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a b s t r a c t

In this article, we show that the recently introduced ordinal pattern dependence
fits into the axiomatic framework of general multivariate dependence measures, i.e.,
measures of dependence between two multivariate random objects. Furthermore, we
consider multivariate generalizations of established univariate dependence measures
like Kendall’s τ , Spearman’s ρ and Pearson’s correlation coefficient. Among these, only
multivariate Kendall’s τ proves to take the dynamical dependence of random vectors
stemming from multidimensional time series into account. Consequently, the article
focuses on a comparison of ordinal pattern dependence and multivariate Kendall’s τ
in this context. To this end, limit theorems for multivariate Kendall’s τ are established
under the assumption of near-epoch dependent data-generating time series. We analyze
how ordinal pattern dependence compares to multivariate Kendall’s τ and Pearson’s
correlation coefficient on theoretical grounds. Additionally, a simulation study illustrates
differences in the kind of dependencies that are revealed by multivariate Kendall’s τ and
ordinal pattern dependence.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Recently, various attempts have been made to generalize classical dependence measures for one-dimensional random
ariables (like Pearson’s correlation coefficient, Kendall’s τ , Spearman’s ρ) to a multivariate framework. The aim of these
s to describe the degree of dependence between two random vectors with a single number. This has to be separated
rom the branch of research where the dependence within one vector is described by a single number (see [13,14] and
he references therein).

Roughly speaking, one can separate the following two approaches: (I) In a first step, the main properties which classical
ependence measures between two random variables display, are extracted. In a second step, multivariate analogues of
he dependence measures which satisfy canonical generalizations of these properties in a multivariate framework, are
efined. However, often a canonical interpretation of these measures is not at hand. (II) Given two time series, one wants
o describe their co-movement.

Along these lines, the definition of ordinal pattern dependence (see [15]) follows the latter approach. Originally,
xiomatic systems are disregarded by the notion of ordinal pattern dependence, which is naturally interpreted as the
egree of co-monotonic behavior of two time series. Against the background of this approach, limit theorems have been
roved in the time series setting (see [16] for the SRD case and [11] for the LRD case).
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Both approaches in defining multivariate dependence measures have proved to be useful, but by now, they have been
nalyzed separately. In the present paper, we close the gap between the two. To this end, we recall the definition of
rdinal pattern dependence in the subsequent section and show that it is a multivariate dependence measure according
o the definition introduced in [7]. In Section 3, we establish consistency and asymptotic normality for estimators of
rdinal pattern dependence in the framework of i.i.d. random vectors. Section 4 deals with multivariate extensions of
ell-established univariate dependence measures. It turns out that multivariate Kendall’s τ is the only one among these
hat captures the dynamical dependence between random vectors. Starting with approach (I), we prove limit theorems for
n estimator of multivariate Kendall’s τ in the time series context. In the last section, the different measures are compared
rom a theoretical point-of-view as well as by simulation studies.

. Ordinal pattern dependence as a measure of multivariate dependence

If (Xi, Yi), i ≥ 1, denotes a stationary, bivariate process, we define, for any integers i, h ≥ 1, the random vectors of
consecutive observations

X(h)
i := (Xi, . . . , Xi+h),

Y(h)
i := (Yi, . . . , Yi+h).

The goal of this paper is to consider the concept of ordinal pattern dependence as a multivariate measure of dependence
between the random vectors X(h)

i and Y(h)
i stemming from a stationary, bivariate process (Xi, Yi), i ≥ 1, with continuous

marginal distributions, and to compare it to established measures of dependence. Note that, by stationarity of the
underlying process, the joint distribution of the vector (X(h)

i ,Y
(h)
i ) does not depend on i. We will thus use the symbol

(X(h),Y(h)) for a generic random vector with the same joint distribution as any of the (X(h)
i ,Y

(h)
i ) and we write X(h)

=

(X1, . . . , X1+h), Y(h)
= (Y1, . . . , Y1+h). Furthermore, note that it is common to count the number of increments h rather

than the length of the vector, since ordinal patterns can be calculated by exclusively considering the increments of the time
series. Moreover, here, and in the following, we consider vectors as column vectors. However, for the sake of readability
and notational convenience, we omit the notation ⊤ indicating the transpose of vectors.

2.1. Ordinal pattern dependence

For h ∈ N let Sh denote the set of permutations of {0, . . . , h}, which we write as (h + 1)-tuples containing each of the
numbers 0, . . . , h exactly once. The ordinal pattern of order h refers to the permutation

Π (x0, . . . , xh) = (π0, . . . , πh) ∈ Sh

which satisfies xπ0 ≥ · · · ≥ xπh (see [3,4]). In the present paper, we only consider continuous marginals. Allowing for
non-continuous marginals would require the additional restriction πj−1 > πj if xπj−1 = xπj for j ∈ {1, . . . , h} (see [17]).

Definition 1. We define the ordinal pattern dependence between two random vectors X(h)
= (X1, . . . , Xh+1) and

Y(h)
= (Y1, . . . , Yh+1) by

OPDh(X(h),Y(h)) =
Pr
(
Π
(
X(h)

)
= Π

(
Y(h)

))
−
∑

π∈Sh
Pr
(
Π (X(h)) = π

)
Pr
(
Π (Y(h)) = π

)
1 −

∑
π∈Sh

Pr
(
Π (X(h)) = π

)
Pr
(
Π (Y(h)) = π

) . (1)

This definition of ordinal pattern dependence only takes positive dependence into account. Negative dependence can
be included by analyzing the co-movement of X and −Y = (−Yi)i∈N. Typically, one is interested in measuring either
ositive or negative dependence. If one wants to consider both dependencies at the same time, a consideration of the
uantity

OPDh(X,Y)+ − OPDh(X,−Y)+,

here a+
:= max{a, 0} for every a ∈ R, seems natural. In order to keep things less technical, we only consider the simpler

easure (1). For recent developments in the theory of ordinal patterns, see [2] and [9], and for a related approach to
nalyze dependence between dynamical systems, see [6].

.2. Axiomatic definition of multivariate dependence measures

With the following definition, [7] establish an axiomatic theory for multivariate dependence measures between
-dimensional random vectors. This has been strongly inspired by the axiomatic framework of [14], who follow a
opula-based approach to define and analyze multivariate dependence measures within one vector.

efinition 2. Let L0 denote the space of random vectors with values in Rn on the common probability space (Ω,F, Pr).
We call a function µ : L × L −→ R an n-dimensional measure of dependence if
0 0

2
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1. it takes values in [−1, 1];
2. it is invariant with respect to simultaneous permutations of the components within two random vectors X and Y;
3. it is invariant with respect to monotonically increasing transformations of the components of the two random

vectors X and Y;
4. it is zero for two independent random vectors X and Y;
5. it respects concordance ordering, i.e., for two pairs of random vectors X, Y and X∗, Y∗, it holds that(

X
Y

)
≼C

(
X∗

Y∗

)
⇒ µ(X,Y) ≤ µ(X∗,Y∗).

Here, ≼C denotes concordance ordering, i.e.,(
X
Y

)
≼C

(
X∗

Y∗

)
if and only if F(XY)

≤ F
(X

∗

Y∗)
and F̄(XY)

≤ F̄
(X

∗

Y∗)
,

where ≤ is meant pointwise and F̄ denotes the survival function.

heorem 1. The ordinal pattern dependence OPDh is an h + 1-dimensional measure of dependence.

The proof, which is a bit involved and makes use of multivariate distribution functions and survival functions, has been
ostponed to Section 6.

. Limit theorems for ordinal pattern dependence of i.i.d. Vectors

In Section 5, we compare ordinal pattern dependence to other concepts of multivariate dependence. These have been
ntroduced and used for sequences of independent random vectors. In contrast to this, the definition of ordinal pattern
ependence applies to random vectors stemming from multivariate time series. Nonetheless, ordinal pattern dependence
an as well be applied to independent random vectors. Limit theorems that provide the asymptotic distribution of ordinal
attern dependence in this setting have not yet been established. We close this gap by the following considerations:
Let (Xi,Yi), i ≥ 1, be independent copies of (X,Y), and define

q̂X,π,n :=
1
n

n∑
i=1

1{Π (Xi)=π}, q̂Y,π,n :=
1
n

n∑
i=1

1{Π (Yi)=π}, q̂(X,Y),n :=
1
n

n∑
i=1

1{Π (Xi)=Π (Yi)},

s well as the corresponding probabilities

qX,π := Pr (Π (X) = π) , qY,π := Pr (Π (Y) = π) , q(X,Y) := Pr (Π (X) = Π (Y)) .

According to the law of large numbers q̂X,π,n, q̂Y,π,n, and q̂(X,Y),n are strongly consistent estimators for these probabilities.

Proposition 1. Let (Xi,Yi), i ≥ 1, be independent copies of (X,Y). Then, as n → ∞,

q̂X,π,n −→ qX,π , q̂Y,π,n −→ qY,π , q̂(X,Y),n −→ q(X,Y)

lmost surely.

The following theorem establishes asymptotic normality of ordinal pattern dependence of i.i.d. random vectors. For
his, we introduce the following notation:

q̂X,n :=
(
q̂X,π,n

)
π∈Sh+1

, q̂Y,n :=
(
q̂Y,π,n

)
π∈Sh+1

, qX :=
(
qX,π

)
π∈Sh+1

, qY :=
(
qY,π

)
π∈Sh+1

.

heorem 2. Let (Xi,Yi), i ≥ 1, be independent copies of (X,Y). Then, as n → ∞,

√
n

(
q̂(X,Y),n −

∑
π∈Sh

q̂X,π,nq̂Y,π,n
1 −

∑
π∈Sh

q̂X,π,nq̂Y,π,n
−

q(X,Y) −
∑

π∈Sh
qX,πqY,π

1 −
∑

π∈Sh
qX,πqY,π

)
D

−→ N(0, σ 2),

here the limit variance σ 2 is given by

σ 2
= ∇f (q(X,Y), qX, qY)Σ

(
∇f (q(X,Y), qX, qY)

)⊤
.

ere, the matrix Σ is defined as in Proposition 2 (see below), and ∇f is the gradient of the function
f : R × R(h+1)!

× R(h+1)!
→ R, defined by

f (u, v, w) =
u − v⊤

· w
.

1 − v⊤ · w

3
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The proof of Theorem 2 is based on the following proposition, which establishes the joint asymptotic normality of
ˆX,π,n, q̂Y,π,n, and q̂(X,Y),n.

roposition 2. Under the same assumptions as in Theorem 2, we have

√
n

( q̂(X,Y),n − q(X,Y)
q̂X,n − qX
q̂Y,n − qY

)
D

−→ N(0,Σ),

where Σ is the symmetric (2(h + 1)! + 1) × (2(h + 1)! + 1) matrix

Σ =

(
Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

)
with

Σ11 = q(X,Y)(1 − q(X,Y)) ∈ R,

Σ12 = (σπ (1, 2))π∈Sh ∈ R1×(h+1)!, σπ (1, 2) = Pr(Π (X) = Π (Y ) = π ) − qX,Y · qX,π ,

Σ13 = (σπ (1, 3))π∈Sh ∈ R1×(h+1)!, σπ (1, 3) = Pr(Π (X) = Π (Y ) = π ) − qX,Y · qY,π ,

Σ22 = (σπ,π ′ (2, 2))π,π ′∈Sh ∈ R(h+1)!×(h+1)!, σπ,π ′ (2, 2) =

{
−qX,πqX,π ′ if π ̸= π ′

qX,π (1 − qX,π ) if π = π ′,

Σ23 = (σπ,π ′ (2, 3))π,π ′∈Sh ∈ R(h+1)!×(h+1)!, σπ,π ′ (2, 3) = Pr(Π (X) = π,Π (Y) = π ′) − qX,πqY,π ′ ,

Σ33 = (σπ,π ′ (3, 3))π,π ′∈Sh ∈ R(h+1)!×(h+1)!, σπ,π ′ (3, 3) =

{
−qY,πqY,π ′ if π ̸= π ′

qY,π (1 − qY,π ) if π = π ′.

ue to symmetry of Σ , the remaining blocks are defined by Σ21 = Σ⊤

12, Σ31 = Σ⊤

13, Σ32 = Σ⊤

23.

roof. The proof follows directly from the multivariate central limit theorem applied to the partial sums of the
(2(h + 1)! + 1)-dimensional i.i.d. random vectors

ξi =
(
1{Π (Xi)=Π (Yi)}, (1{Π (Xi)=π})π∈Sh , (1{Π (Yi)=π})π∈Sh

)
.

he limit covariance matrix is the covariance matrix of ξ1, which is given by the formulae stated in the formulation of
his proposition. □

roof of Theorem 2. We apply the delta method to the function f , defined in the formulation of the theorem, together
ith the multivariate CLT established in Proposition 2. In this way, we obtain

√
n
(
f (q̂(X,Y),n, q̂X,n, q̂Y,n) − f (q(X,Y), qX, qY)

) D
−→ N(0,∇f (q(X,Y), qX, qY)Σ(∇f (q(X,Y), qX, qY)⊤).

his proves the statement of the theorem. □

. Ordinal pattern dependence in contrast to multivariate Kendall’s τ

In this article, we are explicitly studying the dependence between random vectors stemming from stationary time
eries. In this regard, the main drawback of univariate dependence measures is that these do not incorporate cross-
ependencies which characterize the dynamical dependence between two random vectors. Univariate dependence
easures focus on the dependence between Xi and Yi, i.e., on the dependence at the same point in time. In contrast,
rdinal pattern dependence captures the dynamics of time series.
In the following, we study two multivariate generalizations of univariate dependence measures, namely the mul-

ivariate extension of Pearson’s correlation coefficient, established in [12], and multivariate Kendall’s τ as introduced
n [7].

efinition 3. For two (h+ 1)-dimensional random vectors X,Y ∈ L2 with invertible covariance matrices ΣX and ΣY and
ross-covariance matrix ΣX,Y , we define Pearson’s correlation coefficient by

ρ (X,Y) :=
tr
(
ΣX,Y

)
tr
(
(ΣXΣY)

1/2) ,
here A1/2 is the principal square root of the matrix A, such that A1/2A1/2

= A.
4
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For the multivariate generalization of Pearson’s correlation coefficient, we obtain

ρ (X,Y) =
tr
(
ΣX,Y

)
tr
(
(ΣXΣY)

1/2) =
Cov(X1, Y1) + · · · + Cov(X1+h, Y1+h)

tr
(
(ΣXΣY)

1/2) .

s a result, the cross-correlations have no impact on the value of Pearson’s correlation coefficient. Therefore, the
ultivariate Pearson’s correlation coefficient does not seem to be appropriate for our approach. The same holds true for
eneralizations of Spearman’s ρ due to the close relationship between these concepts. We hence focus on the multivariate
eneralization of Kendall’s τ .

.1. Multivariate Kendall’s τ

The definition of multivariate Kendall’s τ that we consider in this section is taken from [7]. In that paper, the authors
nvestigated the dependence between two multivariate random vectors. Therefore, for our purposes, it is appropriate to
se it in the time series context. For a multivariate generalization of Kendall’s τ within one random vector see [13].

efinition 4. For two h + 1-dimensional random vectors X,Y, we define Kendall’s τ by

τ (X,Y) := Corr
(
1{

X≤X̃
}, 1{

Y≤Ỹ
}) ,

here
(
X̃, Ỹ

)
is an independent copy of (X,Y).

The following lemma establishes a representation of multivariate Kendall’s τ for Gaussian processes in terms of the
robabilities pX and pY that enter in our definition of ordinal pattern dependence.

emma 1. Let (Xi, Yi), i ≥ 1, denote a stationary mean zero Gaussian process and let X(h)
= (X1, . . . , X1+h) and

(h)
= (Y1, . . . , Y1+h). Then, we have

τ
(
X(h),Y(h))

=
Pr (X1 ≤ 0, . . . , X1+h ≤ 0, Y1 ≤ 0, . . . , Y1+h ≤ 0)− p̃X(h) p̃Y(h)√

p̃X(h)
(
1 − p̃X(h)

)
p̃Y(h)

(
1 − p̃Y(h)

) ,

here p̃X(h) = Pr (X1 ≤ 0, . . . , X1+h ≤ 0) and p̃Y(h) = Pr (Y1 ≤ 0, . . . , Y1+h ≤ 0).

Proof. Let
(
X̃(h), Ỹ(h)

)
be an independent copy of (X(h),Y(h)) with X̃(h)

= (X̃1, . . . , X̃1+h) and Ỹ(h)
= (Ỹ1, . . . , Ỹ1+h). It then

holds that

τ
(
X(h),Y(h))

= Corr
(
1{

X(h)≤X̃(h)
}, 1{

Y(h)≤Ỹ(h)
})

= Corr
(
1{

X(h)−X̃(h)≤0
}, 1{

Y(h)−Ỹ(h)≤0
})

=

Pr
(
X1 − X̃1 ≤ 0, . . . , X1+h − X̃1+h ≤ 0, Y1 − Ỹ1 ≤ 0, . . . , Y1+h − Ỹ1+h ≤ 0

)
− pX(h)pY(h)√

pX(h)
(
1 − pX(h)

)
pY(h)

(
1 − pY(h)

)
ith pX(h) = Pr

(
X1 − X̃1 ≤ 0, . . . , X1+h − X̃1+h ≤ 0

)
and pY(h) = Pr

(
Y1 − Ỹ1 ≤ 0, . . . , Y1+h − Ỹ1+h ≤ 0

)
. Note that for

independent centered Gaussian processes,(
X(h)

− X̃(h),Y(h)
− Ỹ(h)

)
D
=

√
2
(
X(h),Y(h)) .

This explicitly implies that the cross-correlations within
(
X(h)

− X̃(h),Y(h)
− Ỹ(h)

)
equal those within

(
X(h),Y(h)

)
. Therefore,

we have pX(h) = p̃X(h) and

Pr
(
X1 − X̃1 ≤ 0, . . . , X1+h − X̃1+h ≤ 0, Y1 − Ỹ1 ≤ 0, . . . , Y1+h − Ỹ1+h ≤ 0

)
− pX(h)pY(h)√

pX(h)
(
1 − pX(h)

)
pY(h)

(
1 − pY(h)

)
=

Pr (X1 ≤ 0, . . . , X1+h ≤ 0, Y1 ≤ 0, . . . , Y1+h ≤ 0)− p̃X(h) p̃Y(h)√
p̃X(h)

(
1 − p̃X(h)

)
p̃Y(h)

(
1 − p̃Y(h)

) . □
5
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Although for h ≥ 2 we cannot derive an analytic expression for

Pr (X1 ≤ 0, . . . , X1+h ≤ 0) , Pr (Y1 ≤ 0, . . . , Y1+h ≤ 0)

r

Pr (X1 ≤ 0, . . . , X1+h ≤ 0, Y1 ≤ 0, . . . , Y1+h ≤ 0) ,

e know that these orthant probabilities of a multivariate Gaussian distribution are determined by the entries of the
orrelation matrices and by the entries of the cross-correlation matrix of X(h) and Y(h). In contrast to multivariate Pearson’s
orrelation coefficient, multivariate Kendall’s τ constitutes a multivariate dependence measure that takes the dynamical
ependence of data stemming from time series into account.

.2. Estimation of multivariate Kendall’s τ

[7] consider an estimator for multivariate Kendall’s τ based on independent vectors (Xi,Yi), 1 ≤ i ≤ n. In our setup,
e will define an empirical version of Kendall’s τ based on the dependent vectors (X(h)

i ,Y
(h)
i ), 1 ≤ i ≤ n. For this, we will

ollow the ideas of [5], who considered estimation of the classical univariate Kendall’s τ for bivariate time series under
ome mild dependence condition.
Given an independent copy (X̃(h), Ỹ(h)) of the vector (X(h),Y(h)), we have

τ (X(h),Y(h)) =
p(X(h),Y(h)) − pX(h)pY(h)√

pX(h) (1 − pX(h) )pY(h) (1 − pY(h) )
= ψ(pX(h) , pY(h) , p(X(h),Y(h))),

here p(X(h),Y(h)) := Pr(X(h)
≤ X̃(h),Y(h)

≤ Ỹh), pX(h) := Pr(X(h)
≤ X̃(h)), pY(h) := Pr(Y(h)

≤ Ỹ(h)), and where ψ : R3
→ R is

efined by

ψ(x, y, z) :=
z − x y

√
x(1 − x)y(1 − y)

. (2)

The probabilities pX(h) , pY(h) , and p(X(h),Y(h)) can be estimated by their sample analogues defined by

p̂X(h),n :=
1

n(n − 1)

∑
1≤i̸=j≤n

1
{X(h)

i ≤X(h)
j }
, p̂Y(h),n :=

1
n(n − 1)

∑
1≤i̸=j≤n

1
{Y(h)i ≤Y(h)j }

,

p̂(X(h),Y(h)),n :=
1

n(n − 1)

∑
1≤i̸=j≤n

1
{X(h)

i ≤X(h)
j ,Y(h)i ≤Y(h)j }

,

here X(h)
i = (Xi, . . . , Xi+h) and Y(h)

i = (Yi, . . . , Yi+h). The plug-in estimator for Kendall’s τ is then given by

τ̂n(X(h),Y(h)) := ψ(p̂X(h),n, p̂Y(h),n, p̂(X(h),Y(h)),n).

n what follows, we will derive the joint limit distribution of the random vector (p̂X(h),n, p̂Y(h),n, p̂(X(h),Y(h)),n) and the limit
istribution of τ̂n(X(h),Y(h)) by the delta method. For this, observe that p̂X(h),n, p̂Y(h),n, and p̂(X(h),Y(h)),n are U-statistics with
ymmetric kernels

f ((x, y), (x′, y′)) =
1
2

(
1{x≤x′} + 1{x≥x′}

)
, g((x, y), (x′, y′)) =

1
2

(
1{y≤y′} + 1{y≥y′}

)
,

h((x, y), (x′, y′)) =
1
2

(
1{x≤x′,y≤y′} + 1{x≥x′,y≥y′}

)
.

Note that the underlying random vectors (X(h)
i ,Y

(h)
i ), i ≥ 1, are dependent, so that standard U-statistics theory for

independent data does not apply. However, we can apply an ergodic theorem for U-statistics established in [1].

Theorem 3. Assume that (Xi, Yi), i ≥ 1, is a stationary ergodic process, and that (X(h),Y(h)) has a continuous distribution.
Then, as n → ∞, we obtain almost surely

p̂X(h),n −→ pX(h) , p̂Y(h),n −→ pY(h) , p̂(X(h),Y(h)),n −→ p(X(h),Y(h)).

Proof. We apply Theorem U from [1]. The kernels f , g , and h are almost everywhere continuous and thus condition (ii)
of Theorem U holds. □

In order to establish asymptotic normality of these estimators, we have to make some assumptions assuring short-
range dependence of the underlying process. We will use the concept of near-epoch dependence in probability introduced
in [5]. This concept is a variation of the usual L2-near-epoch dependence and does not require any moment assumptions.
6
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Definition 5. (i) Given two sub-σ -fields A,B ⊂ F , we define the absolute regularity coefficient

β(A,B) = sup{

∑
i,j

|Pr(Ai ∩ Bj) − Pr(Ai) Pr(Bj)|},

where the supremum is taken over all integers m, n ≥ 1, all partitions A1, . . . , Am ∈ A, and all partitions B1, . . . , Bn ∈ B
of the sample space Ω .

(ii) For a stationary stochastic process Zi, i ∈ Z, we define the absolute regularity coefficients

βk := β(F0
−∞
,F∞

k ),

where F l
k denotes the σ -field generated by the random variables Xk, . . . , Xl. The process (Zi)i∈Z is called absolutely regular

if limk→∞ βk = 0.
(iii) An Rd-valued stochastic process Xi, i ≥ 1, is called near-epoch dependent in probability (in short P-NED) on

the stationary process Zi, i ∈ Z, if (Xi, Zi), i ≥ 1, is a stationary process, and if there exists a sequence (ak)k≥0 of
approximating constants with limk→∞ ak = 0, a sequence of functions fk : R2k+1

→ Rd, and a nonincreasing function
Φ : (0,∞) → (0,∞) such that

Pr(|X0 − fk(Z−k, . . . , Zk)| ≥ ϵ) ≤ akΦ(ϵ).

Proposition 3. Let (Xi,Yi), i ≥ 1, be a stationary process that is P-NED on an absolutely regular process Zk, k ∈ Z, and assume
that

akΦ(k−6) = O(k−6(2+δ)/δ) and
∞∑
k=1

kβδ/(2+δ)k < ∞

for some δ > 0. Moreover, assume that Y(h)
− X(h) has a bounded density. Then, the following approximations hold:

√
n
(
p̂X(h),n − pX(h)

)
=

2
√
n

n∑
i=1

f1(X
(h)
i ,Y

(h)
i ) + oP (1),

√
n
(
p̂Y(h),n − pY(h)

)
=

2
√
n

n∑
i=1

g1(X
(h)
i ,Y

(h)
i ) + oP (1),

√
n
(
p̂(X(h),Y(h)),n − p(X(h),Y(h))

)
=

2
√
n

n∑
i=1

h1(X
(h)
i ,Y

(h)
i ) + oP (1),

where the functions f1, g1, and h1 are the first order terms in the Hoeffding decomposition of the kernels f , g, and h, respectively.

Remark 1. The first order term of the Hoeffding decomposition is given by

f1(x, y) =Ef ((x, y), (X̃(h), Ỹ(h))) − pX(h) =
1
2

(
Pr(X(h)

≤ x) + Pr(X(h)
≥ x)

)
− Pr(X(h)

≤ X̃(h))

=
1
2

(
F (x) + F̄ (x)

)
− Pr(X(h)

≤ X̃(h)),

where F (x) := Pr(X(h)
≤ x) and F̄ (x) := Pr(X(h)

≥ x). Similarly, we get

g1(x, y) =
1
2

(
G(x) + Ḡ(x)

)
− Pr(Y(h)

≤ Ỹ(h)),

h1(x, y) =
1
2

(
H(x, y) + H̄(x, y)

)
− Pr(X(h)

≤ X̃(h),Y(h)
≤ Ỹ(h)),

where G, Ḡ, H , and H̄ are defined analogously to F and F̄ .

Proof of Proposition 3. This follows from Lemma D.6 of [5] noting that the variation condition is satisfied because the
distribution of Y(h)

− X(h) has a bounded density. □

Theorem 4. Under the same assumptions as in Proposition 3, we have

√
n

⎛⎝ p̂X(h),n − pX(h)

p̂Y(h),n − pY(h)
p̂(X(h),Y(h)),n − p(X(h),Y(h))

⎞⎠ D
−→ N(0,Σ),

here Σ ∈ R3×3 is the limit covariance matrix whose diagonal and off-diagonal entries are given, e.g., by

σ11 = Var
(
f1(X

(h)
1 ,Y

(h)
1 )
)

+ 2
∞∑

Cov
(
f1(X

(h)
1 ,Y

(h)
1 ), f1(X

(h)
i ,Y

(h)
i )
)
,

i=2

7
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σ12 = Cov
(
f1(X

(h)
1 ,Y

(h)
1 ), g1(X

(h)
1 ,Y

(h)
1 )
)

+

∞∑
i=2

Cov
(
f1(X

(h)
1 ,Y

(h)
1 ), g1(X

(h)
i ,Y

(h)
i )
)

+

∞∑
i=2

Cov
(
f1(X

(h)
i ,Y

(h)
i ), g1(X

(h)
1 ,Y

(h)
1 )
)
.

roof. By the multivariate central limit theorem for partial sums of NED processes we obtain

Sn :=
1

√
n

n∑
i=1

(
f1(X

(h)
i ,Y

(h)
i ), g1(X

(h)
i ,Y

(h)
i ), h1(X

(h)
i ,Y

(h)
i )
)

D
−→ N(0,Σ);

see, e.g.,[18]. Now, the statement of the theorem follows from Proposition 3 together with an application of Slutsky’s
lemma. □

Theorem 5. Under the assumptions of Proposition 3, the estimator τ̂n(X(h),Y(h)) of τ (X(h),Y(h)) is consistent and asymptotically
normal. More precisely, we obtain

√
n
(
τ̂n(X(h),Y(h)) − τ (X(h),Y(h))

) D
−→ N(0, (∇ψ)Σ(∇ψ)⊤),

where ψ is defined by (2) and Σ is defined as in Theorem 4.

Proof. This follows from the previous theorem, together with the delta method applied to the function ψ . □

5. Ordinal pattern dependence in contrast to other dependence measures

For independent vectors (Xi,Yi), 1 ≤ i ≤ n, all dependence measures considered in the previous sections make sense.
Yet, for measuring dependence between two time series, only ordinal pattern dependence and Kendall’s τ seem to be
reasonable choices of dependence measures. In this section, we point out what kind of dependencies are measured by
ordinal pattern dependence and how ordinal pattern dependence compares to classical dependence measures such as
Pearson’s correlation coefficient and multivariate Kendall’s τ .

5.1. The case h = 1

Axiom (4) in Definition 2 ensures that a multivariate dependence measure takes the value zero if the respective vectors
are independent. In this regard, a natural question that arises when studying the dependence between two random vectors
is whether the considered dependence measure may also differentiate between independent vectors and uncorrelated,
but dependent, random vectors. In this section, we provide an answer to this question by giving examples of marginally
uncorrelated Gaussian random vectors with non-vanishing ordinal pattern dependence. For this purpose, we initially
characterize ordinal pattern dependence of order 1 for Gaussian random vectors.

Proposition 4. Let X = (X1, X2) and Y = (Y1, Y2) be two Gaussian random vectors satisfying E(X1) = E(X2), E(Y1) = E(Y2)
and Var(X2 − X1) ̸= 0 ̸= Var(Y2 − Y1). Then, it holds that

OPD1(X,Y) = τ (X2 − X1, Y2 − Y1) =
2
π

arcsin Corr(X2 − X1, Y2 − Y1). (3)

Proof. By definition

OPD1(X,Y) =
Pr(Π (X1, X2) = Π (Y1, Y2)) −

∑
π∈S1

Pr(Π (X1, X2) = π ) Pr(Π (Y1, Y2) = π )

1 −
∑

π∈S1
Pr(Π (X1, X2) = π ) Pr(Π (Y1, Y2) = π )

.

ince X2 − X1 and Y2 − Y1 are both Gaussian random variables with mean zero and non-zero variance, we obtain

Pr(X1 < X2) = Pr(X2 < X1) = Pr(Y1 < Y2) = Pr(Y2 < Y1) =
1
2
,

nd thus Pr(Π (X1, X2) = π ) = Pr(Π (Y1, Y2) = π ) =
1
2 for any π ∈ S1. Hence, we obtain

OPD1(X,Y) = 2 Pr(Π (X1, X2) = Π (Y1, Y2)) − 1.

Moreover, it holds that

Pr(X1 < X2, Y1 < Y2) = Pr(X2 − X1 > 0, Y2 − Y1 > 0) = Pr(X1 − X2 > 0, Y1 − Y2 > 0) = Pr(X1 > X2, Y1 > Y2),

and hence

OPD (X,Y) = 4 Pr(X − X > 0, Y − Y > 0) − 1.
1 1 2 1 2

8



A. Betken, H. Dehling, I. Nüßgen et al. Journal of Multivariate Analysis 186 (2021) 104798

a

I

w

From Lemma 1 with h = 1, we find τ (X2 − X1, Y2 − Y1) = 4 Pr(X2 − X1 < 0, Y2 − Y1 < 0) − 1, and thus
OPD1(X,Y) = τ (X2 − X1, Y2 − Y1).

Finally, using the orthant probabilities formula for Gaussian random variables we obtain

Pr(X2 − X1 < 0, Y2 − Y1 < 0) =
1
4

+
1
2π

arcsin Corr(X2 − X1, Y2 − Y1),

nd thus OPD1(X,Y) =
2
π
arcsin Corr(X2 − X1, Y2 − Y1). □

In the following we provide an example of marginally uncorrelated Gaussian random vectors with non-vanishing
ordinal pattern dependence of order 1.

Definition 6. A stationary bivariate Gaussian process Wi = (Xi, Yi) is called AR(1) process, if there exist a matrix A ∈ R2×2,
and an i.i.d. N(0, I2)-distributed Gaussian process ξi = (ϵi, ηi) such that the AR(1)-equation

Wi = AWi−1 + ξi (4)

is satisfied.

Remark 2. Given a matrix A ∈ R2×2, a stationary Gaussian AR(1)-process exists, if and only if all eigenvalues of A are
strictly less than 1 in absolute value.

We will now consider the special example when the AR(1)-matrix is given by

A =

(
a b
b −a

)
, (5)

where a2 + b2 < 1. Thus, the AR(1)-equation for Wi = (Xi, Yi) takes the form

Xi = aXi−1 + bYi−1 + ϵi, Yi = bXi−1 − aYi−1 + ηi.

In the next lemma, we state some properties of the processes (Xi)i≥1 and (Yi)i≥1, and we give an explicit formula for their
ordinal pattern dependence of order 1.

Lemma 2. Consider the stationary bivariate Gaussian AR(1)-process Wi = (Xi, Yi), i ≥ 1, satisfying (4) with matrix A given
by (5) such that a2 + b2 < 1. Then, it holds that

Cov(X1, Y1) = 0, Var(X1) = Var(Y1) =
1

1 − a2 − b2

OPD1(X(1),Y(1)) =
2
π

arcsin
(

−
b

√
1 − a2

)
(6)

Proof. The eigenvalues of A are λ1,2 = ±
√
a2 + b2, and thus (4) has a unique stationary solution. Since the AR(1)-

equation defines a Markov chain with state space R2, the joint distribution of Wi = (Xi, Yi) is uniquely characterized by
the distributional fixed point equation

W D
= AW + ξ,

where ξ = (ϵ, η) has a bivariate normal distribution with mean zero and covariance matrix I2, and where ξ is independent
of W . We will now show that W ∼ N(0, σ 2I2) satisfies this equation with

σ 2
=

1
1 − a2 − b2

.

n order to prove this, we need to calculate the distribution of AW + ξ . Since the distribution is Gaussian, it suffices to
calculate the variances and the covariance. We obtain

Cov(aX + bY + ϵ, bX − aY + η) = abσ 2
− abσ 2

= 0,

Var(aX + bY + ϵ) = a2σ 2
+ b2σ 2

+ 1 =
a2 + b2

1 − a2 − b2
+ 1 =

1
1 − a2 − b2

= σ 2,

Var(bX − aY + ϵ) = b2σ 2
+ a2σ 2

+ 1 =
a2 + b2

1 − a2 − b2
+ 1 =

1
1 − a2 − b2

= σ 2,
hich shows that AW + ξ has indeed the same distribution as W .

9
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In order to determine the OPD1 of the two processes, we need to calculate the correlation of the differences. The
ovariance of the increments is given by

Cov(X2 − X1, Y2 − Y1) = Cov((a − 1)X1 + bY1 + ϵ2, bX1 + (−a − 1)Y1 + η2) = b(a − 1)σ 2
− b(a + 1)σ 2

= −2bσ 2
=

−2b
1 − a2 − b2

nd the variances of the increments are given by

Var(X2 − X1) = (a − 1)2σ 2
+ b2σ 2

+ 1 =
(a − 1)2 + b2

1 − a2 − b2
+ 1 =

2(1 − a)
1 − a2 − b2

,

Var(Y2 − Y1) = b2σ 2
+ (a + 1)2σ 2

+ 1 =
b2 + (a + 1)2

1 − a2 − b2
+ 1 =

2(a + 1)
1 − a2 − b2

.

hus, we obtain the following formula for the correlation of the increments:

Corr(X2 − X1, Y2 − Y1) =
−2b

√
4(1 − a)(a + 1)

= −
b

√
1 − a2

sing the identity OPD1((X1, X2), (Y1, Y2)) =
2
π
arcsin Corr(X2 − X1, Y2 − Y1), we finally obtain (6). □

Remark 3. (i) The special choice of the AR(1)-matrix A made in (5) assures that the two processes (Xi)i≥1 and (Yi)i≥1 have
identical marginals, and that Xi and Yi are independent for each fixed i. In fact, one can show that the latter two properties
only hold if A is either of the form (5) or of the form

A =

(
a b

−b a

)
. (7)

In this case, using similar calculations as above, one obtains OPD1((X1, X2), (Y1, Y2)) = 0.
(ii) Lemma 2 provides an example of a Gaussian process for which Pearson’s correlation of Xi and Yi equals 0, i.e., the

one-dimensional marginals are independent. However, the processes (Xi)ı≥1 and (Yi)i≥1 are not independent, as can be
seen from the identity for OPD(X(1),Y(1)).

We illustrate our results by simulating a bivariate AR(1)-process

Wi :=

(
Xi
Yi

)
, i ∈ {1, . . . , 500},

with Wi = AWi−1 + ξi, where

A :=

(
a b
b −a

)
, ξi :=

(
εi
ηi

)
, (8)

ξi being a multivariate Gaussian random vector with covariance matrix Σξ = I2 (with I2 denoting the identity matrix).
We choose a2 + b2 < 1, but close to 1, in order to obtain Cov(Xi, Yi) = 0, but high ordinal pattern dependence. For the
simulations summarized by the boxplots in Fig. 1 we chose a = 0.7 and b = −0.7. Clearly, the median of the boxplots
that are based on the values of Pearson’s correlation coefficient approaches zero, while the median of the boxplots that
are based on the values of ordinal pattern dependence seem to converge to a value between 0.75 and 1.

Fig. 2 depicts one sample path of the single time series Xi, i ∈ {1, . . . , 500}, and Yi, i ∈ {1, . . . , 500}, the corresponding
increment processes, as well as scatterplots of the original observations and their increments. The scatterplots clearly in-
dicate that, while the original observations are uncorrelated, the increment processes are positively correlated. Moreover,
the scatterplots of the two processes and their increments in Fig. 2 underline uncorrelatedness of the original processes
and a high dependence of their increments.

5.2. The case h = 2

Let us recall that for the computation of the ordinal pattern dependence of order h = 1, the crucial quantity is
Corr(X2−X1, Y2−Y1) since, according to Proposition 4, OPD1(X(1),Y(1)) is just a monotone transformation of this correlation.
It is, therefore, natural to wonder whether it is possible to construct a stationary, bivariate process (Xi, Yi)i≥1 with
OPD1(X(1),Y(1)) = 0, but OPD2(X(2),Y(2)) ̸= 0.

The AR(1)-process in Lemma 2 does not fulfill these conditions, since the restriction

Corr(X2 − X1, Y2 − Y1) = −
b

√
1 − a2

= 0

implies b = 0. As a result, we obtain a process Wi = (Xi, Yi) = (aXi−1 + ξi,−aYi−1 + ηi), that does not incorporate any
dynamical dependence between the processes Xi, i ≥ 1, and Yi, i ≥ 1. The only dependence in this model exists within
each component. Yet, this does not have an impact on ordinal pattern dependence.
10
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Fig. 1. Boxplots of Pearson’s correlation coefficient and ordinal pattern dependence of order h = 1 based on 5000 repetitions of a bivariate
R(1)-process (Xi, Yi), i ∈ {1, . . . , n}, satisfying (8) with a = 0.7 and b = −0.7.

Fig. 2. Sample paths of Xi , i ∈ {1, . . . , 500}, and Yi , i ∈ {1, . . . , 500}, their increments at lag 1, as well as corresponding scatterplots based on a
bivariate AR(1)-process (Xi, Yi), i ∈ {1, . . . , n}, satisfying (8) with a = 0.7 and b = −0.7.

Following Remark 3, the choice of the matrix A in (7) yields Corr (Xi, Yi) = 0 for i ∈ {1, 2}, and OPD1(X(1),Y(1)) = 0.
This leads to the question whether this special construction of an AR(1)-process fulfills OPD2(X(2),Y(2)) ̸= 0.

Lemma 3. Consider the stationary bivariate Gaussian AR(1)-process Wi = (Xi, Yi), i ≥ 1, satisfying (4) with matrix A given
by (7), and where a2 + b2 < 1. Then, it holds that

Cov(Xi, Yi) = 0, Var(Xi) = Var(Yi) = σ 2
=

1
1 − a2 − b2

,

OPD1((Xi, Xi+1), (Yi, Yi+1)) = 0, Corr (X2 − X1, Y3 − Y2) = −b, Corr (X3 − X2, Y2 − Y1) = b.
11
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Proof. The first three identities can be shown as in Lemma 2. Thus, it remains to show the latter two. It holds that

Var(X2 − X1) = (a − 1)2σ 2
+ b2σ 2

+ 1 =
(a − 1)2 + b2 + 1 − a2 − b2

1 − a2 − b2
= 2(1 − a)σ 2.

nalogously, we obtain

Var(Y3 − Y2) = 2(1 − a)σ 2.

urthermore, it holds that

Cov(Y3 − Y2, X2 − X1) = E (Y3X2)− E (Y2X2)− E (Y3X1)+ E (Y2X1) = 2b(a − 1)σ 2,

since

E(Y3X2) = −bσ 2, E(Y3X1) = −2abσ 2.

Altogether, we arrive at

Corr(Y3 − Y2, X2 − X1) =
2ab − 2b
2(1 − a)

= −b.

Corr(Y2 − Y1, X3 − X2) = b is derived by similar calculations. □

Lemma 3 provides an example of a bivariate process (Xi, Yi)i≥1 for which Corr(Xi, Yi) = 0 and OPD1(X(1),Y(1)) = 0, but
where the processes (Xi)i≥1 and (Yi)i≥1 are nevertheless dependent. The fact that the increments X2 − X1 and Y3 − Y2
are dependent, leads us to conjecture that OPD2(X(2),Y(2)) ̸= 0, but we do not have a proof. In order to compute
OPD2(X(2),Y(2)), we would have to calculate

Pr (Π (X1, X2, X3) = π,Π (Y1, Y2, Y3) = π)

for any π ∈ S2. This requires computations of orthant probabilities for 4-dimensional Gaussian vectors, e.g. for π =

(0, 1, 2) we obtain

Pr (Π (X1, X2, X3) = π,Π (Y1, Y2, Y3) = π) = Pr (X1 ≤ X2 ≤ X3, Y1 ≤ Y2 ≤ Y3)

= Pr (X2 − X1 ≥ 0, X3 − X2 ≥ 0, Y2 − Y1 ≥ 0, Y3 − Y2 ≥ 0) .

To the best of our knowledge, there are no explicit formulas for these probabilities known.
In what follows, we present an example of a bivariate AR(2)-process (Xi, Yi)i≥1 for which Corr(Xi, Yi) = 0 and

OPD1(X(1),Y(1)) = 0, but where the processes (Xi)i≥1 and (Yi)i≥1 are dependent. For this example, we show by means
of a Monte Carlo simulation, that OPD2(X(2),Y(2)) ̸= 0.

Example 1. Let Wi, be a bivariate AR(2)-process defined by

Wi :=

(
Xi
Yi

)
,

where Wi = AWi−2 + ξi with

A :=

(
a b
b −a

)
and ξi :=

(
εi
ηi

)
, (9)

ξi, bivariate Gaussian random vectors with covariance matrix Σξ = I2 (with I2 denoting the identity matrix). Moreover,
we assume that σ 2

:= Var(X1) = Var(Y1). By definition it holds that Cov(X1, Y1) = Cov(X2, Y2) = 0. Moreover, we have
OPD1(X(1),Y(1)) = 0 since

Cov(X3 − X2, Y3 − Y2) = E [(aX1 + bY1 + ξ3 − X2) (bX1 − aY1 + η3 − Y2)] = abσ 2
− baσ 2

= 0.

This construction of AR(2)-processes can be extended to AR(h) for h ∈ N, if one wants to obtain OPDh
(
X(h),Y(h)

)
̸= 0 but

OPDi
(
X(i),Y(i)

)
= 0, i = 1, . . . , h − 1 and Corr (X1, Y1) = 0 by using h independent AR(1)-processes and couple them via

Wj = AWj−h + ξj.

To illustrate the strong connection between a large correlation of the increments at lag 1 and OPD2(X(2),Y(2)) we
consider estimated values for OPD2(X(2),Y(2)) based on simulations of a bivariate AR(2)-process that satisfies the above
assumptions; see Fig. 3. The corresponding boxplots clearly indicate that, as the length of the time series increases, the
ordinal pattern dependence of order h = 1 approaches zero, while the ordinal pattern dependence of order h = 2
converges to a value between 0.1 and 0.25.
12
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Fig. 3. Boxplots of ordinal pattern dependence of order h = 1 and h = 2 based on 5000 repetitions of a bivariate AR(2)-process (Xi, Yi), i ∈ {1, . . . , n},
atisfying (9) with a = 0.01 and b = 0.98.

.3. Ordinal pattern dependence in contrast to multivariate Kendall’s τ

Recall that for Gaussian random vectors X(1)
= (X1, X2) and Y(1)

= (Y1, Y2) satisfying E(X1) = E(X2), E(Y1) = E(Y2), and
ar(X2 − X1) ̸= 0 ̸= Var(Y2 − Y1), it holds that

OPD1(X(1),Y(1)) = τ

(
X̃1, Ỹ1

)
,

where X̃1 := X2 − X1 and Ỹ1 := Y2 − Y1; see Proposition 4.
In general, the following proposition establishes a relation between ordinal pattern dependence and multivariate

Kendall’s τ for Gaussian processes:

Proposition 5. Let (Xi, Yi), i ≥ 1, be a bivariate, mean zero stationary Gaussian process. Then, it holds that

OPDh
(
X(h),Y(h))

=

2τ
(
X̃1, . . . , X̃h, Ỹ1, . . . , Ỹh

)√
p̃X̃(h)

(
1 − p̃X̃(h)

)
p̃Ỹ(h)

(
1 − p̃Ỹ(h)

)
1 −

∑
π∈Sh

Pr
(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

)
+

∑
π∈Sh\ Th

Pr
(
Π
(
X(h)

)
= Π

(
Y(h)

)
= π

)
− Pr

(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

)
1 −

∑
π∈Sh

Pr
(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

) ,

where Th := {(h, . . . , 0), (0, . . . , h)}, X̃i = Xi+1 − Xi, Ỹi = Yi+1 − Yi,

p̃X̃(h) = Pr (Π (X1, . . . , X1+h) = (0, . . . , h)) = Pr
(
X̃1 ≤ 0, . . . , X̃h ≤ 0

)
,

p̃Ỹ(h) = Pr (Π (Y1, . . . , Y1+h) = (0, . . . , h)) = Pr
(
Ỹ1 ≤ 0, . . . , Ỹh ≤ 0

)
,

and

OPDh
(
X(h),Y(h))

=

∑
π∈Sh

τ
(
X1+π1 − X1+π0 , . . . , Y1+πh − Y1+πh−1

)√
pX(h),π

(
1 − pX(h),π

)
pY(h),π

(
1 − pY(h),π

)
1 −

∑
π∈Sh

pX(h),πpY(h),π
ith

pX(h),π = Pr (Π (X1, . . . , X1+h) = π) , pY(h),π = Pr (Π (Y1, . . . , Y1+h) = π) .

emark 4. It is a characteristic of Gaussian observations (Xi), i ≥ 1, and (Yi), i ≥ 1, that the distribution of(
X1+π1 − X1+π0 , . . . , X1+πh − X1+πh−1 , Y1+π1 − Y1+π0 , . . . , Y1+πh − Y1+πh−1

)
s uniquely determined by the autocovariances and crosscovariances of X(h) and Y(h). For this reason, it is possible to
xpress all the dependencies in the vector above by the two-dimensional marginals of a multivariate Gaussian distribution.
owever, since we do not have a closed expression for orthant probabilities of a multivariate Gaussian vector with more
han 3 elements, it is not possible to constitute a closed form for ordinal pattern dependence in terms of Kendall’s τ .

The proof of Proposition 5 has been postponed to Section 6. In order to illustrate the relation of multivariate Kendall’s
and ordinal pattern dependence, characterized through Proposition 5, we consider the case h = 1 in the following

xample:
13
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Example 2. Let X = (X1, X2) and Y = (Y1, Y2) be Gaussian random vectors as in Proposition 4. Recall that

OPD1(X,Y) = τ (X2 − X1, Y2 − Y1) =
2
π

arcsin (Corr(X2 − X1, Y2 − Y1)) .

Moreover, if X and Y have standard normal marginal distributions, it holds that

Corr(X2 − X1, Y2 − Y1) =
2E (X1Y1)− E (X1Y2)− E (Y1X2)

2 − 2E (X1X2)
.

n general, we know that τ (X, Y ) =
2
π
arcsin (Corr(X, Y )) for a Gaussian random vector (X, Y ), and hence Corr(X, Y ) =

sin
(
π
2 τ (X, Y )

)
.

As a result, we obtain

OPD1 (X,Y) =
2
π

arcsin

(
2 sin

(
π
2 τ (X1, Y1)

)
− sin

(
π
2 τ (X1, Y2)

)
− sin

(
π
2 τ (X2, Y1)

)
2 − 2 sin

(
π
2 τ (X1, X2)

) )
.

herefore, the ordinal pattern dependence of order 1 is determined by τ (X1, Y1), τ (X1, Y2), τ (X2, Y1), and τ (X2, Y2).

5.4. Simulation study

In this section, we compare the estimators for ordinal pattern dependence and multivariate Kendall’s τ based on the
vectors X(h)

i ,Y
(h)
i , generated by bivariate processes (Xi, Yi), i ≥ 1, in a simulation study. Fig. 4 corresponds to the case

h = 2. The following situations are considered:

1. We simulate (Xi), i ≥ 1, and (Yi), i ≥ 1, as two independent AR(1) time series with

Xi = ρXi−1 + εi, Yi = ρYi−1 + ηi,

where |ρ| < 1, and (εi), i ≥ 1, and (ηi), i ≥ 1, are two independent sequences of random variables, both i.i.d.
standard normally distributed. In this case, the sequences (Xi), i ≥ 1, and (Yi), i ≥ 1, are generated by the
function arima.sim in R. For the simulations depicted in Fig. 4, we chose ρ = 0.5. As expected, the values of
both dependence measures vary around 0. Moreover, the boxplots become narrower as the sample size increases
confirming consistency of the estimators. The boxplots that correspond to the estimate for Kendall’s τ are wider.
This indicates a faster convergence of the estimators for ordinal pattern dependence. For a systematic simulation
study see Table A.1 in the appendix.

2. We simulate (Xi), i ≥ 1, and (Yi), i ≥ 1, as sequences of independent, multivariate normal random vectors with
values in R3 and a joint normal distribution with expectation 0 and covariance matrix

Σ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 ρ ρ ρ

0 1 0 ρ ρ ρ

0 0 1 ρ ρ ρ

ρ ρ ρ 1 0 0
ρ ρ ρ 0 1 0
ρ ρ ρ 0 0 1

⎞⎟⎟⎟⎟⎟⎠ . (10)

The R6-valued random vectors (Xi, Yi), i ≥ 1, are generated by the function rmvnorm in R. For the simulations
depicted in Fig. 4, we chose ρ = 0.2. Note that the values of both dependence measures deviate from 0, thereby
indicating a correlation between the two processes (Xi), i ≥ 1, and (Yi), i ≥ 1. In fact, the boxplots of both estimators
look very similar so that the rates of convergence seem to be comparable. For a systematic simulation study see
Table A.2 in the appendix.

3. We simulate (Xi), i ≥ 1, as an AR(1) time series, while (Yi), i ≥ 1, corresponds to (Xi), i ≥ 1, shifted by one time
point. More precisely, we simulate

Xi = ρXi−1 + εi,

where |ρ| < 1, and (εi), i ≥ 1, is an i.i.d. standard normally distributed sequence of random variables, and we define
Yi = Xi+1. For the simulations depicted in Fig. 4, we chose ρ = 0.5.
It is intriguing that ordinal pattern dependence does not detect the high correlation of the time series. The
theoretical value of ordinal pattern dependence for h = 1 in this case is given by

OPD1(X(1),Y(1)) =
2
π

arcsin Corr(X2 − X1, Y2 − Y1) =
2
π

arcsin Corr(X2 − X1, X3 − X2).

Routine calculations yield the following formula for the ordinal pattern dependence of order 1 between an AR(1)
process and the same process shifted by one time point:

OPD1(X(1),Y(1)) =
2

arcsin
(
ρ − 1

)
.

π 2
14
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t

Fig. 4. Boxplots of ordinal pattern dependence of order h = 2 based on 5000 repetitions of a bivariate process (Xi, Yi), i ∈ {1, . . . , n}, corresponding
o the situations (1)-(3).

As a result, OPD1(X(1),Y(1)) = −0.297,−0.161,−0.032 for ρ = 0.1, 0.5, 0.9. These values coincide with the results
of the corresponding systematic simulation study; see Table A.3 in the appendix.
In [16] on page 713, an approach is presented to solve the insensitivity of ordinal pattern dependence concerning
time shifts. The authors introduced time shifted ordinal pattern dependence in order to investigate and compare
time series that are known to have a similar behavior within a certain time deviation. These time series arise for
example in the context of hydrology, if discharge data of a river is considered for two different locations. For a
real-world data analysis see [10]. Using this approach, (time-shifted) ordinal pattern dependence of 1 is detected,
since all patterns coincide if we reshift the second time series.

6. Proofs

Proof of Theorem 1. The first four axioms in Definition 2 are easily verified, the fifth one is involved. We show that the
fifth axiom is fulfilled for OPDh with h = 2. For h = 1, the difficulties in the proof are not revealed, while for h > 2 the
proof works analogously, but is notationally more complicated. Due to stationarity, it is enough to focus on the first three
components of X, Y, X∗, and Y∗, i.e., without loss of generality we consider

X = (X , X , X ),Y = (Y , Y , Y ),X∗
= (X∗, X∗, X∗),Y∗

= (Y ∗, Y ∗, Y ∗).
1 2 3 1 2 3 1 2 3 1 2 3

15
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Moreover, we can restrict our considerations to Pr (Π (X) = Π (Y)) (the remaining summands of OPDh(X,Y) only relate to
he distribution of X and Y separately). By Axiom 2 (invariance under permutation) it is, furthermore, enough to consider
he monotone increasing pattern, that is, Π (X1, X2, X3) = (3, 2, 1). Let

X D
= X∗, Y D

= Y∗, and
(
X
Y

)
≼C

(
X∗

Y∗

)
. (11)

t is a well-known fact that (11) implies(
X
Y

)I

≼C

(
X∗

Y∗

)I

or all subvectors of variables with indices in I ⊆ {1, . . . , 6}, i.e., removing dimensions does not influence which scenario
as the larger dependence measure; see [8]. We will make extensive use of this fact in what follows. Moreover, recall
hat we assume that all considered marginal distribution functions are continuous.

Defining

Prx1,y1 (A) := Pr(A|X1 = x1, Y1 = y1),

onsidering Π (X1, X2, X3) = (3, 2, 1), and using disintegration twice yields

Pr (Π (X1, X2, X3) = Π (Y1, Y2, Y3)) = Pr (X1 ≤ X2 ≤ X3, Y1 ≤ Y2 ≤ Y3)

= Pr ({X1 ≤ X2} ∩ {X2 ≤ X3} ∩ {Y1 ≤ Y2} ∩ {Y2 ≤ Y3}) =

∫
R2

Prx1,y1 (x1 ≤ X2 ≤ X3, y1 ≤ Y2 ≤ Y3) dP(X1Y1)
(x1, y1)

=

∫
R2

Prx1,y1 (X2 ≤ X3, Y2 ≤ Y3|x1 ≤ X2, y1 ≤ Y2) · Prx1,y1 (X2 ≥ x1, Y2 ≥ y1) dP(X1Y1)
(x1, y1)

=

∫
R2

∫
[x1,∞[×[y1,∞[

Prx1,y1 (X2 ≤ X3, Y2 ≤ Y3|X2 = x2, Y2 = y2) dP
x1,y1
(
X2
Y2
)
(x2, y2)

× Prx1,y1 (X2 ≥ x1, Y2 ≥ y1) dP(X1Y1)
(x1, y1).

Since F̄
(
X3
Y3
)
(x2, y2) = Prx1,y1 (X2 ≤ X3, Y2 ≤ Y3|x1 ≤ X2, y1 ≤ Y2), it follows that

Pr (Π (X1, X2, X3) = Π (Y1, Y2, Y3)) =

∫
R2

∫
[x1,∞[×[y1,∞[

F̄
(
X3
Y3
)
(x2, y2) dP

x1,y1
(
X2
Y2
)
(x2, y2)F̄(X2Y2)

(x1, y1) dP(X1Y1)
(x1, y1).

Due to (11), we deduce that∫
1[a,∞[×[b,∞[(x, y) dP(XjYj)

(x, y) ≤

∫
1[a,∞[×[b,∞[(x, y) dP

(
X∗
j

Y∗
j
)
(x, y)

for a, b ∈ R and j ∈ {1, 2, 3}. Since survival functions can be approximated by sums of indicator functions, the bounded
convergence theorem yields∫

[x1,∞[×[y1,∞[

F̄
(
X∗
3

Y∗
3
)
(x2, y2) dP

x1,y1
(
X2
Y2
)
(x2, y2) ≤

∫
[x1,∞[×[y1,∞[

F̄
(
X∗
3

Y∗
3
)
(x2, y2) dP

x1,y1

(
X∗
2

Y∗
2
)
(x2, y2).

Moreover, up to scaling, the function

H(x1, x2) :=

∫
[x1,∞[×[y1,∞[

F̄
(
X∗
3

Y∗
3
)
(x2, y2) dP

x1,y1

(
X∗
2

Y∗
2
)
(x2, y2)

can be considered as a survival function. Hence, we can use an approximation by sums of indicator functions for both,
H and F̄

(
X∗
2

Y∗
2
)
. Most notably, the product of two functions having this property is of the same type, i.e., it can as well be

approximated by sums of indicator functions.
Thus, we finally arrive at

Pr (Π (X1, X2, X3) = Π (Y1, Y2, Y3) = (3, 2, 1))

≤

∫
R2

∫
[x1,∞[×[y1,∞[

F̄
(
X∗
3

Y∗
3
)
(x2, y2) dP

x1,y1

(
X∗
2

Y∗
2
)
(x2, y2)F̄

(
X∗
2

Y∗
2
)
(x1, y1) dP

(
X∗
1

Y∗
1
)
(x1, y1)

= Pr(X∗

1 ≤ X∗

2 ≤ X∗

3 , Y
∗

1 ≤ Y ∗

2 ≤ Y ∗

3 ) = Pr
(
Π (X∗

1 , X
∗

2 , X
∗

3 ) = Π (Y ∗

1 , Y
∗

2 , Y
∗

3 ) = (3, 2, 1)
)
. □
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Proof of Proposition 5. First, note that

OPDh
(
X(h),Y(h))

=

∑
π∈Th

{
Pr
(
Π
(
X(h)

)
= Π

(
Y(h)

)
= π

)
− Pr

(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

)}
1 −

∑
π∈Sh

Pr
(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

)
+

∑
π∈Sh\Th

{
Pr
(
Π
(
X(h)

)
= Π

(
Y(h)

)
= π

)
− Pr

(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

)}
1 −

∑
π∈Sh

Pr
(
Π
(
X(h)

)
= π

)
Pr
(
Π
(
Y(h)

)
= π

) .

Focusing on the pattern π = (0, . . . , h) in the first summand yields

Pr
(
Π
(
X(h))

= Π
(
Y(h))

= (0, . . . , h)
)

= Pr (X1 ≥ · · · ≥ X1+h, Y1 ≥ · · · ≥ Y1+h)

= Pr
(
X̃1 ≤ 0, . . . , X̃h ≤ 0, Ỹ1 ≤ 0, . . . , Ỹh ≤ 0

)
=τ

(
X̃1, . . . , X̃h, Ỹ1, . . . , Ỹh

)√
p̃X̃(h)

(
1 − p̃X̃(h)

)
p̃Ỹ(h)

(
1 − p̃Ỹ(h)

)
+ p̃X̃(h) p̃Ỹ(h) .

ue to symmetry of the multivariate normal distribution, we have
(
X(h),Y(h)

) D
=
(
−X(h),−Y(h)

)
. Therefore, it follows that

Pr
(
Π
(
X(h))

= Π
(
Y(h))

= (0, . . . , h)
)

= Pr
(
Π
(
X(h))

= Π
(
Y(h))

= (h, . . . , 0)
)
.

Let π = (π0, . . . , πh) be a permutation of (0, . . . , h). IfΠ (X1, . . . , X1+h) = π , it holds that
{
X1+π0 ≥ X1+π1 ≥ · · · ≥ X1+πh

}
.

As a result, ordinal pattern dependence can be expressed by the following formula:

OPDh
(
X(h),Y(h))

=

∑
π∈Sh

Pr (Π (X1, . . . , X1+h) = Π (Y1, . . . , Y1+h) = π)− pX(h),πpY(h),π
1 −

∑
π∈Sh

Pr (Π (X1, . . . , X1+h) = π) Pr (Π (Y1, . . . , Y1+h) = π)

=

∑
π∈Sh

Pr
(
X1+π0 ≥ X1+π1 ≥ · · · ≥ X1+πh , Y1+π0 ≥ Y1+π1 ≥ · · · ≥ Y1+πh

)
− pX(h),πpY(h),π

1 −
∑

π∈Sh
pX(h),πpY(h),π

=

∑
π∈Sh

Pr
(
X1+π1 − X1+π0 ≤ 0, . . . , X1+πh − X1+πh−1 ≤ 0, . . . , Y1+πh − Y1+πh−1 ≤ 0

)
− pX(h),πpY(h),π

1 −
∑

π∈Sh
pX(h),πpY(h),π

=

∑
π∈Sh

τ
(
X1+π1 − X1+π0 , . . . , Y1+πh − Y1+πh−1

)√
pX(h),π

(
1 − pX(h),π

)
pY(h),π

(
1 − pY(h),π

)
1 −

∑
π∈Sh

pX(h),πpY(h),π
. □

. Conclusion and outlook

We have shown that ordinal pattern dependence is a multivariate measure of dependence in an axiomatic sense.
hen applied to bivariate time series, it can be interpreted as a value describing the co-movement of the two component

ime series in equal moving windows. In contrast to other dependence measures, it has thus been developed against a
ime series background. To make ordinal pattern dependence comparable to other multivariate dependence measures, we
dapted the definitions of the latter to the time series approach. We figured out that univariate dependence measures
o not carry enough information for an analysis of dependencies between two random vectors. They do not take any
ynamical dependence into account, given for example by the cross-correlations of the considered random vectors.
he same holds true for the multivariate extension of Pearson’s ρ. Hence, both measures are inappropriate in a time
eries context. For Gaussian observations, there is a close relationship between ordinal pattern dependence and the
ultivariate version of Kendall’s τ . We proved that for h = 1 ordinal pattern dependence of two random vectors can
e represented as Kendall’s τ of the corresponding increment vectors. The provided simulations show that the values of
endall’s τ and ordinal pattern dependence of the same data set differ in concrete situations. This emphasizes that the
wo measures operate on different levels, i.e., one operates on the level of the original process, the other on the level of
ncrements. Moreover, for this reason ordinal pattern dependence is insensitive with respect to time shifts: it only relies
n the dependence between the corresponding increments. However, an extension of ordinal pattern dependence that is
ensitive to dependence shifted in time is given in [16]. The authors of that article introduced time shifted ordinal pattern
ependence that allows for time shifts between the moving windows of the two time series. Using this approach it is
ossible to detect a co-movement of the two time series that does not happen in the same moving window. Furthermore, it
s an interesting topic for further research to compare ordinal pattern dependence to copula-based dependence measures.
riginally, copulas were introduced to focus on the dependence within a multivariate random vector without taking the
arginal distributions into account. If all univariate margins are continuous, the multivariate generalizations of Kendall’s
and multivariate Spearman’s ρ in [7] only depend on the underlying copula. As these two measures are defined to
easure dependence between two random vectors, this approach is a promising starting point to extend these ideas to
time series background. An investigation of ordinal pattern dependence with respect to the framework of copulas as
ell as a comparison to multivariate Spearman’s ρ is ongoing research, but not in the scope of the present article. Since
rdinal pattern dependence admits a canonical interpretation, and since limit theorems in the short and the long-range
ependent framework are at hand, we suggest to use this measure to complement the classical time series analysis with
n ordinal point of view.
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Table A.1
We generate Xi , 1 ≤ i ≤ n, and Yi , 1 ≤ i ≤ n, as two independent AR(1) time series with Xi = ρXi−1 + εi, Yi = ρYi−1 + ηi, where |ρ| < 1, and εi ,
1 ≤ i ≤ n, and ηi , 1 ≤ i ≤ n, are two independent sequences of random variables, both i.i.d. standard normally distributed.
Method n h ρ = 0.1 ρ = 0.5 ρ = 0.9

Mean (sd) Median (IQR) Mean (sd) Median (IQR) Mean (sd) Median (IQR)

Kendall’s τ
100 1 0.007 (0.062) 0.004 (0.086) 0.012 (0.087) 0.011 (0.121) 0.018 (0.168) 0.017 (0.238)
300 1 0.003 (0.035) 0.003 (0.048) 0.004 (0.051) 0.004 (0.068) 0.008 (0.111) 0.007 (0.153)
500 1 0.002 (0.027) 0.002 (0.036) 0.003 (0.040) 0.002 (0.053) 0.006 (0.088) 0.004 (0.119)

opd
100 1 0.009 (0.106) 0.003 (0.139) 0.011 (0.101) 0.016 (0.137) 0.008 (0.098) 0.003 (0.137)
300 1 0.003 (0.062) 0.002 (0.085) 0.004 (0.059) 0.005 (0.083) 0.003 (0.058) 0.004 (0.075)
500 1 0.002 (0.048) 0.004 (0.062) 0.003 (0.046) 0.003 (0.063) 0.001 (0.044) −0.000 (0.061)

Kendall’s τ
100 2 0.008 (0.053) 0.002 (0.070) 0.015 (0.083) 0.011 (0.114) 0.031 (0.170) 0.027 (0.239)
300 2 0.003 (0.030) 0.002 (0.040) 0.005 (0.048) 0.004 (0.065) 0.013 (0.111) 0.011 (0.154)
500 2 0.002 (0.023) 0.001 (0.031) 0.003 (0.038) 0.002 (0.050) 0.009 (0.089) 0.007 (0.120)

opd
100 2 0.003 (0.055) −0.000 (0.073) 0.004 (0.055) 0.001 (0.077) 0.004 (0.056) 0.002 (0.075)
300 2 0.001 (0.033) −0.000 (0.044) 0.002 (0.032) 0.001 (0.044) 0.001 (0.033) 0.001 (0.044)
500 2 0.000 (0.025) 0.000 (0.034) 0.001 (0.025) 0.001 (0.034) 0.000 (0.025) −0.001 (0.034)

Kendall’s τ
100 3 0.006 (0.043) −0.002 (0.053) 0.015 (0.076) 0.007 (0.103) 0.040 (0.169) 0.031 (0.239)
300 3 0.002 (0.024) −0.000 (0.032) 0.005 (0.044) 0.002 (0.059) 0.016 (0.111) 0.014 (0.154)
500 3 0.001 (0.019) 0.000 (0.024) 0.003 (0.035) 0.001 (0.047) 0.012 (0.089) 0.009 (0.120)

opd
100 3 0.001 (0.027) −0.001 (0.035) 0.001 (0.027) −0.002 (0.037) 0.002 (0.031) −0.001 (0.041)
300 3 0.001 (0.015) −0.001 (0.021) 0.001 (0.016) −0.000 (0.021) 0.001 (0.018) −0.001 (0.024)
500 3 −0.000 (0.012) −0.001 (0.016) 0.000 (0.013) −0.000 (0.017) 0.000 (0.014) −0.000 (0.019)

Table A.2
We simulate (Xi), i ≥ 1, and (Yi), i ≥ 1, as sequences of independent, multivariate normal random vectors with values in R3 and a joint normal
distribution with expectation 0 and covariance matrix (10).
Method n h ρ = 0.1 ρ = 0.2 ρ = 0.3

Mean (sd) Median (IQR) Mean (sd) Median (IQR) Mean (sd) Median (IQR)

Kendall’s τ
100 1 0.045 (0.034) 0.045 (0.047) 0.091 (0.037) 0.091 (0.050) 0.141 (0.039) 0.141 (0.053)
300 1 0.045 (0.020) 0.045 (0.026) 0.091 (0.021) 0.091 (0.028) 0.142 (0.022) 0.142 (0.030)
500 1 0.045 (0.015) 0.044 (0.021) 0.091 (0.016) 0.091 (0.023) 0.142 (0.017) 0.142 (0.023)

opd
100 1 0.066 (0.064) 0.066 (0.081) 0.129 (0.063) 0.130 (0.086) 0.196 (0.066) 0.198 (0.087)
300 1 0.065 (0.036) 0.064 (0.048) 0.128 (0.037) 0.129 (0.051) 0.195 (0.038) 0.195 (0.053)
500 1 0.065 (0.029) 0.065 (0.038) 0.128 (0.028) 0.128 (0.039) 0.195 (0.030) 0.194 (0.040)

Kendall’s τ
100 2 0.031 (0.030) 0.029 (0.041) 0.063 (0.033) 0.062 (0.045) 0.100 (0.036) 0.100 (0.050)
300 2 0.030 (0.017) 0.029 (0.023) 0.062 (0.019) 0.062 (0.026) 0.100 (0.021) 0.100 (0.029)
500 2 0.030 (0.013) 0.030 (0.018) 0.063 (0.015) 0.062 (0.019) 0.100 (0.016) 0.100 (0.022)

opd
100 2 0.031 (0.034) 0.031 (0.047) 0.065 (0.037) 0.063 (0.051) 0.101 (0.040) 0.099 (0.054)
300 2 0.030 (0.020) 0.030 (0.027) 0.064 (0.022) 0.063 (0.029) 0.102 (0.024) 0.101 (0.031)
500 2 0.030 (0.016) 0.030 (0.021) 0.064 (0.017) 0.063 (0.023) 0.102 (0.018) 0.102 (0.025)

Kendall’s τ
100 3 0.019 (0.024) 0.017 (0.032) 0.041 (0.029) 0.039 (0.038) 0.067 (0.033) 0.064 (0.043)
300 3 0.019 (0.014) 0.018 (0.019) 0.042 (0.017) 0.041 (0.022) 0.068 (0.019) 0.067 (0.026)
500 3 0.019 (0.011) 0.018 (0.015) 0.041 (0.013) 0.041 (0.018) 0.069 (0.015) 0.068 (0.020)

opd
100 3 0.011 (0.017) 0.010 (0.023) 0.024 (0.020) 0.023 (0.028) 0.041 (0.023) 0.040 (0.032)
300 3 0.011 (0.010) 0.011 (0.014) 0.024 (0.012) 0.024 (0.015) 0.041 (0.013) 0.040 (0.018)
500 3 0.011 (0.008) 0.011 (0.010) 0.024 (0.009) 0.024 (0.012) 0.041 (0.010) 0.041 (0.014)
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ppendix. Simulation study

In Table A.1 to A.3, we empirically compare multivariate Kendall’s τ and ordinal pattern dependence by simulation
tudies for different settings.
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Table A.3
We generate Xi , 1 ≤ i ≤ n, from an AR(1) time series with parameter ρ, while Yi , 1 ≤ i ≤ n, corresponds to Xi , 1 ≤ i ≤ n, shifted by one time point,
i.e., Yi = Xi+1 .
Method n h ρ = 0.1 ρ = 0.5 ρ = 0.9

Mean (sd) Median (IQR) Mean (sd) Median (IQR) Mean (sd) Median (IQR)

Kendall’s τ
100 1 0.354 (0.059) 0.354 (0.080) 0.509 (0.058) 0.512 (0.077) 0.738 (0.055) 0.744 (0.072)
300 1 0.360 (0.034) 0.361 (0.046) 0.521 (0.033) 0.522 (0.044) 0.777 (0.030) 0.779 (0.039)
500 1 0.361 (0.026) 0.361 (0.036) 0.524 (0.025) 0.525 (0.033) 0.784 (0.023) 0.786 (0.031)

opd
100 1 −0.282 (0.083) −0.279 (0.112) −0.152 (0.090) −0.157 (0.118) −0.026 (0.097) −0.023 (0.131)
300 1 −0.292 (0.049) −0.292 (0.066) −0.159 (0.053) −0.159 (0.071) −0.030 (0.057) −0.028 (0.074)
500 1 −0.295 (0.038) −0.295 (0.050) −0.158 (0.041) −0.157 (0.054) −0.030 (0.044) −0.029 (0.060)

Kendall’s τ
100 2 0.437 (0.070) 0.438 (0.095) 0.575 (0.065) 0.579 (0.086) 0.783 (0.055) 0.791 (0.071)
300 2 0.450 (0.038) 0.450 (0.052) 0.591 (0.036) 0.593 (0.049) 0.816 (0.027) 0.817 (0.036)
500 2 0.453 (0.030) 0.454 (0.041) 0.594 (0.027) 0.595 (0.037) 0.823 (0.021) 0.824 (0.028)

opd
100 2 −0.088 (0.037) −0.088 (0.049) −0.030 (0.044) −0.031 (0.060) 0.050 (0.052) 0.049 (0.070)
300 2 −0.088 (0.021) −0.088 (0.028) −0.028 (0.025) −0.029 (0.033) 0.052 (0.030) 0.051 (0.041)
500 2 −0.087 (0.016) −0.087 (0.022) −0.028 (0.019) −0.028 (0.025) 0.052 (0.024) 0.052 (0.032)

Kendall’s τ
100 3 0.462 (0.083) 0.465 (0.113) 0.602 (0.075) 0.609 (0.101) 0.804 (0.058) 0.814 (0.073)
300 3 0.485 (0.047) 0.485 (0.062) 0.624 (0.040) 0.625 (0.053) 0.837 (0.027) 0.840 (0.035)
500 3 0.489 (0.035) 0.489 (0.047) 0.629 (0.030) 0.630 (0.040) 0.844 (0.020) 0.845 (0.026)

opd
100 3 −0.029 (0.016) −0.030 (0.022) −0.008 (0.024) −0.010 (0.033) 0.040 (0.038) 0.037 (0.050)
300 3 −0.025 (0.010) −0.025 (0.013) −0.003 (0.014) −0.004 (0.019) 0.045 (0.022) 0.045 (0.030)
500 3 −0.024 (0.007) −0.024 (0.010) −0.002 (0.011) −0.002 (0.015) 0.046 (0.017) 0.046 (0.023)
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