) and the resulting values are shown in Fig. 7.6 as a func-
tion of the shear rate 4. The viscosity measurements were complemented by
pendant drop experiments, which provide values for the surface tension v as
well as the relaxation time A of the solutions. The surface tension, deduced
by fitting the drop shape as in [202], is found to be insensitive to the poly-
mer concentration: v = 65 + 2 mN/m. The relaxation time A was measured
by studying the thread thinning dynamics [188]. An example snapshot of a
thread is shown in Fig. 7.1a. We performed at least five measurements per
solution to extract the minimum thread diameter d(¢). We show in Fig. 7.7a
the thread time evolution on a semi-log scale, which is fitted with the function
d/dpeedie ~ €xp(—t/3X), where dyeedle denotes the dispensing needle diameter
and t is the time. Figure 7.7b shows the deduced average relaxation times A
as a function of the PEO concentration.
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[a¥ 10—1 @ 0.01 Wt% Q1.0 Wt%
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Figure 7.6: Viscosity n as a function of shear rate 4 for various PEO con-
centrations. Data were averaged for a few seconds for the high shear rates to
a few minutes for the low shear rates.
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Figure 7.7: (a) Thinning dynamics of a thread for various PEO solu-
tions. The thread has minimum diameter d. At least five experiments
are shown for each solution. The white dashed lines show fits of the type
d/dpeedqle ~ exp(—t/3)). (b) Relaxation time A as a function of PEO concen-
tration ¢, as determined from the data in (a).

7.8.2 Finding the initial moment of drop contact

The accurate fitting of the exponent «, defined as hy o (t — t9)?, relies
on a good determination of ty, i.e., the moment of first contact between the
coalescing drops. A slightly misdefined ty leads to curved data on a log-log
plot, affecting the fitted a. Typical coalescence data for the sessile case ob-
tained from optical microscopy is shown in Fig. 7.8a—b. The exact moment
of first contact is difficult to determine from the experimental images—pixel
resolution limits the visibility of small bridges, the moment of first contact can
be in between two frames, and sideview images can lead to apparent contact
before the actual contact. The method by which we determine the precise
moment of ¢y is illustrated by the example measurement shown in Fig. 7.8.
We manually selected a range, starting at a frame where the coalescence had
clearly started and ending at sufficiently small ¢ such that the growth is ex-
pected to follow a power law. For various small time shifts, we then checked if
the selected data fits to a power law hg o (t — tg)®, by fitting (least squares
method) a straight line where o was a free parameter. The value of ¢y was then
determined by selecting the (small) time shift which resulted in the smallest
fit residue. Fig. 7.8c—d show the result of our method for the data shown in
Fig. 7.8a—b. This procedure leaves « as a free parameter, which is reported in
the main text.
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Figure 7.8: Minimum bridge height hg as a function of time, with misdefined
to on (a) linear axes, and (b) log-log axes. The same data is shown with
corrected ty on (c) linear axes, and (d) log-log axes.

7.8.3 Additional data for various PEO concentrations

In the main text, we present bridge profiles scaled by the Newtonian self-
similar rescaling (Fig. 7.4) and by the newly proposed viscoelastic self-similar
rescaling (Fig. 7.5). The main text shows profiles for selected concentrations
and selected times. For completeness, here we provide the full set of data
(scaled and unscaled) for all concentrations at various times. Figure 7.9 gives
the data for the sessile drop coalescence. Figure 7.10 gives the data for the
spherical drop coalescence. Note how the Newtonian collapse progressively
deteriorates with increasing PEO concentration.
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Figure 7.9: Raw data and scaled data for sessile coalescence for various addi-
tional PEO concentrations. The leftmost column shows raw data, the middle
column shows data scaled according to the Newtonian similarity scaling, the
rightmost column shows the data scaled according the viscoelastic similarity
scaling. The Newtonian collapse progressively deteriorates with increasing
PEO concentration.
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Figure 7.10: Raw data and scaled data for spherical coalescence for various
additional PEO concentrations. The left column shows raw data, the right
column shows data scaled according to the Newtonian similarity scaling. The
Newtonian collapse progressively deteriorates with increasing PEO concentra-
tion.
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7.8.4 Pre-factor to Eq. 7.4
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Figure 7.11: The collapse of profiles in Fig. 7.5¢ involved a pre-factor to the
scaling law (Eq. 7.4). The plot reports this pre-factor k for various concentra-
tions.

7.8.5 The wedge geometry and the purely elastic regime

Here, we motivate in more detail the scaling law in the purely elastic regime
presented in Eq. 7.2 of the main text. For a stress-free initial condition, the
polymer stress without relaxation reads

o? =G F - FT, (7.5)

where F is the deformation gradient tensor F = 0x/0X, and x and X are the
Eulerian and Lagrangian coordinates, respectively (see Fig. 7.12) [190]. In the
absence of polymer relaxation, the components of A = F - FT along principal
directions give the square of the principal stretch that is induced by the flow.

In sessile drop coalescence, the predominant stretch near the centre of the
bridge is in the vertical direction. We thus need to evaluate A,,. Furthermore,
in the slender limit and ignoring a thin viscous boundary layer near the wall,
the flow will be approximately homogeneous across the film thickness [171].
The stretching can then be evaluated by comparing h(x,t) to the reference
height §.X before the start of the coalescence, leading to

Ay = (h(;g,(t))Q ~ (;??)2' (7.6)
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The second relation comes from an evaluation near the point of coalescence.
Mass conservation in the two shaded regions in Fig. 7.12 gives

1 T
5X2(9 = / h(z,t) dz ~ ho(t)z. (7.7)
0

From the two relations one obtains A, ~ ho/0x. Therefore, the corresponding
stress component oy, ~ Gho/fz. This is Eq. 7.2 of the main text.

Figure 7.12: Schematic of sessile viscoelastic coalescence in the bridge region.
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Chapter 8

The asymmetric coalescence of two
droplets with different surface
tensions is caused by capillary waves

When two droplets with different surface tensions collide, the shape evolution
of the merging droplets is asymmetric. Using experimental and numerical
techniques, we reveal that this asymmetry is caused by asymmetric capillary
waves, which are the result of the different surface tensions of the droplets.
We show that the asymmetry is enhanced by increasing the surface tension
difference, and suppressed by increasing the inertia of the colliding droplets.
Furthermore, we study capillary waves in the limit of no inertia. We reveal
that the asymmetry is not directly caused by Marangoni forces. In fact, some-
how counterintuitive, asymmetry is strongly reduced by the Marangoni effect.
Rather, the different intrinsic capillary wave amplitudes and velocities associ-
ated with the different surface tensions of the droplets lie at the origin of the
asymmetry during droplet coalescence.

0 Published as: Michiel. A. Hack, Patrick Vondeling, Menno Cornelissen, Detlef Lohse,
Jacco H. Snoeijer, Christian Diddens, and Tim Segers, Asymmetric coalescence of two
droplets with different surface tensions is caused by capillary waves, Phys. Rev. Fluids
6, 104002 (2021).
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8.1 Introduction

The collision and subsequent coalescence of liquid droplets is omnipresent in
both nature and technology. For example, small droplets collide in the at-
mosphere, forming larger ones that eventually fall to the Earth as rain [155].
The coalescence of ink droplets is also a vital process in inkjet printing, the
collisions and coalescence of ethanol and diesel droplets play an important
role in combustion engines, and the in-air coalescence of droplets has recently
been introduced as a method for the mass production of functional microma-
terials [7-9,68,203-206]. The fundamental importance of droplet collision and
coalescence has led to intense investigation in recent decades [42,43,57,59,207].
These studies found that the collision and coalescence dynamics of identical
droplets are determined by both the geometry and composition of the droplets
[44,45,50]. Tt is therefore expected that these dynamics are strongly altered
when the two droplets are not identical. Indeed, unequal-sized droplets show
different collision outcomes when compared to collisions between droplets of
equal size [62,208]. Moreover, when two droplets of different surface tensions
coalesce, they show fundamentally different dynamics than their equal-surface
tensions counterpart—they exhibit intricate phenomena such as ‘delayed co-
alescence’ and have enhanced internal mixing [46,49,52,53,64,209].

In this chapter, we study the mid-air collision of two droplets with dif-
ferent surface tensions. The difference between the surface tensions of the
droplets induces a tangential Marangoni stress at the droplet interface, which
results in the engulfment of the higher surface tension droplet by the lower
surface tension liquid [63,210]. A similar system was studied by Gao et al., and
later by Kohno et al., who reported that the shape of such droplets during their
coalescence is asymmetric [211-213]. Gao et al. and Kohno et al. attribute the
asymmetric droplet shape to capillary wave interference [211-213]. In their
model, a capillary wave forms at the point of contact of the two droplets, and
subsequently travels over the high surface tension droplet’s interface, driven
by the difference in surface tensions between the two droplets, i.e., due to
the Marangoni effect. When the capillary wave reaches the droplet apex, it
constructively interferes with itself, forming a protrusion, thus resulting in
an asymmetric droplet shape. Capillary waves also form and interfere during
the coalescence of identical droplets, though in that case the protrusions that
appear are identical on both droplets [43, 56,59, 61,62]. Understanding the
dynamics of engulfment and capillary waves in the presence of the Marangoni
effect, and in particular their interaction in droplet collisions, remains an open
question.
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This work offers a detailed study of the asymmetric evolution of the
droplet shapes during the collision of two droplets with different surface ten-
sions. Using a combination of experiments and numerical simulations, we
show, presumably unsurprisingly, that the asymmetry grows as the difference
between the surface tensions of the two droplets is increased. However, more
remarkably, we show that this is not due to the Marangoni forces. Instead, we
unravel the critical role of capillary waves in the formation of the asymmetric
droplet shapes. Finally, we also reveal that the asymmetry can be suppressed
by increasing the collisional Weber number.

8.2 Methods

8.2.1 Experimental method

The experimental setup is shown in Fig. 8.1a. Two piezo-electric droplet dis-
pensers (AD-K-501, Microdrop Technologies) were used to generate droplets
that collide in flight. A continuous stream of droplets was generated to pre-
vent compositional changes in the liquid due to evaporation and fouling of
the liquid interface at the nozzle exit of the dispenser. A high-speed cam-
era (HPV-X2, Shimadzu) equipped with a 20x microscope lens (Olympus)
was used to record the dynamics of the collisions with a spatial resolution of

(a) Top view ) Side view
dispenser 1 dispenser 2

dispenser 1 2; ;§

droplet 1 ° ° droplet 2

strobed

\ LED

microscope droplets

camera

dispenser 2

Figure 8.1: (a) Schematic of the experimental setup (top view). (b) Defini-
tions of the collision parameters (side view).
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Table 8.1: Properties of the liquids used in the experiments of this study. The
surface tensions are based on the values reported in Ref. [214]. The density
and viscosity are based on the values reported in Ref. [215].

Liquid ~ [mN/m] n [mPa - s p [kg/m?]
water 72.5 0.92 997
8.0 wt% ethanol in water 51.3 1.51 986
34.5 wt% ethanol in water 31.9 2.56 941
ethanol 22.9 1.17 789

1.6 pm/pixel at one to two million frames per second. We used a strobed LED
to generate high-intensity light flashes with a duration of 300 us to illuminate
the collisions. The duration of a single LED flash is longer than the collision
time. The droplet dispensers were oriented at an angle to facilitate collisions
in the imaging plane of the microscope. The impact velocity (see Fig. 8.1b) is
therefore defined as v = vy 4 + v2 ; = cos || V1| 4 cos az||va||, where o ~ g
and vy o =~ va,. The velocities ||vy|| and [[va|| as well as the angles o and o
were extracted from the movie frames captured prior to the collision event.
The velocity of the droplets was controlled by the amplitude of the electric
pulse applied to the piezo-electric actuator in the dispenser, resulting in im-
pact velocities in the range 0.4 m/s < v < 6.7 m/s. The radii of the droplets
were R =~ Ro ~ 35 um in all experiments.

The experiments were performed with water (MilliQ, Millipore Corpor-
ation), ethanol (99.8% purity, Sigma Aldrich), and mixtures of water and
ethanol. The properties of these liquids are summarised in Table 8.1. Wa-
ter and ethanol were chosen for their large difference in surface tension, low
viscosities, and miscibility. An estimated 0.8% of the initial droplet volume
evaporates during the flight and collision of the droplets, such that the surface
tensions of the droplets remain approximately constant during the experiment,
see appendix 8.6.1 for details.

8.2.2 Dimensionless groups

We define the dimensionless surface tension difference 4 and collisional Weber
number as
— 2 p—
- R
F = 72 71, and We = 2 , (8.1)
71 V2
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respectively, where p = (p1 + p2)/2, p1 and po are the densities, and v;
and -, the surface tensions of droplets 1 and 2, respectively, and R is the
average radius of the droplets. We always choose v > 7; by definition. In
the present work, 4 and We were varied over the range of 0 < 4 < 4]
and 0 < We < 25. The density ratio p2/p; is an additional dimensionless
parameter, which is determined by the values in Table 8.1.

The Ohnesorge number and Bond number are defined as

Oh = 2 and Bo = 7(/)—/)3@)913’ (8.2)

\/ p12R 7 72

respectively, where 1, is the viscosity of droplet 2, g is the gravitational ac-

celeration, and p,;; is the density of air. The gravitational and viscous forces

can be neglected in all experiments and numerical simulations considered in

the present work, since Oh = O(1072) < land Bo = O(107%) <« 1.
Finally, time is normalised by the inertio-capillary time scale

- t R3
t = —, with r, = pl—z, (8.3)
T i

which is associated with the surface tension-driven deformation of the droplets
during coalescence [216]. Here, i € [1,2] indicates that the properties of either
droplet 1 or 2 are used, based on which is one being considered.

8.2.3 Numerical method and its validation

A numerical simulation of the collision process demands an accurate tracking of
the interface and the treatment of the composition and velocity field, which are
strongly coupled due to the Marangoni effect. To that end, an axisymmetric
sharp-interface arbitrary Lagrangian-Eulerian (ALE) finite element method is
employed. Both droplets are represented by a mesh consisting of triangular
elements, using second order basis functions for the velocity u and linear basis
functions for the pressure p and composition c¢. Due to the low viscosity and
density ratio, the gas phase is not considered. At higher impact velocities, the
presence of the gas phase can however influence the collision due to the build-
up of an air cushion, the formation of a dimple, and the presence of entrapped
bubbles [217-219]. At lower collision velocities, however, hardly any dimple
forms in collisions, and simulations with and without consideration of the
gas phase lead to almost identical results. Evaporation is also disregarded in
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the numerical simulations, given the short time scale of the collision process
compared to typical droplet evaporation time scales.

The Navier-Stokes equations and the convection-diffusion equation for
the composition are solved, i.e.,

p(Ou+u - Vu)=-Vp+V - |n(Va+(Vu)T)], (8.4)
Op+V - (pu) =0, (8.5)
p(Oic+u - Ve)=V - (pDVe),

where D is the diffusion coefficient. The properties p, n, D and also the surface
tension v are functions of the composition c¢. At the free interface, the Laplace
pressure and the Marangoni shear stress are imposed, i.e.,

n-T n=xy, and n- T t=Vgy " t, (8.7)

with the stress tensor T = —p1 +7n(Vu + (Vu)7), the normal n, and tangent
t. Here, k is the curvature of the interface and Vg is the surface gradient
operator. Finally, the kinematic boundary condition is enforced via a field
of Lagrange multipliers, which ensures that the normal mesh motion at the
interface coincides with the normal velocity u - n, whereas the positions of
the mesh nodes in the bulk follow the motion of a deformed pseudo-elastic
body [172,220].

The coalescence is initiated as follows. The moment the droplets approach
each other within 1% of the average radius, the interfaces of both droplets are
connected and the mesh is reconstructed, followed by an interpolation of the
solved fields and their values of the previous time step, which is required for
the second order time stepping via the backward differentiation formula. Note
that By = Ry unless otherwise stated. Mesh reconstruction is also invoked
whenever the mesh quality suffers from strong deformations.

The method is implemented on the basis of the framework OOMPH-LIB
[172]. All equations are solved with a monolithic Newton method using a direct
solver for the inversion of the Jacobian. The implementation has already been
successfully applied for various scenarios involving multi-component droplet
dynamics and Marangoni flow, see e.g., Refs. [120,221]. The dependence of
the results on the mesh size and the time step is discussed in appendix 8.6.2.

Figures 8.2 and 8.3 show the validation of our numerical method against
our experimental results. The temporal evolution of the neck width w for
We = 0and ¥ = 0 is shown in Fig. 8.2, and it is in good agreement
with the expected scaling law w o (yR/p)'/*t'/? [57]. For comparison, we
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Figure 8.2: Temporal evolution of the neck width w for two coalescing water
droplets (y = 72.5 mN/m, p = 997 kg/m?, and n = 0.92 mPa - s). The
experimental data is an average of five measurements with We = 0.17. The
error bars indicate the standard deviation between the measurements at each
time step.

show the experimentally obtained neck width for We = 0.17 (due to the
nature of the setup, we are unable to achieve We = 0 in the experi-
ments) and find good agreement with the numerical simulations. A com-
parison of the coalescence dynamics for various We > 0 and # is shown in
Fig. 8.3, where the experimental parameters v;, R;, v;, 1, and p; (i € [1,2])
were used as input for the numerical simulations. A detailed physical dis-
cussion of Fig. 8.3 is provided in section 8.3. The surface tension depends
on the local composition ¢ as v = 0.016367 4+ 0.007399/(c + 0.131824) (in
N/m), which is an empirical fit to the data presented by Vazquez et al. [214].
The density p = 997.0 + (—208.0(0.660c + 0.340c?)) (in kg/m?), viscosity
n = 0.000923 + 0.00821c — 0.0111¢? + 0.00314¢* (in Pa - s), and diffusion
coefficient D = 1.25 x 1079(1.0 — 2.78¢ + 2.72¢?) (in m?/s) were similarly
obtained by empirical fits [215,222]. Here, ¢ = 0 indicates pure water and
¢ = 1 indicates pure ethanol. Excellent agreement between the experiments
and numerical simulations demonstrates that our numerical method accur-
ately describes the collision dynamics. No simulation is shown in Fig. 8.3d,
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Figure 8.3: Direct comparison of experiments (images) and numerical sim-
ulations (coloured lines). The experimental parameters v;, R;, i, 7, and
pi (i € [1,2]) were used as input for the numerical simulations. Collisions
between (a) two water droplets with ¥ = 0, We = 0.17, Bo = 1.6x107%,
Oh = 1.8x1072, (b) two water droplets with 4 = 0, We = 22.88,
Bo = 2.2x107%, Oh = 1.7x1072, (c) a water droplet and an ethanol droplet
with 4 = 2.17, We = 0.40, Bo = 1.3x107%, Oh = 2.0x1072, (d) a water
droplet and an ethanol droplet (no simulations available, see the discussion in
section 8.2.3) with 4 = 2.17, We = 11.80, Bo = 1.7x10™%, Oh = 1.9x1072,
(e) a water droplet and a 34.5 wt% ethanol droplet with 4 = 1.27, We = 2.27,
Bo = 1.5x107%, Oh = 1.9x1072.
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because the formation of a toroidal bubble (which forms when the capillary
waves coalesce with the opposing droplet) causes the simulation to fail [57].

8.3 Collisions between droplets of different surface
tensions

We first discuss our results related to the collision between two droplets with
different surface tensions at finite We. Figure 8.3 gives an overview of the
collision dynamics observed for various combinations of 4 and We. A collision
between two identical droplets (§ = 0) at low We is shown in Fig. 8.3a.
The neck region (as defined in Fig. 8.2) rapidly grows upon first contact of
the droplets due to the large curvature near the point of contact. This is ac-
companied by the formation of capillary waves, which travel over the droplets’
interfaces and constructively interfere at the droplets’ apexes, forming pro-
trusions. The amplitude and propagation dynamics of the capillary waves on
both droplets are equal, since y; = <2 [55]. The protrusions thus form in
phase and with equal amplitudes on both droplets. As a result, the droplet
shape remains symmetric during the entire coalescence process.

Figure 8.3b shows a collision between two identical droplets at high We.
Symmetry is maintained, since 4 = 0. The shape of the droplet, however,
is significantly different from the shape of the droplet in Fig. 8.3a—it is more
elongated in the vertical direction, and the protrusions have a lower amplitude.
The vertical elongation is caused by the higher inertia of the droplets, which,
combined with incompressibility of the liquid, forces an outward vertical flow
[207,223]. The protrusion amplitude is smaller due to the smaller time scale of
the collision (28.5 us in Fig. 8.3a versus 22.0 us in Fig. 8.3b). Since capillary
waves grow over time, the amplitude of the capillary waves in a high We
collision (which have a smaller time scale) remains smaller than the amplitude
of capillary waves in low We collisions (larger time scale) [55]. Hence, the
protrusion amplitude in Fig. 8.3b is smaller than that in Fig. 8.3a.

We now turn to collisions with 4 > 0, as shown in Fig. 8.3c—e. Figure 8.3c
shows a collision with high 4 at low We. A striking difference with respect to
the collisions with 4 = 0 is observed. Namely, the coalescing droplets take
on a highly asymmetric shape. A similar asymmetric shape was reported by
Gao et al. and Kohno et al. [211-213]. Here, a slender protrusion with large
amplitude forms at the side of the water droplet, whereas a small protrusion
forms on the ethanol droplet. The difference in protrusion size is caused by
the different surface tensions of the droplets. Similarly, the different surface
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tensions result in different capillary wave velocities, such that the protrusions
reach their maximum size out of phase [55]. The coalescence dynamics and
capillary waves are further affected by the Marangoni effect, which causes
ethanol to engulf the water droplet [63]. In some cases, the protrusion pinches-
off, such that a satellite droplet is formed, in a process known as ‘partial
coalescence’ [216,224-227]. However, we typically observe that capillarity acts
to pull the protrusion back in, before pinch-off occurs, to restore the droplet
to a spherical shape. In section 8.4 we study capillary waves in the presence
of the Marangoni effect in the limiting case of We = 0, i.e., in the absence of
inertia.

The asymmetry that forms when 4 > 0 can be strongly reduced by
increasing We, as shown in Fig. 8.3d. The protrusions in Fig. 8.3d are smaller
than those in Fig. 8.3c, and are of similar size on both sides of the droplet.
We note that, though the droplet shape is not mirror symmetric around the
vertical axis, such as in Figs. 8.3a—b, its vertically elongated shape is similar to
that of the droplet shown in Fig. 8.3b for 4 = 0. Key for the strong reduction
of the asymmetric droplet shapes (which are caused by asymmetric surface ten-
sion) is that the inertia of both droplets is similar, i.e., p1v1@2R1 ~ pgvgszRg.
When We > 1, the (symmetric) inertia dominates over the (asymmetric)
surface tension, such that the droplet shape remains largely symmetric during
coalescence. Finally, Fig. 8.3e shows a collision with moderate ¥ and We, such
that the contributions of inertia and surface tension are roughly equal. Indeed,
the droplet shape is asymmetric, but less so than in Fig. 8.3c, reinforcing the
importance of both 4 and We for the droplet shape.

We further quantify the effects of 4 and We on the asymmetry in Fig. 8.4,
where we show the maximum asymmetry, which we quantify by the quantity
max|[Lo(t)/L1(t)], as a function of We'/? for several 5. Here, L1 (t) and Ly(t)
are the time-dependent lengths from the apexes of the two droplets to the
point of maximum vertical extension, as defined in the schematic in Fig. 8.4.
Their ratio gives a measure for the asymmetry of the droplet shape. Figure 8.4
shows the maximum value that the ratio Lo(t)/L1(t) reaches during the colli-
sion. High asymmetry is observed for high 4, but can be strongly reduced by
increasing We (see snapshots (i)-(iii) in Fig. 8.4). By contrast, droplets with
4 = 0 always remain symmetric (see snapshots (iv)-(vi)). In line with our
observations in Fig. 8.3, we conclude that the asymmetry grows as 7 increases,
and that it decreases with increasing We. Thus, the droplet shape is determ-
ined by the competition between the surface tension difference and the inertia
of the colliding droplets.
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Figure 8.4: The maximum asymmetry max|[Ly(t)/L1(t)] as a function of
We'/? for several 7. The schematic inset shows the definitions of L (t) and
La(t). In these experiments (circles) and simulations (squares) 7, was var-
ied and v = 72.5 mN/m was fixed, except for the green symbols, where
7 = 72 = 22.9 mN/m. The snapshots (i)—(vi) correspond to the indicated
data points. The scale bar corresponds to 100 pm and applies to all snapshots.

While our results show that asymmetric capillary waves are of paramount
importance to the asymmetric droplet shape, the precise influence of the sur-
face tension difference on the capillary waves remains to be determined. For
that reason, we systematically study capillary waves in the presence of the
Marangoni effect in the next section.

8.4 Asymmetric capillary waves
Asymmetric capillary waves form when two droplets of different surface ten-
sions coalesce. In the previous section, we showed that this leads to asymmetric

droplet shapes. Here, we focus solely on the dynamics of the capillary waves,
which we study using numerical simulations of a model system. It will turn
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out that the capillary waves, and not the Marangoni effect, are responsible for
the observed droplet asymmetry.

In the model system we impose that all properties of the droplets are
equal, except their surface tensions. Specifically, we set p = 1000 kg/m?3,
n = 1mPa s, D = 1x107°m?/s, R = 35 um, and use a linear model for
the surface tension v = 73 + (71 — 72)¢, where ¢ varies between 0 and 1, and
v1 > 20 mN/m and 72 < 100 mN/m. While this constitutes a simplified
model, the values used here are close to those of a water-ethanol system, and
the dimensionless groups are of the same order of magnitude for this model
and the experiments presented before.

Figure 8.5 shows example snapshots of these simulations for various We.
A thin film of the low surface tension liquid is observed to engulf the high
surface tension droplet during the coalescence process, due to the Marangoni
effect [63]. This induces tangential stresses at the interface which are expected
to change the capillary wave dynamics and shape. For example, when a low
surface tension droplet is deposited on a liquid substrate of higher surface
tension, these stresses can induce a local interface distortion know as the
‘Marangoni ridge’ [105, 106].

In the remainder of this chapter, we further simplify the problem by ex-
cluding inertia, i.e., we set We = 0. Example snapshots of such simulations
are shown in Fig. 8.6. The simulations reveal that the main morphological
change of the droplet shape takes place on the droplet with high surface ten-
sion, where the capillary waves take on a different shape, depending on the
value of 4. By contrast, the low surface tension droplet (with 3 = 20 mN/m
fixed for the simulations shown in Fig. 8.6) appears to be relatively unaffected
by changes in 4. Additionally, we note that, despite their miscibility, the
two liquids do not strongly mix during the coalescence process, in line with
previous observations for a similar system [213].

To better understand the influence of 4 on the dynamics of the capillary
waves, we study the shape of the capillary waves over time with respect to
the original droplet shape at ¢t = 0. Figure 8.7 shows the method used to
extract the capillary wave amplitude. A similar method was successfully used
by Thoroddsen et al. for millimetre-sized drop coalescence [61]. Figure 8.8a
shows the capillary waves that appear on coalescing droplets in the absence
of a surface tension difference (¥ = 0, We = 0). In Fig. 8.8b, we attempt
to collapse the capillary waves using the similarity scaling proposed by Keller
& Miksis for capillary waves on flat surfaces [55]. We do not find perfect
collapse of the data, probably due to the high curvature of the droplet interface.
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Figure 8.5: Snapshots from the numerical simulations with 4 = 1 and
various We. Here, p = 1000 kg/m3®, n = 1 mPa -s, 71 = 40 mN/m,
and 72 = 80 mN/m. The numbers above the snapshots indicate the non-
dimensional time { = t/73, with £ = 0 being the moment of first contact

between the droplets. The zoom provides a closer look at the engulfing film.
The protrusion amplitude (and the collision time scale) are smaller for higher
We.
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Figure 8.6: Snapshots from the numerical simulations with We = 0 and
various 4. Here, p = 1000 kg/m?, n = 1 mPa - s,y = 20 mN/m, and
72 is varied between 20 mN/m and 60 mN/m, resulting in the shown values
of 4. The numbers above the snapshots indicate f = /7. The protrusion
amplitude increases with increasing 4, resulting in highly asymmetric droplet
shapes.
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droplet 1 droplet 2

Figure 8.7: Schematic of the capillary waves on the droplets. The amplitude
A of the capillary waves is determined with respect to the shape of the droplet
at t = 0 as a function of #, which is the angle between an arbitrary point
on the droplet interface and the centre of the droplet at ¢ = 0. In this case
we neglect the small initial connection between the droplets, and assume that
the droplets are perfect circles. The zoom shows the definition of A.

However, in Fig. 8.8c—d we report the location of the capillary wave maximum
and the amplitude of the capillary waves as a function of time, finding that
their dynamics are indeed close to the expected t2/3 scaling [55).

We now return to coalescence with 4 > 0. The capillary waves that form
on the droplets for several values of 4 are shown in Fig. 8.9. The amplitude of
the capillary waves on the low surface tension droplet (droplet 1) is shown in
Fig. 8.9a for two different non-dimensional times t1 and to, where t = t/m
with 71 = (pR3*/y)Y?. The surface tension v; = 20 mN/m for the
three cases shown in Fig. 8.9a, and remains constant during the coalescence
process, since the Marangoni flow is directed from droplet 1 to droplet 2. We
observe that 4 has almost no effect on the capillary waves on droplet 1—their
amplitude and propagation dynamics are nearly the same for all 4.

Figure 8.9b shows the corresponding capillary waves on droplet 2 at £; and
fy, where the time is now normalised by 75 = (pR®/72)/2. Several significant
effects of 4 on the capillary waves on droplet 2 can be observed. First, the
capillary waves are strongly deformed by the presence of the Marangoni effect.
Compare, for example, the shape of the first local maximum (at 6 =~ 7/2
for #3), which appears damped and distorted for 4 = 1. One would expect
the amplitude of the capillary waves on droplet 2 (A3) to be larger than the
amplitude of the capillary waves on droplet 1 (A4;), since v2 > 71, yet,
when we compare A; (Fig. 8.9a) to Ay (Fig. 8.9b), we find the inverse, at
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Figure 8.8: Capillary waves on coalescing droplets for ¥ = 0 and We = 0,
from our numerical simulations. (a) Capillary waves on a droplet with
v = 60 mN/m, A is the amplitude and 6 the angular coordinate as defined in
Fig. 8.7. (b) Similarity collapse of the capillary waves, following Ref. [55]. (c)
The location of the capillary wave maximum as a function of time. (d) The
amplitude of the capillary wave as a function of time.
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Figure 8.9: Capillary waves for various 7 at f; = 0.15 and
to = 0.50, from our numerical simulations. Here, 77 = 20 mN/m, and
v = 40, 60, 80 mN/m, resulting in 4 = 1, 2, 3. (a) Capillary wave

amplitude on the low surface tension droplet (f = t/71). (b) Capillary wave
amplitude on the high surface tension droplet (f = t/73).

—~
53
~—

Ay/R

Figure 8.10: Capillary waves for y = 0O and ¥ = 2at#; = 0.15 and
ty = 0.50, from our numerical simulations. (a) Capillary wave amplitude
on the low surface tension droplet (f = t/7), with 794 = 20 mN/m. The
black line indicates capillary waves on a droplet with v = 20 mN/m. (b)
Capillary wave amplitude on the high surface tension droplet (f = t/73), with
72 = 40 mN/m. The black line indicates capillary waves on a droplet with
v = 40 mN/m.
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least for the amplitude of the first local minimum. Second, the propagation
of the capillary waves is slower for increasing 4. The higher 4 waves are
consistently lagging behind the 4 = 1 wave in Fig. 8.9b. It is, however,
important to note that o is not identical for the three cases considered in
Fig. 8.9b. The capillary waves in Fig. 8.9b are therefore not expected to
collapse, since their properties depend on v [55]. We therefore compare the
capillary waves for 4 = 2 to those for 4 = 0 in Fig. 8.10, to verify that the
difference between the capillary waves in Fig. 8.9b is (at least partly) caused
by 4 # 0 and not solely by the difference in v5. In Fig. 8.10a we compare
the wave amplitude A; for the two cases with 4 = 0 and 4 = 2, where
for both cases 71 = 20 mN/m. In line with the results shown in Fig. 8.9a,
there is no effect of 4 on the wave amplitude A;. In Fig. 8.10b we show a
similar comparison for the capillary waves on droplet 2, where we note that
72 = 40 mN/m for both cases. Here, we once again observe that the damping
increases and wave propagation decreases with increasing 4. We note that a
similar damping effect on capillary waves has recently been observed for the
coalescence of a surfactant-laden droplet coalescing with a liquid bath [228].
We thus conclude that 4 has a strong effect on the capillary waves (and by
extent, the protrusion) on droplet 2. Additionally, the damping effect of 4
indicates that the Marangoni effect does not drive the asymmetric droplet
shapes observed in Figs. 8.3 and 8.4, in contrast to the findings of Gao et al.
and Kohno et al. [211-213]. In fact, the intrinsic dependence of the capillary
wave dynamics on surface tension drives the asymmetry, and remarkably, the
Marangoni effect decreases the asymmetry.

Figures 8.9b and 8.10b show that the capillary waves on the high surface
tension droplet are strongly affected by the engulfing front of the low surface
tension liquid. However, it is not yet clear if the distortion of the capillary
wave is universal. In Fig. 8.11 we therefore compare the local surface tension
to the capillary wave amplitude as a function of 6 for two 4. The dashed line
in Fig. 8.11 indicates the location of the engulfing front, which we define as the
first 8 where v < ~9. Figure 8.11 reveals that the location of the engulfing
front with respect to the capillary wave is not universal, since the location
of the front with respect to the capillary wave is different in Fig. 8.11a and
b. This implies that the dynamics of the capillary waves (characterised by
Ormax X t2/ 3) are different than that of the engulfing front. To further quantify
this point, we therefore track the front location with respect to the initial
droplet position at ¢t = 0 in Fig. 8.12. Following Koldeweij et al., we rescale
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Figure 8.11: Surface tension and relative capillary wave amplitude on droplet
2 from our numerical simulations for (a) 4 = 1, and (b) 4 = 4. In both
cases 3 = 20 mN/m. The vertical dashed lines indicate the engulfing front
locations.
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where Ay = 5 — 1 [63,229]. While the data collapses at large £, deviations
can be observed for small £ due to the initial conditions of our simulations. We
find that the dynamics converge to L o ¢3/4. The same exponent was found for
ethanol spreading over millimetre-sized drops in the pendant geometry [63].
It follows from balancing the Marangoni forces and the viscous forces in the
thin boundary layer of the spreading liquid [230-232]. We thus find that
the engulfing front exhibits different dynamics (o< /%) than the capillary
wave (o< t2/3), reflecting the different driving mechanisms. This explains
why the shape of capillary waves in the presence of the Marangoni effect is
non-universal.
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Figure 8.12: Rescaled location of the engulfing front as a function of rescaled
time, from our numerical simulations. The schematic inset shows the definition
of Btont, which is the angle between the location of the engulfing front on the
droplet interface with respect to the centre of the initial droplet position at
t = 0. The data are cut off when 6.0t = m. The front dynamics converge
to L o t3/4, in accordance with the results of Koldeweij et al. [63].

8.5 Conclusion and outlook

In this chapter, we have studied collisions between two droplets with different
surface tensions. Using a combination of experiments and numerical simula-
tions, we have shown that the shape of the droplets during coalescence can be
highly asymmetric. By contrast, the shape of colliding droplets with identical
surface tensions remains symmetric at all times. Furthermore, we have shown
that the droplet shape is determined by a delicate competition between the
surface tension difference and inertia—the asymmetry increases with increas-
ing surface tension difference, and can be reduced by increasing the inertia of
the colliding droplets.

Our results show that the interference of capillary waves is at the origin of
the asymmetric droplet shapes. Since the amplitude and propagation dynam-
ics of capillary waves depend on the surface tension of the interface that they
travel on, the capillary waves are asymmetric in the coalescence of two droplets
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with different surface tensions. Contrary to previous works, we find that the
Marangoni effect has a damping effect on the capillary waves [211-213]. Hence,
we find that the asymmetry is primarily caused by the intrinsic difference
between the capillary waves amplitude and propagation dynamics set by the
initial surface tension of the droplets, and not by the Marangoni effect. In
fact, the Marangoni effect decreases the asymmetry, by damping the capillary
waves.

The results presented here show the richness of phenomena which can
occur in physico-chemical hydrodynamics, and that these are often counter-
intuitive. From a more applied point of view, they may be of interest to
microfluidic applications where coalescence of droplets with different surface
tensions is prevalent, such as the in-air microfluidic fabrication of emulsions,
colliding-droplet chemical microreactors, or in other applications of physico-
chemical hydrodynamics [14,68,233].
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8.6 Appendix

8.6.1 Influence of evaporation (experiments)

Evaporation during the experiment can affect the properties of the droplets.
Importantly, the surface tension of liquid mixtures may change due to evap-
oration if one component is more volatile than the other. In our experiment
liquid evaporates from the dispenser nozzle (in the time between droplet jet-
ting), during flight, and during the coalescence process. Here, we attempt to
quantify the volume of the droplet that is lost due to evaporation. We assume
that the droplet consists of ethanol, such that the evaporation calculated here
is the worst-case scenario, since ethanol is more volatile than water.
The radius of an evaporating spherical drop is given by

R0 = [~ (22 g —pcrt] (8.9)

where Ry is the initial droplet radius, D is the diffusivity, M is the molecular
weight, R is the gas constant, T is the temperature, py is the vapour pressure
close to the droplet’s surface, ps is the vapour pressure far away from the
droplet, and ¢ is the time [234].

A droplet typically spends 2 ms in flight when jetted at the lowest velocity.
For an ethanol droplet with Ry = 35 pum at room temperature Eq. 8.9
predicts 0.8% volume loss during the experiment. The coalescence process of
the droplet typically does not exceed 100 us, such that the volume lost due to
evaporation during the coalescence process is at least one order of magnitude
smaller than the volume lost during flight.

As an example, we calculate the change in the surface tension of a droplet
consisting of ethanol and water, with ¢ = 0.345. Out of all liquids used in our
experiments, this composition (with surface tension 31.9 mN/m) is the most
sensitive to changes in the surface tension due evaporation. Assuming that
0.8% of the ethanol volume is lost due to evaporation, the final composition
is ¢ = 0.343, with v = 32.0 mN/m. In reality, the change in surface
tension will be even smaller, since we calculated volume lost due to evaporation
based on pure ethanol, and not a mixture of ethanol and water (for which the
evaporation rate will be lower).

Liquid also evaporates at the nozzle exit of the dispenser in the time
between droplet jetting. We therefore dispense droplets continuously at 200
droplets per second, such that the liquid at the dispenser exit is refreshed every
5 ms, minimising compositional changes in the process. Due to the similar
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timescales, we expect that the compositional change due to evaporation at the
dispenser exit (over 5 ms) is comparable to that during flight (which takes
approximately 2 ms), such that the surface tension change will be minimal.
Hence, we conclude that the effect of evaporation on the surface tension can
be neglected in our experiments and numerical simulations.

8.6.2 Time step and grid resolution (numerical simulations)
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Figure 8.13: (a) Comparison of different grid resolutions. The black line
shows the resolution used for the numerical simulations in the main text. (b)
Comparison of different time steps. The black line shows the time step used
for the numerical simulations in the main text.
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Chapter 9

Conclusion and outlook

In this thesis, we have studied the wetting properties (part I; chapters 2—
4) and coalescence dynamics (part II; chapters 5-8) of drops in multi-phase
flow systems. In particular, we have focused on the role of liquid substrates
and multi-component drops. Beyond the discoveries that were presented in
each chapter, this thesis as a whole contributes to the contemporary field of
multi-phase capillary flows. Within this rich area of research, we specifically
contribute to the following:

i. Liquid substrates can introduce new, complex, wetting phenomena due to
their ability to transport matter by flow (as evidenced by chapters 2 and
3). Additionally, they provide an excellent way to study the importance
of boundary conditions with respect to their solid substrate counterpart
in capillary flow systems (chapters 5 and 6).

ii. Multi-component capillary flows can exhibit vastly different dynamics
than single-component flows, even if one of the components constitutes
only a small part of the whole (chapters 4 and 7). Furthermore, physico-
chemical processes and interaction between separate components play an
important role in wetting and coalescence flows (chapters 3 and 8).

The research presented in this thesis was largely inspired by challenges asso-
ciated with flows encountered in inkjet printing. Our findings could, in turn,
serve as inspiration for inkjet printing developers. The multi-phase nature
of inkjet printing often leads to problematic phenomena that lower the print
quality. Several examples are shown in section 1.3; Fig. 1.10. We have used
model systems to study these phenomena on a fundamental level, and provided
plausible explanations for their origin, which may aid the further improvement
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of inkjet printing technology. In the following, we elaborate on the above two
statements and propose several areas that might be of interest for future re-
search, in particular in the context of inkjet printing.

9.1 Wetting

The first part of this thesis concerned the wetting properties of drops in multi-
phase systems. We broadly defined wetting as the behaviour of (multiple)
drops on a variety of substrates. In chapter 2, we revealed that liquid sub-
strates can facilitate non-monotonic interaction between neighbouring drops
by drop-induced surface deformations of the substrate. Then, in chapter 3, we
discovered that the combined effects of particle destabilisation and Marangoni
flow can induce complex pattern formation dynamics.

Liquid substrates play a crucial role in both of these chapters—their de-
formation drives drop and particle motion, and (in chapter 3) it is used as a
catalyst for local particle destabilisation. They also pose a major challenge,
since flow in the substrate can affect the overall dynamics of the system. In
chapter 2, for example, flow in the substrate affects the motion of the interact-
ing drops. By contrast, such flow is absent in elastic substrates, for which a
similar interaction between drops was observed [71,72]. In the latter case, the
interacting drops are in a quasi-equilibrium state, which considerably simpli-
fies the problem. In chapter 3, the flow structure in the substrate underneath
the drop during the initial spreading phase remains undetermined, though it
is expected to affect the final pattern.

The flow in and around drops moving on liquid substrates thus introduces
a new type of complexity. This is illustrated in Fig. 9.1, which reveals that the
velocity of a drop moving on a liquid substrate depends on the history of the
drop. Two experiments are shown. In the first experiment (blue data points),
a drop is deposited on an inclined liquid substrate, upon which it starts moving
under the influence of gravity. The velocity quickly reaches a transient peak
and subsequently decreases to an equilibrium value. In the second experiment
(red data points), a drop is deposited on a horizontal liquid substrate and left
stationary for 30 minutes. The substrate is then inclined and the drop starts
moving. In this case, the temporal evolution of the drop velocity is completely
different—the velocity slowly increases over time, eventually reaching the same
equilibrium value as in the first experiment. No transient peak is observed.
The different outcomes of these experiments reveal that the motion of a drop
on a liquid substrate depends on its history. It is expected that the velocity
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t [min]

Figure 9.1: The velocity v of a water drop (radius ~ 1 mm) sliding on a thin
liquid substrate (thickness ~ 28 pum, viscosity ~ 1 Pa - s) obtained from two
different experiments. In one experiment, the drop is deposited on a liquid
substrate inclined at an angle ~ 2.4° (blue). In the other experiment (red),
the liquid substrate is left horizontal for 30 minutes before being inclined. The
temporal evolution of the velocity depends on the history of the drop, though
in both experiments the drop reaches the same steady-state velocity.

depends on the thickness of the film underneath the drop, which is smaller
at the start of the second experiment due to drainage that occurs during the
30 minute waiting period [235]. Additional experiments that measure the
dynamical evolution of the film morphology underneath the drop and close to
the wetting ridge are needed to confirm this hypothesis, and to find the origin
of the transient peak. This example illustrates that the motion of drops on
liquid substrates contains rich unexplored physics, and offers an avenue for
further research.

In chapter 4, we studied the wetting properties of two-component drops
(on a solid substrate) and discovered that two mechanisms of completely dif-
ferent origin determine the contact angle. The only feature that distinguishes
between these mechanisms is the flow structure inside the drop. To further
extend our understanding of these systems it will be of interest to study the
transition from one wetting state (Marangoni contraction) to the other wet-
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ting state (autophobing) with increasing concentration of vicinal alkanediol.
When does this transition occur? This question might be answered by consid-
ering other surfactant-like liquids, with liquid properties (i.e., viscosity, sur-
face tension, and volatility) that differ from those of vicinal alkanediols. Sys-
tematically changing these properties allows tuning of the strength of either
mechanism, which should provide insight into the transitory regime. Another
method to study the transition involves modifying the liquid properties of the
drop by addition of a third component, such as a viscosity modifier (e.g., gly-
cerol). Care needs to be taken with the latter method, as chapter 4 and other
works (see, e.g., the perspective by Lohse & Zhang, Ref. [14]) show that the
properties of multi-component drops are often difficult to predict.

A comprehensive understanding of the physico-chemical hydrodynamics
in multi-component drops will allow tailoring of the system according to the
needs of technological applications, where some drop properties (such as the
high mobility of Marangoni-contracted drops) can be (un)desired. This will
be of particular interest to ink developers, since the desired properties of ink
can be dissimilar at different stages of the printing process. For example, low
wettability is desired to prevent wetting of the nozzle plate, but high wettab-
ility is required to form a uniform coating on the substrate. The dual wetting
nature of aqueous mixtures of vicinal alkanediols may provide solutions to such
problems, especially when the substrate properties (porous or impermeable,
strong or weak affinity for autophobing molecules) are also considered.

9.2 Coalescence

The second part of this thesis concerned coalescence—the merging of two liquid
bodies into one. In chapters 5 and 6, we studied the self-similar coalescence
dynamics of liquid lenses. In contrast to chapters 2 and 3, the liquid substrate
has a sub-dominant role here, which allows use of the thin-sheet equations.
This set of equations provides an excellent description of the coalescence dy-
namics, in both the viscous and inertial regimes. The success of the thin-sheet
equations, in particular in the inertial regime, makes the liquid lens coales-
cence geometry an interesting framework for more complex coalescence studies.
More generally, this framework can be used to study to a wide variety of thin-
film flow problems. In particular, the thin-sheet equations (Egs. 5.1-5.2) in
conjunction with the thin-film equation (Eq. 1.2) allow for a detailed study of
the importance of boundary conditions—both equations provide descriptions
of flow in slender geometries, but each with different boundary conditions.
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9.2. Coalescence

no shear

solid substrate liquid substrate

Figure 9.2: The coalescence of two drops on two different substrates. (a)
Coalescence on a solid substrate involves a no-slip boundary condition at the
solid-liquid interface, such that the velocity profile is parabolic, and the dy-
namics are described by the thin-film equation (Eq. 1.2). (b) Coalescence on
a liquid substrate involves a no-shear boundary condition at the liquid-liquid
interface, resulting in plug flow. The coalescence dynamics are described by
the thin-sheet equation (Egs. 5.1-5.2).

The thin-sheet equations apply to flows involving no-shear boundary condi-
tions (Fig. 9.2a), whereas the thin-film equation describes flows with a no-slip
boundary condition (Fig. 9.2b). Our work on liquid substrates, in combina-
tion with previous work on coalescence on solid substrates [44], shows that the
sessile drop coalescence geometry provides an attractive way to study these
two flow types both experimentally and theoretically.

This framework can be extended to study more complex multi-phase
flows, such as the flow of surfactant-containing liquids or viscoelastic liquids,
and flows that are affected by certain exterior influences, such as electric fields
and temperature gradients. Such an extension involves the addition of addi-
tional fields (for example, the local surfactant concentration when considering
the effect of surfactants) and transport equations to the governing equations
to describe the evolution of these fields. The thin-film equation has been
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successfully extended using this method, and similar extensions exist for the
thin-sheet equations [170,236,237]. A comparison of both flow geometries
would provide an increased understanding of the influence of boundary con-
ditions on complex flows. This will be of particular interest to inkjet printing
developers, since ink is a complex liquid consisting of multiple components.
Furthermore, the coalescence of ink drops occurs on both solid (paper) and
liquid (primer layer) substrates. For the latter case it would be useful to study
coalescence on relatively thin liquid substrates (as opposed to the deep pool
considered in chapters 5 and 6), since the thickness of the primer layer is
typically comparable to the ink drop size.

In chapters 7 and 8, we investigated the coalescence dynamics of multi-
component drops. First, we studied the coalescence of viscoelastic drops, in
chapter 7. We found that the temporal evolution of the bridge growth is rel-
atively unaffected by the viscoelastic properties of the drops. By contrast, the
spatial structure of the bridge is dramatically altered by the polymers. It will
be of interest to study viscoelastic flows in the presence of other singularities
as well: even though the singularity that is present at the start of coalescence
is (to a large degree) similar to the singularity that occurs during pinch-off,
the viscoelastic properties of the liquid manifest themselves in a completely
different way. Other singular geometries (e.g., the moving contact line singu-
larity reviewed in Ref. [17]) may reveal even more responses to the excitation
of viscoelastic liquids.

Finally, in chapter 8, we studied the coalescence of two drops with dif-
ferent surface tensions. We showed that the shape of such drops during co-
alescence is determined by a balance between the surface tension difference
and inertia, and that it can be highly asymmetric. Surprisingly, we discovered
that the Marangoni effect has a damping effect on the capillary waves, and
that it reduces the asymmetric shape of the drops during coalescence. This
behaviour is different from that observed for the coalescence of drops with
different surface tensions on solid substrates, where coalescence is ‘delayed’ by
the Marangoni effect (Fig. 1.9b) [46,49,52,53,64]. This highlights, once more,
the importance of geometry and boundary conditions in capillary flows.
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Summary

This thesis explored a variety of wetting and coalescence flows in multi-phase
systems. Such flows are ubiquitous in nature and technology alike. In par-
ticular, the research presented in this thesis was inspired by several problems
encountered in inkjet printing. A good understanding of wetting and coales-
cence is crucial for the successful application of inkjet printing technology and
for its future development towards, e.g., additive manufacturing.

In part I of this thesis, we studied various wetting phenomena, which we
broadly defined as the behaviour of (multiple) drops on a variety of substrates.

In chapter 2, we studied the capillary interaction between two drops
placed close together on a thin viscous film. We showed that this interac-
tion arises due to visco-capillary waves that are induced by the presence of
the drops. The interaction is non-monotonic: both attractive and repulsive in-
teractions were observed depending on the distance separating the two drops.
Using the thin-film equation, we identified the scaling law for the spreading of
the visco-capillary waves and demonstrated that this governs the range over
which the interaction is observed. This confirms the direct connection between
the shape of the visco-capillary waves and the interaction type.

In chapter 3, we continued our study of drops on thin liquid films. We
revealed that a colloidal drop forms a ring-shaped pattern when deposited on
a thin saline water film. The ring consists of particle clusters—the electro-
statically stabilised colloidal particles in the drop destabilise when brought
into contact with cations in the saline water film. The shape of the pattern is
largely determined by an undulation of the contact line that appears upon first
contact of the drop with the liquid film. Finally, we revealed that the clusters
that constitute the ring are transported radially outwards by Marangoni flow.

In chapter 4, we studied the wetting properties of two-component drops
that consist of mixtures of vicinal alkanediols and water. These diols behave
surfactant-like in water. However, the contact angles of such mixtures on
solid substrates are surprisingly large. Using experiments, we revealed that
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the contact angle is determined by two separate mechanisms of completely
different nature, namely Marangoni contraction (hydrodynamic) and auto-
phobing (molecular). The competition between these effects can even inhibit
Marangoni contraction, highlighting the importance of molecular structures
in physico-chemical hydrodynamics.

In part II of this thesis, we studied various coalescence problems. We
first studied the coalescence of drops floating on a liquid substrate, and sub-
sequently turned our attention to the coalescence of multi-component drops.

In chapter 5, we experimentally and theoretically revealed the dynam-
ics of drop coalescence on a thick layer of a low viscosity liquid. We showed
that these so-called “liquid lenses” merge by the self-similar vertical growth
of a bridge connecting the two lenses. Using a slender analysis, we derived
similarity solutions corresponding to the viscous and inertial limits. Excellent
agreement was found with the experiments without any adjustable paramet-
ers, capturing both the spatial and temporal structures of the flow during
coalescence. Finally, we considered the crossover between the two regimes,
and showed that all data of different lens viscosities collapse on a single curve
capturing the full range of the coalescence dynamics.

In chapter 6, we continued our study of coalescing liquid lenses, focusing
on coalescence in the viscous regime. We showed that the bridge dynamics
follow a self-similar solution at leading order, but, depending on the large-
scale boundary conditions on the drop, significant corrections may arise to this
solution. These dynamics were studied in detail using numerical simulations
and through matched asymptotics. We revealed that liquid lens coalescence
can involve a global translation of the drops, a feature that was confirmed
experimentally.

In chapter 7, we studied the coalescence of viscoelastic drops. The breakup
of a drop changes dramatically when polymers are added to the liquid. With
the strong elongation of the polymers during the process, long threads con-
necting the two drops appear prior to their eventual pinch-off. In this chapter,
we demonstrated how elasticity affects drop coalescence, the complement of
the much studied drop pinch-off. We revealed the emergence of an elastic
singularity, characterised by a diverging interface curvature at the point of
coalescence. Intriguingly, while the polymers dictate the spatial features of
coalescence, we found that they hardly affect the temporal evolution of the
bridge. These results were explained using a novel viscoelastic similarity ana-
lysis.

In chapter 8, we studied the collisions between two drops of different
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surface tensions. Using experimental and numerical techniques, we revealed
that the asymmetric shape evolution that is observed during such collisions
is caused by asymmetric capillary waves, which are the result of the different
surface tensions of the drops. We showed that the asymmetry is enhanced
by increasing the surface tension difference, and suppressed by increasing the
inertia of the colliding drops. Furthermore, we studied the capillary waves on
coalescing drops in the limit of no inertia. We revealed that the asymmetry
is not directly caused by Marangoni forces. In fact, we found that asymmetry
is strongly reduced by the Marangoni effect. Rather, the different intrinsic
capillary wave amplitudes and velocities associated with the different surface
tensions of the drops lie at the origin of the asymmetry that is observed during
drop collision and coalescence.

Finally, in chapter 9, we presented our conclusions and suggested several
areas that might be of interest for future research. The results presented in this
thesis could serve as inspiration for the further improvement of inkjet print-
ing technology and its development towards applications beyond document
printing.
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Samenvatting

Dit proefschrift onderzocht een verscheidenheid aan bevochtigings- en samen-
vloeiingsstromen in meerfasensystemen. Dergelijke stromen zijn alomtegen-
woordig in zowel natuur als technologie. Het onderzoek dat in dit proefschrift
wordt gepresenteerd, is in het bijzonder geinspireerd door verschillende pro-
blemen die zich voordoen bij inkjetprinten. Een goed begrip van bevochtiging
en samenvloeiing is cruciaal voor de succesvolle toepassing van inkjetprint-
technologie en voor de toekomstige ontwikkeling ervan naar bijvoorbeeld drie-
dimensionaal printen.

In deel I van dit proefschrift hebben we verschillende bevochtigingsver-
schijnselen bestudeerd, die we in grote lijnen hebben gedefinieerd als het gedrag
van (meerdere) druppels op een verscheidenheid aan substraten.

In hoofdstuk 2 hebben we de capillaire interactie tussen twee druppels die
dicht bij elkaar op een dunne viskeuze vloeistoflaag zijn geplaatst bestudeerd.
We toonden aan dat deze interactie ontstaat door viskeuze-capillaire golven
die worden geinduceerd door de aanwezigheid van de druppels. De interactie
is niet-monotoon: zowel aantrekkende als afstotende interacties werden waar-
genomen, afhankelijk van de afstand tussen de twee druppels. Met behulp
van de dunne laag-vergelijking hebben we de schalingswet voor de groei van
de viskeuze-capillaire golven geidentificeerd en aangetoond dat dit het bereik
bepaalt waarover de interactie wordt waargenomen. Dit bevestigt het directe
verband tussen de vorm van de viskeuze-capillaire golven en het interactietype.

In hoofdstuk 3 vervolgden we onze studie van druppels op dunne vloei-
stoflagen. We hebben laten zien dat een colloidale druppel een ringvormig
patroon vormt wanneer het wordt neergelegd op een dunne zoutwaterlaag.
De ring bestaat uit clusters van colloidale deeltjes—de elektrostatisch gestabi-
liseerde colloidale deeltjes in de druppel destabiliseren wanneer ze in contact
worden gebracht met kationen in de zoute waterlaag. De vorm van het patroon
wordt grotendeels bepaald door een golving van de contactlijn die verschijnt
bij het eerste contact van de druppel met de vloeistoflaag. Ten slotte hebben
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we laten zien dat de clusters die de ring vormen, radiaal naar buiten worden
getransporteerd door Marangoni-stroming.

In hoofdstuk 4 hebben we de bevochtigingseigenschappen van tweecom-
ponentendruppels die bestaan uit mengsels van vicinale alkaandiolen en water
bestudeerd. Deze diolen gedragen zich als oppervlakteactieve stoffen in water.
De contacthoeken van dergelijke mengsels op vaste substraten zijn echter ver-
rassend groot. Middels experimenten hebben we onthuld dat de contacthoek
wordt bepaald door twee afzonderlijke mechanismen van totaal verschillende
aard, namelijk Marangoni-contractie (hydrodynamisch) en autofobische con-
tacthoektoename (moleculair). De concurrentie tussen deze effecten kan zelfs
de contractie van Marangoni-contractie onderdrukken, wat het belang van mo-
leculaire structuren in de fysisch-chemische hydrodynamica benadrukt.

In deel II van dit proefschrift hebben we verschillende samenvloeiingspro-
blemen bestudeerd. We bestudeerden eerst de samenvloeiing van druppels die
op een vloeibaar substraat drijven, en richtten vervolgens onze aandacht op
de samenvloeiing van druppels met meerdere componenten.

In hoofdstuk 5 hebben we experimenteel en theoretisch de dynamische ei-
genschappen van druppelsamenvloeiing op een dikke laag vloeistof met een lage
viscositeit onthuld. We toonden aan dat deze zogenaamde “vloeibare lenzen”
samenvloeien door de verticale groei van een zelfgelijkvormige brug die de twee
lenzen verbindt. Op basis van een dunne laag-benadering hebben we oplossin-
gen afgeleid die overeenkomen met de viskeuze limiet en de traagheidslimiet.
Er werd uitstekende overeenstemming gevonden met de experimenten zonder
enige vrije parameters, waarbij zowel de ruimtelijke als temporele structuren
van de stroming tijdens samenvloeiing werden vastgelegd. Ten slotte hebben
we de overgang tussen de twee limieten bestudeerd en hebben we aangetoond
dat alle gegevens van verschillende lensviscositeiten samenvallen op een enkele
curve die alle dynamische eigenschappen van de samenvloeiing beschrijft.

In hoofdstuk 6 vervolgden we ons onderzoek naar de samenvloeiing van
vloeibare lenzen, waarbij we ons concentreerden op samenvloeiing in de vis-
keuze limiet. We toonden aan dat de dynamische groei van de brug een zelf-
gelijkvormige oplossing volgt in de leidende orde, maar dat, afhankelijk van
de grootschalige randvoorwaarden, significante correcties van toepassing kun-
nen zijn op deze oplossing. De dynamische groei werd vervolgens in detail
bestudeerd met behulp van numerieke simulaties en asymptotiek. We hebben
laten zien dat een globale beweging van de druppels deel kan uitmaken van
de samenvloeiing van vloeibare lenzen, een kenmerk dat experimenteel werd
bevestigd.
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In hoofdstuk 7 hebben we de samenvloeiing van viscoelastische druppels
bestudeerd. Het splitsen van een druppel in twee kleinere druppels verandert
drastisch wanneer polymeren aan de vloeistof worden toegevoegd. Door de ver-
vorming van de polymeren tijdens het proces verschijnt een lange draad die de
twee druppels met elkaar verbindt voordat ze uiteindelijk worden afgeknepen.
In dit hoofdstuk hebben we laten zien hoe elasticiteit de samenvloeiing (de te-
genhanger van splitsen) van twee druppels beinvloedt. We onthulden dat dit
gepaard gaat met een elastische singulariteit, die gekenmerkt wordt door een
divergerende kromming van het druppeloppervlak op het punt van samen-
vloeiing. Intrigerend genoeg, ontdekten we dat de polymeren de temporele
groeieigenschappen van de brug nauwelijks beinvloeden, terwijl de ruimtelijke
eigenschappen sterk beinvloedt worden. Deze resultaten werden verklaard met
behulp van een nieuwe viscoelastische zelfgelijkvormige analyse.

In hoofdstuk 8 hebben we de botsingen tussen twee druppels met ver-
schillende oppervlaktespanningen bestudeerd. Met behulp van experimentele
en numerieke technicken hebben we onthuld dat de asymmetrische druppel-
vorm die wordt waargenomen tijdens dergelijke botsingen wordt veroorzaakt
door asymmetrische capillaire golven die het resultaat zijn van de verschillende
oppervlaktespanningen van de druppels. We toonden aan dat de asymmetrie
wordt versterkt bij toename van het oppervlaktespanningsverschil, en wordt
onderdrukt door de traagheid van de botsende druppels te vergroten. Verder
hebben we de capillaire golven bestudeerd op samenvloeiiende druppels in de
limiet van geen traagheid. We hebben laten zien dat de asymmetrie niet di-
rect wordt veroorzaakt door Marangoni-krachten. Integendeel, de asymmetrie
wordt sterk verminderd door het Marangoni-effect. In plaats daarvan liggen
de verschillende intrinsieke capillaire golfamplitudes en snelheden die samen-
hangen met de verschillende oppervlaktespanningen van de druppels aan de
oorsprong van de asymmetrie die wordt waargenomen tijdens druppelbotsing
en samenvloeiing.

Ten slotte hebben we in hoofdstuk 9 onze conclusies gepresenteerd en
verschillende gebieden voorgesteld die interessant kunnen zijn voor toekomstig
onderzoek. De resultaten die zijn gepresenteerd in dit proefschrift kunnen
dienen als inspiratie voor de verdere verbetering van de inkjetprinttechnologie
en de ontwikkeling ervan naar toepassingen die verder gaan dan het printen
van documenten.
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