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Summary
Wind turbine aerodynamics spans a wide range of scales starting from the millimeter
thick boundary layers up to atmospheric flows. Analysis of each of these scales have
traditionally been performed using simplified or ’engineering’ models. However,
with simplifications also come uncertainties. In order to reduce the uncertainties
and also to improve the design process, more accurate analysis tools are necessary.
Computational Fluid Dynamics (CFD) based methods are being used to fill this
need. This thesis presents the development and application of an incompressible
pressure based solver. The new solver has been developed within the framework
of SU2, an open source collection of C++ based software tools for multi-physics
analysis.

Wind turbines operate under "incompressible" conditions and the CFD methods
are based on solving the Navier-Stokes equations in the incompressible form. The
main difficulty in solving the incompressible Navier-Stokes equations lies in resolving
the pressure velocity coupling. Various approaches have been proposed over the
years to overcome this difficulty and in this work the SIMPLE algorithm is used.
The common link among all the approaches to resolve the pressure velocity coupling
was the use of staggered grids, where pressure and velocities are stored at cell centers
and cell faces respectively. The staggered grid comes with its own disadvantages,
especially for modern day industrial problems. A momentum based interpolation
technique is used to allow for the SIMPLE algorithm to be applied on collocated
grids. The effect of turbulence is modeled using the eddy viscosity based Spalart-
Allmaras (SA) and the k-ω Shear Stress Transport (SST) models. Verification of
the new solver is carried out using Couette flow problems where analytical solutions
to the Navier-Stokes equations can be found. Validation of the new solver is carried
out using widely studied problems like flow over a flat plate, backward facing steps
and cylinder.

CFD is used for a wide variety of problems in the wind turbine industry. Three
such problems are studied in this work. First, the effect of vortex generators on
the boundary layer is presented. Integral boundary layer (IBL) based methods
are used extensively for quick and accurate analysis of airfoil performance. The
effect of vortex generators on the boundary layer is analyzed using the mixing layer
theory as a first step towards modeling vortex generators in IBL methods. Another
issue gaining importance recently is the effect of leading edge erosion. As the blade
surface is exposed to the elements continuously, it is prone to erosion which leads to
a reduction in performance. A roughness model is implemented and used to analyze
the effect of erosion on aerodynamic performance and boundary layer behavior.
Finally, the new solver is used to study the flow past a rotating wind turbine blade.
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Samenvatting
De aerodynamica van windturbines omvat een brede diversiteit aan schalen, van de
millimeter dikke grenslagen tot atmosferische stromingen. Analyse van elk van deze
schalen werd traditioneel grotendeels uitgevoerd met behulp van vereenvoudigde of
’engineering’ modellen. Echter, vereenvoudigingen introduceren ook onzekerheden.
Om deze onzekerheden te verminderen en ook om het ontwerpproces te verbete-
ren, zijn nauwkeurigere analyse-methoden nodig. Om in deze behoefte te voorzien,
worden methoden gebruikt, die gebaseerd zijn op Computational Fluid Dynamics
(CFD). Dit proefschrift presenteert de ontwikkeling en toepassing van een onsamen-
drukbare, pressure based solver. De nieuwe solver is ontwikkeld binnen het raamwerk
van SU2, een open source verzameling van op C++ gebaseerde softwaretools voor
multi-disciplinaire analyse.

Windturbines werken onder ”onsamendrukbare” omstandigheden en de CFD
methoden zijn gebaseerd op het oplossen van de Navier-Stokes vergelijkingen in
de onsamendrukbare vorm. De grootste moeilijkheid bij het oplossen van de on-
samendrukbare Navier-Stokes-vergelijkingen ligt in het oplossen van de koppeling
tussen de druk en snelheden. In de loop der jaren zijn er verschillende benade-
ringen voorgesteld om deze moeilijkheid te overwinnen en in dit werk wordt het
SIMPLE-algoritme gebruikt. De overeenkomst tussen alle benaderingen voor het
oplossen van de koppeling tussen druk en snelheden was het gebruik van staggered
roosters, waar druk en snelheden worden opgeslagen in respectievelijk het midden
en op de randen van de cel. Het staggered rooster heeft zijn eigen nadelen, vooral
voor moderne industriële problemen. Een op impuls gebaseerde interpolatietechniek
wordt gebruikt om het SIMPLE-algoritme toe te passen op collocated grids. Het
effect van turbulentie is gemodelleerd met behulp van de eddy-viscositeit modellen
van Spalart-Allmaras (SA) en k-ω Shear Stress Transport (SST). Verificatie van de
nieuwe solver wordt uitgevoerd met behulp van Couette-stromingsproblemen waar-
voor analytische oplossingen van de Navier-Stokes vergelijkingen gevonden kunnen
worden. Validatie van de nieuwe solver wordt uitgevoerd met behulp van veel be-
studeerde problemen, zoals de stroming over een vlakke plaat, backward facing step
en cilinder.

CFD wordt gebruikt voor een breed scala aan problemen in de windturbine-
industrie. In dit werk worden drie van deze problemen bestudeerd. Ten eerste wordt
het effect van wervel-generatoren op de grenslaag gepresenteerd. Grenslaag Inte-
graal Methoden (Engelse afkorting IBL) worden veelvuldig gebruikt voor snelle en
nauwkeurige analyse van de prestaties van het vleugelprofiel. Het effect van wervel-
generatoren op de grenslaag wordt geanalyseerd met behulp van de mixing layer
theorie als een eerste stap naar het modelleren van wervel-generatoren in grenslaag-
integraalmethoden. Een ander probleem dat recentelijk steeds belangrijker wordt,
is het effect van erosie aan de voorkant van het blad. Omdat het bladoppervlak
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continu wordt blootgesteld aan de elementen, is het gevoelig voor erosie, wat leidt
tot een vermindering van de prestaties. Een ruwheidsmodel is geïmplementeerd en
gebruikt om het effect van erosie op de aerodynamische prestaties en het gedrag
van de grenslaag te analyseren. Ten slotte wordt de nieuwe solver gebruikt om de
stroming over een draaiend windturbineblad te bestuderen.
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1
Introduction

Humanity has long harnessed the power of wind for various applications ranging
from simple sailing boats to grain mills and water pumps. Some researchers estimate
wind energy has been in use for over 2000 years [1]. In the present day, wind energy
is poised to play an important role in moving away from fossil fuel based sources of
energy.

1.1. Historical overview
Beurskens [2] broadly classifies four different periods in which the use of wind energy
evolved into its current form.

1. 600–1890 (classical period) - Classic windmills mainly used as mechanical
drives to operate grain mills and other applications. More than 100, 000 wind-
mills were constructed in northwestern Europe. This period ended after the
discovery of the steam engine and because of the ready availability of wood
and coal.

2. 1890–1930 - Development of the first electricity generating wind turbines. The
development of electricity as a source of energy available to everyone led to
the use of windmills as an additional possibility for generating electricity. This
period saw some basic developments in the field of aerodynamics and control.
This period ended as cheaper fossil fuels like oil became more readily available
to generate electricity.

3. 1930–1973 - First phase of modern innovation. The necessity of electrifying
rural areas and the shortage of energy during the Second World War stim-
ulated new developments. This period saw major advances in the field of
aerodynamics.

4. From 1973 to present day - Second phase of innovation and mass production of
wind turbines. The energy crisis and environmental problems in combination
with technological advances ensure a commercial breakthrough.

1
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2 1. Introduction

The classical wind turbines converted the kinetic energy of wind to mechanical
energy directly and were likely vertical. The blades consisted of sailcloth and no
control mechanisms were present. Yaw mechanisms were the first piece of technology
adopted to align the turbines with the wind direction. Textile strips attached on
the wooden blades and the pressure difference across the two sides of the blade kept
the strips in place giving an aerodynamic profile. John Smeaton was one of the
earliest pioneers in experimenting with aerodynamic efficiency of wind turbines. He
introduced the twist in blades (which he termed as “weather”). More improvements
to the technology steadily improved the performance of wind turbines but they were
superseded by steam power after the invention of steam engines.

In the late 1800s, the rise in popularity of the dynamo reignited interest in using
wind power to generate electricity and the earliest wind turbines generated a few
kW of power. Development of wind turbines continued in Europe spurred largely
by the unpredictability of oil prices during the early 20th century. Denmark, US
and Germany were the main hubs of innovations in wind energy in this period. The
Smidth Company of Denmark introduced two blade turbines capable of producing
50kW and 70kW. A three bladed 200kW machine was installed in Gedser around
the year 1957 (see for example figure 1.1). After the second world war, wind power
saw gradual improvement in other areas spurred largely by increasing demand for
electricity and reluctance to rely on fossil fuels for all power. The aerodynamic
knowledge gained in the aerospace sector also played a key role. However, the
progress started to slow as fossil fuels became cheaper and nuclear power emerged
as a viable source of energy. And just as steam power had sidelined wind power
almost a century earlier, nuclear energy and fossil fuels seemed to do the same until
the oil crisis of 1973.

A new energy policy was pursued after the oil crisis to address the over depen-
dence on oil and also to account for the fact that fossil fuels could be exhausted if
over used. Environmental problems with the use of fossil fuels and the danger of
nuclear energy came to light almost a decade later. Once again, renewable sources
of energy like wind, solar and geothermal were actively pursued. It was quickly
realized that the only way for wind power to be economical was with large multi
megawatt turbines. This phase of development saw large leaps in research in wind
turbine design and associated fields like grid connections, wake flows, structures, in-
stallation among others. Offshore wind energy was identified as the best candidate
for large wind farms. The first offshore farm was erected 2.5 km from the coast
of Vindeby in Denmark in 1991 with a total capacity of 4.95 MW comprising 11
450kW turbines. More information about the history of wind turbines can be found
in History of Wind by Buerskens [2].

1.2. Wind energy in the current energy climate
While a period of steady but unspectacular growth in wind energy was observed in
the early 1990s, in recent times it has grown spectacularly (figure 1.3). Wind energy
is expected to play a crucial role in transitioning towards a zero carbon energy sector.
Constant improvements in wind turbine design has led to larger and larger wind
turbines (figure 1.4). Larger wind turbines (see figure 1.2) have driven installation
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(a) A post wind mill in the Netherlands. (b) Smidth-Aeromotor in Denmark.

Figure 1.1: Wind mills used for mechanical drives (a) and an out of service Smidth-Aeromotor in
Denmark with a nominal output of 70kW (b) [2].

(a) The 25m HAT wind turbine in
operation at Petten (0.4MW rated

capacity) [2].
(b) The 12MW GE Haliade X at the

port of Rotterdam [3].

Figure 1.2: Evolution of wind turbines, from producing < 1MW in 1980s (a) to large wind
turbines producing > 10MW today (b).

costs per megawatt (MW) down which is reflected in the massive cost reduction
for both onshore and offshore wind turbines. The global weighted-average levelized
cost of energy (LCOE) of projects using this technology and commissioned in 2019
was USD 0.053/kWh — 9% lower than in 2018 and 39% lower than in 2010, when it
was USD 0.086/kWh. Onshore wind energy now consistently outcompetes even the
cheapest fossil fuel fired source of electricity, while costs continue to decrease [4].

Research on wind turbine aerodynamics have played a huge role in improving
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Figure 1.3: Worldwide cumulative installed capacity of wind energy over time.
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Figure 1.4: Rotor diameter size over years [5].

the performance of turbine blades over the years. Aerodynamicists have a variety of
tools at their disposal. Over the years field experiments, wind tunnel measurements
and computational tools have all been used to push the envelope of wind turbine
aerodynamics. Looking ahead, the wind turbines are likely to become increasingly
efficient and complex. To facilitate tackling the upcoming challenges, the tools used
for research must also improve. Uncertainties in research tools must be reduced by
using higher fidelity tools to keep up with the growth of technology.
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1.3. Wind turbine aerodynamics
Wind turbines operate at high Reynolds numbers and low Mach numbers which is
somewhat unique compared to other external aerodynamic applications like aerospace,
and greatly advantageous in terms of numerical analysis. The high Reynolds number
means large regions of the flow can be considered inviscid except for a small region
around the body known as the boundary layer (figure 1.5). The low Mach num-
bers imply that the flow remains incompressible. This combination of conditions
have been exploited to develop a wide variety of numerical tools based on simplified
forms of the Navier-Stokes equations. On the other hand, aerodynamic analysis of

Figure 1.5: Inviscid flow and boundary layer regions [6] for the flow around a wind turbine blade.

wind turbines remains very challenging because of the disparate range of the scales
involved (figure 1.6). The relevant length scales range from boundary layers on the
turbine blades that are a few millimeters thick all the way upto wind farms that are
tens of kilometers long.

Figure 1.6: Range of scales of flow that are relevant in wind turbine aerodynamics [7].

In the following sections, a review of wind turbine aerodynamics is presented
in three parts - aerodynamics of airfoils, aerodynamics of rotors and wind farm
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analysis.

1.3.1. Airfoil analysis
Airfoil aerodynamics is at the heart of wind turbine rotor aerodynamics. Two di-
mensional analysis of airfoils is required by many different rotor design methods.
Also analyzing the flow over a simpler two dimensional airfoil can give much needed
insight into the physics of wind turbine aerodynamics under complex flow condi-
tions. Due to wind turbines operating at very high Reynolds numbers, the flow
around airfoils can be divided into the boundary layer very near the airfoil surface
and an inviscid region away from the surface. While the boundary layer region is
crucial in many applications, the inviscid analysis can also give useful information
especially in attached flow regions. By neglecting the effect of viscosity and assuming
the flow to be irrotational, potential flow analysis can be used. Panel methods [6]
are very popular for the inviscid analysis of airfoils. The boundary layer can be
analyzed separately by solving the simplified boundary layer equations [8]. Inte-
gral boundary layer methods can further simplify the two dimensional boundary
layer equations into a one dimensional problem. Combination of the boundary layer
methods with potential flow methods can give the global flow field. This is known
as the interacting boundary layer approach [9] which is used in tools like XFOIL [10]
and RFOIL [11].

However, the simplified analysis methods are only valid under attached flow
conditions. While inviscid flow methods cannot be used to analyze separated flow,
even boundary layer methods loose accuracy under such conditions. Passive flow
control devices like vortex generators are widely used to improve the performance
of the airfoil and delay separation. Potential flow methods and boundary layer
methods cannot be used for such complex geometries readily. With increasing use
of wind turbines in adverse weather conditions, rotor blades are also subject to
erosion. Modeling such effects are also not yet possible with lower fidelity tools.

Figure 1.7: Velocity contours for a flow past an airfoil.

Computational Fluid Dynamics (CFD) methods do not have such limitations as
the incompressible Navier Stokes equations are solved without any of the simplifying
assumptions used for the methods mentioned above. Reynolds Averaged Navier
Stokes (RANS) based methods are more widely used in combination with turbulence
modeling, but the use of Large Eddy Simulations (LES), and hybrid LES methods
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are gaining traction. Some of the challenges for CFD in airfoil aerodynamics are
the prediction of laminar to turbulent transition and flow separation.

1.3.2. Rotor modeling
The design of rotor blades is a multi-disciplinary endeavour including aerodynamic
analysis and structural design. Focusing on the aerodynamics only, due to faster
computational times the Blade Element Momentum (BEM) theory is widely used in
the early stages of the design process. The rotor design from BEM is then evaluated
by an aeroelastic tool and if the design turns out to be efficient, it is evaluated by
more advanced and accurate methods [12] like CFD. The rotor design is carried out
with the intention of maximizing Annual Enegy Production (AEP) which is tradi-
tionally done by a mixture of designer experience and numerical optimization. Due
to this iterative nature of the design process, computational speed at a reasonable
accuracy overrides other criteria for selecting numerical tools.

BEM theory is the oldest method [12, 13] that has been constantly improved
over the years [14]. The local blade element theory is used in combination with the
one dimensional momentum theory. The assumptions are that the flow is inviscid
and there are no losses. The rotor plane is assumed to be an ideal and permeable
disc that extracts energy [12, 13]. Design of rotor blades is done iteratively based
on two dimensional airfoil characteristics which can be found using the methods
described in section 1.3.1 .

Vortex wake methods are a more accurate representation of the flow field around
rotors. The flow is still assumed to be steady, but the rotor geometry is represented
either as a lifting line [15] or a lifting surface [6]. Trailing and shed vortices are
computed based on local flow conditions and airfoil characteristics. These vortices
are then convected into the wake. In a lifting line model, the blade is represented by
a single line with bound vorticity that varies radially. For lifting surfaces, the blade
is represented by a zero thickness surface along the camber line instead of assuming
that all lift is concentrated along a line, as is done in the lifting line theory. Three
dimensional panel methods represent the exact geometry of the blade and are also
used for rotor analysis. Similar to the two dimensional scenario, a potential flow
solution is sought [6, 16]. All the methods described so far are inviscid and as the
fidelity of the representation of rotor increases from the lifting line to lifting surface
and finally to the panel method, so does the computational requirements.

CFD has also been used for rotor blade analysis. The first RANS simulations
on wind turbine rotors were performed in the late 1990s and early 2000s [17–19].
A detailed historical overview of the use of CFD in rotor modeling can be found in
Sumner et al [20]. While the use of RANS turbulence models is still common, there
have been some hybrid LES studies on rotors reported recently [21].

The inviscid methods rely to some extent on two dimensional airfoil characteris-
tics and are prone to missing some three dimensional phenomena like rotational aug-
mentation where it is observed that the inboard sections of blades produce lift and
drag that is significantly different from the two dimensional characteristics [20, 22].
Performing full three dimensional CFD analysis of rotors overcomes this limitation
but that comes with an increase in computational cost. Some authors [23, 24] have
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proposed the use of a hybrid between CFD and inviscid vortex based methods. The
region close to the rotor is modeled using CFD and the flow outside is modeled
as inviscid using the inviscid methods described earlier. Hybrid approaches are
especially useful in studying wake aerodynamics.

Figure 1.8: Vortex structures behind a turbine blade (periodic CFD simulation).

Another alternative to modeling rotor blades in CFD is the use of an actuator
disc (AD) [25, 26]. The AD method is based on the blade element theory and
represents the rotor with an equivalent porous surface and it is modeled as a source
term that acts on the flow in that region. However, this method is mostly used to
model wind farms to study the behavior of wakes which is the subject of the next
section.

1.3.3. Wind farms
The wakes emanating from wind turbines are unsteady and highly turbulent. In
addition, these wakes also interact with the atmospheric boundary layer which is
also dynamic and turbulent. Also wind turbines, especially offshore turbines, are
clustered in large wind farms to reduce installation and maintenance costs. Because
of the relatively close spacing however, the wake from the turbines interact with each
other in addition to the atmospheric boundary layer. Turbines that are downstream
of another turbine can see power losses in the range of 40% in full wake conditions
and experience increased fatigue loads [7, 27, 28].

The wind turbine wake can be divided into two regions [29] - the near wake
region that extends about 2-4 rotor diameters downstream from the turbine and
the far wake which is further downstream (see figure 1.9). The near wake region is
influenced greatly by wind turbine features like blade profile, nacelle and is highly
complex and three dimensional. The far wake region, however, is influenced more
by wind turbine parameters such as thrust and power coefficients, incoming flow
etc. As the spacing between any two turbines in a wind farm is larger than the near
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wake, modeling the far wake accurately is more important than the near wake for
understanding wind farm aerodynamics.

Figure 1.9: Schematic figure from Porté-Agel et al. [7] showing the time averaged flow features
resulting from the interaction of a wind turbine with the incoming turbulent (atmospheric)

boundary layer.

Numerical modeling of wakes is done either using analytical models or the use of
three dimensional CFD analysis where the rotors are represented as an actuator disc
or line or surface [28, 30]. Analytical models are used to predict the velocity deficit
caused by the wind turbine wakes. These models have a lower accuracy compared to
full 3D CFD simulations but have a very low computational cost. Analytical models
mostly aim to predict the mean velocity deficit and do not consider the turbulence
properties in the wake that can be significantly different from the undisturbed flow
field. Thus, they are commonly used for design purposes like optimization of the
wind farm layout, control of wind farms and other multi-disciplinary simulations.
RANS modeling of wind farms have been extensively studied. Steady state tools
like RANS are not suitable for capturing important dynamic wake effects that can
significantly affect wind turbine loading. As computational resources have improved,
the use of LES to study wind farm aerodynamics have become very common [21, 27].

Reviews of wind turbine wake aerodynamics can be found in literature (for ex-
ample, Sanderse et al [28], Porté-Agel et al. [7], Stevens and Meneveau [27], Thé
and Yu [21]).

Looking ahead
From the preceding section it can be seen that despite the vast range of scales
involved in wind turbine aerodynamics, CFD methods are regularly used in all
cases. As wind turbines become more complex, the use of a higher fidelity tool like
CFD will become more prevalent. Additionally, CFD tools are increasingly being
used in multi disciplinary problems like fluid structure interaction [31–33], shape
optimization [34, 35], uncertainty quantification [36, 37], aeroacoustics [38, 39] to
name a few. It must be noted that the references cited here are only a small selection
of the state of the art. While industrial adoption of CFD for the full rotor design
is likely far away in the future, CFD methods are increasingly being used earlier in
the design process instead of just being used for evaluation purposes.
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1.4. Goal
The main aim of this thesis is to develop a new pressure based solver within the
framework of the open source multi-physics suite SU2 [40]. The immediate goals
are to use this solver for various wind turbine aerodynamics applications like rotor
simulations, vortex generator modeling and improving lower fidelity tools. In the
long term, the goal is to take advantage of the open source nature of SU2 to not
only improve the solver for aerodynamic applications but also to use it as a base
for multi disciplinary applications like fluid structure interaction, aeroacoustics and
optimization.

1.5. Dissertation overview
This thesis can be broadly divided into two parts - Chapters 2, 3 and 4 are devoted
to the implementation details of the new pressure based solver in SU2 while chapters
5, 6 and 7 focus on different applications of CFD in wind energy.

Chapter 2 describes the governing equations for incompressible flow and different
methods to solve them. First a short overview of the incompressible Navier Stokes
equations is presented. The finite volume method that is commonly used in CFD is
described for a general scalar equation highlighting the various numerical aspects.
Subsequently, the challenges when dealing with the incompressible flow equations
and different methods to overcome them are described. Finally, an overview on
turbulence modeling for incompressible flows is given.

Chapter 3 describes the implementation of the governing equations and solution
methods outlined in chapter 2 into SU2.

Chapter 4 presents some verification and validation results for the new solver.
Verification of the accuracy of the solver is carried out against analytical solutions.
Different test cases that replicate different conditions faced in wind turbine aerody-
namics are chosen to validate the solver.

Chapter 5 presents the first steps towards modeling vortex generators in integral
boundary layer methods. First a conceptual overview of the effect of vortex genera-
tors (VGs) on turbulent boundary layers is presented. CFD simulations of VGs on
flat plates is then used to introduce the modeling approach.

Chapter 6 presents the effect of leading edge erosion using roughness models for
eddy viscosity based RANS turbulence models. The performance of the roughness
models is first validated against empirical formulations and experimental data for
a flat plate and airfoils. Different methods to characterize roughness numerically
are surveyed. Finally, the impact of roughness on turbulent boundary layers are
studied and future research required to model roughness in integral boundary layers
are presented.

Chapter 7 will present preliminary results from the CFD analysis of the widely
studied New Mexico rotor blade.
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2
Incompressible flow

equations
In this chapter the governing equations and solution methods for incompressible
flows are presented. The incompressible Navier Stokes equations are first given
in dimensional and non-dimensional forms. Subsequently, the finite volume method
applied to a general conservation equation is described. The difficulty associated with
solving the incompressible flow equations numerically, namely the pressure velocity
coupling, is described and the different methods to overcome this issue are presented.
Finally, the solution procedure to solve turbulent incompressible flow equations are
shown.

2.1. Navier Stokes equations
The governing flow equations for incompressible flow with constant density and
viscosity and no heat transfer are

∂(ρu)
∂x

+ ∂(ρv)
∂y

+ ∂(ρw)
∂z

= 0, (2.1)

∂(ρu)
∂t

+ ∂(ρuu)
∂x

+ ∂(ρuv)
∂y

+ ∂(ρuw)
∂z

= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y
+ ∂2u

∂z

)
(2.2)

∂(ρv)
∂t

+ ∂(ρuv)
∂x

+ ∂(ρvv)
∂y

+ ∂(ρvw)
∂z

= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y
+ ∂2v

∂z

)
(2.3)

∂(ρw)
∂t

+ ∂(ρwu)
∂x

+ ∂(ρwv)
∂y

+ ∂(ρww)
∂z

= −∂p

∂z
+ µ

(
∂2w

∂x2 + ∂2w

∂y
+ ∂2w

∂z

)
(2.4)

where ρ is the constant density of the fluid, u, v and w are the x−, y− and z−
components of the velocity vector respectively, p is the pressure and µ is the dynamic
viscosity, assumed to be constant. Equation 2.1 is the continuity equation or the
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mass conservation equation. For incompressible flows, this condition reduces to a
zero divergence condition for the velocity vector. Equations 2.2, 2.3 and 2.4 are the
momentum conservation equations in x, y and z directions respectively. Here it is
assumed that the fluid is Newtonian. Under the incompressible flow assumption the
energy equation is decoupled from the continuity and momentum equations and is
therefore not shown here.

2.1.1. Non-dimensionalization
All the quantities in equations 2.1, 2.2, 2.3 and 2.4 are dimensional and their mag-
nitudes can vary widely. The governing equations can be transformed into a non
dimensional form by scaling the variables using reference values. The scaling pa-
rameters can be defined as follows

L - reference length (e.g. chord of the airfoil),

V - reference velocity (e.g. the free stream velocity, V∞),

f - characteristic frequency (e.g., one cycle of a periodic process, or V/L),

p0 - reference pressure (e.g., dynamic pressure, ρV 2
∞).

With the aid of these characteristic quantities we can define the following non-
dimensional variables

x∗ = x

L
, y∗ = y

L
, z∗ = z

L
,

u∗ = u

V
, v∗ = v

V
, w∗ = w

V
,

p∗ = p

p0
= p

ρV 2 , t∗ = tf.

Based on dimensional analysis, the following non dimensional numbers can be de-
fined

St = fL

V
, (2.5)

Re = V L

ν
, (2.6)

where St is known as the Strouhal number and Re is the Reynolds number. ν = µ
ρ

is the kinematic viscosity. Using the non-dimensional variables and the new non
dimensional numbers, equation 2.1 can be written as:

∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗ = 0,

and the equations 2.2, 2.3 and 2.4 as

St
∂u∗

∂t∗
+∂(u∗u∗)

∂x∗ +∂(u∗v∗)
∂y∗ +∂(u∗w∗)

∂z∗ = − p0

ρV 2
∂p∗

∂x∗
+ 1
Re

(
∂2u∗

∂x∗2 + ∂2u∗

∂y∗2 + ∂2u∗

∂z∗2

)
,

St
∂v∗

∂t∗
+ ∂(v∗u∗)

∂x∗ + ∂(v∗v∗)
∂y∗ + ∂(v∗w∗)

∂z∗ = − p0

ρV 2
∂p∗

∂y∗
+ 1
Re

(
∂2v∗

∂x∗2 + ∂2v∗

∂y∗2 + ∂2v∗

∂z∗2

)
,
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St
∂w∗

∂t∗
+∂(w∗u∗)

∂x∗ +∂(w∗v∗)
∂y∗ +∂(w∗w∗)

∂z∗ = − p0

ρV 2
∂p∗

∂z∗
+ 1
Re

(
∂2v∗

∂x∗2 + ∂2v∗

∂y∗2 + ∂2v∗

∂z∗2

)
.

If the reference values are chosen judiciously, the comparison of the different non
dimensional quantities can yield information about the relative importance of differ-
ent flow features. Additionally, matching the non dimensional parameters will allow
for comparison of data across different experiments and numerical simulations.

The above equations can be written more compactly using the index notation
(see below). In addition to using the index notation, the time and pressure references
are chosen as f = V/L and p0 = ρV 2 leading to the coefficients of the unsteady
term and the pressure gradient term to be unity. The ∗ is dropped for the sake of
convenience but all quantities shown are non dimensional.

∂ui

∂xi
= 0, (2.7)

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ 1
Re

(
∂2ui

∂xj∂xj

)
. (2.8)

Here the velocities are represented by ui, with i = 1, 2, 3 being the three components
of the velocity vector and similarly xi represents the three coordinate directions. Re-
peated indices indicate a summation over that index. Thus, equation 2.8 represents
the three momentum equations.

The rest of the thesis will use index notation to keep the equations compact.

2.2. Numerical methods
The equations described in the previous section cannot be solved analytically except
for some simplified cases and are solved numerically. Consider the example of a
typical flow problem - the flow past a cylinder. The region of interest extends
outwards from the cylinder as shown in figure 2.1. In order to find the velocities
and pressures in this region, the physical domain is divided into smaller domains
where the partial differential equations can be approximated in a simpler manner.
This process is known as discretization. Since the partial differential equations are
non-linear, care must be taken during the discretization process to preserve all the
important flow phenomena in the approximate equations as well.

However, in order to solve the approximate equations numerically, they must
converted into algebraic equations. The equations are then solved at some specified
points (nodes or grid points) within each of the smaller domains. This process can be
done using many different methods. The earliest approaches used truncated Taylor
series approximations of the difference terms known as the finite difference method.
A more common approach is the finite volume method where the governing equations
are integrated over the smaller discretized regions to obtain an approximate algebraic
equation. In this study, the finite volume discretization is used. More information
about other discretization techniques can be found in literature (for example [1–3]).
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Figure 2.1: Region of interest for flow over a cylinder.

2.2.1. Finite Volume discretization
In this section the finite volume discretization methods will be described briefly.
Consider a general conservation equation for any scalar variable ϕ

∂(ρϕ)
∂t

+ ∂(ρUiϕ)
∂xi

= ∂

∂xi

(
Γ ∂ϕ

∂xi

)
+Q (2.9)

where ρ is the constant fluid density, Ui is the velocity field (assumed constant in
this section), Γ is the diffusion coefficient and Q is a source term. First, the physical
domain on which the equation 2.9 needs to be solved is discretized into smaller
domains known as control volumes. For simplicity consider a 2D case and define a
control volume around a node P as shown in figure 2.2.

Figure 2.2: 2D control volume around a node P .

The control volume is bound on four sides by faces e, w, n and s representing east,
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west, north and south respectively. Integrating equation 2.9 on a control volume Ω
gives ∫

Ω

∂(ρϕ)
∂t

dΩ +
∫

Ω

∂(ρUiϕ)
∂xi

dΩ =
∫

Ω

∂

∂xi

(
Γ ∂ϕ

∂xi

)
dΩ +

∫
Ω
QdΩ. (2.10)

Discretization of the viscous term
First consider the diffusion term on the right hand side of equation 2.10. Using the
divergence theorem the volume integral can be converted into a surface integral as∫

Ω

∂

∂xi

(
Γ ∂ϕ

∂xi

)
dΩ =

∫
∂Ω

(
Γ ∂ϕ

∂xi

)
nid(∂Ω), (2.11)

where ∂Ω represents the boundary of the control volume and ni is the unit outward
pointing normal of the boundary. In the simplified 2D example of figure 2.2, the
integral can be written as a summation over the four faces as∫

∂Ω

(
Γ ∂ϕ

∂xi

)
nid(∂Ω) =

∑
f

(
Γ ∂ϕ

∂xi

)
ni∆Sf , (2.12)

where f = e, w, n and s, ni is the corresponding outward unit normal vector of the
face f and ∆Sf is the area of the face f . Here the midpoint integration rule is used
and the quantities on the face f are computed at the face centroids. Based on the
axis directions shown in figure 2.2 the summation can be expanded as∑

f

(
Γ ∂ϕ

∂xi

)
ni∆Sf =

(
Γ ∂ϕ

∂x1

)
e

∆Se −
(

Γ ∂ϕ

∂x1

)
w

∆Sw+

(
Γ ∂ϕ

∂x2

)
n

∆Sn −
(

Γ ∂ϕ

∂x2

)
s

∆Ss. (2.13)

Here x1 and x2 are the x and y directions respectively. The derivatives at the
faces can be written based on the nodal values of ϕ. For example, considering the
neighboring nodes to east of node P in figure 2.2 to be E, the derivative of ϕ at the
face e for a constant Γ can be written as(

Γ ∂ϕ

∂x1

)
e

∆Se = ΓϕE − ϕP

∆P E
∆Se = aE,vϕE − aE,vϕP , (2.14)

where ∆P E is the distance between the nodes P and E and aE,v is the viscous
coefficient of ϕE given by

aE,v = Γ ∆Se

∆P E
.

Similar expressions can be written for the other terms in the summation in equa-
tion 2.13 to obtain an algebraic relation in terms of the nodal values of ϕ with the
viscous coefficients being

aW,v = Γ ∆Sw

∆P W
, aN,v = Γ ∆Sn

∆P N
, aS,v = Γ ∆Ss

∆P S
,
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and
aP,v = −(aE,v + aW,v + aN,v + aS,v).

Here aP,v is the viscous coefficient of ϕP .

Discretization of the advective term
Now focusing on the advective term of equation 2.10 and applying the divergence
theorem again gives, ∫

Ω

∂(ρUiϕ)
∂xi

dΩ =
∫

∂Ω
ρUiϕnid(∂Ω). (2.15)

Similar to the discretization of the viscous term, the surface integral can be split into
a summation over the four bounding faces of the control volume shown in figure 2.2∫

∂Ω
ρUiϕnid(∂Ω) =

∑
f

(ρUiϕni)f ∆Sf ,

∑
f

(ρUiϕni)f ∆Sf = (ρU1ϕ)e ∆Se − (ρU1ϕ)w ∆Sw + (ρU2ϕ)n ∆Sn − (ρU2ϕ)s ∆Ss,

where the same sign convention used for the viscous discretization is also applied
here and the mid point integration rule is used to approximate the integral over the
face. The term within the brackets can be found using the known velocity field.
Determining the value of the scalar variable, ϕ, can be done in various ways. Some
of the more common methods are described below.

Figure 2.3: 1D control volume around node P and neighboring nodes E and W .

Central scheme In a central scheme, the value of the scalar variable is approxi-
mated as the weighted average of the neighboring nodes. For example at the face e
and assuming the eastward neighbor of node P in figure 2.3 is E, the value of ϕ is
simply

ϕe = λPϕP + λEϕE , (2.16)
where λP and λE are weighting factors of P and E respectively given by

λP = dP e

dP E
, λE = deE

dP E
. (2.17)

Here dP e is the distance from node P to face e, deE is the distance from face e to
node E and dP E is the distance from node P to node E (dP E = dP e + deE). Thus,
the contribution from the face e to the summation can be written in terms of the
nodal values of ϕ as

(ρUiϕ)e ∆Se = (ρU1∆S)eλPϕP + (ρU1∆S)eλEϕE . (2.18)
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Hence,
aE,c = (ρU1∆S)eλE .

Similarly for the other faces around the control volume of node P in figure 2.2, the
coefficients of the nodal values of ϕ can be written as

aW,c = −(ρU1∆S)wλW , aN,c = (ρU2∆S)nλN , aS,c = −(ρU2∆S)sλS ,

and as with the viscous term discretization,

aP,c = −(aE,c + aW,c + aN,c + aS,c).

Upwind scheme An alternative to the central scheme, is to mimic the physics
of the problem and determine the value at the face based on the direction of flow.
Denoting the term

ρUini∆Sf = ṁf ,

as the mass flux across the face f , the direction of the flow can be found based on
the sign of the mass flux. Choosing the value of ϕ as

ϕe =
{
ϕP if ṁe > 0,
ϕE if ṁe < 0,

(2.19)

will replicate the physics of the flow at the face e. If the flow is in the positive
x direction, the mass flux at the face e is positive (ṁe > 0) and the value of the
variable at the node P is chosen. On the other hand if the direction of the flow is
reversed, the value of ϕ at the node E is chosen. This ensures the physics of the flow
is also replicated in the discretized equation. The coefficients of the nodal values of
ϕ for the face e are then

aE,c = max(−me, 0.0), aP,c = max(me, 0.0). (2.20)

Similar expressions can be written at other faces to find the coefficients of ϕP and
its neighbors.

To examine the difference in behavior of the central and upwind scheme, consider
a one dimensional pure advection problem given by

∂ρϕ

∂t
+ ∂(ρUϕ)

∂x
= 0. (2.21)

Let the domain of the problem be x ∈ [0, 1] and U = 1 is the advection velocity and
ρ = 1 is the density. Assume an initial condition for ϕ as

ϕ0 =
{

1.0 if x < 0.25,
0 if x > 0.25.

(2.22)

Since no dissipation is present, the initial condition must be advected across the
domain without any loss in information. Figure 2.4 shows the numerical results
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Figure 2.4: Comparison of numerical solutions and exact solution for one dimensional scalar
advection equation using central and first order upwind schemes.

from both the upwind and central schemes compared against the exact solution.
In this case, a uniform grid with 128 elements was used. The solution shown is at
time t = 0.5. While the central scheme is more accurate, it is prone to instability
which can be seen in the form of the unphysical wiggles that appear around the
exact solution. This is understandable since the central discretization does not take
the physics of the flow into account. However, while the upwind scheme does not
have any wiggles in the solution, there is a loss of information and thus it is not
very accurate. The source of these errors can be found by analyzing the truncation
errors due for the upwind and central schemes [1, 3]. Expanding the value of ϕf

around the upwind node U using Taylor series

ϕf = ϕU +
(
∂ϕ

∂x

)
U

∆x+ + 1
2!

(
∂2ϕ

∂x2

)
U

∆x2 + ... (2.23)

where ∆x is the distance between the upwind node U and the face f . The upwind
discretization presented so far only uses the first term in this expansion. The first
term where the approximation gets truncated is a function of ∆x and thus this
scheme is said to be first order accurate. In order to improve the accuracy of the
upwind scheme the value at the face can be improved by considering more terms of
the Taylor series expansion.

Second order upwind Instead of using only the value at the upstream node, the
approximation of the face value of ϕ can be improved if the gradient of ϕ at the
upstream node is also used. The value of ϕ at a face f is reconstructed using both
the value of ϕ at the upstream node and its gradient as

ϕf = ϕU +
(
∂ϕ

∂x

)
U

∆x,

where f is the face under consideration, U denotes the upstream node and ∆x is
the distance from the node U to the face f . In this approximation, the truncation
error is of the order (∆2) and the value is second order accurate. The solution of
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the one dimensional pure advection equation using the second order upwind scheme
is shown in figure 2.5. Clearly, there is less loss of information compared to the first
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Figure 2.5: Comparison of numerical solution and exact solution for one dimensional scalar
advection equation using central, first and second order upwind schemes.

order approximation and there are fewer wiggles than the central discretization.

Slope limiters However, reconstructing the face value using gradients can also
lead to non-physical oscillations and convergence issues at times. This can be seen
in figure 2.5 at the end of the wave. A monotonic upwind discretization can be found
based on the concept of total variation [2]. The total variation of ϕ in equation 2.21
is given by

TV =
∫ ⏐⏐⏐⏐∂ϕ∂x

⏐⏐⏐⏐ dx. (2.24)

The total variation of any physically admissible solution does not increase in time [2,
4]. A numerical scheme can produce a physically monotonic solution only if it
ensures that the total variation of the solution does not increase. Such schemes are
called Total Variation Diminishing (TVD) schemes. Based on the concept of total
variation, slope limiters that ensure the solution remains smooth and monotonic near
sharp gradients can be derived [2, 4]. The value of ϕ at a face f is reconstructed
using slope limiters, given by

ϕf = ϕU + ψ(r)
(
∂ϕ

∂xi

)
U

∆x,

where f is the face under consideration, U denotes the upstream node, ∆x is the
distance from the node U to the face f and ψ(r) is the slope limiter function. For
the face e in figure 2.3, r is given by

r = uP − uW

uE − uP
.

For the van Albada [5] slope limiter, ψ(r) is given by

ψ(r) = r2 + r

r2 + 1 .
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The solution of the 1D scalar advection equation using the van Albada slope limiter
is shown in figure 2.6. With the use of the van Albada slope limiter, a more accurate
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Figure 2.6: Comparison of numerical solution and exact solution for one dimensional scalar
advection equation using central, first, second order upwind schemes with and without slope

limiter.

representation of the exact solution is found without any oscillations.

Discretization of the source term
The source term, Q, can be discretized using the mid point integration rule. For
example on a control volume around a node P shown in figure 2.2, the discretized
form of the source term is ∫

Ω
QdΩ ≈ QP |Ω| = bP . (2.25)

This discretization is approximately second order accurate [3].

Discretized equation
The semi discretized form of equation 2.10 for a node P can be written as∫

Ω

∂ϕ

∂t
dΩ + aPϕP +

∑
C∈N (P )

aCϕC = bP , (2.26)

where C ∈ N (P ) denotes the neighbors of the node P and bP is the discretized
source term contribution. The coefficients, a, are the sum of the advective and
viscous contributions

aP = aP,c + aP,v, aC = aC,c + aC,v.

Time discretization
Finally, focusing on the unsteady term in equation 2.10 and using the mid point
rule for a control volume around a node P as shown in figure 2.2 gives,∫

Ω

∂ϕ

∂t
dΩ ≈ ∂ϕ

∂t
|Ω|P . (2.27)
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The time derivative can be discretized in different ways. The simplest method is to
use the Euler time integration schemes. Denoting quantities at a time level tn as
ϕn, the approximation for the unsteady term is

∂ϕ

∂t
|Ω|P ≈

ϕn+1
P − ϕn

P

∆t |Ω|P . (2.28)

There are now two possible approaches to solve equation 2.26. Either all the ϕ values
in the spatially discretized terms could be from the current time level tn giving an
explicit formulation or these values could be from the time level tn+1 giving an
implicit formulation.

Explicit Euler Using the known values of ϕn in the spatial discretization gives

ϕn+1
P − ϕn

P

∆t |Ω|P + aPϕ
n
P +

∑
C∈N (P )

aCϕ
n
C = bn

P . (2.29)

The only unknown quantity in this equation is ϕn+1 and this equation can be written
in an explicit form to solve for ϕn+1 as

ϕn+1
P = ϕn

P + ∆t
|Ω|P

⎛⎝bP − aPϕ
n
P −

∑
C∈N (P )

aCϕ
n
C

⎞⎠ ,

or
ϕn+1

P = ϕn
P − ∆t

|Ω|P
Rn

P (ϕ), (2.30)

where Rn(ϕ)P is the residual at the time level tn given by

Rn
P (ϕ) = aPϕ

n
P +

∑
C∈N (P )

aCϕ
n
C − bP . (2.31)

Implicit Euler Using the values of ϕ from time level tn+1 instead in equation 2.26
gives

ϕn+1
P − ϕn

P

∆t |Ω|P + aPϕ
n+1
P +

∑
C∈N (P )

aCϕ
n+1
C = bn

P . (2.32)

Thus, an implicit equation for ϕn+1
P is obtained, namely

ϕn+1
P

|Ω|P
∆t + aPϕ

n+1
P +

∑
C∈N (P )

aCϕ
n+1
C = bn

P + ϕn
P

|Ω|P
∆t ,

which can be further simplified as

at
Pϕ

n+1
P +

∑
C∈N (P )

aCϕ
n+1
C = BP , (2.33)



2

26 2. Incompressible flow equations

where the coefficient at
P contains the contribution from the spatial discretization as

well as temporal discretization and the source term BP contains the contribution
from the previous time step

at
P = aP + |Ω|P

∆t , BP = bn
P + ϕn

P

|Ω|P
∆t . (2.34)

Alternately if only a steady state solution is required, using the residual RP (ϕ)
defined earlier, but now at the time level tn+1 the above equation can be simplified
as

ϕn+1 − ϕn

∆t |Ω|P +Rn+1
P (ϕ) = 0. (2.35)

Instead of solving for ϕn+1 directly, the numerator of the time discretization can be
written as the update to the solution, ∆ϕn = ϕn+1 −ϕn, at time level tn. Thus, the
equation 2.35 can also be written as

∆ϕn

∆t |Ω|P +Rn+1
P (ϕ) = 0. (2.36)

The residual Rn+1
P (ϕ) is also unknown and can be linearized about the time tn as

Rn+1
P (ϕ) = Rn

P (ϕ) + ∂Rn
P

∂t
∆t+ O(∆t2),

or
Rn+1

P (ϕ) = Rn
P (ϕ) +

∑
C∈N (P )

∂Rn
P (ϕ)
∂ϕC

∆ϕn
C + O(∆t2). (2.37)

The term
∑

C∈N (P )
∂Rn

P (ϕ)
∂ϕC

is known as the Jacobian matrix. Thus equation 2.36
can be written as

∆ϕn

∆t |Ω|P +
∑

C∈N (P )

∂Rn
P (ϕ)
∂ϕC

∆ϕn
C = −Rn

P (ϕ). (2.38)

This can also be written in the form of equation 2.33 as

at′

PϕP +
∑

C∈N (P )

a′
CϕC = B′

P , (2.39)

However, the coefficients are now different, namely

at′

P = a′
P + |Ω|P

∆t , B′
P = −Rn

P (ϕ). (2.40)

Here at,′
P contains the coefficients of node ϕP from the Jacobian matrix and a′

N (P )
contains the coefficients of the neighbors of node ϕP from the Jacobian matrix.

So far it has been assumed that the coefficients of nodal values of ϕ, aP are
constant. This is true for the general scalar conservation equation (equation 2.9)
with constant velocity field U . However, if the velocity field is itself not constant,
the coefficients aP are evaluated using values at the time level tn.
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System of linear algebraic equations The equation 2.33 or equation 2.39 can
be written as a system of linear algebraic equations with the unknowns as the nodal
values of ϕ as

Aijϕj = bi, (2.41)

where Aij is the coefficient matrix, ϕj is the vector of all the nodal values of ϕ and
bi is the right hand side (RHS). This equation can be solved using different linear
solvers for which information can be found in literature [1, 3, 6–8]. The linear solvers
available in SU2 are the Flexible Generalized Minimal Residual (FGMRES) [8] and
Biconjugate Gradient Stabilized (BiCGSTAB)[6–8] which will also be used in the
pressure based solver.

In this section, the procedure to solve a generic partial differential equation of the
form equation 2.9 was described. The momentum equations (equation 2.8) closely
resemble the generic conservation equation and the discretization described here can
be used to solve them. However, when dealing with incompressible flows additional
complications arise which will be described next.

2.3. Pressure velocity coupling
For an incompressible flow, the main variables of interest are the velocities, ui and
pressure p (primitive variables). The momentum equations (equation 2.8) closely
resemble the general scalar equation 2.9. However, unlike the scalar equation the
velocity field is unknown and thus the equations are non linear. Additionally, it can
be seen that the pressure, which is also unknown, appears as a gradient term in the
momentum equations but the continuity equation (equation 2.7) does not contain
pressure and cannot be used to solve for it. Thus, despite having four equations for
the four unknowns, a direct solution is not possible from the system of equations.
This pressure velocity coupling is the biggest challenge in solving the incompressible
flow equations [1, 3, 9–11]. For compressible flow problems, the continuity equation
acts as an evolution equation for density which can be used in conjunction with the
energy equation and thermodynamic relations to obtain the pressure field. However
as the continuity equation reduces to a divergence condition on the mass flux for
incompressible flows and the energy equation is decoupled there is no direct way to
compute the pressure field.

A conceptual interpretation of this scenario would be to consider the implications
of the constant density assumption. In any medium, sound travels as pressure and
density disturbances. Since density is assumed to be a constant, the speed at which
the pressure disturbances must travel is infinite. Thus the effect of any pressure
disturbance is felt instantaneously everywhere in the domain. Realistically however,
the speed of sound is many times faster than the reference velocities encountered in
incompressible problems. This leads to the commonly used condition on the Mach
number, Ma < 0.3, to determine if a flow is incompressible or not. The Mach
number is a non-dimensional number and is defined as the ratio of the reference
velocity, V , and the speed of sound, c. Thus at lower Mach numbers the speed of
sound is much greater than the reference velocity and pressure disturbances can be
assumed to travel much faster than the flow velocity.
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This discrepancy in the different propagation speeds of pressure and velocity
is reflected in the different natures of the governing equations. Pressure behaves
in an elliptic manner propagating in all directions simultaneously and instantly,
whereas the velocities behave in a parabolic manner i.e. have a definite marching
direction [3]. In order to solve the incompressible flow equations, the two different
natures of the pressure and velocity must be resolved.

2.4. Solution methods
One way to overcome the challenges posed by the incompressible form of the Navier
Stokes equations is to solve the compressible Navier Stokes equations as they are
also valid for incompressible flows. However there are many known drawbacks of
this approach. The equations become very stiff at lower Mach numbers leading to
poor convergence behavior. Additionally, the excessive numerical diffusion causes
a degradation in the accuracy of the solutions [12, 13]. Preconditioning of the
compressible Navier Stokes equations [14] can be used to overcome some of the
limitations posed by solving the compressible equations, but such methods are more
commonly used in flows where a wide range of Mach numbers are observed.

To alleviate the problems with pressure velocity coupling in the incompressible
Navier Stokes equations, the pressure can be eliminated from the equations using
derived quantities like stream function and vorticity [2, 3] which can then be solved
to obtain the flow field. In 2D, the stream function, ψ, and vorticity, ω, are related
to the velocities u and v as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(2.42)

and
ω = ∂u

∂y
− ∂v

∂x
. (2.43)

Based on these definitions, a Poisson equation for the streamfunction and a conser-
vation equation for vorticity can be found [3]. The nature of the two equations reflect
the nature of pressure and velocity but the biggest advantage is that the pressure
is eliminated as a dependent variable. However, there are some major drawbacks
as well. It is difficult to specify boundary conditions for the stream function and
vorticity, especially for complex geometries. Also this method does not generalize
well into 3D as both vorticity and stream function have three components and thus
there are six equations to be solved.

Therefore, the use of the primitive variables (pressure and velocity) is preferred.
There are two broad classes of methods to resolve the pressure velocity coupling in
primitive variables: the density based approach and the pressure based approach.

An example of the density based method is the pseudo compressibility ap-
proach [9, 15, 16] where an artificial speed of sound is introduced in the continuity
equation to mimic the compressible flow formulation. The most common approach,
especially for constant density flows, is to introduce a time derivative of the pressure
in the continuity equation to transform the behavior of the continuity equation from
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elliptic to hyperbolic. Equation 2.7 is then becomes

1
β

∂p

∂t
+ ∂ui

∂xi
= 0. (2.44)

Here β is the artificial compressibility factor. The larger the value of β, the closer
the equation 2.44 is to the incompressible equations. Clearly, equation 2.44 is not
time accurate and is valid only for steady state problems. A dual time stepping
algorithm can overcome this limitation. The artificial compressibility factor, β can
be considered as a form of preconditioning for the continuity equation. Its value will
have a marked effect on the convergence behavior of the solution. For steady state
problems, it can affect the accuracy of the solution via artificial dissipation. This
method belongs to the more general approach of pre-conditioned compressible flow
solution methods. Economon [12] suggests to precondition all the equations instead
of only the continuity equation for robustness and stability of the solver.

The existing incompressible solver in SU2 follows this approach and has been
extended to variable-density flows and heat transfer applications [12]. The aim of
this thesis is to implement a pressure based solver in SU2. The details of such a
solver will be given in the next section.

2.5. Pressure based methods
The difficulty in solving the incompressible equations was explored qualitatively
earlier. Numerically it manifests as the well known checkerboard pressure prob-
lem [1, 17]. This problem arises from the discretization of the pressure gradient
term in the momentum equations. If the pressure gradient is treated as a source

Figure 2.7: One dimensional control volumes around nodes P and the neighboring nodesE and
W .

term and integrated using the mid point rule over the control volume like the one
shown in figure 2.7, the discretized form can be written as∫

Ω

∂p

∂xi
dΩ ≈ ∂p

∂xi
|Ω|. (2.45)

In the simplified one dimensional scenario, for the control volume around a node P
with two neighbors E and W to the east and west respectively (figure 2.7), using a
central difference scheme the discretized form reduces to

∂p

∂xi
|Ω| = pE − pW

2∆x |Ω|. (2.46)

A uniform grid spacing of ∆x is assumed throughout the domain for simplicity.
Thus, the discretized pressure gradient term involves only the difference between
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alternating nodes. Similarly, the continuity equation

∂ui

∂xi
= 0 (2.47)

which discretized in a one dimensional scenario for a control volume around node
P is simply ∫

Ω

∂u

∂x
dΩ ≈ (ue − uw)∆S = 0. (2.48)

Using the central scheme gives

uE − uW = 0. (2.49)

Once again, the discretized equation around a node P relies only on alternating
nodes. Under such conditions any zigzag pressure field will appear uniform and a
zigzag velocity field will satisfy the continuity equation. Additionally, if a certain
pressure field is found as the solution, infinitely more solutions can be found by
adding an arbitrary zigzag variation to the smooth solution.

2.5.1. Staggered grids
Since the pressure terms in the discretized momentum equation was decoupled from
the velocity, one potential solution is to stagger the locations where pressure and
velocities are computed. In a staggered arrangement, the velocities are stored at the
cell faces and pressure is stored at the centroid. In two dimensions, the x component
of the velocity is staggered in the x direction and the y component of the velocity
is staggered in the y direction as seen in figure 2.8.

Figure 2.8: Staggered grid showing the locations of pressure and velocity variables in 2D.

This scheme was first suggested by Harlow and Welch [18] in their marker and cell
(MAC) method. One consequence of storing the velocities and pressure at staggered
locations is that the control volumes for each of the momentum and continuity
equations is now different. In figure 2.8, the control volume for the continuity



2.5. Pressure based methods

2

31

equation is formed around node P , for the momentum equation in x direction,
the control volume is formed around the mid point of face e (or w) and for the
momentum equation in y direction the control volume is formed around the mid
point of face n (and s). The pressure gradient term in the momentum equations
can be computed directly based on cell values. Also, there is no need to interpolate
velocities to the faces since they are available directly. The momentum equations for
the velocity components can be solved in a segregated manner treating each of them
similar to the scalar equation 2.9. For example, the equation for the x component
of velocity on the face e in figure 2.8 will be

au
eue +

∑
f∈N (e)

au
fuf = −|Ω|e

∂p

∂xe
, (2.50)

where au
e is the coefficient of u at the face e, af are the coefficients of the neighboring

nodes N (e). The coefficients can be found as described in section 2.2.1. However,
unlike the scalar transport equation since the velocity field itself is unknown, the
coefficients are a function of the velocities. The pressure gradient term is treated as
a constant within the control volume. The gradient can now be found as

∂p

∂x
= pE − pP

δxP E
, (2.51)

which can be found without any interpolation since the pressure values are stored on
the nodes P and E. Since consecutive nodes are used to find the pressure gradient,
the checkerboard problem is eliminated. However, the value of the pressure is not
known and needs to be solved for simultaneously. At this stage, in order to find a new
equation for the pressure, the divergence of the discretized momentum equations can
be taken and along with the continuity equation a Poisson equation for the pressure
can be found [3]. The most commonly used procedure to do this is described now.

Equation 2.50 can only be solved if the pressure is either known beforehand or at
least estimated. If an estimate of the pressure field is used, the resulting velocity field
will also be an estimate. Denoting the velocity estimate by an ∗, the equation 2.50
can be written more accurately as

au
eu

∗
e +

∑
f∈N (e)

au
fu

∗
f = −|Ω|e

∂p∗

∂xe
. (2.52)

Similarly, the estimate of pressure is represented by p∗. Denoting the corrections to
velocities and pressure by u′

e and p′, the corrected velocity and pressure are

p = p∗ + p′, ue = u∗
e + u′

e. (2.53)

Subtracting equation 2.52 from equation 2.50,

au
eu

′
e +

∑
f∈N (e)

au
fu

′
f = −|Ω|e

∂p′

∂xe
. (2.54)



2

32 2. Incompressible flow equations

Analogous equations can be written for the vertical component of the velocity at
the face n in figure 2.8 as

av
nv

′
n +

∑
f∈N (n)

av
fv

′
f = −|Ω|n

∂p′

∂yn
. (2.55)

Unlike the momentum equations where the control volume for velocities are
defined around cell faces (like e in figure 2.8), the continuity equation is solved
using the control volume around a node. In figure 2.8, the discretized continuity
equation around the node P is∑

f

ṁf = ṁe + ṁw + ṁn + ṁs = 0. (2.56)

Since the velocities are stored at the faces, the mass fluxes can be written in terms
of the face velocities directly as

ṁe = ρue∆Se = ρu∗
e∆Se + ρu′

e∆Se = ṁ∗
e + ṁ′

e, (2.57)

where ṁ∗
e and ṁ′

e is the estimated mass flux and the correction of the mass flux.
The continuity equation in terms of the estimated and corrected mass flux is∑

f

(ṁ∗
f + ṁ′

f ) = 0,

or ∑
f

ṁ′
f = −

∑
f

ṁ∗
f . (2.58)

Substituting for mass flux correction in terms of the velocity corrections

ρu′
e∆Se − ρu′

w∆Sw + ρu′
n∆Sn − ρu′

s∆Ss = −
∑

f

ṁ∗
f . (2.59)

The estimated mass flux can be computed from the solution of equation 2.52. Sub-
stituting for the velocity corrections from equation 2.54 will give a new equation
for the pressure corrections which can be used to overcome the pressure velocity
coupling. Patankar and Spalding [19] introduced an additional simplification to
equation 2.54 by neglecting the term

∑
f∈N (e) a

u
fu

′
f giving

u′
e = −|Ω|e

au
e

∂p′

∂xe
. (2.60)

Substituting this simplified equation of the velocity correction in equation 2.59 re-
sults in

−
(
ρ

|Ω|e
au

e

∂p′

∂xe
∆Se − ρ

|Ω|w
au

w

∂p′

∂xw
∆Sw + ρ

|Ω|n
av

n

∂p′

∂yn
∆Sn − ρ

|Ω|s
av

s

∂p′

∂ys
∆Ss

)
=
∑

f

ṁ∗
f .

(2.61)



2.5. Pressure based methods

2

33

Denote the coefficient of the pressure gradient terms as

Df = ρ
|Ω|f
af

∆Sf , (2.62)

where f is the face. Equation 2.61 can then be written as∑
f

−Df
∂p′

∂xe
=
∑

f

ṁ∗
f . (2.63)

This equation is a discretized Poisson equation for the pressure correction. This
pressure corrections will be used to correct the estimated pressure used in equa-
tion 2.52.

Pressure and velocity corrections
Once the pressure corrections are found by solving equation 2.63, the velocity cor-
rections can be found from equation 2.60

u′
e = −|Ω|e

au
e

∂p′

∂xe
.

With the pressure and velocity corrections, the estimated values can now be updated
as follows

p = p∗ + αpp
′, (2.64)

u = u∗ + u′. (2.65)

Here αp is an under-relaxation parameter for the pressure correction. At conver-
gence, the estimated velocities will satisfy the continuity equation rendering the
right hand side of the equation 2.63 zero which then makes the pressure correc-
tions and subsequently velocity corrections also go to zero. It is necessary to use
some under-relaxation in pressure correction to ensure convergence [1, 3, 19]. No
under-relaxation is necessary for the velocity corrections.

SIMPLE algorithm
This procedure of using an estimate of the pressure field to find the velocity field
using the momentum equations and then correcting both using the continuity equa-
tion is known as the Semi-Implicit Method for Pressure-Linked Equations or SIM-
PLE [19, 20]. The solution algorithm is

1. Guess the pressure field p∗.

2. Solve the momentum equations like equation 2.52 to find the estimated veloc-
ities u∗

i .

3. Find the mass flux at the faces m∗
f using the estimated velocities.

4. Assemble the pressure correction equation based on the mass fluxes and the
momentum equation.
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5. Solve the pressure correction equation (Eq. 2.63) to find the pressure and
velocity corrections.

6. Update the pressure and velocity corrections using equations 2.64 and equa-
tion 2.65 and repeat till convergence.

The biggest assumption made in this procedure was the neglection of the term∑
f∈N (e) a

u
fu

′
f in equation 2.54. This term contains the information about velocity

corrections of the neighboring nodes. However, since the neglected terms are only
used in the iterative pressure velocity correction algorithm, it does not have an effect
on the final solution. It does however have an effect on the rate of convergence of
the iterative procedure and occasionally whether the algorithm converges at all.

SIMPLE family of algorithms
There are many variants of the widely used SIMPLE algorithm [1, 17, 21–24] that
can improve the performance.

SIMPLEC Instead of neglecting the term
∑

f∈N (e) a
u
fu

′
f in equation 2.54, it can

be approximated to improve the convergence rate [24]. The velocity correction at any
node P is assumed to be the weighted average of the corrections at the neighboring
points. For example for the velocity correction u′

e,

u′
e ≈

∑
f∈N (e) a

u
fu

′
f∑

f∈N (e) a
u
f

. (2.66)

Thus the relation between velocity and pressure correction will be

u′
e = − |Ω|e

au
e +

∑
f∈N (e) a

u
f

∂p′

∂xe
. (2.67)

This leads to a smaller term being neglected in the pressure correction, thus
improving the speed of convergence. There is only a modification of the coefficients
of the pressure correction equation compared to the SIMPLE algorithm and the
sequence of operations remains the same. However, the speed of convergence in
SIMPLE can be recovered [3] if the under-relaxation parameter for the pressure
correction, αp is set to

αp = 1 +
∑

f∈N (e) a
u
f

au
e

. (2.68)

PISO In this variation, an additional correction step is employed [23]. The same
sequence of operations outlined for SIMPLE is followed, and the corrected velocity
and pressure field is used to explicitly solve the momentum equations to find a
new estimate of the velocity field. Based on the explicit velocity solution, the mass
imbalance is computed once again and the pressure correction is solved to find a
newer estimate of velocity. The explicit solution recovers a portion of the neglected
terms and aids in increasing the rate of convergence.
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SIMPLER In SIMPLER [17], the pressure correction is used to correct the veloc-
ity field only. This algorithm arose out of an observation that the pressure correction
equation is very good at correcting the velocities that satisfies the continuity equa-
tion but rather poor at giving a converged pressure field. A new equation for the
pressure field is found without neglecting any terms as it was done in SIMPLE. The
new pressure equation is analogous to equation 2.61 but contains the pressure itself
instead of the pressure corrections and also contains additional terms that involve
the neighbors on the right hand side. Equation 2.50 can be written as

ue = −
∑

f∈N (e) a
u
fuf

au
e

− |Ω|e
au

e

∂p

∂xe
.

Define a pseudo-velocity, ûe as

ûe = −
∑

f∈N (e) a
u
fuf

au
e

,

which then gives
ue = ûe − |Ω|e

au
e

∂p

∂xe
. (2.69)

Analogous equations can be written for the other components of the velocity. Sub-
stituting the expressions for velocity into the discretized continuity equation around
a node P (figure 2.8)

−
(
ρ

|Ω|e
au

e

∂p

∂xe
∆Se − ρ

|Ω|w
au

w

∂p

∂xw
∆Sw + ρ

|Ω|n
av

n

∂p

∂yn
∆Sn − ρ

|Ω|s
av

s

∂p

∂ys
∆Ss

)
= − ((ρûe∆Se) − (ρûw∆Sw) + (ρv̂n∆Sn) − (ρv̂s∆Ss)) . (2.70)

This equation can be solved directly for the pressure if the velocity is available. The
algorithm is

1. Guess a velocity field.

2. Calculate the coefficients for the pressure equation 2.70.

3. Solve equation 2.70 to find the pressure field.

4. Treat the new pressure field as the estimated pressure field p∗ and solve the
momentum equations to find u∗

e and other estimated velocities.

5. Compute the mass imbalance at the faces ṁ∗
f .

6. Solve the pressure correction equation 2.63.

7. Use the pressure correction equation to solve for the velocity corrections only.

8. Use the updated velocity and repeat from step 2.

Another advantage of SIMPLER is that unlike SIMPLE. no guessed pressure field
is required. However, each iteration requires the solution of two Poisson problems
which can be more computationally intensive. This method unlike SIMPLE provides
the correct pressure field if the initial velocity field is already correct.
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Disadvantages of the staggered grid arrangement
Staggering the storage of pressure and velocities has been critical in overcoming
the pressure velocity coupling. However, there are many disadvantages of using a
staggered grid in problems of practical interest. On Cartesian grids, the stagger-
ing procedure is relatively straightforward but increases the memory requirements
as the locations of the cell faces have to be stored along with the cell centroids.
On non-Cartesian grids, like curvilinear grids, the staggering of velocities itself is
very challenging. The cell surfaces are not aligned with the velocity components.
One alternative is to store all the components at all cell faces but this comes at a
significant cost. The use of curvilinear velocity components can overcome some of
the difficulties in storage but the momentum equations in curvilinear coordinates
are more complicated. On unstructured grids, which are increasingly common in
many practical applications, there is no obvious staggering direction. Storing all
velocity components at all faces will allow the use of staggered grid approach for
unstructured grids but as mentioned above, it comes with a significant increase in
complexity and computational cost. Additionally, Rhie and Chow [25] note that
while storing all the components of the velocity at all faces for non-Cartesian grids
removed the checkerboard problem in the direction of the grids, the pressure oscil-
lations remained in the diagonal direction.

2.5.2. Collocated grids
The remedy to the disadvantages of the staggered grid arrangement is to use the
collocated arrangement for pressure and velocities but to store or compute the mass
fluxes at cell faces. However, as evidenced earlier the use of collocated grids could
result in oscillatory pressure fields. The main problem with the collocated grid
was that the pressure gradient approximation relied on alternate nodes and was
insensitive to variation in consecutive nodes. The pressure gradient is typically ap-
proximated using a second order central scheme which would yield an approximation
that depends on nodes W and E when discretizing the momentum equation for node
P . This approximation can be considered as a 2∆X approximation of the pressure
gradient and is insensitive to a ∆X variation of pressure. Staggered grids overcome
this deficiency by storing the velocities on faces and creating a ∆X approximation
of pressure gradient (see figure 2.9).

Figure 2.9: Pressure gradient approximation stencils in Rhie Chow interpolation.

Rhie and Chow [25] introduced an interpolation scheme that allowed the use of
pressure correction methods like SIMPLE to be used on collocated grids as well.
A dissipation term representing the difference between the two ways of computing
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the pressure gradient, the ∆X and the 2∆X approximations, is added to the linear
interpolation of the velocity at cell faces. The velocity at the face, ue, at a face e in
figure 2.9 is approximated by a linear interpolation as

ue = λPuP + λEuE , (2.71)

where λP and λE are the weighting factors for nodes P and E respectively. The
new interpolation scheme from Rhie and Chow modify the velocity at the face as

ue = ue +Df

((
∂p

∂x

)
e

−
(
∂p

∂x

)
e

)
. (2.72)

The term Df was introduced earlier in equation 2.62. The ue is the linearly in-
terpolated velocity in equation 2.71. The first term within the brackets is the ∆X
approximation of the pressure gradient and the second term represents the 2∆X
approximation of the pressure gradient. On a uniform 1D grid, these derivatives
are (

∂p

∂x

)
e

= pE − pP

∆X , (2.73)

and (
∂p

∂x

)
e

= 1
2

(
pE − pP

∆X + pP − pW

∆X

)
= pE − pW

2∆X . (2.74)

The new interpolation scheme, commonly referred to as either the Rhie-Chow
interpolation or the momentum interpolation, allows the use of the SIMPLE like al-
gorithms on collocated grids. The solution algorithm is very similar to the staggered
grid.

1. Guess the pressure field p∗.

2. Solve the momentum equations like equation 2.52 to find the estimated veloc-
ities u∗

i .

3. Use the Rhie-Chow interpolation to compute the velocities at the cell faces.

4. Find the mass flux at the faces m∗
f using the cell face velocities.

5. Assemble the pressure correction equation based on the mass fluxes and the
momentum equation.

6. Solve the pressure correction equation (equation 2.63) to find the pressure and
velocity corrections.

7. Update the pressure and velocity corrections and repeat till convergence.

Other algorithms based on SIMPLE, like SIMPLEC, SIMPLER and PISO can also
be used as long as the mass flux imbalance is computed using the new interpolation
scheme.
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2.6. Turbulent flows
Most flow problems encountered in practical situations, including the flow past wind
turbines, are turbulent in nature. Turbulent flows are highly unsteady with the
velocity fields fluctuating rapidly in all three dimensions (usually around a mean
value). A laminar flow becomes turbulent due to an instability in the flow that
gets amplified, either due to external factors or the flow itself, when above a certain
critical Reynolds number. Discussing the nature of turbulence is beyond the scope of
this thesis and the emphasis of this section is on modeling the effects of turbulence.

Despite the vastly different natures of laminar and turbulent flows, the Navier
Stokes equations presented earlier in equations 2.1, 2.2, 2.3 and 2.4 are valid for
both situations. However, turbulent flows involve instantaneous fluctuations in three
dimensions, rapid mixing and appears random. Unlike laminar flows, there is an
additional mechanism for energy transfer which is usually described as an energy
cascade. This process describes the transfer of energy from very large eddies (zones
of recirculating motion of the fluid) to smaller ones in a cascading process till the
size of the eddies are small enough for viscous dissipation to become relevant.

In order to accurately model the energy cascade process, the numerical methods
used must resolve all the scales down to the smallest ones, known as the Kolmogrov
scales [26]. The smallest length scales are characterized by the viscosity of the fluid
and for flows at high Reynolds numbers such as the flow around a wind turbine, these
scales are extremely small. An accurate representation of eddies at this scale would
require enormous computational resources. The computational cost of such simu-
lations can be shown to be proportional to approximately Re3. Such simulations
where all the scales of the flow are resolved are known as Direct Numerical Simula-
tions (DNS). Due to the prohibitively expensive computational requirements, DNS
can be carried out only for low Reynolds number flows under relatively simple con-
ditions and cannot be applied to problems of practical interest. Thus, approximate
approaches that can model the effect of turbulence within reasonable computational
costs are sought.

One such approximate solution is to use the Large Eddy Simulations (LES)
approach. As the name implies, the larger eddies in a turbulent flow are resolved
numerically whereas the statistical nature of the energy cascade process, especially at
smaller length scales, is used to model the smaller scales. This lifts some of the more
restrictive computational requirements of DNS while still maintaining relatively high
accuracy. Despite the still significant computational requirements the use of LES
for practical engineering problems is gaining increasing significance.

However, the most commonly used approach to model turbulent flows is based
on the solutions of Reynolds Averaged Navier Stokes equations (RANS). The tur-
bulent flow field is split into a time averaged mean flow and a fluctuating compo-
nent. The Reynolds averaging process brings the computational requirements for
most practical problems to a manageable level while maintaining sufficient accu-
racy. Combinations of RANS and LES like Detached Eddy Simulation (DES) and
Delayed Detached Eddy Simulation (DDES) are becoming increasingly common for
practical engineering applications as well.

The Reynolds averaging and the resulting equations will be described in detail
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in the following section.

2.6.1. Reynolds averaging
Any general variable ϕ in a turbulent flow is three dimensional and varies with time
(figure 2.10). ϕ is assumed to be composed of a mean flow component, ϕ and a

Figure 2.10: Fluctuating and mean variable components for a general variable ϕ [1].

fluctuating component ϕ′ as

ϕ(xi, t) = ϕ(xi, t) + ϕ′(xi, t). (2.75)

The mean flow component can be computed using the Reynolds averaging pro-
cess [1]. Three different approaches are possible

Time averaging The mean flow component is found as

ϕ(xi, t) = 1
T

∫ t+T

t

ϕ(xi, t)dt. (2.76)

Here T is the averaging interval which must be large compared to the turbulent
fluctuations. This approach is suitable when the mean flow is steady. However, for
unsteady mean flows the interval of averaging, T , should be chosen such that it is
much larger than the time scale of the fluctuations but smaller than the variation of
mean flow. This is admittedly difficult and different type of averaging can be used
instead.

Ensemble averaging The ensemble average is defined as

ϕ(xi, t) = 1
N

∑
N

ϕ(xi, t), (2.77)
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where N is the number of different measurements of ϕ(xi, t). For an accurate en-
semble average, the value of N must be as large as possible which is not always
practical.

Spatial averaging A spatial average represents the average of a quantity over a
space interval Ω.

ϕ(xi, t) = 1
Ω

∫
Ω
ϕ(xi, t)dxi. (2.78)

This averaging is typically suitable for homogeneous turbulence.

Properties of Reynolds averaging
For any two variables ϕ and ψ which can be decomposed into a mean flow component
(ϕ, ψ) and a fluctuating component (ϕ′, ψ′), the following rules apply.

ϕ = ϕ,

ϕ′ = 0,
∂ϕ

∂xi
= ∂ϕ

∂xi
, (2.79)

ϕ+ ψ = ϕ+ ψ,

ϕψ′ = 0,
ϕψ = ϕ̄ψ̄ + ϕ′ψ′.

2.6.2. Incompressible RANS equations
The Reynolds averaging can be applied to the velocities, ui and pressure, p to give

ui = ui + u′
i,

p = p+ p′. (2.80)

Substituting these into the continuity equation (equation 2.7) and taking the time
average gives

∂ui

∂xi
= 0. (2.81)

This equation is fundamentally the same as the equation 2.7. The divergence condi-
tion now applies only to the mean flow components of velocity. Adopting a similar
procedure to the momentum equations (equation 2.8) and taking the time average
gives

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ 1
Re

(
∂2ui

∂xj∂xj

)
. (2.82)

The unsteady term, pressure gradient term and the viscous diffusion term simplify
to a form that is similar to equation 2.8 but due to the non-linearity of the advective
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term, special attention is required. Using the property of Reynolds averaging for a
product, the advective term can be separated into two components as

∂ui

∂t
+ ∂(ūiūj)

∂xj
+
∂(u′

iu
′
j)

∂xj
= − ∂p

∂xi
+ 1
Re

(
∂2ui

∂xj∂xj

)
. (2.83)

The additional term involving the product of the fluctuating velocity components
is unknown and thus the incompressible RANS equations are not closed. This
additional term is known as the Reynolds stress tensor and equation 2.83 is usually
written as

∂ui

∂t
+ ∂(ūiūj)

∂xj
= − ∂p

∂xi
+ 1
Re

(
∂2ui

∂xj∂xj

)
−
∂(u′

iu
′
j)

∂xj
. (2.84)

For the commonly used eddy viscosity models, the Reynolds stress tensor is
modeled based on the Boussinesq hypothesis [26], where an analogy between the
viscous stresses and Reynolds stresses are made. For a Newtonian fluid, the viscous
stresses are a linear function of the mean velocity gradients (mean rate of strain)
with the constant of proportionality being the dynamic viscosity of the fluid

τ = µ

[(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3δij
∂ui

∂xi

]
. (2.85)

Similarly, the Reynolds stresses are assumed to be a linear function of the mean ve-
locity gradients and the proportionality constant being the newly defined turbulent
eddy viscosity, µt, as

τR = −
∂(u′

iu
′
j)

∂xj
= µt

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3δij

(
ρk + µt

∂ui

∂xi

)
. (2.86)

Here ρ is the density and k is known as the turbulent kinetic energy defined as

k = 1
2u

′
iu

′
i. (2.87)

For incompressible flows the divergence of the mean flow velocity is zero and the
turbulent kinetic energy term is absorbed into the pressure or simply neglected.
This leaves only the turbulent eddy viscosity as the new unknown.

Turbulent eddy viscosity models
Using the Boussinesq hypothesis, instead of the unknown Reynolds stress tensor
now only a single unknown turbulent eddy viscosity remains. This eddy viscosity
can be expressed as a function of a velocity scale (V ) and a length scale (l) based
on dimensional analysis as

µt = CµρlV, (2.88)

where Cµ is a dimensionless constant. Different eddy viscosity models have been
proposed to find these velocity and length scales. The most popular class of these
models are the one and two equation turbulence models. An example of a one equa-
tion turbulence model is the Spalart-Allmaras model [27] where a scalar transport
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equation similar to equation 2.9 is written for a new variable ν̃. The most common
examples of two equation models are the k-ω model from Wilcox [28, 29], the k-ϵ
model from Jones and Launder [30, 31] and the k-ω SST model from Menter [32].

Presently, the one equation SA turbulence model and the two equation k-ω SST
turbulence model are available in SU2.

2.6.3. Solution procedure
Previously, the solution procedure for the incompressible Navier Stokes equations on
a collocated grid was described in section 2.5.2. By solving the turbulence equations
in a segregated manner with the flow equations, the solution algorithm does not
change significantly. The algorithm for solving the incompressible RANS equations
is

1. Guess the pressure field p∗.

2. Solve the momentum equations like equation 2.52 to find the estimated veloc-
ities u∗

i .

3. Use the Rhie-Chow interpolation to compute the velocities at the cell faces.

4. Find the mass flux at the faces m∗
f using the cell face velocities.

5. Assemble the pressure correction equation based on the mass fluxes and the
momentum equation.

6. Solve the pressure correction equation (equation 2.63) to find the pressure and
velocity corrections.

7. Update the pressure and velocity corrections and update the mean flow gra-
dients.

8. Solve the turbulence model equations to find the eddy viscosity µt to be used
in the next iteration.

9. Repeat till convergence.

More details about the models and their implementation will be presented in the
next chapter.
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3
Pressure based

incompressible solver in SU2
The previous chapter described the incompressible flow equations and the approach
to solve them numerically. This chapter describes the implementation of those nu-
merical methods in SU2. The implementation details of the different boundary con-
ditions, under-relaxation techniques, turbulence models will also be discussed.

The general structure of the partial differential equation (PDE) solved in SU2 is
of the form [1]

∂U

∂t
+ ∂F c

∂xi
− ∂F v

∂xi
= Q in Ω, t > 0, (3.1)

where U is the vector of state variables, F c
i are the convective fluxes, F v

i are the
viscous fluxes and Q is a source term. In the pressure based solver the momen-
tum equations and the pressure correction equation are solved sequentially. The
momentum equation remains in the same form as equation 3.1 and the pressure cor-
rection equation is derived based on a combination of the momentum and continuity
equations as described in the previous chapter.

3.1. Momentum equation
For the momentum equations, the terms in equation 3.1 are

Ui = ρui, F c
i = ρuiuj , F v

i = τij , Q = − ∂p

∂xi
(3.2)

where ui are the components of the velocity vector, ρ is the density, p is the gauge
pressure (p − pref , where pref is a reference pressure) and the viscous stresses for
incompressible flow are

τij = µtot

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (3.3)
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The total viscosity coefficient, µtot is the sum of the dynamic viscosity µdyn and
turbulent eddy viscosity µtur, which is computed via a turbulence model.

3.1.1. Spatial discretization
The spatial discretization of equation 3.1 is performed on an edge based dual grid
using the finite volume approach [2–4]. The discretization procedure follows along
the same lines as described in section 2.2.1. The control volumes are constructed
using a median-dual (vertex-based) scheme [1, 5]. The control volume faces are cre-
ated exactly midway between the adjacent nodes. An illustration of the construction
of the dual cell is shown in figure 3.1. The solution is computed at the nodes shown
at the intersection of the solid grid lines.

Figure 3.1: Dual cell structure on a 2D domain.

Integrating equation 3.1 over one control volume (CV) with a volume of Ω gives,∫
Ω

∂U

∂t
dΩ +

∫
Ω

∂

∂xi
(F c

i − F v
i )dΩ = −

∫
Ω

∂P

∂xi
dΩ. (3.4)

Using the divergence theorem on the convective and viscous flux terms results in∫
Ω

∂U

∂t
dΩ +

∫
∂Ω

(F c
i − F v

i )nidS = −
∫

Ω

∂P

∂xi
dΩ,

∫
Ω

∂U

∂t
dΩ +R(U) = −F p, (3.5)

where R(U) is the residual vector consisting of the discretized convective and vis-
cous fluxes, F c and F v. The pressure gradient is treated as a source term and its
discretized form, F p, is found using the mid point integration rule in the CV and is
given by ∫

Ω

∂P

∂xi
dΩ ≈ |Ω| ∂P

∂xi
= F p. (3.6)

Discretization of the viscous term For the dual cell, the surface integral of
the viscous fluxes can be transformed into a summation along the CV faces.∫

∂Ω
F v

i nidS ≈
∑
∂Ω

τijni∆S. (3.7)
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A central scheme is used to find τij at the face f . For the nodes P and F separated
across the face f (figure 3.2),

τij |f = 1
2 (τij |P + τij |F ) . (3.8)

A correction is applied to account for the non orthogonality of the mesh. For a
general variable ϕ the derivative in the normal direction is evaluated as(

∂ϕ

∂n

)
f

= ϕF − ϕP

dP F
+ 1

2

(
∂ϕ

∂xi

⏐⏐⏐⏐
P

+ ∂ϕ

∂xi

⏐⏐⏐⏐
F

)
(ni − αfsi), (3.9)

where ni is the face normal, si is the normalized vector connecting the cell centers
P and F across the face f , dP F is the distance between the nodes P and F and
αf = sini. No correction is applied for the boundary elements. The gradients at the

Figure 3.2: Nodes P and F .

cell centers P and F can be computed using either the Green-Gauss or the Least
Squares method [2].

Discretization of the convective term The convective fluxes are discretized
using a standard upwind scheme and second order accuracy is achieved via recon-
struction of variables at the cell faces as described in section 2.2.1. The discretized
form of the convective term of the momentum equations is∫

∂Ω
F c

i nidS ≈
∑
∂Ω

(ρuini)uj∆S =
∑
∂Ω

ṁfuj , (3.10)

where ṁf is the mass flux across each face f along the boundary (∂Ω) of the control
volume, ni is the unit outward normal vector of face f and uj are the velocity
components. For instance, on a 1D domain (see figure 3.3a) the discretized form of
the convective term is ∑

∂Ω
ṁfuj = (ṁu)e + (ṁu)w. (3.11)

and on a 2D domain (see figure 3.3b) the discretized form of the convective term is∑
∂Ω

ṁfuj = (ṁuj)e + (ṁuj)w + (ṁuj)n + (ṁuj)s. (3.12)
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(a) 1D control volume around a node P . (b) 2D control volume around a node P .

Figure 3.3: Control volume around a node P in (a) 1D and (b) 2D.

Here e,w,n and s represent the east, west, north and south face of the CV respec-
tively and u and v are the horizontal and vertical components of velocity. The
velocity at the face is reconstructed from the upwind direction which is determined
based on the direction of mass flux at each face. For example, for the face e, let the
neighboring node be E. The direction is found as follows. First compute the mass
flux across the face, ṁe

ṁe = 1
2ρ(ui,P + ui,E)ni.

Define two temporary quantities,

ṁP = 1
2(ṁe + |ṁe|),

ṁE = 1
2(ṁe − |ṁe|).

The upwind direction can then be found as,

dirP =
⌊
ṁP

|ṁe|

⌉
,

dirE =
⌊
ṁE

|ṁe|

⌉
.

Here ⌊⌉ represent rounding to the nearest integer. Finally, the velocity at the face
e can be found as

uj,e = (dirP )uj,P + (dirE)uj,E . (3.13)

This gives a first order upwind approximation which as seen in section 2.2.1 is not
very accurate. The velocities at the nodes, ui,P and ui,E can be reconstructed at
the face e to obtain a second order upwind scheme. This option is available to the
user. SU2 also has different slope limiters to maintain monotonicity of the upwind
scheme. The effect of using a slope limiter was also shown in section 2.2.1.
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3.1.2. Time integration: Steady state problems
Steady state problems are solved using a pseudo unsteady method. Instead of using
an iterative algorithm the solution is marched in time. For steady state problems,
the time integration is done using an implicit Euler scheme. Let the solution at a
node P at time tn+1 be Un+1

i . Using an implicit Euler scheme on equation 3.5,∫
Ω

∂Un+1
P

∂t
dΩ +RP (Un+1) + F p,n

P ≈
∂Un+1

P

∂t
|Ω|P +RP (Un+1) + F p,n

P . (3.14)

A backward Euler time integration scheme is used to discretize the time deriva-
tive. The final discretized equation using the procedure outlined in section 2.2.1,
can be written as

An∆Un = Bn. (3.15)

An is the matrix of coefficients at a time level tn like an
P,i,

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
. . . . . .

. . . an
P,i . . .

. . . . . .
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

∆Un is the vector containing the update to the solution at all the nodes at a time
level tn and Bn is the vector containing the residual and pressure contributions from
all the nodes,

∆Un =

⎛⎜⎜⎝
...

∆Un
P,i

...

⎞⎟⎟⎠ , Bn =

⎛⎜⎜⎝
...

−R(Un
P,i) − F p

i
...

⎞⎟⎟⎠ , i = 1, 2, 3.

A local time stepping scheme is used to accelerate the convergence as each cell
advances at a suitable local time step. This local time step is calculated as the
minimum of the time steps obtained from convective and viscous terms. The steady
solution is obtained faster if larger time steps are used. Also, since time accuracy
is not desired when running steady state simulations, the largest possible time step
that does not cause the solution to diverge is chosen.

∆t = min(∆tconv,∆tvisc), (3.16)

∆tconv = CFL
|Ω|
λconv

, ∆tvisc = CFL
|Ω|2

λvisc
. (3.17)

where CFL is a user defined value and

λconv =
∑

f

|ui,fni,f |∆S, (3.18)
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is the sum of the magnitude of the projected face velocity across all the faces of the
control volume surrounding a node and

λvisc =
∑

f

C
µtot

ρ
∆S2, (3.19)

is the viscous spectral radius [1]. Here C is a constant and is set to C = 0.25. In
order to avoid the possibility of division by zero, the convective term is changed to

λconv =
∑

f

|(uf + uref ) · n⃗f |∆S, (3.20)

where uref is a reference velocity.

SIMPLE
As explained in chapter 2, the SIMPLE algorithm is used to calculate the velocity
and pressure in an iterative manner. However, since a pseudo time stepping scheme
is used for steady state problems, the time steps take the place of iterations. Thus
starting from a time step tn, the velocities and pressure at the next time step tn+1

is found as follows. The momentum equations are first solved using the pressure,
pn at time tn to give an estimated velocity field, u∗

i .

u∗
i = un

i + ∆ui, (3.21)

where ∆ui is found from the solution of equation 3.15 as ∆ui = ∆Ui

ρ . The estimated
velocities and pressure are then corrected based on velocity and pressure corrections.

un+1
i = u∗

i + u′
i, (3.22)

pn+1 = pn + p′. (3.23)

The pressure and velocity corrections are found by solving a Poisson equation. The
Poisson equation is derived based on the continuity equation and the momentum
equations. This procedure is described in the following section.

3.2. Continuity equation
So far, only the momentum equations have been used to find an estimate of the
velocity based on the existing pressure field. In order to correct the velocity esti-
mations and the pressure, the continuity equation must be used to close the system
of equations. However, since the continuity equation does not contain any pres-
sure terms a new equation for pressure has to be obtained. This new equation for
pressure is derived starting from the discrete form of the continuity equation for an
incompressible flow ∫

Ω

∂ρui

∂xi
≈
∑
∂Ω

ρuf,inf,i∆S =
∑
∂Ω

ṁf = 0, (3.24)

where uf is the velocity at a face f , ρ is the fluid density and ni is the unit outward
face normal and ∆S is the area. Using a linear interpolation to find this face velocity
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on collocated grids leads to the well known checkerboard problem in the pressure
as seen in the previous chapter and thus momentum interpolation techniques are
used. Previously, the momentum interpolation proposed by Rhie and Chow [6]
was given with only a conceptual explanation. The same interpolation can also be
seen as equivalent to writing a pseudo momentum equation at every face with the
coefficients linearly interpolated from the momentum equations of the neighboring
nodes [2]. Thus, in a sense the momentum interpolation mimics the staggered grid
approach on collocated grids. This can also be interpreted as adding a third order
derivative of the pressure to stabilize the oscillations in the pressure field [3].

3.2.1. Momentum interpolation of velocities
In this section, equation 2.72 is derived using an alternative approach following
Moukalled et al. [2] but adapted to the solution procedure used in SU2. The mo-
mentum equation in the x direction for a node P (see figure 3.3a) can be written
as

an,u
P ∆un

P +
∑

C∈N (P )

an,u
C,u∆un

C = −R(un
P ) − |Ω|

(
∂pn

∂x

)
P

where an,u
P is the coefficient of u, the velocity along the x direction at the node

P , an,u
C is the coefficient of the same velocity component at a node C which is a

neighbor of node P (C ∈ N (P )), R(un
P ) is the residual computed explicitly and

|Ω| is the volume of the control volume around node P . Here N (P ) represents the
neighbors the node P . Since the density is assumed to be constant, it is absorbed
in to the coefficients an,u

P and an,u
C .

The estimate of the velocity at a node P for time level n+ 1 can be written as

u∗
P = un

P +∆un
P = un

P − 1
an,u

P

⎛⎝R(un
P ) +

∑
C∈N (P )

an
C,u∆un

C + |Ω|
(
∂pn

∂x

)
P

⎞⎠ , (3.25)

Let H(un
P ) denote

H(un
P ) = 1

an,u
P

⎛⎝R(un
P ) +

∑
C∈N (P )

an
C,u∆un

C

⎞⎠ .

The velocity estimates at a node P at time level tn+1 can now be re-written as

u∗
P = un

P −H(un
P ) − |Ω|

an,u
P

(
∂pn

∂x

)
P

. (3.26)

Since the pressure gradient used so far is only an estimate, the velocities found using
this formula are also an estimate and do not yet satisfy the continuity equation and
are thus denoted by u∗

i .
Consider another node E, which is a neighbor of node P across the face e in

figure 3.3a. The velocities at node E can be written similar to equation 3.26 as

u∗
E = un

E −H(un
E) − |Ω|

an,u
E

(
∂pn

∂x

)
E

. (3.27)
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Since the momentum interpolation technique mimics the staggered approach where
velocities are stored on cell faces, hypothetically at the face e between P and E, the
velocities, uf,i can be written as,

u∗
e = un

e −H(un
e ) − |Ω|

an,u
e

(
∂pn

∂x

)
e

. (3.28)

The coefficients for the hypothetical momentum equation at the face f are assumed
to be interpolated linearly from the neighboring nodes P and E as

H(un
e ) = (λPH(un

P ) + λEH(un
E)), (3.29)

where λP and λE are the weighting factors for the interpolation. Since a median
dual grid is used for discretization, the faces are always midway between the two
nodes. Thus, λP = λE = 1/2. Substituting for Hn

f,i, Hn
P,i and Hn

E,i in equation 3.29
from equations 3.28, 3.26 and 3.27 respectively and expanding the pressure source
term from equation 3.6, the velocity at a face f after the momentum equation is

u∗
e = un

e − (λPu
n
P + λEu

n
E) + (λPu

∗
P + λEu

∗
E) − |Ω|f

an
e

(
∂pn

∂x

)
e

+
(
λP

|Ω|P
an

P

(
∂pn

∂x

)
P

+ λE
|Ω|E
an

E

(
∂pn

∂x

)
E

)
(3.30)

Let Dn,u
P denote

Dn,u
P = |Ω|

an,u
P

. (3.31)

Using the new notation, equation 3.30 can be written as

u∗
e = un

e − (λPu
n
P + λEu

n
E) + (λPu

∗
P + λEu

∗
E) − Dn,u

e

(
∂pn

∂xi

)
e

+
(
λP Dn,u

P

(
∂pn

∂x

)
P

+ λEDn,u
E

(
∂pn

∂x

)
E

)
. (3.32)

The linear interpolation of the pressure gradient terms from nodes P and E are
approximated as(

λP Dn,u
P

(
∂pn

∂x

)
P

+ λEDn,u
E

(
∂pn

∂x

)
E

)
= D

n,u

e

(
∂pn

∂x

)
e

. (3.33)

The terms under the over bar are linearly interpolated. This approximation is
second order accurate [2]. Also the coefficient of the pressure gradient at the face is
assumed to be the same as the linearly interpolated value i.e.

Dn,u
e = D

n,u

e .

Additionally, the linearly interpolated terms are written with an over bar as follows

(λPu
∗
P + λEu

∗
E) = u∗

e,

(λPu
n
P + λEu

n
E) = un

e .
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Equation 3.30 can now be written as

u∗
e = u∗

e − D
n,u

e

((
∂pn

∂x

)
e

−
(
∂pn

∂x

)
e

)
+ (un

e − un
e ) . (3.34)

Analogously, the y and z components of the velocity can be written as

v∗
e = v∗

e − D
n,v

e

((
∂pn

∂y

)
e

−
(
∂pn

∂y

)
e

)
+ (vn

e − vn
e ) . (3.35)

w∗
e = w∗

e − D
n,w

e

((
∂pn

∂z

)
e

−
(
∂pn

∂z

)
e

)
+ (wn

e − wn
e ) . (3.36)

Effect of pseudo time stepping
Recall the expression for the face velocity based on the momentum interpolation in
Eq. 3.34,

u∗
e = u∗

e − D
n,u

e

((
∂pn

∂x

)
e

−
(
∂pn

∂x

)
e

)
+ (un

e − un
e ) .

The first term on the RHS is the linearly interpolated velocity estimate and the
second term is the difference of the pressure gradients. These two terms are identical
to the original interpolation proposed by Rhie and Chow [6]. However, the last term
arises as a consequence of using the pseudo time stepping scheme in SU2. This
term represents the difference between the corrected velocity at the face un

e and
the linearly interpolated value un

e from the previous time step. This difference is
equivalent to the difference in pressure gradients from the previous time step. Thus,
this term is zero at the start of the iteration and for every subsequent iteration,
the difference between the two velocities, un

e and un
e is carried over and added to

the next iteration. Not considering this term can lead to oscillations in pressure at
small time step sizes [7–12].

In addition to this, the coefficient of the the pressure gradient contains the coef-
ficients of the discretized momentum equations an

e,ui
which consists of contributions

from time and spatial discretization as,

an
e,ui

= at,n
e,ui

+ ajac,n
e,ui

.

Equation 3.34 can be rewritten as

u∗
e = u∗

e − |Ω|
at,n

e,ui + ajac,n
e,ui

((
∂pn

∂x

)
e

−
(
∂pn

∂x

)
e

)
+ (un

e − un
e ) .

The contribution from the time discretization, at,n
e,i depends on the size of the time

step ∆t which can be changed based on the user defined CFL number. Thus, the
final solution will be dependent on the external value of CFL which is undesirable.
This is also noted in Cubero and Fueyo [11]. In order to eliminate this dependence
the following approach can be adopted. A relaxation factor, RC, is introduced and
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multiplied to the time discretization contribution, αt. When this relaxation factor
is set to zero, the solution is independent of CFL. It should be noted that this
treatment is not derived analytically and can lead to convergence issues. The RC
factor can be changed based on convergence behavior.

u∗
e = u∗

e − |Ω|
RCat,n

e,ui + ajac,n
e,ui

((
∂pn

∂xi

)
e

−
(
∂pn

∂xi

)
e

)
+ (un

e − un
e ) .

3.2.2. Pressure correction equation
To derive the pressure correction equation, first an equation for velocity corrections
analogous to equation 3.34 is required. After applying the velocity and pressure
corrections, the equation 3.26 becomes

un+1
P = un

P −H(un+1
P ) − |Ω|

an,u
P

(
∂p

∂x

)n+1

P

. (3.37)

Subtracting equation 3.37 from equation 3.26 gives an equation for velocity correc-
tions as

u′
P = −H(u′

P ) − |Ω|
an,u

P

(
∂p′

∂x

)
P

. (3.38)

Following the same derivation steps outlined above to derive the equation for the
velocity estimate at face e, u∗

e, a new equation for the velocity correction at a face
e between two nodes P and E (figure 3.3b) can be derived as

u′
e = u′

e − D
n,u

e

((
∂p′

∂x

)
e

−
(
∂p′

∂x

)
e

)
. (3.39)

Similarly, the equations for the velocity corrections in the other directions can be
written as

v′
e = v′

e − D
n,v

e

((
∂p′

∂y

)
e

−
(
∂p′

∂y

)
e

)
. (3.40)

w′
e = w′

e − D
n,w

e

((
∂p′

∂z

)
e

−
(
∂p′

∂z

)
e

)
. (3.41)

As before, the terms under the overbar are linearly interpolated. Before deriving the
pressure correction equation, a new notation is introduced for the sake of simplicity.

S
n

f,x = D
n,u

f nf,x∆S, S
n

f,y = D
n,v

f nf,y∆S and S
n

f,z = D
n,w

f nf,z∆S. (3.42)

Here nf,i is the outward facing unit normal of a face f , ∆S is the area of the face
and D

n,u

f ,D
n,v

f and D
n,w

f are the coefficients of the pressure gradient difference
term in the velocity expressions (equations 3.39, 3.40 and 3.41) and is defined in
equation 3.31.
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Recall the continuity equation in discrete form equation 3.24∑
f

ṁf = 0.

For a 1D control volume like the one shown in figure 3.3a, the summation is over the
faces f = e, w and for a 2D control volume (figure 3.3b, f = e, w, n, s. Rewriting the
discrete continuity equation in terms of estimated velocity and velocity corrections
gives ∑

f

ṁf =
∑

f

(ṁ∗
f + ṁ′

f ) = 0, (3.43)

where ṁ∗
f and ṁ′

f , the estimate and correction of the mass flux respectively, are
computed as

ṁ∗
f = ρu∗

f,inf,i∆S,
ṁ′

f = ρu′
f,inf,i∆S,

Substituting for the velocity estimates (equations 3.34 to 3.36) and corrections
(equations 3.39 to 3.41) in the equation 3.24 gives,

∑
f

ρu′
f,inf,i∆S − ρ

((
∂p′

∂xi

)
f

−
(
∂p′

∂xi

)
f

)
S

n

f,i = −
∑

f

ṁ∗
f . (3.44)

Rearranging this equation by moving the linearly interpolated terms to the RHS
gives

−
∑

f

ρS
n

f,i

(
∂p′

∂xi

)
f

= −
∑

f

ṁ∗
f

neglected in SIMPLE  
−
∑

f

ρu′
f,inf,i∆S −

∑
f

ρS
n

f,i

(
∂p′

∂xi

)
f

. (3.45)

As outlined in section 2.5.1, the terms under the over brace on the RHS of equa-
tion 3.45 are neglected in the SIMPLE algorithm. The remaining term on the RHS
of equation 3.45 is the mass flux that is calculated using the estimated velocities.
Thus, the pressure correction is

−
∑

f

ρS
n

f,i

(
∂p′

∂xi

)
f

= −
∑

f

ṁ∗
f , (3.46)

Equation 3.46 is a discretized Poisson equation for the pressure correction, p′, with
the uncorrected mass flux,

∑
f ṁ

∗
f , being the source term. This equation has to be

solved sequentially with the momentum equations.
Since the pressure correction equation was derived starting from the continuity

equation, the summation of the gradients of the pressure correction are also carried
out on the same control volume. Across the control volume shown in figure 3.3a, the
summation will be over the faces f = e, w and for the control volume in figure 3.3b,
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the summation will be over the faces f = e, w, n, s. The discretized pressure correc-
tion gradient for face e can be approximated as

(
∂p′

∂xi

)
f

≈ p′
E − p′

P

dP E
nf,i,

where dP E is the total distance between the nodes P and E across the face f and
nf,i is the outward unit normal of the face f . In order to find the coefficients of the
nodal values of pressure correction, p′

P , the term S
n

f,i must be calculated at each
face f . Sf,i is calculated at a face f using an over-relaxed approach [2]. The over-
relaxed approach increases the contribution of the nodes P and E as the grid non-
orthogonality increases. Sn

f,i is split into the orthogonal (En

f,i) and non-orthogonal
(Tn

f,i) parts as

S
n

f,i = E
n

f,i + T
n

f,i. (3.47)

The orthogonal contribution is treated implicitly and the non orthogonal contribu-
tion is neglected. The pressure correction equation thus becomes

−
∑

f

ρE
n

f,i

(
∂p′

∂xi

)
f

= −
∑

f

ṁ∗
f ,

The coefficients of the nodal values of p′ calculated using the over-relaxed approach
for the nodes P and E across the face e is

ap′

E = (−ρ∆S)
(Dn,u

f nx)2 + (Dn,v

f ny)2 + (Dn,w

f nz)2

D
n,u

f dP E,x + D
n,v

f dP E,y + D
n,w

f dP E,z

, (3.48)

where dP E,i is the distance vector between nodes P and E. Analogous to the dis-
cretization of the viscous terms in the scalar transport equation in section 2.2.1, the
coefficients for all the nodal values can be assembled. Thus, the pressure correction
equation can be written as a system of linear equations as

ap′

P p
′
P +

∑
C∈N (P )

ap′

C p
′
C = −

∑
f∈N (P )

ṁ∗
f . (3.49)

The mass flux on the RHS is computed as the summation of the mass flux across
the faces f around the control volume of the node P . The system of equations
for the nodal values of the pressure corrections p′

P can be solved using the linear
solvers described in chapter 2. No under-relaxation is used for the Poisson solver.
A multigrid method can be applied specifically for the Poisson problem to speed up
the convergence, especially for unsteady problems.
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3.2.3. Pressure and velocity corrections
Finally, based on the solution of the pressure correction equation, the pressure and
velocities at a node P can be corrected as

pn+1
P = p∗

P + αpp
′, (3.50)

un+1
P = u∗

P + Dn,u
P

(
∂p′

∂x

)
P

,

vn+1
P = v∗

P + Dn,v
P

(
∂p′

∂y

)
P

, (3.51)

wn+1
P = w∗

P + Dn,w
P

(
∂p′

∂w

)
P

.

αp is the under-relaxation factor. There is no need to under-relax the velocity
corrections since the pseudo time stepping method, used to solve the momentum
equations, acts as an under-relaxation for the velocities. The choice of the pressure
under-relaxation will have an effect on the convergence of the system. As seen
in chapter 2, the convergence of the SIMPLE algorithm can be accelerated if the
pressure under-relaxation is set to

αp = 1 +
∑

f∈N (P ) af,ui

aP,ui

. (3.52)

For a steady state solution, this factor can be simplified in terms of the velocity
under-relaxation factor, αv, as

αp = 1 − αv, (3.53)
In order to find αv, recall the discretized momentum equation in the x direction for
a node P is

an,u
P ∆un

P +
∑

C∈N (P )

an,u
C ∆un

C = −R(un
P ) − |Ω|∂p

n

∂x
.

an,u
P contains contributions from the pseudo time stepping and the Jacobian and

can be split as
an,u

P = at,n
P + ajac,n

P , (3.54)
where at,n

P is the pseudo time stepping contribution and ajac,n
P is the contribution

from the Jacobian. Comparing to a typical under-relaxed equation of the form

ajac,n
P,ui

αv
∆un

P,i +
∑

C∈N (P )

an
C,ui

∆un
C,i = −R(un

P,i) − F p,n
P,i ,

the under-relaxation factor in the pseudo time stepping scheme is

αv =
ajac,n

P,ui

at,n
P,ui

+ ajac,n
P,ui

. (3.55)

Thus, the optimum value of the pressure under-relaxation is

αp = 1 − αv =
at,n

P,ui

at,n
P,ui

+ ajac,n
P,ui

. (3.56)
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3.3. Boundary conditions
The control volume formed around interior nodes in the vertex based approach is
shown in figure 3.1. The node lies in the center of the control volume. However,
because of the vertex based approach, the control volumes around the boundary
nodes are different. The node lies on the face of the control volume at the physi-
cal boundary as shown in figure 3.4a While the discretization for the interior faces

(a) Dual cell CV at boundaries. (b) Boundary CV discretization.

Figure 3.4: Control Volume around boundary nodes.

proceeds as described earlier, the discretization for the boundary face will be pre-
sented in this section. Since the boundary node (B) is directly on the boundary
face (b) (figure 3.4b), there is no need to use the momentum interpolation to find
the velocity at the face, i.e. for any quantity ϕ

ϕb = ϕB . (3.57)

The boundary conditions available are free slip wall, no slip wall, velocity inlet,
pressure outlet and symmetry boundaries. The application of each of these bound-
ary conditions for the momentum equations, mass flux computation and pressure
correction equation is described below.

3.3.1. Momentum equations
1. Slip wall: This boundary condition specifies a zero normal flux across the

boundary (e.g. inviscid wall). For the momentum equations, this is applied
as a weak boundary condition with zero flux across the face. The mass flux
across the face is also set to zero.

ṁb = 0. (3.58)

2. Wall (no-slip): This is a strong boundary condition and is generally used to
impose a no slip condition on the velocities at the wall. Since the discretization
is vertex-based the boundary node lies on boundary face and thus the velocity
boundary condition can be enforced as a Dirichlet boundary condition. The
mass flux across the face is set to zero and the velocity at the wall is set to
zero or to the specified wall velocity (uwall).

ṁb = 0, ub = uwall. (3.59)
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3. Inlet: For a prescribed velocity (uin) at the inlet, the velocity is imposed as a
Dirichlet boundary condition similar to the wall boundary. However, the mass
flux is not zero but can be easily computed based on the specified velocity uin.

ṁb = ρui,inni∆Sb, ub = uin. (3.60)

4. Outlet: For a specified pressure outlet, a weak boundary condition is applied
for the velocities at the outlet. Fully developed flow conditions are assumed
at the outlet. Thus, the velocity gradient normal to the outlet surface is
zero. Similarly, the mass flux across the face is also computed using the latest
estimate of the velocity.

ṁb = ρui,bni∆Sb. (3.61)

5. Symmetry: A symmetry boundary does not only imply a zero flux across
the face but also a reflection of the solution state across the boundary face.
Consequently, a reflected state of the current state is computed and a Neumann
boundary condition is applied. The mass flux across the face is set to zero.

6. Far-field: Far-field boundaries are typically used in external flow simulations
to denote the free-stream conditions. This is treated as an inlet-outlet type
boundary where a Dirichlet condition is used for incoming flow and a Neumann
boundary for outgoing flow based on the nature of the flux at the boundary
face. The mass flux at the far-field face is computed as

ṁb = ρui,bni∆Sb. (3.62)

Depending on the sign of the mass flux, this face is treated as an inlet (ṁb < 0)
or an outlet (ṁb > 0). Implementation of these two conditions are similar to
the inlet and outlet boundary conditions.

7. Periodic: The periodic pair of elements are treated as an internal element by
exchanging the flux across the interface. The solution is only computed for
the donor node and is transformed back to the receiver node.

3.3.2. Pressure correction equations
If the pressure at a particular boundary is unknown (Euler wall, Wall, Inlet, Sym-
metry) it is treated as a Neumann boundary and the value of the pressure is updated
based on the pressure correction. However, if the value of the pressure is specified
(Outlet with a specified pressure), the value of the pressure is fixed and the pressure
correction is set to zero as a Dirichlet boundary condition.

3.4. Unsteady problems: Dual time stepping
Unsteady problems are solved with a dual time stepping scheme. The unsteady
problem is converted to a steady state problem within each time step which is
solved as described previously. A pseudo transient term is added to equation 3.5 as∫

Ω

∂U

∂τ
dΩ +

∫
Ω

∂U

∂t
dΩ +R(U) = −F p →

∫
Ω

∂U

∂τ
dΩ +R∗(U) = 0, (3.63)



3

60 3. Pressure based incompressible solver in SU2

where τ is the pseudo time variable. The pseudo time term is discretized as ex-
plained in section 3.1.2 and the unsteady time term is discretized by a backward
Euler scheme. First and second order time integration schemes can be used for the
unsteady term. For the first order discretization, R∗(U) is

R∗(U) = U − Un

∆t |Ω| +R(U) + F p,n, (3.64)

and for second order,

R∗(U) = 3U − 4Un + Un−1

2∆t |Ω| +R(U) + F p,n. (3.65)

At the end of the pseudo-steady solution U of equation 3.63 becomes Un+1.

3.5. Moving grids
Recall the general form of equations in SU2 from equation 3.1 is

∂U

∂t
+ ∂F c

i

∂xi
− ∂F v

i

∂xi
= Q in Ω, t > 0.

3.5.1. Arbitrary Lagrangian Eulerian method
For the Arbitrary Lagrangian and Eulerian (ALE) formulation, the convective term
is expressed as

F c
i = ρ(ui − ug,i)uj , (3.66)

where ug,i is the grid velocity. The other terms remain the same. However, the
computation of mass flux at the faces of control volumes must also account for the
grid movement. Thus, the relative velocity at a face, urel,f , computed using the
Rhie-Chow interpolation is

u∗
rel,f = uf

∗ − uf,g − D
n,u

f

((
∂p′

∂x

)
f

−
(
∂p′

∂x

)
f

)
+ (un

e − un
e ) . (3.67)

Here uf,g is the linearly interpolated grid velocity at the face f .

Rotating reference frame
For steady simulations, in a rotating reference frame with rotation rate Ωi, the grid
velocity can be found as the cross product of the rotation rate vector and the radius
vector.

ug,i = ϵijkΩirj êk. (3.68)
The Ωi is the vector of rotation rate about each of the axis, rj is the radius vector
from the center of rotation, êk is the unit coordinate vector and ϵijk is the levi
civita tensor. In addition to accounting for grid movement like described above an
additional source term is added to the momentum equations

Qrot = −ρϵijkΩiuj êk. (3.69)

This source term is the cross product of the rotation rate vector, Ωi, and the velocity
vector, uj .
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3.6. Turbulence modeling
Turbulence modeling in SU2 is based on solving the Reynolds Averaged Navier
Stokes (RANS) equations. As described in section 2.6.2, the most widely used
approach is to use the Boussinesq hypothesis and write the Reynolds stresses in
terms of mean flow gradients. This introduces a new unknown, the turbulent eddy
viscosity, µt. In order to close the system of RANS equations, equations for the
turbulent eddy viscosity are solved. Eddy viscosity turbulence models implemented
in SU2 are the Spalart-Allmaras (SA) [13] and the Menter Shear Stress Transport
(SST) [14] model. These are described in detail in this section.

3.6.1. Spalart-Allmaras (SA)
The SA eddy viscosity model is a one equation model and solves for a scalar variable
ν̃. This scalar is related to the eddy viscosity as

µtur = ρν̃fv1. (3.70)

Here ρ is the density and fv1 is obtained from the turbulence model. Many different
versions of the SA turbulence models are available [15]. The general form of the
equation in all versions closely resembles the transport equation like equation 2.9.
The standard SA model is

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1(1 − ft2)S̃ν̃ −

[
cw1fw − cb1

κ2 ft2

]( ν̃
d

)2
(3.71)

+ 1
σ

[
∂

∂xj

(
νtot

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
.

The definitions of the functions are

fv1 = χ3

χ3 + c2
cv1

,

χ = ν̃

ν
, (3.72)

where ν is the molecular kinematic viscosity. Additionally,

S̃ = Ω + ν̃

κ2d2 fv2. (3.73)

Here Ω is the magnitude of the vorticity, d is the distance from the point to the
nearest wall and

fv2 = 1 − χ

1 + χfv1
.

fw is computed as

fw = g

[
1 + c6

w3
g6 + c6

w3

]1/6

, (3.74)

g = r + cw2(r6 − r), r = min
(

ν̃

S̃κ2d2
, 10
)
.
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Finally, ft2 is computed as

ft2 = ct3e
−ct4χ2

.

The model constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622,
κ = 0.41, cw2 = 0.3, cv1 = 7.1, (3.75)

ct3 = 1.2, ct4 = 0.5, cw1 = cb1

κ2 + 1 + cb2

σ
.

The most widely used version of SA however ignores the trip term ft2. This is
referred to as the "no trip term" version of the SA turbulence model and is also used
in SU2. In this variation the constant ct3 is set to zero. The no trip SA turbulence
model can now be written in the general form of equation 3.1 as

∂U

∂t
+ ∂F c

i

∂xi
− ∂F v

i

∂xi
= Q in Ω, t > 0,

where

U = ν̃, F c
i = uiν̃, F v

i = (ν + ν̃)
σ

∂ν̃

∂xi
,

Q = cb1S̃ν̃ − cw1fw

( ν̃
dS

)2 + cb2

σ

⏐⏐⏐⏐ ∂ν̃∂xi

⏐⏐⏐⏐2. (3.76)

Discretization
Since the turbulence model equation resembles the general scalar transport equa-
tion 2.9, the discretization is carried out as described in section 2.2.1. Since equa-
tion 3.76 is solved sequentially after the momentum and pressure correction equa-
tions, the previously solved velocity field is used and the advective term, F c

i is
discretized using an upwind scheme. The viscous term, F v

i , is discretized using a
central difference scheme. The source term is discretized using the midpoint inte-
gration rule where the gradients are computed with Green-Gauss theorem or the
Least Squares method.

Boundary conditions
The most important boundary conditions for the turbulence models are at the walls
and far-field boundaries. The boundary condition for the SA turbulence model at
the far-field boundaries is

ν̃∞ = 3ν∞ to 5ν∞, (3.77)

and on solid walls
ν̃ = 0. (3.78)
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3.6.2. Menter Shear Stress Transport (SST)
The Menter Shear Stress Transport equation [14] is a two equation model for finding
the turbulent eddy viscosity. The two equations solve for the turbulent kinetic
energy, k and specific dissipation rate, ω. This formulation combines two popular
two equation models - the k-ω turbulence model [16, 17] and the k-ϵ turbulence
model [18, 19] with an additional correction for adverse pressure gradients. The k-ω
formulation is used in the inner parts of the boundary layer and k-ϵ formulation in
the remaining parts of the flow field. The two equations are

∂ρk

∂t
+ ∂ρujk

∂xj
= P − β∗ρωk + ∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
, (3.79)

and
∂ρω

∂t
+ uj

∂ρujω

∂xj
= ∂

∂xj

(
(µ+ σkµt)

∂ω

∂xj

)
+ γ

νt
P (3.80)

−βρω2 + 2(1 − F1)ρσ
ω

∂k

∂xi

∂ω

∂xi
. (3.81)

Here P is the production term given by

P = τij
∂ui

∂xj
. (3.82)

where τij is the viscous stress tensor (equation 3.3). The turbulent eddy viscosity
is computed as

µt = ρa1k

max(a1ω,ΩF2) , (3.83)

where ρ is density, Ω is the vorticity magnitude, Ω =
√

2WijWij with

Wij = 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
.

Every constant in the model is a blend of inner and outer value, blended as

ϕ = ϕ1F1 + (1 − F1)ϕ2,

where ϕ represents any of the constants defined in equation 3.84. The blending
functions are computed as

F1 = tanh(arg4
1),

arg1 = min

[
max

( √
k

β∗ωd
,

500ν
d2ω

)
,

4ρσω2k

CDkωd2

]
,

CDkω = max

(
2σω2

1
ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
,

F2 = tanh(arg4
2),

arg2 = max

(
2

√
k

β∗ωd
,

500ν
d2ω

)
,
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with d being the distance of any field point to the nearest wall.
The constants of the model are given by

a1 = 0.31, κ = 0.41, β∗ = 0.09,
σk1 = 0.85, σω1 = 0.5, β1 = 0.075,

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

γ1 = β1

β∗ − σω1κ
2

√
β∗ , γ2 = β2

β∗ − σω2κ
2

√
β∗ . (3.84)

Following the general form of the equations in equation 3.1, the equations 3.79 and
3.81 can be written as

U =
[
ρk
ρω

]
, F c

i =
[
ρuik
ρuiω

]
, F v

i =
[

(µ+ σkµt) ∂k
∂xi

(µ+ σωµt) ∂ω
∂xi

]

Q =
[

P − β∗ρωk
γ
νt
P − βρω2 + 2(1 − F1) ρσ

ω
∂k
∂xi

∂ω
∂xi

]
. (3.85)

Discretization
Similar to the SA turbulence model, the advective term, F c

i is discretized using an
upwind scheme, the viscous term, F v

i , using a central scheme and the source term is
discretized using the midpoint integration rule with the gradients computed using
either the Green Gauss theorem or the Least Squares method.

Boundary conditions
The boundary conditions at the far-field boundaries for the SST k − ω model are

k∞ = 3
2V

2
∞TI

2,

ω∞ = k∞

ν∞
µt

µlam

. (3.86)

Here ν∞ is the kinematic viscosity in the free stream, V∞ is the free stream velocity
magnitude, ρ is the density and TI is the turbulent intensity. The ratio µt/µlam

and turbulent intensity TI are specified as inputs. On solid walls, the boundary
conditions are

k = 0,

ω = 10 6ν
β1(∆d)2 . (3.87)

∆d is the first cell height and β1 is a model constant defined earlier.
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4
Verification and Validation

In this chapter, the different features of the new pressure based solver will be ver-
ified and validated against analytical solutions, experimental data and other refer-
ences. For verification of the solver, problems with an analytical solution like the
Taylor-Couette flow and the plane Poisuelle flow will be used. The validation cases
presented will be used to test the different features that are typically encountered
during external aerodynamics applications. First, laminar flow problems are used to
validate the implementation of the flow solver. Then, turbulent flow problems are
presented to validate the coupling of the new flow solver with the existing turbulence
solvers. Finally, the unsteady behavior of the new solver is validated. Wherever
possible the grids for the numerical simulations are taken from standard sources like
the NASA turbulence modeling database [1] or the SU2 test case repository to avoid
any potential sources of error from mesh generation.
Laminar and turbulent boundary layers are extremely crucial in wind turbine aero-
dynamics and the numerical solutions from the new solver are validated against the-
oretical boundary layer solutions under both circumstances. Flow separation, though
undesirable, occurs frequently and the behavior of the new solver under separated
conditions is tested for the flow over a backward facing step for both laminar and
turbulent flow conditions. Other representative test cases, like the flow over a cylin-
der and flow past an airfoil are also presented. Finally, two unsteady cases are
considered; a laminar flow past a square cylinder and a turbulent flow past a pitch-
ing airfoil undergoing dynamic stall.

4.1. Verification
In order to verify the accuracy of the solver, Couette flow or the flow between two
solid surfaces is simulated. Two special cases are considered here - the flow between
two concentric infinitely long rotating cylinders (also known as Taylor-Couette flow,
see the figure 4.1) and a planar flow between two solid infinitely long parallel plates
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that are held fixed (also known as plane Poisuelle flow, see figure 4.4a). An analytical
solution for the velocity profile can be found for both these cases which is used to
calculate the order of convergence of the solver.

While an analytical solution is not available for the laminar flow in a lid driven
cavity, reference solutions for velocity can be found in literature [2]. Thus, the
solutions for the lid driven cavity is also used to compute the order of accuracy.

Taylor Couette flow
The schematic of the Taylor-Couette flow is shown in figure 4.1. The inner cylinder

Figure 4.1: Schematic of the Taylor-Couette flow.

has a radius of r0 and the outer radius is r1. Ω0 and Ω1 are the angular velocities
of the inner and outer cylinders respectively. The analytical solution [3] for the
azimuthal velocity as a function of the radius r is

uana(r) = r0Ω0
r1/r − r/r1

r1/r0 − r0/r1
+ r1Ω1

r/r0 − r0/r

r1/r0 − r0/r1
. (4.1)
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Figure 4.2: Grid convergence for the Taylor Couette flow.

The simulation was carried out on a domain with r0 = 1m and r1 = 5m. The
outer wall is held fixed (Ω1 = 0) and the inner wall is rotating at an angular velocity
Ω0 = 1 rad/s. The two solid walls are treated as moving wall boundaries. Three
different grid resolutions are considered with 16, 32 and 64 cells along the radial
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direction and with 40 nodes along the circumference of the cylinders. Uniform grid
spacing is used in all cases.

Figure 4.2a shows the comparison between the numerical and analytical velocity
profile. The numerical solution matches the analytical solution for all the grid
resolutions very well. The numerical error is computed as

enum = |uana − unum|.

Figure 4.2b shows the log10 of the L2 norm of the error plotted against the number
of points in the radial direction. The numerical error decreases at a rate of 1.938
indicating an approximately second order rate of convergence as the grid size is
halved.

Convergence behavior The residual history for the grids with 32 and 64 nodes
are plotted in figures 4.3a and 4.3b. The residuals of both the velocity components
and the mass flux, which serves as the indicator for convergence of the continuity
equation, all converge within 1200 iterations for the coarser grid and about 4400 it-
erations for the fine grid. The two velocity components converge identically because
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Figure 4.3: Convergence history for the Taylor Couette flow residual.

of rotational symmetry.

Plane Poisuelle flow
The plane Poisuelle flow is the flow between two infinitely long parallel plates that
are held fixed (figure 4.4a). The boundary conditions used for the simulation are
shown in figure 4.4b. At the inlet boundary, a uniform velocity profile is prescribed,
and a zero velocity gradient at the outlet is specified. The outlet pressure is set
to zero. A small symmetry region is present immediately after the inlet before the
channel starts. The plane Poisuelle flow at a mean flow Reynolds number based
on channel width h and inlet velocity Uin of Re = hUin

ν = 400 is considered. For
fully developed flow conditions, the axial velocity profile at any location y can be
computed as

u(y) = −dP

dx

1
2µy(y − h), 0 ≤ y ≤ h (4.2)
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(a) Schematic of the plane Poisuelle flow. (b) Domain and boundary conditions.

Figure 4.4: (a) Schematic of the plane Poisuelle flow and (b) the domain and boundary
conditions for the numerical simulation.

where dP
dx is the constant pressure gradient in the streamwise direction, µ is the

laminar viscosity and h is the channel width. The domain is 1.25m long in the
streamwise direction with a symmetry region of 0.25m after the inlet boundary.
The distance between the two solid walls is h = 0.125m (figure 4.4b). Four different
mesh resolutions are chosen with 16, 32, 64 and 128 elements in the direction normal
to the solid walls and 100 elements in the streamwise direction.
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Figure 4.5a shows the comparison of the streamwise velocity at x = 0.9, which
is 7.2h away from the start of the channel, as a function of the normal distance for
different grid resolutions against the analytical solution. The flow is fully developed
after roughly 5h to 6h from the start of the channel. The pressure gradient required
to compute the numerical solution is obtained from the results of the finest grid with
128 elements in the normal direction. The numerical results from all the grids match
the analytical solution closely. The error between the numerical solution and the
analytical solution is computed for the three meshes with 16, 32 and 64 elements.
The L2 norm of the error is plotted against the number of elements in the normal
elements in the figure 4.5b on a log scale. The slope of the error curve is 2.1.

Convergence behavior Figure 4.6a shows the convergence history for the two
velocity components and the mass flux for the SIMPLE algorithm. Convergence
is achieved in 630 iterations. Figure 4.6b shows the comparison of residual conver-
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Figure 4.6: Plane Poisuelle flow (a) residual convergence history on the 100 × 64 grid and (b)
comparsion of convergence behavior for SIMPLE and SIMPLEC for the streamwise velocity on

the 100 × 64 grid.

gence of the streamwise velocity component for the SIMPLE and SIMPLEC iterative
methods. Since the pressure corrections are under-relaxed appropriately, there is no
significant difference in convergence behavior. However, SIMPLEC does converge
slightly faster in this case.

Lid driven cavity
The flow within a lid driven cavity is a commonly used validation problem for CFD
solvers. The domain consists of a square cavity with the top wall being moved
at a constant velocity along the x axis. This case also serves to test the moving
wall boundary condition. While there is no analytical solution for this case, the
results from a lid driven cavity are compared against results from Ghia [2]. Ghia [2]
solves the vorticity stream function formulation of the incompressible Navier Stokes
equations using a multigrid method. The flow is steady and laminar and is a solution
of the exact Navier Stokes equation. A square domain L × L with side L = 1m is
used. The top wall of the domain is moving at a constant velocity, Uw, in the x
direction. The flow Reynolds number defined based on the wall velocity, Uw and
the length of side of the square lid is Re = UwL

ν = 400. Three different grids are
considered with 33, 65 and 129 nodes along each direction. A uniform grid spacing
is used throughout the domain. Figure 4.7a shows the x component of the velocity
along x = 0.5 for the three grids and the benchmark results from Ghia [2]. The
numerical results improve against the benchmark solution as the grid is refined.
Figure 4.7b shows the L2 norm of the error between the results from SU2 and the
benchmark solution. The error reduces with a slope of 1.89 as the grid spacing is
halved.

From both the verification cases with an analytical solution, it is seen that when
the number of elements is doubled and subsequently the grid spacing, ∆, is halved,
the error is proportional to a factor of approximately (∆)2. Also for the lid driven
cavity solution where no analytical solution was available, the numerical error when
compared against another numerical benchmark result reduced by a factor (∆)1.89

indicating approximately second order accuracy of the spatial discretization scheme.
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Figure 4.7: (a)Velocity profile comparison between numerical results from SU2 and reference
solution [2] at x = 0.5 and (b) the L2 norm of the error.

4.2. Validation
In this section the numerical results from the new pressure based solver are validated
against either experimental data or reference data from other computational meth-
ods. The focus will be to test different flow features that are relevant for external
aerodynamics.

4.2.1. Laminar flows
Flow over a flat plate
Understanding the boundary layer is critical for external aerodynamics. To that
end, first the laminar flow over a flat plate with no pressure gradient at a Reynolds
number of Re = 4 × 105 is now considered to analyze the behavior of the new solver
in capturing the laminar boundary layer. A semi analytical solution, commonly
known as the Blasius solution [4], can be found for the streamwise and normal
velocity components under self similar conditions. Self similar solutions can be
found by first transforming the coordinates and the velocities as follows

x → c2x, y → cy, u → u, v → v

c
. (4.3)

Here c is any positive constant. Introducing the new similarity variable η and the
non dimensional function f as

η = y∗

δ(x∗) , ψ =
√
νUx∗f(η), (4.4)

where δ(x) is the boundary layer thickness at a location x, U is the free stream
velocity, ν is the kinematic viscosity, ψ is the stream function and f(η) is a function
of the similarity variable only. An ordinary differential equation (ODE) in f(η) can
then be formed as, see [4]

2f ′′′ + f ′′f = 0, (4.5)

where ′ denotes differentiation with respect to the similarity variable η. The bound-
ary conditions can be derived from the no slip condition at the wall and the matching



4.2. Validation

4

73

condition at the edge of the boundary layer.

u(x, 0) = 0, → f ′(0) = 0,
v(x, 0) = 0, → f(0) = 0,

u(x,∞) = U → f ′(∞) = 1.

The velocity components can be written in terms of the stream function ψ and
consequently the similarity variable as

u(x, y) = ∂ψ

∂y
= Uf ′(η), v(x, y) = −∂ψ

∂x
= 1

2

√
νU

x
[ηf ′(η) − f(η)]. (4.6)

Additionally, the wall shear stress is given by,

τw = µ

(
∂u

∂y

)
y=0

= 0.332µU
√
U

νx
. (4.7)

Using the wall shear stress, the skin friction coefficient, Cf , can be found as

Cf = τw
1
2ρU

2 ,= 0.664 0.664√
Rex

, (4.8)

where Rex is the local Reynolds number defined as Re = Ux
ν . Equation 4.5 can be

solved numerically to find f(η) as a function of η. With that the self similar velocity
profiles and the skin friction coefficient can be found which will be used to study
the behavior of the new solver in capturing the boundary layer.

The domain used for the numerical simulations is shown in figure 4.8a. A uniform
inflow is prescribed and a small inflow region with a symmetry boundary is used
before the flat plate begins. Two different meshes are considered. The coarse mesh
has 65 nodes in both while the fine mesh has 129 nodes along the streamwise and
normal directions. The boundary conditions and the coarse mesh used for the
simulation are shown in figures 4.8a and 4.8b. Nodes are clustered near the wall
and stretched away from it in the normal direction and clustered around the interface
between the symmetry and the wall region and stretched towards the outlet in the
streamwise direction (figure 4.8b). The minimum normal grid spacing in the coarse
mesh is 1.60 × 10−5m and 8.0 × 10−6m for the fine mesh. Grid spacing at x = 0
when the wall begins is 0.001m in the coarse mesh and 0.0005m for the fine mesh

(a) Domain and boundary conditions. (b) Mesh.

Figure 4.8: Flat plate (a) domain and boundary conditions and (b) the 65 × 65 mesh.
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Figures 4.9a and 4.9b show the comparison of the streamwise and normal velocity
components at x = 0.15m against Blasius solution for the two meshes considered.
The streamwise component matches very closely with the Blasius solution in both
meshes whereas there is a small difference in the normal component of velocity
near the edge of the boundary layer. The profile from the fine mesh is closer to the
analytical profile. It should also be noted that the normal component of the velocity
is significantly smaller than the streamwise component. Figure 4.10 shows the skin
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Figure 4.9: Comparison of streamwise and normal velocity components to the Blasius solution at
x = 0.15.

friction coefficient from the two meshes compared against the Blasisus solution. A
good agreement between the numerical results and theory is found in both cases.
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Figure 4.10: Skin friction coefficient for the laminar flow over the flat plate.

Flow over a cylinder
As a simple test case of external aerodynamics, the flow past a circular cylinder is
considered. At low Reynolds numbers, the flow remains steady and laminar [5]. The
flow separates symmetrically at two points on the cylinder and a recirculation region
is formed behind the cylinder. In this study, the drag coefficient and the different
flow features (figure 4.11) are compared against a reference numerical solution [5].
Lw corresponds to the length of the wake, (a, b) is the location of the recirculation
center and θ is the separation angle on the upper half of the cylinder.
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Figure 4.11: Flow features around a cylinder at a Reynolds number Re = 40 [5].

The Reynolds number based on the cylinder diameter is Re = 40 and a series
of five grids are used to study the properties. The diameter of the cylinder is
D = 1m. The coarsest grid has 65 nodes on the cylinder. The number of nodes
are doubled till 1025 nodes on the cylinder. The domain extends for 50D to all
sides of the cylinder. A freestream boundary condition is imposed on the outer
part of the domain. Figure 4.12a shows the drag coefficient (Cd) from the different
grids. The values are also listed in table 4.1. The solution converges to a value of
1.499 which is close to the reported value in Gautier et al [5]. Figure 4.12b shows
the different flow features. Separation on the upper half occurs around the point
(x, y) = (0.294, 0.404) (assuming the center of the cylinder lies at (x, y) = (0, 0))
which corresponds to a separation angle of approximately θ = 126◦ measured from
the leading edge. The center of the recirculation region is at (1.2, 0.295) on the
upper half and at (x, y) = (1.2,−0.295) on the lower half. The flow features from
SU2 and Gautier et al [5] are also listed in table 4.2. Like the drag coefficient,
the flow features match closely with the reference solution. These flow features are
computed on a grid with 513 nodes on the cylinder as a grid independent solution
is obtained at that point.
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Figure 4.12: Laminar flow over a cylinder at Re = 40.

Richardson’s extrapolation formula [6]

Cd(h/t) − Cd(h/s) ≈ Cd(h/s) − Cd(h)
sk − 1 − Cd(h/t) − Cd(h)

tk − 1 (4.9)
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Nodes (N) Drag (Cd)
65 1.537
129 1.511
257 1.502
513 1.499
1025 1.499

Gautier et al [5] 1.49

Table 4.1: Drag coefficient (Cd) for different grid resolutions. N denotes the number of points on
the surface of the cylinder.

SU2 Gautier et al [5]
Lw/D 2.18 2.24
a/D 0.70 0.71
b/D 0.59 0.59
θ 126◦ 126.4◦

Table 4.2: Flow features for flow around a cylinder at a Reynolds number of Re = 40.

can be used on the drag values in table 4.1 to find the approximate order of con-
vergence. Here h is the starting grid size, t and s are two integer factors and k is
the order of convergence. The grid size h can be found for each case as πD/(N − 1)
where D is the cylinder diameter, πD is the circumference of the cylinder and N is
the number of nodes on the cylinder. The results are shown in table 4.3. The drag
coefficient converges at a rate of approximately 1.5.

N t s k
65 2 4 1.53
129 2 4 1.58
65 4 8 1.56

Table 4.3: Order of convergence of the drag coefficient using Richardson’s extrapolation for the
flow over a cylinder at Re = 40.

Flow over a backward facing step
Flow separation occurs commonly in external aerodynamics. In the previous case
of the flow over the cylinder, the separation location was validated against reference
data. In this section, the behavior of the flow within the separated region is tested
by analyzing the flow over a backward facing step. The domain consists of an inlet
channel which expands into a larger channel across a step. The flow separates at
the step and re-attaches downstream along the lower wall. Unlike the flow past a
cylinder, here the flow separation occurs at a fixed point, namely at the corner of the
step removing any uncertainty in the location of the separation point. Depending
on the Reynolds number, a secondary separated region can also occur along the top
wall. A Reynolds number of Re = 800 based on the step height is considered and



4.2. Validation

4

77

the flow is expected to separate along both the bottom and top walls. The numerical
results are compared to results from Gartling [7].

The outline of the domain used is shown in figure 4.13. The step height is 0.5m
and the channel height is 1m. The step and the inlet is located on the left boundary
at x = 0 as shown in the figure 4.13. The step starts at y = −0.5 and extends
upto y = 0. The region from y = 0 to y = 0.5 is treated as an inlet boundary
and a fully developed velocity profile is imposed there. Three different meshes are
considered with uniform grid resolutions of 121 × 17, 241 × 33 and 481 × 65 nodes
in the streamwise and normal direction, respectively. At the outlet, the pressure is
prescribed to be zero.

Figure 4.13: Streamlines for the laminar backward facing step at Re = 800.
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Figure 4.14: Comparison of the streamwise velocity profiles obtained from the numerical results
with the literature at (a) x = 7m and (b) x = 15m.

Figure 4.14 compares the numerical and experimental results for the streamwise
velocity component at two different locations for the three meshes. Figure 4.14a
shows the velocity at x = 7m. This is within the recirculation region and the flow
is separated at the upper wall. The coarse mesh (121 × 17) performs poorly at
this location. The results from the finest mesh (481 × 65) agree very well with the
experimental data. Figure 4.14b shows the same comparison at x = 15m. This
location is after the flow has reattached on both the upper and lower walls. As
a consequence, the performance of the coarse mesh improves and the other two
meshes also give very good results. The length of the recirculating zone along the
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lower wall is 5.81m and along the upper wall is 5.69m which match the results from
Gartling [7].

4.2.2. Turbulent flows
Most flows of practical interest are turbulent and in this section the behavior of the
new solver in turbulent conditions will be validated.

Flow over a flat plate
The turbulent boundary layer can be broadly divided into two regions [4, 8]: the
inner region where viscous dissipation is present and the outer region where the
turbulence dissipation dominates completely. The inner region consists of the vis-
cous sub-layer where viscous effects dominate and turbulent effects are absent, a
buffer region where the turbulent stresses start to grow and finally an overlap or
logarithmic region where the turbulent and viscous dissipation match. The overlap
region merges into the outer layer of the boundary layer where viscous effects are
minimal. The velocity profile in the viscous sub-layer and logarithmic region can be
written respectively as

u+ = y+, y+ ≤ 5, (4.10)

u+ = 1
κ
ln(y+) + C, y+ > 30. (4.11)

The region of the boundary layer between 5 ≤ y+ ≤ 30 is the buffer region. In the
above relations, y+ is the non dimensional wall normal coordinate and u+ is the
normalized velocity defined as

y+ = yuτ

ν
, u+ = u

uτ
, uτ =

√
τw

ρ
.

Here uτ is known as the wall friction velocity and is used as the velocity scale close to
the wall, τw is the wall shear stress, ρ is the density, u is the local tangential velocity
and ν is the kinematic viscosity. The constant in equation 4.11 for a smooth wall is
known to be C = 5.0.

A turbulent flow over a flat plate is simulated at a Reynolds number of Re =
5 × 106 and the results are compared to the standard 2D zero pressure gradient
flat plate validation case from the NASA Turbulence Modeling resource [1]. The
domain used is shown in figure 4.15. Five different grid levels are considered. The
coarsest mesh has 29 points on the wall and 25 points in the normal direction with
an average y+ ≈ 1.7. The finest mesh has 449 points on the surface and 385 points
in the normal direction with an average y+ ≈ 0.1. The points are clustered near the
wall to ensure adequate resolution of the turbulent boundary layer near the wall.
The grids used are also from the NASA turbulence modeling database [1].

The skin friction coefficient (Cf ) at x = 0.97m for the different grids with the
SA and SST turbulence models are listed in table 4.4. A grid independent solution
is obtained for both turbulence models. Further analysis will be carried out on the
grid with 225 points on the surface. Figures 4.16a and 4.16b show the comparison
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Figure 4.15: Flat plate domain and mesh (137 × 97 nodes).

N SA SST
29 0.00267 0.00258
57 0.00271 0.00265
113 0.00269 0.00269
225 0.00272 0.00270
449 0.00273 0.00272

Table 4.4: Skin friction coefficient (Cf ) at x = 0.97m for different grid resolutions with SA and
SST. N denotes the number of points on the surface of the flat plate.
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Figure 4.16: Skin friction coefficient, Cf , comparison between the numerical results from SU2,
CFL3D and FUN3D [1] for the flow over a flat plate at Re = 5 × 106 using the (a) SA and (b)

SST turbulence models.

of the skin friction obtained from the SA and SST turbulence models respectively
against numerical results from FUN3D and CFL3D [1].

Figures 4.17a and 4.17b show the comparison of the inner velocity profile from
the SA and the SST turbulence models against the analytical profiles [4]. The
numerical results match the analytical profile closely in both the viscous sublayer
and the logarithmic region.
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Figure 4.17: Comparison of the inner velocity profile based on the numerical results from SU2
against analytical results for the turbulent flow over a flat plate at Re = 5e6 using the (a) SA and

(b) SST turbulence model.

Convergence behavior Figures 4.18a and 4.18b show the convergence history for
the velocity components, mass flux and the eddy viscosity for the SA and turbulent
kinetic energy for the SST turbulence model. The velocity components converge
smoothly and the residuals drop by more than 6 orders of magnitude for both
turbulence models.
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Figure 4.18: Convergence history of the velocity components, mass flux and turbulence variables
for the turbulent flow over a flat plate at Re = 5e6 using the SA and SST turbulence models.

Backward facing step
The laminar flow over a backward facing step was presented earlier to study the
behavior of the new solver in separated regions. In this section, the turbulent flow
over a backward facing step at a Reynolds number of ReH = 36, 000 based on the
step height is presented. The step is H = 1m high and the inlet channel is 9m high.
As seen previously, the flow separates at the step and reattaches further downstream.
Unlike the laminar problem at lower Reynolds numbers, there is only one separated
region in the turbulent case. The grids are obtained from the NASA turbulence
modeling database [1]. Comparison is made between three grid levels and results
from CFL3D [1] and experimental data [9]. The coarsest grid (denoted as SU2 lvl4)
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has approximately 5000 nodes, the second grid (SU2 lvl3) has approximately 20000
nodes and the finest grid (SU2 lvl2) has approximately 80000 nodes in total. The
coarsest mesh and the domain used is shown in figure 4.19. Nodes are clustered
near the step in both the streamwise and normal direction and stretched away from
the step.

(a) Domain.

(b) Step.

Figure 4.19: The coarsest mesh for the whole domain (a) and the mesh around the step (b) for
the turbulent flow over backward facing step at ReH = 36, 000.

Skin friction and reattachment length Figures 4.20a and 4.21a show the skin
friction coefficient in the streamwise direction after the step. Both turbulence models
overshoot the minimum skin friction coefficient reported in the experiments. This
is also observed in the results from CFL3D. The results from the SA turbulence
model recover and are closer to the experimental data compared to CFL3D after
x/H = 10m. The results from the SST turbulence model are closer to experimental
data compared to the SA turbulence model. The minimum value predicted by the
SST model is also closer to the experimental data. After the separation zone, the
skin friction coefficient from the SST model matches the experimental results and
performs better than CFL3D.

Figures 4.20b and 4.21b show the skin friction near the separated region. The
reattachment point can be identified by locating where the Cf values become zero
for the first time. The SA turbulence model predicts that the flow reattaches at
x/H ≈ 6.1 which is close to the value reported by other CFD codes [1] using SA.
The reattachment point predicted by SST is at x/H ≈ 6.54. The reattachment is
observed in the experiment at x/H = 6.25 ± 0.1
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Figure 4.20: Skin friction coefficient (Cf ) using the SA turbulence model.
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Figure 4.21: Skin friction coefficient using the SST turbulence model.

Velocity profiles The velocity profiles are normalized by a reference velocity,
Uref defined as the centerline velocity at x/H = −4. Figures 4.22a and 4.22b show
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Figure 4.22: Velocity profile using the SA turbulence model (a) x/h = 1, (b) x/H = 4.

the velocity profile at x/H = 1 and x/H = 4 using the SA turbulence model on
different grids. Both these locations are within the separated region and like the
skin friction coefficient results, the velocity profile from the SA turbulence model
does not match the experimental data. However, above the step height (y/H = 1)



4.2. Validation

4

83

and outside the recirculation zone the results do match the experimental data. At
x/H = 4, the results of all the grid levels from SU2 match the numerical results from
CFL3D in the recirculation region. Outside the recirculation region, the velocities
recover and match the experimental data earlier than CFL3D but the results from
the "lvl 2" grid (fine grid) appears to deviate slightly. x/H = 6 (figure 4.23a) is
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(a) Velocity at x/H = 6.
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Figure 4.23: Velocity profile using the SA turbulence model (a) x/h = 6, (b) x/H = 10.

at the edge of the recirculation region and consequently, there is a small mismatch
near the wall. The numerical results match the experimental data at x/H = 6 much
earlier than x/H = 1 or x/H = 4. x/H = 10 (figure 4.23b) is in the attached region
of the flow and the velocity profile matches the experimental data for most of the
region.
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Figure 4.24: Velocity profile using the SST turbulence model (a) x/h = 1, (b) x/H = 4.

As observed with the skin friction results, the SST turbulence model performs
much better in the separated region. The velocity profiles at x/H = 1 (figure 4.24a)
and x/H = 4 (figure 4.24b) are much closer to the experimental data for all the
grid levels compared to those from the SA turbulence model. The velocity profiles
at x/H = 6 (figure 4.25a) and x/H = 10 (figure 4.25b) behave similarly to the SA
turbulence model.
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Figure 4.25: Velocity profile using the SST turbulence model (a) x/h = 6, (b) x/H = 10.

NACA0012 airfoil
Flows over airfoils are a very typical problem in most aerodynamic applications.
Lift and drag polars of airfoils used in the different sections of a wind turbine blade
are commonly used as input to the lower fidelity tools based on Blade Element
Momentum (BEM) theory or lifting line theory which can then be used to analyze
the performance of turbine blades. In this section, a fully turbulent flow over a
NACA 0012 airfoil employing the SA and the SST turbulence models are compared
with the experimental data from Ladson [10]. Experiments were conducted at a
range of Reynolds numbers under free and fixed transition conditions. In this study,
the results from the fixed transition case at a Reynolds number of Re = 6 × 106 are
used. The flow was tripped at 0.05% of the chord using a carborundum strip. A
grid refinement study is carried out on a series of 4 grids at an angle of attack of
10◦ and the results are tabulated in table 4.5. Based on the grid refinement study,

N Cl Cd

129 1.082 0.0119
257 1.090 0.0119
513 1.089 0.0121
1025 1.088 0.0124

Table 4.5: Lift (Cl) and drag (Cd) coefficients for the SA turbulence model. N denotes the
number of points on the surface of the airfoil at an angle of attack of 10◦ for NACA 0012.

the grid with 513 points on the airfoil is chosen for further analysis.

Lift and drag coefficients The numerical results match the experimental data
closely for both turbulence models. Figure 4.26 shows the comparison of lift and
drag coefficients against experimental data [10] for the SA turbulence model and
figure 4.27 shows the results for the SST turbulence model. The results from the
SA turbulence model match closely at lower angles of attack but start to deviate at
higher angles of attack. The maximum lift coefficient predicted by the SA model
is 1.69. On the other hand, the SST turbulence model matches the experimental
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data closely at higher angles of attack also. The maximum lift coefficient predicted
by the SST turbulence model is 1.60 which is close to the values reported in the
experiments. Steady state simulations were carried out until an angle of attack of
17 and higher angles were carried out by employing the unsteady solver. Both the
turbulence models over-predict the stall angle compared to the experiments. In the
latter case, the reported results are time averaged.
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Figure 4.26: Turbulent flow over the NACA0012 airfoil. A comparison of the numerical solution
for the SA RANS turbulence model against the experimental data for the lift coefficient for

various angle of attacks (a) and lift to drag (b). Experimental data is listed as Ladson [10] N grit
where the number N indicates the grit level of the carborundum paper used.
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Figure 4.27: Turbulent flow over the NACA0012 airfoil. A comparison of the numerical solution
for the SST RANS turbulence model against the experimental data for the lift coefficient for

various angle of attacks (a) and lift to drag (b). Experimental data is listed as Ladson [10] N grit
where the number N indicates the grit level of the carborundum paper used.

Pressure coefficient The pressure coefficients, Cp, obtained with SU2 are com-
pared against numerical results from CFL3D [1]. The results from the grid with
513 nodes are used. For the sake of clarity of the pictures, the symbols are plotted
for only every 4th point. Figure 4.28 shows the comparison of Cp at an angle of
attack of 0◦ for the SA and SST turbulence models. A symmetric distribution is
obtained in both cases. Figure 4.29 shows the pressure coefficients at an angle of
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Figure 4.28: Pressure coefficient (Cp) for the SA and SST turbulence models at AoA = 0◦ for
turbulent flow over the NACA 0012 airfoil at a Reynolds number of Re = 6 × 106.

attack of 15◦. Results from both the SA and SST model match the results from
CFL3D closely. Only the suction side results are available from CFL3D.
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Figure 4.29: Pressure coefficient (Cp) for the SA and SST turbulence models at AoA = 15◦ for
turbulent flow over the NACA 0012 airfoil at a Reynolds number of Re = 6 × 106.

Skin friction coefficient Figure 4.30 shows the comparison of the skin friction
coefficient between SU2 and CFL3D at an angle of attack AoA = 0◦. Once again
a symmetric profile is observed for both turbulence models. Figure 4.31 shows the
skin friction coefficients at an angle of attack of 15◦. Results for both the SA and
SST model match the results from CFL3D closely. Only the suction side results are
available from CFL3D.

4.2.3. Unsteady flows
Many external aerodynamic flows are unsteady in nature. In this section the un-
steady behavior of the pressure based solver under laminar and turbulent flow con-
ditions is tested.
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Figure 4.30: Skin friction coefficient (Cf ) for the SA and SST turbulence models at AoA = 0◦ for
turbulent flow over the NACA 0012 airfoil at a Reynolds number of Re = 6 × 106.
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Figure 4.31: Skin friction coefficient (Cf ) for the SA and SST turbulence models at AoA = 15◦

for turbulent flow over the NACA 0012 airfoil at a Reynolds number of Re = 6 × 106.

Square cylinder
In order to validate the unsteady behavior, the flow past a square cylinder that is
confined in a channel at a Reynolds number of Re = 100 is considered. The flow
past a square cylinder has been studied widely under different configurations. At low
Reynolds numbers, the flow remains laminar and steady. Kelkar and Patankar [11]
determined using a linear stability analysis that the steady flow becomes unstable
for Reynolds number of Re > 53. At a Reynolds number of Re = 100, the flow is
unsteady and vorticies are shed from the corners periodically. The flow Reynolds
number is defined based on the edge length of the square cylinder, D. The blockage
ratio, B = H/D, is the ratio of the total height (H) of the confined channel to the
edge length of the square cylinder(D). A blockage ratio of B = 7 is used in this
study. A uniform velocity profile is prescribed at the inlet and the top and bottom
walls are treated as slip walls [11]. Fully developed flow is assumed at the outlet
and the pressure is set to zero. The domain and the boundary conditions are shown
in figure 4.32. Two different meshes are used: a coarse mesh that has 21 nodes on
each edge of the cylinder and a fine mesh that has 41 nodes on each edge. The time
discretization is carried out using the second order backward Euler scheme.
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Figure 4.32: Domain and boundary conditions for flow past a square cylinder.

Instantaneous streamlines at two different time instances when the vortex is
being shed from one of the two edges are shown in figure 4.2.3. The oscillatory
behavior of the flow can be seen in the time histories of the lift coefficient shown in
figure 4.34.

Figure 4.33: Instantaneous streamlines at two different time instances for the flow past a square
cylinder.
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Figure 4.34: Variation of lift coefficient with time and PSD analysis for the N = 41 and
∆t = 0.03s case.

The Strouhal number, St = fD/U , where f is the frequency of the oscillation
in lift, D is the edge length of the square and U is the uniform inlet velocity, is
used to characterize the periodicity of vortex shedding. Table 4.6 lists the Strouhal
number, St, for the two meshes using different non-dimensional time step sizes. The
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Strouhal number found in the literature for the current blockage ratio is 0.126 [11].
The frequency of oscillation of the lift coefficient is found using a power spectral
density (PSD) analysis. The resulting Strouhal number of St = 0.13 from the fine
mesh is close to the reported values in literature.
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Figure 4.35: Variation of the lift coefficient with time zoomed in to one cycle on the coarse (left)
and fine (right) mesh.

N ∆tU/D St
21 0.06 0.145
21 0.03 0.144
21 0.015 0.141
41 0.06 0.139
41 0.03 0.138
41 0.015 0.138

Table 4.6: Strouhal number, St, for the two meshes using different non dimensional time steps for
the unsteady flow over a square cylinder.

Pitching airfoil
In this section, the unsteady RANS (URANS) capabilities of the pressure based
solver is tested by analyzing the NACA 0012 airfoil under dynamic stall conditions.
Understanding the dynamic behavior of wind turbine rotors is crucial as they operate
in a highly unsteady environment.

Dynamic stall is an unsteady phenomenon that arises as a result of the motion
of the airfoil. A pitching airfoil tends to stall at a higher angle of attack than a
static one and a hysteresis behavior in the force coefficients is observed as a result of
the motion of the airfoil. This of course depends on the amplitude and frequency of
pitching. The hysteresis behavior is the result of a lag in phase between the motion
of the airfoil and the flow gradients around the airfoil [12]. A vortex can be seen to
grow and to be shed from the leading edge region as the airfoil pitches upward. As
this vortex moves towards the trailing edge, the lift increases beyond the static stall
value and when the vortex passes over and is shed from the trailing edge, a sudden
loss in lift is observed. As the airfoil pitches back downward, it remains under deep
stall conditions and the flow remains separated causing a hysteresis loop in the force
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coefficients with respect to the angle of attack. [13]. As the airfoil continues to pitch
downwards, the flow finally reattaches from the leading edge. Based on the period
of the airfoil motion and the time scale of the flow, a non dimensional reduced
frequency can be defined as

k = ωc

2U∞
, (4.12)

where ω is the frequency associated with airfoil motion like the pitching frequency,
c is the airfoil chord and U∞ is the free stream velocity.

A wind turbine rotor section can undergo dynamic stall behavior under various
circumstances during its operation [14]. To define the reduced frequency, an effective
velocity, Ueff ,

Ueff =
√
U2

∞ + (rΩ)2 (4.13)

is also commonly used instead of the free stream velocity U∞ for wind turbine
applications. Here, r is the radial position of the airfoil section and Ω is the rotation
rate of the rotor.

In this section, the dynamic stall behavior of the NACA0012 airfoil at a Reynolds
number of Re = 1×106 is considered. The numerical results are compared to exper-
imental data from McAlister [13]. The grids used for this simulation are the same
as those used previously to find the polars and taken from the NASA turbulence
modeling database [1]. A grid refinement study is first conducted under steady flow
conditions at an angle of attack of 5◦. The resulting lift and drag values are listed
in table 4.7. Based on the grid refinement study, the grid with N = 513 points

N Cl Cd

129 0.553 0.0120
257 0.546 0.0119
513 0.545 0.0122

Table 4.7: Lift (Cl) and drag (Cd) coefficients from the SA turbulence model. N denotes the
number of points on the surface of the airfoil at an angle of attack of 5◦.

on the airfoil is chosen for the unsteady analysis. The non dimensional time step,
τ = tU∞/c, is set to 0.004 where c is the chord of the airfoil and U∞ is the free
stream velocity. The airfoil is undergoing a pitching motion given by

α = α0 + αmsin(ωt), (4.14)

where α is the instantaneous angle of attack, α0 = 15◦ is the angle of attack at
time t = 0, αm = 10◦ is the amplitude of the oscillation and ω is the angular
frequency of the oscillation. The reduced frequency is set to k = 0.2. A first order
backward Euler time integration scheme is used. The y+ of the grid used is less
than 1 throughout the airfoil. The pitching motion of the airfoil is simulated by
moving the entire mesh as a rigid body.

The lift coefficient as a function of the angle of attack using the SA turbulence
model is shown in figure 4.36a. There is a good match between the numerical
and experimental data during the upward pitching motion of the airfoil but there
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is some difference observed during the downward motion of the airfoil. This is
expected as the airfoil is under deep stall conditions and URANS is not accurate
enough in this region. The maximum Cl from the numerical results is higher than
the experimental values. Figure 4.36b shows the drag coefficient as a function of
the angle of attack. Once again, there is a good match between the numerical and
experimental data at lower angles of attack in the upswing part of the motion. The
stall is predicted to occur later by SA compared to the experiments which is in line
with what was observed for steady cases as well. The lift coefficient as a function of
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Figure 4.36: Lift and drag coefficients for a pitching airfoil at Reynolds number Re = 1 × 106

using the SA turbulence model.

the angle of attack using the SST turbulence model is shown in figure 4.37a. Similar
to the results from the SA turbulence model, there is a good match between the
numerical and experimental data during the upward pitching motion of the airfoil.
A larger oscillation in lift during the downward motion is observed compared to
the SA turbulence model. Similar to the results in the steady state analysis, the
maximum Cl from the SST turbulence model is closer to the experimental results
compared to the SA turbulence model. Figure 4.37b shows the drag coefficient as
a function of the angle of attack. A larger oscillation in drag coefficient compared
to the SA turbulence model is observed. The stall is predicted to occur later by the
SST compared to the experiments but earlier than the SA model, which is in line
with what was observed for steady cases as well.

One of the major reasons for the discrepancy is due to the fact that this was a two
dimensional simulation whereas the dynamic stall that occurs during the pitching
motion of the airfoil is three dimensional, especially during the downward motion of
the airfoil where massive flow separation occurs. Two dimensional URANS methods
have a well known limitation in predicting the aerodynamic hysteresis for complex
flows [12, 15]. Additionally, the SA turbulence model did not perform as well as
the SST turbulence model in capturing the separated flow as evidenced in earlier
sections. However, the intention of this test case was to ensure that the new solver
behaves as expected under such complex flow conditions.

4.2.4. Rotating flow problems
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Figure 4.37: Lift and drag coefficients for a pitching airfoil at Reynolds number Re = 1 × 106

using the SST turbulence model.

Laminar flow in a rotating rectangular duct
To validate the rotating reference frame implementation, the laminar flow in a ro-
tating rectangular duct at two different rates of rotation is simulated. A long rect-
angular duct is rotating about one of its sides as shown in the figure 4.38a. The

(a) Schematic [16]. (b) Mesh.

Figure 4.38: Schematic (a) and the mesh (b) for the laminar flow in a rotating low aspect ratio
(2 : 1) rectangular duct [16].

relative effects of the rotation rate compared to the axial flow can be characterized
by a non dimensional number known as the Rossby number, Ro, which is defined as

Ro = U

2ΩD, (4.15)

where U is the reference velocity, Ω is the rotation rate and D is the channel depth
(see figure 4.38a. The Rossby number is analogous to the inverse of the tip speed
ratio commonly used in wind turbine applications. For low aspect ratio ducts,
at low rotation rates and consequently high Rossby numbers, a counter-rotating
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double vortex configuration for the secondary flow appears. As the rotation rate in-
creases (and the Rossby number decreases), this double vortex configuration breaks
down into four counter rotating vortices. Further increase of rotation rate leads
to a restabilization of the secondary flow into a slightly asymmetric double vortex
configuration [16].

In this study, a 2×1 rectangular duct is chosen. Two different flow conditions are
studied: first at a moderate rate of rotation at a Reynolds number of Re = 235 and
Rossby number of Ro = 50.5 and the second at a relatively rapid rate of rotation at
a Reynolds number of Re = 86 and Ro − 1.85. The depth of the duct is D = 1m,
the height, H = 2m and the axial length, L = 25m, is chosen to be sufficiently long
to ensure the flow becomes fully developed and independent of the axial coordinate.
Three different grids are used and the numerical results are compared to the results
from Speziale [16]. The coarsest grid has 16 nodes along the width and 32 nodes
along the height of the duct. The number of nodes along the width and height are
doubled to 32 and 64 respectively in the refined grid and doubled again to 64 and
128 respectively in the finest grid. Speziale uses a modified vorticity stream function
formulation of the incompressible Navier Stokes equations to resolve the pressure
velocity coupling.

Moderate rotation rate
The Reynolds number for this case is Re = 235 and the Rossby number is Ro = 50.5.
The rotation rate is moderately small and thus the axial velocity profile deviates
from the symmetric parabolic profile. The axial velocity profiles along the horizontal
and vertical centerlines in the fully developed region is shown in figures 4.39a and
4.39b. The axial velocity along the horizontal line matches the numerical results
from Speziale [16] but the velocity along the vertical centerline is over predicted in
all the three grids compared to the numerical results from Speziale. However, the
velocity profiles behave in the same qualitative way compared to the non rotating
simulations.
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Figure 4.39: Axial velocity profiles for the laminar flow in a rotating rectangular duct at a
Reynolds number of Re = 235 and Rossby number of Ro = 50.5 along the horizontal (a) and

vertical (b) centerline in the fully developed region.
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Rapid rotation rate
The Reynolds number for this case is Re = 86 and the Rossby number is Ro = 1.85.
The axial velocity along the horizontal and vertical centerlines in the fully devel-
oped region is shown in figures 4.40a and 4.40b respectively. The numerical results
are closer to the numerical results from Speziale [16] along the vertical centerline
compared to the moderate rotation case. However, a deviation is observed in the
velocity profile along the horizontal centerline. In order to obtain a converged solu-
tion for this case, the simulation was first initialized at a lower rotation rate. The
rotation rate was increased gradually till the desired value was reached.
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Figure 4.40: Axial velocity profiles for the laminar flow in a rotating rectangular duct at a
Reynolds number of Re = 86 and Rossby number of Ro = 1.85 along the horizontal (a) and

vertical (b) centerline in the fully developed region.

The mismatch in the results could be partially explained by the velocity reference
values used. The reference value of the velocity used by Sepziale [16] is not very
clear and the numerical results from SU2 were non dimensionalized using the inlet
velocity.

4.3. Conclusions
The new pressure based solver is shown to be second order accurate in space by
verifying the numerical results against analytical solutions for the Taylor-Couette
flow and the plane Poisuelle flow problems. Subsequently, the new solver was vali-
dated against experimental and other reference data. The new solver is capable of
modeling laminar and turbulent flows under different circumstances and can also be
used in unsteady conditions where complex flow phenomena occur.
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5
Wind energy applications:

Effect of Vortex Generators
on a turbulent boundary

layer
In this chapter the effect of a vortex generator (VG) on the turbulent boundary layer
is studied. 3D CFD simulations of the flow past a VG on a flat plate are carried
out and the resulting boundary layer is compared to the standard turbulent boundary
layer. As a first step towards modeling the effect of VGs in integral boundary layer
(IBL) theory based methods, a 2D CFD simulation is carried out separately where
the VG is represented by a solid wall of zero thickness normal to the flat plate. This
simulation is used to understand the limitations that arise out of modeling VGs in a
2D boundary layer which would be the case when using IBL methods. Additionally,
IBL methods require closure relations in order to find a solution to the boundary
layer. Different closure relations are used for laminar and turbulent boundary layer
because of the difference in the nature of the two boundary layers. The introduction
of a VG will further modify the nature of the boundary layer and thus a different
parametrization is required. The mixing layer will be used as a first step towards
forming such a parameterization.

5.1. Introduction
Vortex generators (VGs) are commonly used to improve the performance of wind
turbine blades. The concept of a vortex generator is quite old and there has been a
considerable amount of research into analyzing the effects of vortex generators [2, 3].

This chapter is based on Ravishankara et al. [1]. Other contributing authors were Hüseyin Özdemir
and Andrea Franco.
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Vortex generators energize the boundary layer and allow for the boundary layer to
remain attached for longer [4, 5] and have been successfully used to increase lift
produced by airfoil sections and delay stall [6]. Prior research on modeling VGs
in CFD methods can be found in eg. references [7] and [8]. Typically, VGs are
modeled by performing a Computational Fluid Dynamics(CFD) analysis of wind
turbine blade sections either using a body fitted mesh or by the BAY model [9] or
its variations. [10] Alternatively, other approaches using vortex strengths are also
available [11].

However, the above mentioned modeling methods all require expensive CFD
simulations. Performing such 3D CFD simulations during the design phase of wind
turbines is prohibitively expensive and a simpler solution can be advantageous. For
high Reynolds number flows, like the flow past wind turbine rotors, the effect of
viscosity is confined to a small region around the body known as the boundary
layer and the flow is largely inviscid further away from the body. The Navier-
Stokes equations can thus be simplified for the two regions with matching solutions
at the interface, allowing for faster computational times. The flow away from the
body can be described by the inviscid Euler equations and can be approximated by
faster methods like a panel method. The boundary layer equations in the vicinity
of the body can be derived from the Navier-Stokes equations in the limit of large
Reynolds numbers. The boundary layer equations can then be further simplified by
integrating along the wall normal direction to obtain the integral boundary layer
equations. Fast solution methods based on the solution of integral boundary layer
equations together with the inviscid potential equations coupled with an appropriate
viscous-inviscid interaction scheme [12–14] (also called interacting boundary layer
method) are routinely used to optimize shape of airfoils. Incorporating the effects
of blade add-ons like VGs into such tools will allow for better and more efficient
designs at a fraction of the cost compared to full three-dimensional CFD methods.

The main difficulty of this task is that while the vortices induced by the VGs are
three dimensional in nature, the integral boundary layer methods are typically used
to model two dimensional boundary layers. In this study, the nature of the turbulent
boundary layer behind VGs are examined and the requirements for an approximate
model that can capture the effects of VGs on a two-dimensional integral boundary
layer method are identified.

In the section 5.2 the boundary layer separation is examined for laminar and
turbulent flows. Section 5.3 presents the results from the 3D CFD simulations of
the flow past a VG on a flat plate. The similarities and differences of representing
the VG in 2D will also be examined. In section 5.4, a mixing layer parametrization
is used to explore the qualitative behavior of the 3D and 2D turbulent boundary
layers. Section 5.5 will briefly describe the integral boundary layer methods and
the methods used to derive the requisite closure relations for laminar and turbu-
lent flows. Further the differences in the boundary layer due to the VG will be
highlighted.
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5.2. The boundary layer
To understand how the VG can affect the boundary layer, a brief overview of the
behavior of laminar and turbulent boundary layers is presented. Finally, the effect
of the VG on a turbulent boundary layer is examined qualitatively.

5.2.1. Laminar boundary layer
The boundary layer plays a crucial role in determining the flow behavior at high
Reynolds number. Due to the no-slip condition at the wall, the incoming flow
slows down and the velocities are zero at the wall and gradually away from the
wall increases until it matches the edge velocity, ue, at the edge of the boundary
layer (approximately the free-stream velocity). The distance from the wall to the
edge of the boundary layer is known as the boundary layer thickness, δ. Based on
the boundary layer theory, and assuming the flow to be mostly aligned with the
x direction, the boundary layer equations for steady two dimensional flows can be
derived starting from the non-dimensional Navier-Stokes equations (equations 2.7
and 2.8 in chapter 2) and are given by

∂u

∂x
+ ∂v

∂y
= 0, (5.1)

∂u2

∂x
+ ∂uv

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2 , (5.2)

∂p

∂y
= 0. (5.3)

The equation 5.1 is the continuity equation which remains unchanged under
the assumption of large Re numbers (Re >> 1). The momentum equation in the
direction normal to the wall (y) is reduced to the condition that the normal pressure
gradient is zero across the boundary layer (equation 5.3). Thus the pressure in the
boundary layer is imposed on it by the flow outside the boundary layer. And this
flow outside the boundary layer is governed by the inviscid Euler equation as viscous
effects are negligible in this region. Applying the momentum equation, equation 5.2,
at the edge of the boundary layer, where v = 0, an equation for for pressure gradient
in terms of edge velocity can be found as

1
ρ

∂p

∂x
= −∂u2

e

∂x
. (5.4)

This relation is essentially the Bernoulli equation for inviscid flow along a streamline
which is expected to be valid at the edge of the boundary layer where the flow
becomes inviscid and viscous stresses are negligible.

Depending on the external pressure gradient, the slow moving boundary layer
can either remain attached or separate from the wall. Boundary layers are prone
to separation under adverse pressure gradients (figure 5.1). Consider a simplified
analysis and neglect the normal (y) component of velocity, v, for the momentum
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equation 5.2 (this assumption is not far from reality in most boundary layer flows)

u
∂u

∂x
= −∂p

∂x
+ ν

∂2u

∂y2 . (5.5)

In an adverse pressure gradient, where the pressure p is increasing, the pressure
gradient, ∂P

∂x is positive and only the shear stress contribution is preventing the
flow from separating. Very near to the wall, the shear stress is essentially the wall
stress, τw and the flow will separate once the wall stress contribution is not enough
to overcome the adverse gradient. In the absence of a pressure gradient (like flat
plates), ∂p

∂x = 0, separation occurs if the wall stress becomes zero (τw = 0) or an
inflection point appears in the boundary layer profile.

Figure 5.1: A schematic visualization of the boundary layer separation.

5.2.2. Turbulent boundary layer
Adding turbulence to flow has a significant effect on the boundary layers. Due to
increased energy transfer within the flow, there is now a significant amount of energy
even in the boundary layer. However, due to the no-slip condition the velocity at
the wall must still go to zero which leads to an even larger gradient very near the
wall. Using the Reynolds averaging procedure (see section 2.6.1), the turbulent
Reynolds stresses are represented in terms of the eddy viscosity, νt, and the mean
flow gradients (or strain rate) and the equation 5.5 becomes

u
∂u

∂x
= −1

ρ

∂p

∂x
+ (ν + νt)

∂2u

∂y2 . (5.6)

Since the eddy viscosity is positive and the wall shear stress is larger, it is easy
to see that the turbulent flow separates later than laminar flow and can overcome
larger adverse pressure gradients.

5.2.3. Vortex generator in the boundary layer
Adding a vortex generator (VG) has an analogous effect on turbulent boundary
layers as the introduction of turbulence had on laminar boundary layers [3]. As the
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name suggests, a vortex generator generates vortices that entrain high energy fluid
from outside of the boundary layer and mix it with the boundary layer flow. The
additional momentum and energy introduced to the boundary layer help to overcome
more severe adverse pressure gradients and the boundary layer can remain attached
for longer [3].

The vortex generator is assumed to be submerged in the boundary layer (low-
profile VG [2] or sub boundary layer VG [15]), but to extend well into the outer
layer of the boundary layer. For instance, the height of the vortex generators used in
experiments typically range from 5mm [6] to about 10mm [16]. From the operational
Reynolds numbers in the experiments, one can compute the height of the vortex
generators to be approximately between y+ = 1000 and y+ = 2050 which is far away
from the inner boundary layer where viscous stresses from the wall are dominant.
However, the additional shear layer introduced due to mixing will now create a new
region within the boundary layer where viscous stresses become significant again
away from the wall. Unlike a fully turbulent boundary layer where the outer layer is
completely dominated by Reynolds stresses, the VG will introduce additional mean
flow gradients and viscous stresses in the outer layer as well which will also lead to
an increase in the production of turbulent kinetic energy within the boundary layer.

Thus the presence of mixing induced by VGs will increase viscous dissipation due
to the additional mean flow gradients. The new eddy viscosity, ν′

t (which is different
than νt), will also increase due to additional production of turbulent kinetic energy.
Thus the extra viscous and eddy dissipation will lead to a more controlled rate
of growth of the boundary layer and delay separation. This can also be verified
by looking at the simplified relations in equations 5.5 and 5.6. If the VG were to
introduce an additional term to counter the pressure gradient,

u
∂u

∂x
= −1

ρ

∂p

∂x
+ (ν + ν′

t)
∂2u

∂y2 + viscous dissipation due to VG. (5.7)

The additional viscous dissipation and a larger ν′
t can help the boundary layer to

overcome an even larger adverse pressure gradient and remain attached for longer
than the turbulent boundary layer (equation 5.6). In order to analyze the effect of
VGs more quantitatively, numerical simulations are performed and are described in
the following section.

5.3. Numerical simulation
5.3.1. Three dimensional simulation
The pressure based solver is used to simulate the the flow over a flat plate with
vortex generator. The geometry of the vortex generator geometry is based on the
experimental study of Baldacchino et al [15]. The height of the vortex generators is
h = 5mm. An array of 15 pairs of vortex generators were used in the experiments.
Figure 5.2a shows the schematic of the rectangular vortex generators used in this
study. The distance between the trailing edges of the pair of vortex generators is
d = 12.5mm, the distance between the pairs of vortex generators is D = 30mm and
the incidence angle is β = 18◦ (see figure 5.2b).
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(a) Rectangular vane VG pair [15]. (b) Array of VGs [15] (top view).

Figure 5.2: Schematic of a pair of rectangular vortex generators (a) and the mesh of the
rectangular pair used in the 3D CFD simulations (b).

For the numerical study, only one pair used and a periodic boundary condition
is applied on the spanwise boundaries. The domain and the other boundary condi-
tions used for the simulation are shown in figure 5.3a and the vortex generators in
figure 5.3b. The trailing edge of the vortex generator is placed at xV G = 985mm
from the start of the plate. The domain is 2.1m long and 0.25m high. There are 82
points in the normal direction with a minimum grid spacing at the wall of 1×10−5m.
There are 816 nodes in the stream wise direction with the nodes clustered in the
vicinity of the vortex generator. A simulation without vortex generators on the
same domain with the same grid resolutions was also conducted.

(a) Flat plate domain (b) Pair of vortex generators.

Figure 5.3: Computational domain used for flat plate simulations (a), VG model (b).

Results
The results for the simulations with VGs are denoted as ’VG’ and the simulations
without VG as ’Clean’. The results are presented in terms of the scaled stream wise
location, sV G, given by

sV G = x− xV G

hV G
,

where xV G the location of the trailing edge of the VG and hV G is the height of the
VG. The results are presented in different planes as shown in figure 5.4. Here y = 0
represents the plane between the VG pair, y = TE represents the plane through
the trailing edge of the VG and y = D/3 represents the plane D/3 away from the
centerline. The solution is also extracted along the planes y = −TE and y = −D/3
that are symmetrically away from the y = 0 plane, as y = TE and y = D/3.

Figure 5.5 shows the velocity profile from the clean and VG cases at different
streamwise locations downstream of the VG. The velocity profiles in all the planes
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Figure 5.4: Different planes along which the information is presented.

deviate from the clean boundary layer. Figure 5.5a shows the velocity profiles at
a location sV G = −3 which is located upstream of the leading edge of the VG. As
the flow approaches the VGs, deviations are observed along the y = ±TE planes.
Relatively less deviation is observed along other planes because the VG is only
physically present along the y = ±TE plane. Figure 5.5b shows the velocity profiles
at a distance of sV G = 10. The velocity near the wall is much larger than the clean
simulation along the centerline y = 0. Along the y = ±TE plane, the velocity near
the wall is higher but the profile around the z = hV G level is still recovering after
encountering the trailing edge of the VG. A sharp shear layer appears at this height.
A velocity deficit appears along the y = ±D/3 around z = hV G while the profile
near the wall is similar to the clean boundary layer. The shear layers formed are
confined to a height of 2hV G. Figure 5.5c shows the velocity along the same planes
at a location further downstream, sV G = 25. The effect of the VG on the velocity
profiles is now spread out over a larger region. The velocity near the wall along
the y = 0 plane remains higher than the clean boundary layer. The velocity profile
along the y = ±TE planes near the wall is also larger than the clean boundary layer
and the shear layer formed due the trailing edge of the VG is now more diffuse.
Further downstream at sV G = 50 (figure 5.5d), the effect of the VG has spread over
an even larger distance in the direction normal to the wall. The velocity close to the
wall is larger than the clean simulations along all the planes and shear layers formed
have diffused. The effect of the VG can now be seen upto a height of approximately
4hV G along all the planes. The deviations in the velocity profiles in all the planes
are similar to those reported in Baldacchino et al [15].

Figure 5.6 shows the spanwise variation of the velocity at different streamwise
locations at three different heights normal to the wall. The first two locations
at a height of z = hV G and z = 2hV G are well within the boundary layer and the
third location at a height of z = 6hV G is just outside the edge of the boundary layer.
Figure 5.6a shows the velocity profiles just upstream of the VG. The flow has slowed
down in the vicinity of the VG at a height of z = hV G while the other two locations
remain largely unaffected. Figure 5.6b shows the velocity profiles at a location
sV G = 10 and the effect of the vortices can be seen clearly at heights z = hV G and
z = 2hV G. The two troughs in velocity observed at z = hV G correspond to the
y = ±TE planes. At z = 2hV G, the flow is affected only in the region between
y = 0 and y = ±TE. This was also observed in the normal velocity profiles in
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Figure 5.5: Boundary layer velocity profile from the 3D simulations at different spanwise
locations.

figure 5.5b. At a location sV G = 25 (figure 5.6c), the vortices appear to have
spread out wider beyond the y = ±TE planes and a greater influence is observed at
z = 2hV G. Further downstream at sV G = 50 (figure 5.6d) the effect of the vortices
is more diffuse at z = hV G, but stronger at z = 2hV G. The velocity just outside the
boundary layer at z = 6hV G remains unaffected at all the streamwise locations.

Discussion As expected, the flow is symmetric about the centerline, y = 0. While
such a symmetry is natural at the location of the VG due to the periodic array of
VGs, this symmetry extends far downstream after the VG as seen in figure 5.6d.
Similar analysis must be be performed for airfoils with VGs to verify this behavior.
The spanwise variation in the flow appears to be dominated by the orientation of
the VG upstream. This strong influence of the VG orientation on the flow far
downstream can be useful to understand the behavior of the turbulent boundary
layer using faster methods using simplified equations like the integral boundary layer
equations.

The integral boundary layer methods are used for two dimensional flow analy-
sis and while the flow behind a VG is not strictly two dimensional, the spanwise
interaction occurs only around the VG and the flow downstream develops as a two
dimensional boundary layer. In order to understand the differences between the 3D
flow field around a VG and a strictly two dimensional boundary layer as modeled
using IBL methods, a 2D simulation of only the y = TE plane is carried out and
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Figure 5.6: Results from the 3D simulations along different planes at different spanwise locations.

described in the following section.

5.3.2. Two dimensional numerical simulation
2D CFD simulations are performed under the same conditions as before using the
Spalarat-Allmaras turbulence models for steady, incompressible flow conditions, first
for no VG (clean) cases and then for cases including the VG under the same flow
conditions as the 3D simulation. The flat plate is 4.0m long and the VG is placed
at xV G = 0.985m corresponding to the y = TE plane. The trailing edge of the VG
is represented in the 2D domain as a zero thickness solid wall of the same height,
hV G perpendicular to the flat plate. The boundary conditions used are the same as
those shown in figure 5.3a.

Figure 5.7a shows that the effect of the VG on the velocity profile are observed
as far upstream as −10hV G and extends up to approximately 100hV G (figure 5.7b).
However, significant differences in the velocity profile are observed over a much
narrower range. In figure 5.8 the comparison between the 2D and 3D simulations
can be seen. Evidently, the behavior of the near wall region is completely different
in the 2D and 3D cases very close to the VG as seen in figure 5.8a, but the profiles
appear to behave similarly albeit with an offset as the flow moves further downstream
in figure 5.8b.

Figure 5.9a shows the eddy viscosity in the boundary layer for the 2D simulation
at various locations upstream and downstream of the VG. The effect of the VG is felt
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Figure 5.7: Comparison of velocity profiles with and without VG at various x locations.
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Figure 5.8: Comparison of velocity profiles with VG between 2D and 3D simulations at various x
locations.

slightly upstream starting in the 2D simulation. Figure 5.9b shows the comparison
of the eddy viscosity in the boundary layer between the 2D simulation and the 3D
simulation along the y = TE plane. Once again, near the VG, the behavior of
the two cases are very different. As the flow moves further downstream, both cases
behave qualitatively similarly but there is a difference in the magnitudes of the eddy
viscosity.
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The velocity and eddy viscosity results, especially in the near vicinity of the VG
indicate that the mixing process in this region are very different in 2D and 3D cases.
However, encouragingly, the results further downstream display similar qualitative
behavior. While representing the effect of the VG in 2D by a solid wall of zero
thickness is not accurate, the intention of this simulation was to check if the same
mixing process that occurs due to the VG can be approximated to some degree in
2D. To verify this, a brief introduction of the mixing layer is given below and the
results from the two simulations are examined further.

5.4. Mixing layer
The plane mixing layer is a free shear flow and is widely studied [3, 17]. Earlier
work (e.g., see, [18],[19] and [20]) in studying mixing layers have reported some
correlations for parameters like momentum thickness (of the mixing layer), width of
mixing region, eddy diffusivity and spreading rate under zero pressure gradient and
adverse pressure gradients [19, 20]. However, most of these studies are conducted in
the context of free shear flows and assume that the mixing layer can spread without
any constraints. This will not be the case here as the wall will significantly impact
the spreading of the mixing layer in one direction. As no external pressure gradient
exists in the flow over a flat plate, a self similar velocity profile can be expected to
form within the boundary layer region [18]. However, due to presence of the wall,
the similarity profiles are likely to be very different compared to the standard plane
mixing layer.

For a mixing layer [17] (figure 5.10), two imposed velocities, Uh and Ul of the two
parallel streams can be defined (figure 5.10). Based on these velocities, a character-

Figure 5.10: An example of a plane mixing layer.

istic convection velocity, Uc, and a characteristic velocity difference, Us, is defined
as,

Uc ≡ 1
2(Uh + Ul),

Us ≡ Uh − Ul.

In the present case, the mixing layer can be assumed to form in the vicinity of the
VG as the flow above y = hV G mixes with the flow below it. The characteristic
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velocities, Uh and Ul, are however not uniform and need to be computed. These
characteristic velocities are found as follows,

Ul =
∫ hV G

0 (ρu)udy∫ hV G

0 (ρu)dy
, (5.8)

Uh =
∫ δ

hV G
(ρu)udy∫ δ

hV G
(ρu)dy

. (5.9)

In both equations, the numerator represents the momentum flux and the denomi-
nator represents the mass flux within the bounds of integration. Thus, Uh and Ul

can be viewed as the average velocity with which the mass flux is convected in the
boundary layer. The stream wise location where this integration is carried out is
important since the mixing layer is assumed to form immediately after the VG.

To define the characteristic width of the mixing layer based on the local mean
velocity, U , a new weighting factor, α, is introduced such that

U = Ul + α(Uh − Ul), (5.10)

and then the width, w(x), defined as

w(x) = zα=0.9(x) − zα=0.1(x), (5.11)

and a reference lateral position is defined as

w(x) = 1
2(zα=0.9(x) + zα=0.1(x)). (5.12)

Here zα=0.9 represents the location where the local velocity can be found by setting
α = 0.9 in equation 5.10 and analogously zα=0.1 is the location where α = 0.1.
Based on these definitions, a scaled wall normal distance can be defined as,

ξ = z − w(x) − hV G

w(x) , (5.13)

and the scaled velocity as

f(ξ) = U − Uc

Us
. (5.14)

For a plane mixing layer, the scaled velocity must be self similar as shown in fig-
ure 5.11. The scaled velocity profile is bound by the two velocities of the two
streams, Uh and Ul. The upper half of the scaled profile tends towards the velocity
Uh and the lower half tends towards Ul. These equations will now be applied to the
results from the 2D and the 3D simulations. The characteristic velocities Uh and
Ul are computed at the start of the mixing layer which is assumed to be at sV G = 3.
xV G is assumed to be the same on all the planes for the 3D simulation and is set to
xV G = 0.985m corresponding to the TE location the y = ±TE plane, see figure 5.4.
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Figure 5.11: Example of a scaled velocity profile in a mixing layer [17].

5.4.1. Three dimensional simulation
The velocities at three different spanwise planes are scaled according to the mixing
layer relations and are presented in this section.

y = 0 Figure 5.12 shows the scaled velocity as a function of the scaled distance in
the plane y = 0. All the scaled velocity profiles collapse on a single curve, especially
away from the VG location. The collapse is not as good as the analytical example
because the two mixing velocities considered here are not uniform. The scaled
velocities deviate from the plane mixing layer profile in the lower half as the effect
of the wall is dominant.
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Figure 5.12: Scaled velocity and cross stream distance on the y = 0 plane.

y = ±TE Figure 5.13 shows the scaled velocity as a function of the scaled distance
in the plane y = ±TE. The collapse of the velocities is not as close as in the y = 0
plane. The deviation is stronger in the lower half of the profile, which is nearer to
the wall. Once again, the velocities in the upper half are more similar as the mixing
effect is more dominant than the presence of the wall.
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Figure 5.13: Scaled velocity and cross stream distance on the y = ±T E plane.

y = ±D/3 Figure 5.14 shows the scaled velocity as a function of the scaled distance
in the plane y = ±D/3. The collapse of the velocity profiles is better on this plane.
There is some deviation in the lower half where the flow encounters the wall, but it
is not as much as observed in the y = ±TE plane.
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Figure 5.14: Scaled velocity and cross stream distance on the y = ±D/3 plane.

While the scaled velocities do not behave exactly as a plane mixing layer, self
similarity is still observed to some extent in all the planes so far. The plane y = 0
displays the strongest self similarity indicating the mixing to be the strongest in
this plane. In the other planes, the scaled velocities deviate considerably in the
lower half of the mixing layer (when the scaled distance is negative). This is due
to increasing influence of the wall. The upper half of the scaled profiles match the
analytical profile more closely as mixing effects dominate in this region. The scaled
velocity profile is bound by the edge velocity of the boundary layer which is close to
the value of Uh whereas the velocities in the lower half of the profile are not bound
by Ul and reach zero at the wall. Thus, as the effect of the wall becomes more
prominent, the scaled velocity profile deviates further away from the analytical one.
Also, at the local Reynolds numbers, the y+ at the hV G is approximately 500. Thus,
part of the lower half of the mixing layer is likely interfering with the inner layer of
the boundary layer.
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5.4.2. Two dimensional mixing layer
Now the plane mixing layer scaling is applied to the results from the 2D simulation
to compare the difference between the qualitative behavior between the 2D and 3D
cases. The scaled velocity profiles for the 2D simulation are shown in figure 5.15.
In figure 5.15a, the scaled velocities all collapse on top of each other, however just
as with the 3D case, the shape of the collapsed curve is different from the standard
mixing layer due to the non uniform velocities at the start of the mixing layer. As the
flow moves downstream, the width of the mixing layer grows and the presence of the
wall inhibits the development leading to truncated profiles as seen in figure 5.15b.
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Figure 5.15: Scaled velocity and cross stream distance for the 2D simulation.

The scaled velocity profiles show a much closer resemblance to the plane mixing
layer in 2D than 3D which is expected. However away from the wall, both 2D and
3D simulations show a strong self similarity indicating that the mixing behavior is
dominant and is captured in both cases. These results indicate that the mixing layer
equations can be used to derive a parametric relation for the velocities. However, as
seen in the velocity and eddy viscosity profiles, the behavior in the near wall region
is completely different in the 2D and 3D simulations.

Before exploring the methods to model the effect of vortex generators on turbu-
lent boundary layers using a 2D integral boundary layer method, a brief introduction
of the integral boundary layer equations is presented.

5.5. Integral boundary layer equations
The integral boundary layer (IBL) equations can be obtained by taking the zeroth
and the first moment of the boundary layer equations and integrating them across
the direction normal to the wall. The nth moment of the boundary layer equation
is defined as [21]

[Eq. 5.2] × (n+ 1)un − [Eq. 5.1] × (un+1
e − un+1) = 0. (5.15)
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Integrating the boundary layer equations in the direction normal to the wall reduces
their dimensionality by one. New integral thicknesses are introduced as

δ∗ =
∫ δ

0

(
1 − u

ue

)
dy, (5.16)

θ =
∫ δ

0

u

ue

(
1 − u

ue

)
dy, (5.17)

δk =
∫ δ

0

u

ue

(
1 − u2

u2
e

)
dy. (5.18)

Here δ∗ is the displacement thickness, θ is the momentum thickness and δk is the
kinetic energy thickness. The corresponding shape factors are defined as

H = δ∗

θ
, (5.19)

Hk = δk

θ
. (5.20)

H and Hk are called shape factors. The integral boundary layer equations are
written in terms of the integral thicknesses and shape factors.

Momentum integral equation The momentum integral equation is obtained
by taking the zeroth moment of the boundary layer equations where the n = 0 in
equation 5.15.

dueθ

dx
= Cf

2 ue − (δ∗ + θ)due

dx
. (5.21)

Here ue is the velocity at the edge of the boundary layer, δ∗ and θ are the displace-
ment and momentum thickness respectively defined in equations 5.16 and 5.17. Cf

is the skin friction coefficient and is defined as

Cf = τw
1
2ρu

2
e

, (5.22)

where τw is the wall shear stress. Using the shape factor defined in equation 5.19,
the momentum integral equation can also be written as

dθ

dx
+ (2 +H) θ

ue

due

dx
= Cf

2 . (5.23)

Kinetic energy integral equation The kinetic energy integral equation is ob-
tained by taking the first moment of the boundary layer equations where n = 1 in
equation 5.15. Using the energy thickness definition in equation 5.18 the following
equation is obtained,

du3
eδ

k

dx
= 2CDu

3
e, (5.24)
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where δk is the kinetic energy thickness defined in equation 5.18. The dissipation
coefficient, CD, is defined as

D =
∫ δ

0
2τ ∂u
∂y
dy,

CD = D

1/2ρu3
e

.

Using the shape factor defined in equation 5.20 and equation 5.23, the kinetic energy
integral equation can also be written as

θ
dHk

dx
+Hk(1 −H) θ

ue

due

dx
= 2CD −HkCf

2 . (5.25)

5.5.1. Closure relations
The new variables introduced in equations 5.23 and 5.25 are θ, δ∗, δk, Cf and CD.
Using the shape factors H and Hk will only replace the variables δ∗ and δk. The
edge velocity ue can be found using an inviscid flow analysis and is considered to
be a known quantity in this system of equations. Equations 5.23 and 5.25 make no
assumptions about whether the flow is laminar or turbulent and are valid in both
cases. However despite starting from a closed system of equations, there are more
unknowns than the number of equations and this system of equations is not closed.
To close the system of equations, two dependent variables can be chosen from the
equations and closure relations must be defined for the other variables in terms of
the two chosen dependent variables. Typically, the momentum and displacement
thicknesses, θ and δ∗, or θ and the shape factor H are chosen. For ease of analysis,
closure relations are defined based on the non-dimensional shape factor H and the
Reynolds number based on momentum thickness, Reθ, as

Reθ = θue

ν
.

As noted earlier, despite starting from a closed system of equations the integral
boundary layer equations are not closed. This situation is a result of the integration
of the equations. While integrating the Navier-Stokes equations along the direction
normal to the wall, the details of the flow in the normal direction is lost. Thus, in
order to close the integral boundary layer equations, a velocity profile family of one
or more parameters that represent the flows under consideration must be used to
account for the simplification introduced during the integration procedure.

Laminar flow closure relations
Previously in section 4.2.1, a semi analytical velocity profile based on the solution
to the Blasisus equations was shown. However, the solution to Blasisus equation is
valid only for the flow over a flat plate and a more general profile is required. The
Falkner-Skan solution to the laminar boundary layer equations can be used to find
the laminar closure relations. Consider the flow over a wedge with an angle of πβ/2
with an incoming velocity of U0 as shown in figure 5.16. The edge velocity along
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Figure 5.16: A schematic of the flow past a wedge.

the solid surface is assumed to follow the relation

ue(x) = U0

( x
L

)m

, (5.26)

where L is a characteristic length scale and m is a dimensionless constant which is
determined by the wedge angle as

β = 2m
m+ 1 . (5.27)

β = 0 corresponds to the Blasisus solution for flow over a flat plate. Drela [22]
solved the Falkner-Skan equation using a prescribed shape parameter to obtain the
laminar closure relations as follows

Hk =
{

1.515 + 0.076 (4−H)2

H , H < 4,
1.515 + 0.040 (H−4)2

H , H > 4.
(5.28)

Reθ
Cf

2 =

⎧⎨⎩−0.067 + 0.01977 (7.4−H)2

H−1 , H < 7.4,

−0.067 + 0.022
(

1 − 1.4
H−6

)2
, H > 7.4.

(5.29)

Reθ
2CD

Hk
=
{

0.207 + 0.00205(4 −H)5.5, H < 4,
0.207 − 0.003 (H−4)2

(1+0.02(H−4)2) , H > 4.
(5.30)

Turbulent flow closure relations
Unlike laminar flows, no analytical or single parameter self similar solutions can be
found for the velocity profile in a turbulent boundary layer. As seen in section 4.2.2,
the turbulent boundary layer consists of a two layer structure. In the inner layer
both turbulent and molecular viscous stresses are relevant whereas in the the outer
layer, only the turbulent stress are important. Thus, the inner layer thickness scales
differently compared to the outer layer.

As seen in section 4.2.2, the velocity profile in the inner layer of the boundary
layer is defined based on the friction velocity, uτ , which in turn depends on the wall
shear stress. Thus, the wall shear stress is the primary scaling factor in the inner
layer of a turbulent boundary layer [22] and will be used to define other quanti-
ties. The most commonly used formula to compute the skin friction for turbulent
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boundary layers is the formula derived by Swafford [23]

Cf = 0.3 exp(−1.33H)
(log10Reθ)1.74+0.31H

+ 0.00011
(
tanh

(
4.0 − H

0.875

)
− 1.0

)
. (5.31)

Drela [22] derived the closure relation for the kinetic energy shape factor Hk using
the combination of the velocity profile in the inner and outer layers of the turbulent
boundary layer. The velocity profile used was first derived by Swafford [23] as

u

ue
= uτ

ue

s

0.09 tan
−1(0.09y+) +

(
1 − uτ

ue

sπ

0.18

)
tanh1/2

(
a
(y
θ

)b
)
, (5.32)

where

uτ

ue
=

⏐⏐⏐⏐⏐Cf

2

⏐⏐⏐⏐⏐
1
2

, s = Cf

|Cf |
, y+ = uτy

ν
.

a and b are two constants which are calculated for a given δ∗ and θ by using the
skin friction formula in equation 5.31 and substituting the velocity profile in the
defintiions of δ∗ and θ. The closure relation for the kinetic energy shape factor
obtained by Drela [22] is

Hk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.505 + 4

Reθ
+
(

0.165 − 1.6√
Reθ

)
(H0−H)1.6

H , H < H0

1.505 + 4
Reθ

+ (H0 −H)2
(

0.04
H + 0.007 ln(Reθ

(H−H0+ 4
ln(Reθ) )2

)
, H > H0.

(5.33)

where
H0 = 3.0 + 400

Reθ
.

Two distinct approaches can be used to find the closure relations for the dissi-
pation coefficient. The first approach assumes that there are two distinct contribu-
tions to the integral dissipation coefficient - one from the wall layer and one from
the outer layer (also known as the wake layer). One such closure relation from Le
Balleur (taken from Drela [22]) is

CD = Cf

2
us

ue
+ Kπ2

16

(
1 − us

ue

)3
. (5.34)

The second approach [22] is based on the concept of an equilibrium boundary layer.
A new pressure gradient parameter analogous to the Falkner-Skan pressure gradient
parameter and a modified shape parameter are introduced for turbulent flows. The
turbulent boundary layers can be shown to be self similar when using the new
parameters and closure relations can be derived similar to the laminar flow closures.
The new pressure gradient parameter, β is given by

β = − 2
Cf

δ∗

ue

due

dx
. (5.35)
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Experimental evidence shows that if the new pressure gradient parameter is con-
stant, the modified shape factor, G,

G = H − 1
H

√
2
Cf

(5.36)

is also constant. The empirical relation between G and β is [22]

G = 6.7
√

1 + 0.75β. (5.37)

Using the expressions for G, β and assuming equilibrium conditions in the boundary
layer (i.e. constant shape factor), the closure relation for CD is given by

2CD

Hk
= Cf

2

(
4
H

− 1
)

1
3 + 0.03

(
H − 1
H

)3
. (5.38)

Both the closure relations presented so far for CD are based on equilibrium flow
conditions. As discussed earlier in section 5.2.2, in a turbulent flow additional
stresses appear as a result of the Reynolds averaging of the turbulent fluctuations
and is given by,

τ = µ
∂u

∂y
− ρu′v′. (5.39)

Under the equilibrium boundary layer assumption, the closure relations for the
dissipation coefficient, CD, already involve a velocity gradient weighted integral of
the Reynolds stress [22]. However such equilibrium profiles assume only a local
dependence of boundary layer parameters on Reynolds stresses. This assumption
does not hold in many situations like flows under an adverse pressure gradient that
is increasing downstream or in flows were an adverse pressure gradient is suddenly
removed, both of which can occur around airfoil trailing edges.

To account for upstream history effects another equation known as the shear lag
equation [12, 13] is added to the system of equations. First, a new non dimensional
quantity, Cτ , the maximum Reynolds shear stress coefficient is introduced as,

Cτ = 1
u2

e

(−u′v′)max. (5.40)

Then it is assumed that the maximum Reynolds shear stress point is representative
of the Reynolds shear stress level of the entire boundary layer. The local shear
stress is obtained by solving a shear-stress transport equation. A parameter, the
equilibrium shear stress coefficient, CτEQ

, is defined as the value of the shear stress
coefficient which would occur if the local boundary layer was part of an equilibrium
flow [12, 22]. The shear lag equation is defined as

δ

Cτ

dCτ

dx
= 2a1

ue

u

δ

L
(C1/2

τEQ
− C1/2

τ ). (5.41)

The values of the constants commonly used are [12, 13, 22]

a1 = 0.15, ue

u
= 1.5, L

δ
= 0.08.

Here L represents the conventional mixing length used in turbulence modeling.
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5.5.2. Effect of vortex generators
Boundary layer thickness
The effect of VG on the integral boundary layer parameters is examined by extract-
ing the displacement and momentum thicknesses and shape factors from the CFD
simulations. The edge of the boundary layer is located based on vorticity magnitude
and then the displacement, momentum thickness and other boundary layer param-
eters are calculated by integrating the velocity profiles numerically. The extracted
thicknesses are shown in figures 5.17a and 5.17b. There is a significant increase in
the displacement and a drop in momentum thickness at the xV G = 0.985m. Once
again, the planes y = ±TE and y = ±D/3 are symmetric. As the flow moves
downstream all the planes tend towards a similar value. Figures 5.18a and 5.18b
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Figure 5.17: Displacement and momentum thickness along the flat plate computed from the 3D
CFD simulations.

show the shape factors H and Hk computed from the CFD simulations. The shape
factor along the planes y = ±D/3 is very close to the clean simulation whereas the
other planes deviate significantly in the vicinity of the VG and then match the clean
simulation as the flow moves downstream.
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Figure 5.18: Shape factors H and Hk along the flat plate computed from the 3D CFD
simulations.

Figures 5.19a and 5.19b show the integral boundary layer quantities computed
from the 2D CFD simulation. While a sharp increase in the displacement thickness
similar to the 3D simulation is observed, the behavior of the momentum thickness
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is different. The shape factors H and Hk behave similarly in both the 2D and 3D
simulations. The values of H and Hk from both the 2D and 3D simulations tend
towards approximately 1.34 and 0.78 away from the VG.
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Figure 5.19: Integral boundary layer parameters along the flat plate computed from the 2D CFD
simulations.

From these results, it appears that the 2D simulation matches the behavior of
the integral boundary layer properties of the 3D simulation except in the immediate
vicinity of the VG.

Closure relations
Figure 5.20 shows the skin friction coefficient from the numerical simulations with
and without VGs. For the VG simulations, the skin friction coefficient is shown
in five different planes - y = 0, y = ±TE and y = ±D/3. Upstream of the VG
location, the skin friction coefficient behaves identically with and without VGs in
all the planes considered. There is a sharp spike at the location of the VG and
subsequently, the Cf is significantly different to the clean simulations. Symmetry
is observed in the Cf results around y = 0, similar to the velocity profiles. The
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Figure 5.20: Comparison of skin friction coefficient (Cf ) with and without a VG.

deviation from the clean results are the largest in the y = 0 plane and lowest in the
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y = ±D/3 planes. As the flow moves downstream, the Cf from the VG simulations
start to match the clean simulation results. The Cf along the planes y = ±D/3
match the clean results earlier than the other planes. From these results, there
appears to be a region immediately downstream of the VG where the behavior of
the turbulent boundary layer even in the near wall region is altered and this behavior
recovers back to the standard turbulent boundary layer further downstream.

While the near wall region or the inner boundary layer recovers to a profile similar
to the clean boundary layer, the behavior in the outer layer is yet to be examined.
Figure 5.21 shows the eddy viscosity computed from the CFD simulations at different
streamwise locations in the y = 0, y = ±TE and y = ±D/3 planes. As expected no
difference between the clean and VG eddy viscosity in the outer layer is observed at
sV G = −3. As the flow moves downstream, the outer layer is significantly different
in the VG simulation. At sV G = 10 and sV G = 50 (figures 5.21c and 5.21c), the
eddy viscosity profiles are symmetric around y = 0. Further downstream, the eddy
viscosity remains different at sV G = 199 as seen in figure 5.21d. However, at this
location no difference between the planes is observed.
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Figure 5.21: Boundary layer velocity profile from the 3D simulations at different spanwise
locations.

The presence of the VG causes a deviation in not only the outer layer of the
turbulent boundary layer, but also in the near wall region or the inner layer. How-
ever, the inner layer appears to recover back to the standard turbulent boundary
layer, but the outer layer remains different. As seen in figure 5.20, the skin friction
coefficient, which is used as a scaling parameter for the inner layer, is different and
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equation 5.31 is no longer valid. Similarly, since the eddy viscosity profiles are now
different, the Reynolds stresses in the boundary layer will behave differently and the
shear lag equation needs to be re-examined.

In order to derive these closure relations the mixing layer scaling shown in sec-
tion 5.4 can be used. However, in order to derive such relations, more data from
numerical simulations and experiments of VGs at different Reynolds numbers and
configurations are required.

5.6. Conclusions and future work
CFD simulations of the flow over a vortex generator(VG) on a flat plate were per-
formed using the new pressure based solver. The nature of the turbulent boundary
layer in the presence of a VG was examined and compared to a clean boundary layer.
It was observed that while the boundary layer is three dimensional, the spanwise
variation of the velocity in the boundary layer is determined by the orientation of
the VG. Spanwise symmetry was observed not only in the vicinity of the VG but
also far downstream. This symmetry can be taken advantage of to model the effect
of VGs in simpler two dimensional methods. To identify the difference between a
two dimensional approximation and the fully resolved VG simulation in 3D, a 2D
CFD simulation of one of the planes of the 3D domain was carried out. The 2D
boundary layer with the VG (represented by a zero thickness line) behaves differ-
ently in the vicinity of the VG and in the near wall region. However, away from
the wall, both the 2D and 3D boundary layers show similar qualitative behavior
downstream of the VG. To better understand the qualitative behavior of the two
boundary layers,the velocities in the boundary layers were scaled using the plane
mixing layer relations. Since the vortex generators mixes high energy fluid from
outside the boundary layer with the slower moving boundary layer the velocities are
likely to resemble a mixing layer. The scaled velocities within this embedded mixing
layer behave differently than a standard plane mixing layer especially in near the
wall. Away from the wall, the scaled velocities show very good self symmetry. This
self symmetry was observed along the different planes in the 3D simulation and in
the 2D simulation. The velocities in the mid plane between the two VGs resembled
the plane mixing layer more closely than in other planes.

This velocity scaling can be taken advantage of to model the effect of VGs us-
ing simpler two dimensional methods based on the integral boundary layer (IBL)
equations. To solve the IBL equations closure relations need to be derived. These
closure relations are currently based on velocity profiles observed in standard tur-
bulent boundary layers. To derive new closure relations based on the mixing layer
scaling, more numerical simulations and experiments need to be carried out at dif-
ferent Reynolds numbers and VG configurations.
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6
Wind energy applications:

Roughness modeling
The surface of wind turbine blades are prone to degradation due to exposure to the
elements. Rain, hail, insects are among the many causes of turbine blade degrada-
tion or erosion. Surface degradation of the wind turbine blades leads to a reduction
in the aerodynamic performance, resulting in power losses. The effect of surface
degradation is studied by modeling the turbine blade as a rough surface. Surface
roughness can be positive (insects or other foreign objects) or negative (erosion, de-
lamination). The individual roughness elements are however very small and it is not
always feasible to study the actual degraded surface. Thus various roughness models
have been proposed in the literature which eliminate the need to accurately model
the degraded surface by representing erosion with a virtual surface and modeling the
effect of erosion on the flow quantities near the eroded surface. In this study, the
reduction in performance of airfoils due to leading edge roughness is quantified. Dif-
ferent roughness models are investigated and evaluated against theoretical models.
Additionally, the effect of roughness on different integral boundary layer quantities
like displacement thickness, momentum thickness and skin friction are presented.

6.1. Introduction
Leading edge erosion is an issue of growing concern in the wind turbine industry
in recent years. The combination of growth in the size of wind turbines, increased
offshore installations, especially in locations with more adverse weather conditions,
has made this subject crucial to the industry [2]. Erosion of turbine blades are largely
caused by rain, hailstones, accumulation of contaminants and tends to change the
shape of the airfoils. This leads to a reduction in aerodynamic performance of
the affected sections. Han[3] presented the effects of contamination of the airfoil

This chapter was published in the journal Renewable Energy [1]. Other contributing authors were
Hüseyin Özdemir and Edwin van der Weide.
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used at blade tips on a 5 MW NREL turbine blade using CFD simulations. They
report a worst case scenario where the Annual Energy Production (AEP) drops by
3.7%. Herring[2] presents a thorough review on the growing importance of leading
edge erosion and different coating alternatives to reduce the impact of erosion. A
wide range of drop in AEP, from about 25% to about 3.7%, is reported and the
authors suggest it is due to different operating conditions and roughness levels used
to evaluate the impact of erosion. The authors also note that repair of moderate
erosion can recover the AEP by about 2%.

In order to quantify the adverse effects of roughness the flow around the turbine
blades should be investigated. Laminar flow tends to transition to turbulent flow
prematurely in presence of roughness. A review of experimental approaches to
model roughness and its effect on transition can be found in Ehrmann et al [4].
Langel et al. [5] performed experiments on two airfoils by adding cut vinyl decals
and focused on 100 < Rek < 400, where Rek is the Reynolds number based on
roughness height k. They also present a numerical approach to model the effect of
roughness on transition by adding a scalar field variable. The new scalar variable
is used to modify the γ − Reθ transition model [6]. Sareen et al. [7] note that
most of the experimental studies on roughness use strips or zigzag tapes to simulate
real roughness and not many studies exist on negative roughness like erosion where
material is lost from the blade.

Apart from causing early transition, the nature of the turbulent boundary layer
also changes due to roughness. Skin friction increases and a shift in the velocity
profile in the inner part of the boundary layer is observed. The additional dissipation
near the roughness elements leads to thickening of the boundary layer which can
make the boundary layer prone to early separation.

The concept of equivalent sand grain roughness is widely used in turbulence mod-
els to account for the effect of roughness on turbulent boundary layers. Nikuradse[8]
performed experiments to measure pressure losses across pipes due to roughness,
which forms the basis of the sand grain roughness concept. Nikuradse provided
relations for the loss in pressure head (friction) and the velocity shift as a function
of sand grain roughness heights. Real roughness is first converted to equivalent
sand grain roughness when using the roughness models for RANS turbulence mod-
els. Typically the rough surface is replaced by a smooth surface and the effect of
roughness is modeled as extra dissipation in the inner boundary layer.

Integral boundary layer based tools like RFOIL[9] are used extensively in the
wind energy community for quick and accurate analysis of airfoil performance, es-
pecially in combination with other methods like Blade Element Momentum theory,
to obtain the power output of wind turbines in a relatively inexpensive manner.
However, it is restricted mainly to clean airfoils due to lack of research on develop-
ing roughness models for integral boundary layer methods. Olsen et al[10] recently
proposed a new closure relation for skin friction in the presence of roughness. The
authors also note that further work is necessary to refine their study.

In this study, roughness models for the SA and SST k − ω turbulence models
are implemented in the open source tool SU2[11]. The grid requirements and the
accuracy of the two models are examined and validated against experimental data.
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Two airfoils are considered - NACA 652215 and a popular wind turbine airfoil DU-
96-W-180. The NACA 652215 airfoil has been used for validating roughness models
earlier[12][13]. Sareen et al. [7] performed experiments on the DU-W-96-180 with
’negative’ roughness. Thus different ways to obtain equivalent sand grain roughness
for ’negative’ roughness are also examined in this paper. The numerical solution of
the RANS equations is then used to analyze the behaviour of the turbulent boundary
layer and the various integral boundary layer quantities in the presence of roughness
as well as to analyze the integral boundary layer parameters in order to improve
roughness modeling in integral boundary layer methods.

The organization of the paper is as follows: the two different roughness models
for RANS are presented in section 6.2, validation cases for the roughness models
are presented in section 6.3. Based on the results in section 6.3, the SA roughness
model is validated against experiments on airfoils in section 6.4. In section 6.5, the
effect of roughness on various integral boundary layer properties is analysed. The
conclusions are presented in section 6.6.

6.2. Roughness modeling
To motivate the roughness model used in this study, a brief introduction of turbulent
boundary layers and the impact of roughness is presented below.

The turbulent boundary layer can be broadly divided into two regions [14, 15];
the inner region where viscous dissipation is comparable to the turbulent dissipation
and the outer region where turbulence dissipation dominates completely. The inner
region can be further subdivided into three regions - the viscous sub-layer where
viscous effects dominate and turbulent effects are absent, a buffer region where the
turbulent stresses start to grow and finally an overlap region or a logarithmic region
where the turbulent and viscous dissipation match. The overlap region leads into
the outer layer of the boundary layer where viscous effects are minimal. The velocity
profile in the viscous sub-layer and overlap region can be written respectively as

u+ = y+, y+ ≤ 5, (6.1)

u+ = 1
κ
ln(y+) + C, y+ > 30. (6.2)

The region of the boundary layer between 5 ≤ y+ ≤ 30 is the buffer region. In the
above relations, y+ is the non dimensional wall normal coordinate and u+ is the
normalized velocity defined as

y+ = yuτ

ν
, u+ = u

uτ
, uτ =

√
τw

ρ
.

Here uτ is known as the wall friction velocity and is used as the velocity scale close
to the wall, τw is the wall shear stress, ρ is the density, u is the local velocity and ν
is the kinematic viscosity. The constant in equation 6.2 for a smooth wall is known
to be C = 5.0.
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The presence of surface roughness on the wall alters the nature of the velocity
distribution near the wall. The roughness elements will introduce new turbulent
fluctuations in the flow increasing the skin friction. Typically, a standardized no-
tion of roughness known as the "equivalent sand grain roughness height (ks)" is used
to denote roughness of a wall [8, 15, 16]. A given physical roughness distribution is
converted into the "equivalent sand grain roughness height" using empirical corre-
lations [17–19]. A more detailed review is presented in section 6.4.3. Based on the
non dimensional roughness height,

k+
s = ksuτ/ν, (6.3)

three regimes of roughness can be identified [15]. If the roughness elements are
within the viscous sub-layer (k+

s ≤ 5, hydraulically smooth), the effect of roughness
is not relevant and there is no difference with the smooth velocity profile. As the
height of the roughness element increases (5 ≤ k+

s ≤ 70, transitionally rough), a shift
in the velocity profile is observed. Once the roughness elements are fully within the
overlap region (k+

s > 70, fully rough), the viscous sub-layer plays no part and the
flow is in the fully rough regime. It must be noted here that the equivalent sand
grain roughness concept typically applies only to the commonly observed distributed
roughness (k− type roughness [20]) and not to isolated roughness elements. To
reproduce the proper shift ∆u+ in the boundary layer velocity profiles, turbulence
models typically increase the eddy viscosity dissipation within the inner part of the
boundary layer [16]. Aupoix et al. [16], identify two methods to accomplish this
with eddy viscosity based turbulence models (e.g SA and SST):

1. Finite eddy viscosity at the wall which can be interpreted as using a virtual
wall to represent roughness and

2. Zero eddy viscosity at the wall where the origin of the wall is at the bottom
of roughness but turbulence damping in the wall region is reduced.

With this background on roughness modeling in turbulent boundary layers, rough-
ness models for the SA and SST turbulence models are presented.

6.2.1. Roughness modification for SA model
The roughness modification proposed by Boeing [16, 21] is considered in this section.
An alternate modification was also proposed by ONERA in Aupoix et al. [16], but
is not considered since it requires the additional input of the friction velocity. The
effect of roughness is accounted for by shifting the virtual wall to the top of the
roughness element. This can be achieved by offsetting the distance to the wall
everywhere. The changes to the turbulence model are

dnew = dmin + 0.03ks, (6.4)

χ = ν̃

ν
+ cR1

ks

dnew
, (6.5)

fv2 = 1 − ν̃

ν + ν̃fv1
. (6.6)
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with cR1 = 0.5. The eddy viscosity at the wall is now changed from ν̃ = 0 to a
non-zero value by using a mixed (Robin) boundary condition at the wall,

∂ν̃

∂n

⏐⏐⏐⏐
wall

= ν̃wall

0.03ks
, (6.7)

where ∂ν̃
∂n is the gradient of ν̃ in the direction normal to the wall.

6.2.2. Roughness modification for SST model
The effect of roughness can be accounted for in the k−ω SST turbulence model by
modifying the boundary conditions at the wall as [22]

krough = 0, (6.8)

ωrough = (µτ )2SR

ν
, (6.9)

where

SR =
{

( 50
k+

s
)2, k+

s ≤ 25,
( 100

k+
s

), k+
s > 25.

From equation 3.83, the eddy viscosity remains zero at the wall, but there is an
increase in turbulence dissipation compared to the clean boundary conditions. Here
krough is the turbulent kinetic energy and k+

s is the non dimensional equivalent sand
grain roughness height defined in equation 6.3.

The two roughness models are implemented in SU2 and are validated below.

6.3. Model validation
6.3.1. Turbulent flow over a 2-D flat plate
Grid refinement study
Turbulent flow over a flat plate with different roughness heights is simulated with
the SA and the SST turbulence models and their respective roughness corrections
presented above. The flat plate domain is 2m long and 1m high and Re = 6.0×106.
A grid refinement study is carried out for the geometry under clean and three
roughness levels. There are 57, 113 and 225 points on the surface of the 2-D flat
plate for the three grids. The minimum grid spacing is ∆y1 ≈ 2 × 10−6m. A
second set of grids are made with same geometry and same number of points on
the surface but with a minimum grid spacing of ∆y2 ≈ 3 × 10−8m for the SST
roughness model. A growth ratio of 1.09 is used in the normal direction. The skin
friction values computed at x = 0.93m are tabulated in table 6.1. Three different
roughness heights, ks = 1.23 × 10−4m, ks = 2.46 × 10−4m and ks = 9.48 × 10−4m
are tested. The k+

s values are around 25, 50 and 200 respectively. A grid spacing of
∆y1 gives y+ ≈ 0.3 at x = 0.93 under clean conditions. As seen in table 6.1, a grid
independent solution is obtained for the clean case for both turbulence models with
this minimum grid spacing. The SA roughness model gives largely grid independent
result for all the roughness heights. However, a grid independent solution is not
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ks(m) N SA SST(∆y1) SST(∆y2)

Clean
57 0.00273 0.00267 0.00272
113 0.00274 0.00271 0.00274
225 0.00274 0.00273 0.00274

1.23 ×
10−4

57 0.00369 0.00335 0.00346
113 0.00382 0.00341 0.00346
225 0.00382 0.00344 0.00346

2.46 ×
10−4

57 0.00451 0.00348 0.00374
113 0.00457 0.00361 0.00374
225 0.00457 0.00368 0.00374

9.84 ×
10−4

57 0.00605 0.00375 0.00424
113 0.00599 0.00392 0.00425
225 0.00593 0.00413 0.00425

Table 6.1: Skin friction (Cf ) at x = 0.93m for different grid resolutions and roughness levels with
SA and SST. N denotes the number of points on the surface of the flat plate.

possible under rough conditions with the SST model. The variation is marginal at
low roughness heights and increases as the roughness height increases. With the
grid spacing of ∆y2, grid independent solutions at different roughness heights are
obtained with the SST model as well. The y+ under clean conditions for this grid
spacing is 0.006.

The first two roughness heights are in the transitional roughness regime while
the third roughness height is in the fully rough regime. The SA roughness modifica-
tion gives a grid independent solution with a minimum y+ ≈ 0.3 whereas the SST
roughness model fails to do so in the fully rough regime. This is likely due to how
the roughness modification is introduced in the two models. The eddy viscosity at
the wall is directly modified in SA but in SST it remains zero. In the fully rough
regime, there is a non-zero eddy viscosity in the inner region of the boundary layer
where the viscous sub layer previously existed. Since the eddy viscosity is still zero
at the wall for the SST roughness modification, to capture the steep increase in eddy
viscosity a finer mesh is likely required compared to the SA roughness modification.

Velocity profiles
Despite the finer mesh the skin friction values predicted by the SST roughness model
do not match those from the SA model especially under fully rough conditions
(table 6.1). The velocity profiles in the inner boundary layer are now investigated
to determine the accuracy of the two models. The velocity profiles for different
roughness heights are presented in figures 6.1 and 6.2. The profiles are computed
based on the grid independent results i.e. with a grid spacing of ∆y1 for SA and
∆y2 for SST. From figures 6.1 and 6.2, we can see that the clean case matches
the viscous sub-layer and log law in the overlap region closely for both the SA and
SST models. Further, increasing the equivalent roughness height has the predicted
effect of a shift of the velocity profile away from the clean case and once k+

s > 70,
the viscous sub-layer disappears. To further verify the two results, a comparison
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is made with the empirical shift in velocity profile as proposed by Nikuradse [23]
shown below.

u+ = 1
κ
log(y

+

k+
s

) +B, (6.10)

where κ = 0.40 and the shift B is given by

1 < k+
s < 3.5, B = 5.5 + 1

κ
log(k+

s ),

3.5 < k+
s < 7, B = 6.59 + 1.52log(k+

s ),
7 < k+

s < 14, B = 9.58,
14 < k+

s < 68, B = 11.5 − 0.7log(k+
s ),

68 < k+
s , B = 8.48.

Comparing the empirical predictions of the velocity shift (figure 6.1), a slight over-
prediction is observed in the transitionally rough region by the SA roughness model.
This was also reported in Knopp et al[13]. The SST roughness model does not per-
form as well as the SA model especially in the fully rough regime (figure 6.2) despite
using a much finer grid. The limitations in the k−ω SST roughness model are also
reported elsewhere [13, 23, 24]. It must be noted that various corrections for the SST
roughness model have been proposed (for example [13, 23]) but are not investigated
in the current study.
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Figure 6.1: A comparison of velocity shifts obtained from the SA model to the theoretical value.
Numerical results shown in solid and theoretical results shown by dashed lines.

6.3.2. Blanchard experiments
In this section, the two roughness models are compared to the experimental data
from Blanchard obtained from Aupoix et al [16]. The sand grain roughness height
was 4.25 × 10−4m. With an incoming velocity of 45ms−1, the simulation is carried
out on a 2m long flat plate. The resulting Reynolds number is Re = 6.46×106. The
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Figure 6.2: A comparison of velocity shifts obtained from the SST model to the theoretical
value.Numerical results shown in solid and theoretical results shown by dashed lines.

y+ of the mesh used is less than 0.4 throughout the domain for the SA roughness
model and less than 0.007 for the SST roughness model. The comparison is shown
in figure 6.3. Both the SA and SST models predict a higher skin friction compared
to the clean flat plate but the results from the SA roughness model are significantly
closer to the experimental data. The resulting k+

s ≈ 150 makes the flow fully rough.
As seen in figure 6.2, the SST roughness model performs poorly in this regime which
results in an underprediction of the skin friction.

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

C
f

x

Skin friction on rough walls, Blanchard expt

Experiment
Clean

Rough SA
Rough SST

Figure 6.3: Comparison of skin friction coefficient (Cf ) from SST and SA roughness models to
experimental data from Blanchard[16].
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6.4. Roughness on airfoil sections
As seen in section 6.3.1, a very fine grid in the wall normal direction is required
for the SST roughness model compared to the SA roughness model, which gives
grid independent results with meshes comparable to the clean cases. Additionally,
despite the fine grid the SST roughness model performed poorly compared to the
SA roughness model in predicting the skin friction for the flat plate. Therefore in
the following sections only the SA roughness model will be used. A chord length (c)
of 1m is assumed and the roughness values are normalized by the chord length.

6.4.1. NACA 652215
In this section the SA model is further validated against the NACA 652215 airfoil.
The Reynolds number is Re = 2.6 × 106 and the roughness covers the entire upper
surface and on the lower surface from the leading edge up to x/c = 0.15. Three
roughness heights ks/c = 1.54 × 10−4, ks/c = 3.08 × 10−4 and ks/c = 1.23 ×
10−3 are considered here. Clean experiments were performed by Abbot and von
Doenhoff [25]. Ljungstrom performed experiments with different roughness heights
on the NACA 652A215 airfoil, a closely related airfoil. These experiments have been
used to validate roughness models by Knopp [13] and Hellsten [12] previously. The
experimental data are also extracted from Knopp and Hellsten.

Grid details
A two dimensional C-grid topology (figure 6.4) is used for all the simulations. A grid
refinement study is carried out at an angle of attack of 8◦ on meshes with 150, 250
and 450 nodes on the airfoil surface. A y+ ≈ 0.3 is maintained for the three grids. A
growth ratio of 1.09 is used within the boundary layer. The computational domain
extends to 150 chord lengths in all directions . The grid is shown in figure 6.5.
The resulting lift and drag coefficients are listed in table 6.2. Since no appreciable
difference is observed between the results on the grids with 250 and 450 points (see
table 6.2), the grid with 250 points on the airfoil was used for further computations.
The far field and wall boundary conditions are applied at the outer edge of the
domain and on the airfoil respectively.

Figure 6.4: Grid used for NACA 652215 simulations.
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Figure 6.5: Zoom of the grid around NACA 652215 airfoil.

N Cl Cd

150 1.0273 0.0149
250 1.0336 0.0141
450 1.0346 0.0138

Table 6.2: Lift and Drag coefficients with different grid resolutions for the NACA 652215 airfoil.
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Figure 6.6: Comparison of NACA 652215 polars against experiments and numerical results from
SU2 and RFOIL. Expt(L) refers to results from Ljungstrom and Expt(A) from Abbot and von
Doenhoff[25].

Clean Results
Figure 6.6 shows the comparison of the numerical results from the SA model under
clean conditions. The results from SU2 compare very well against results from
RFOIL [9] and the experiments from Abbot [25] at lower angles of attack, but SU2
overpredicts the maximum lift. This could be due to a later prediction of the flow
separation by the SA turbulence model compared to the experiments. Since no
experimental pressure data is available, this cannot be confirmed. However, the lift
values reported by Ljungstrom are significantly lower. Since the two airfoils under
consideration are supposed to be very similar, Hellsten [12] concludes that lift values
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reported by Ljungstrom are too low likely due to imperfections from a retracted
flap in the airfoil geometry setup. The absolute values of the lift coefficients do not
compare well against the experimental data from Ljungstrom, but considering the
comments of Hellsten the absolute lift coefficient values are not comparable under
clean or rough conditions. The maximum lift is observed around an angle of attack
of 16◦ for the clean case in both numerical and experimental data.
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Figure 6.7: Comparison of NACA 652215 polars against experiments and numerical results with
different roughness heights. Expt(L) refers to results from Ljungstrom.

Rough Results
In figure 6.7 the predicted lift coefficients with different roughness heights are shown.
With increasing roughness, the maximum lift value and the angle at which this
occurs decrease. Based on the computed skin friction values at an angle of attack
of 8◦, k+

s varies from 70 to about 850. These values suggest the wall is likely to
be fully rough but it will vary depending on the flow conditions. As noted earlier,
the absolute values of the lift coefficients do not match, but the relative drop of
lift from SU2 matches closely with the experiments (table 6.3). However, SU2
predicts a higher value for the angle at which the maximum lift occurs compared
to experiments. This is again likely due to the later prediction of the separation
location by the SA model.

ks/c Experiment SU2
1.54 × 10−4 14.22 13.38
3.08 × 10−4 22.20 19.50
1.23 × 10−3 29.08 30.03

Table 6.3: Reduction in maximum lift (%) observed in experiments and SU2 for different roughness
heights.
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6.4.2. DU-96-W300
A typical wind turbine airfoil, DU-97-300, is chosen to test the effect of rough-
ness and verify if VGs can alleviate the anticipated drop in performance. This
choice is motivated by the availability of experimental data for clean and VG cases.
The geometry of the VG is chosen from the AVATAR experimental database (fig-
ure 6.8) [26, 27]. The simulations are carried out at Re = 2.0 × 106 for both clean
and VG cases, for which a 3D mesh is generated where the airfoil is extruded in
span direction and a body-fitted mesh is generated around the VG geometry. A
symmetry boundary condition is used on the spanwise extrusion boundaries.

The following cases are considered:

1. Airfoil with no roughness or VGs under fully turbulent conditions (denoted as
’clean’),

2. Airfoil with VG under fully turbulent conditions (’VG’),

3. Airfoil with roughness (’rough’) and

4. Airfoil with VG and roughness (’VGrough’).

For the clean airfoil, a grid refinement study is carried out at AoA = 2.5◦, which
corresponds to the design angle of attack of this airfoil section on the AVATAR
reference turbine blade under normal operating conditions (incoming wind speed of
10m/s). The coarsest grid has 128 points (lvl1), the reference grid (lvl2) has 300
points and the finest grid (lvl3) has 512 points on the airfoil and 4 points in the
span direction. Figure 6.8 shows the vortex generator on the airfoil section and
details of the geometry. For the airfoil with VG (zero thickness), 1000 points are
used on the airfoil and 15 points in the span direction (a maximum aspect ratio
of 3 and an average of 1.15 is maintained on the airfoil surface) and no refinement
study is made. The VG geometry is also shown in figure 6.8. The corresponding
dimensions are h = 5mm, D = 35mm, d = 17.5mm and β = 15◦. The chord length
of the airfoil is 0.65m and the VG is placed at 20% chord on the upper surface
of the airfoil [27]. Since a symmetry boundary condition is used on the extrusion
boundaries, the geometry represents a row of counter-rotating VGs as shown in the
right part of figure 6.8.

Figure 6.8: VG on the airfoil surface (left) and VG geometry details [27](right)

Figure 6.9 shows the pressure coefficient and skin friction coefficient along the
airfoil obtained from the three grids. The results from reference grid and fine grid are
almost identical and thus the reference grid will be used for further computations.
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The resulting lift and drag coefficients are listed in table 6.4. Only fully turbulent
cases are considered for comparison here because the roughness model does not
predict the early onset of transition.

Name N Cl Cd

lvl1 128 0.5308 0.0180
lvl2 300 0.5011 0.0161
lvl3 512 0.5077 0.0160

Table 6.4: Lift and Drag coefficients with different grid resolutions for the DU-97-W300 airfoil in
clean conditions.
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Figure 6.9: Comparison of the pressure coefficient (left) and the skin friction coefficient (right) at
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Re = 2.0 × 106 in clean conditions.

Figure 6.10 shows the lift and drag polars from SU2 and the experimental data
from Baldaccino [27]. Additionally, the lift data from other CFD methods obtained
from the Avatar report [26] is also given. The maximum lift angle and the maximum
Cl is over estimated by CFD compared to experiments. However, the results from
SU2 are in close agreement to those reported by Ellipsys in AVATAR [28] (task 3.2).
Similar behavior is observed for Cd as well. The SA model predicts the separation to
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occur later than the experiments which results in poor performance at higher angles
of attack and over prediction of the maximum lift. While the use of pseudo time
stepping scheme helps to overcome some of the convergence issues that a purely
steady-state solver would face at higher angles of attack, accuracy of the results
remains poor.

VG polars
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Figure 6.11: Lift (left) and drag (right) polars for the fully turbulent case at Re = 2.0 × 106 with
VG (VG).

Figure 6.11 shows the comparison of the lift and drag polars from SU2 with
experimental data [27] at Re = 2 × 106 under fully turbulent conditions. Good
agreement between the numerical and experimental data is observed at lower angles
of attack. SU2 underpredicts the value of the maximum Cl but the stall angle is over
predicted. In section 6.4.2, the stall angle predicted by SU2 is around 12◦ which is
higher than the experimentally obtained value. From figure 6.11 we observe that
the addition of the VG has delayed the stall until an AoA = 18◦, as expected. A
very close match is observed at lower angles but deviations increase at higher angles
of attack. Looking at the drag polar on the right the SA model once again predicts
separation to occur later than the experiments. However, the maximum lift and the
stall angle prediction is much better with VGs than compared to the fully turbulent
clean case.

Roughness effects
Determination of the appropriate value of the roughness height, k, is difficult due
to lack of experimental data for the airfoil under consideration in rough conditions.
Additionally, since no transition model is used in this study, the roughness height
used must ideally trigger a very early onset of transition to ensure the flow remains
turbulent over the airfoil. Several studies on isolated 3-D roughness elements have
reported a critical Rek,crit > 600 [20] based on the roughness height which induces
larger instabilities in the flow that trigger transition at the location of roughness
or even upstream. The study on critical values for distributed roughness is an
ongoing research problem [20]. In this case, the roughness height is set to ensure
that Rek = 800. Once the roughness height, k, is defined, an equivalent sand
grain roughness height, ks, must be estimated. Langel et al. [29] assume ks/k = 1
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for densely packed roughness distribution and a lower value of ks/k ≈ 0.47 for
lower density (15% distribution density). Aupoix et al. [16] use correlations from
Dirling [18] to estimate ks/k. Following the Dirling’s correlation and assuming the
distributed roughness to be closely spaced we find ks/k ≈ 0.539 which is used to
specify the input for the turbulence model considered in this study. Based on these
estimates, ks/c = 400.0 × 10−6 is used. In order to mimic leading edge erosion, the
airfoil surface from the leading edge to x/c = 0.13 on the pressure side and from
leading edge to x/c = 0.02 on the suction side is assumed to be rough.
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Figure 6.12: Lift (left) and drag (right) polars for the fully turbulent case at Re = 2.0 × 106

under different conditions (’clean’ -black, ’VG’ - blue, ’rough’ - red, ’VGrough’ - green).

The addition of roughness causes a reduction in the lift and an increase in drag
compared to the clean case (the black and red curves in figure 6.12). Based on
the computed wall shear stress values the resulting k+

s ≈ 240 corresponds to the
fully rough regime. Despite a fairly moderate choice of roughness height (keeping
transition in mind), the flow is already in the fully rough regime. Additionally, the
airfoil appears to stall slightly earlier due to presence of roughness. Adding a VG on
the rough airfoil appears to counteract some of the negative effects of roughness by
increasing the lift, however the drag increases further. The VG does delay the stall
and the airfoil now stalls at approximately 15◦, even with leading edge roughness.
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Figure 6.13: Pressure coefficient (Cp) distribution under different cases at AoA = 12◦ (left) and
AoA = 15◦ (right).

A clearer picture emerges when we investigate the pressure coefficient in different
cases (figure 6.13). At an AoA = 12◦, the fully turbulent (clean) flow is separated
close to the trailing edge around x/c = 0.9. This angle of attack also corresponds to
the maximum Cl. Under rough conditions, the flow separates much earlier however,



6

138 6. Wind energy applications: Roughness modeling

the VG helps the flow to remain attached throughout. The difference is clearer
when examining the Cp for AoA = 15◦ in figure 6.13. Under both ’clean’ and
’rough’ conditions, the airfoil is under stall. The flow remains attached longer with
the VG as expected under both clean and rough conditions.
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Figure 6.14: Comparison of aerodynamic efficiency for the different cases.

Figure 6.14 shows the aerodynamic efficiencies under different conditions. On
the left, the comparison between numerical SU2 results and experiments are shown.
There is an under prediction of efficiency at lower angles of attack due to over
prediction of the drag. As also seen in the lift polar results, there is an over prediction
in maximum efficiency and the angle where it occurs. However, in the VG case,
there is a consistent under prediction in efficiency due to over prediction of the
drag. Comparing the clean and VG cases, the efficiency at lower angles is lower
with VG due to additional drag but at higher angles of attack (beyond stall), the
efficiency with VGs remains high as expected. On the right, the comparison of
efficiencies with roughness is shown. Due to roughness, a reduction in efficiency is
observed both with and without VGs as expected. The maximum efficiency is also
reduced in both cases. At higher angles of attack, the VG increases the efficiency
even under rough conditions.

6.4.3. DU 96-W-180
In this section, the SA roughness model is applied to the DU96-W-180 airfoil. This is
an 18% thick airfoil developed by Delft University [30] and is widely used in the wind
energy community. Sareen et al [7] performed experiments on this airfoil at different
Reynolds numbers under different stages and types of erosion. They determine the
levels of erosion based on photographs of eroded blades. In this study, the leading
edge erosion due to pits and gouges (see figure 6.15) under the two most severe
stages are considered at Re = 1.85 × 106. These cases correspond to Type B stage
3 and stage 4 as reported in [7].

The depths of pits and gouges for these cases are respectively 0.51mm and
2.54mm. The pits and gouges have equal depths and diameters. The chord-wise
extent of the pits and gouges are 10% on the upper surface and 13% on the lower
surface. The number of pits and gouges on the lower surface is also 1.3 times that
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on the upper surface. In stage 3 there are 400 pits and 200 gouges on the upper
surface and in stage 4 there are 800 pits and 400 gouges on the upper surface.

Figure 6.15: Illustration of pits, gouges and delamination of a turbine blade from Sareen et al[7].

Grid details
As seen in section 6.3.1, the SA roughness model requires a wall normal grid spacing
that corresponds to y+ ≈ 0.3 under clean conditions to obtain grid converged results
in rough conditions. Thus, this minimum grid spacing is maintained. A grid refine-
ment study is carried out at an angle of attack of 8◦ with N = 125, 250, 500 and
750 points along the airfoil. A growth ratio of 1.09 is used in the normal direction.
The resulting lift and drag coefficients are listed in table 6.5 along with the fully
turbulent results obtained from RFOIL [9]. Based on these results the grid with
N = 500 points on the airfoil is chosen for further analysis.

N Cl Cd

125 1.028934 0.020944
250 1.065950 0.016588
500 1.069648 0.015781
750 1.069287 0.015704

RFOIL 1.054832 0.015551

Table 6.5: Lift and Drag coefficients with different grid resolutions for the DU95-W-180 airfoil at
an angle of attack of 8◦.

Clean results
A baseline case of fully turbulent flow is considered first. A transition model is
not considered since the effect of roughness on transition is not implemented. Fig-
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ure 6.16 shows the lift coefficient at different angles of attack from SU2 and RFOIL
under fully turbulent conditions compared to experimental data. Since no mention
of tripping the flow is made in [7], it is likely that the flow is not fully turbulent
but transitional, especially at lower angles of attack. Consequently, a consistent
underprediction of lift is observed in both numerical tools. The results from SU2
and RFOIL match closely in the linear region and deviate at higher angles of attack.
Figure 6.17 shows the comparison of lift and drag coefficients of the two numerical
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Figure 6.17: Comparison of lift coefficient (Cl) against drag coefficient (Cd) for fully turbulent
flow against experimental data.

results from SU2 and RFOIL with the experimental data. Once again, since the
experimental flow conditions were not fully turbulent, there is a consistent over-
prediction of the drag coefficient by both SU2 and RFOIL. As seen in figure 6.16,
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there is good agreement between the numerical results at lower angles of attack.
However, RFOIL predicts increasing flow separation to occur from an AoA = 9◦,
which is close to what is observed in the experiment but this is not predicted by
SU2. This is likely due to the poor prediction of separation by the SA turbulence
model, which was also observed earlier.

Equivalent sand grain roughness
The roughness height, k, is usually defined as the height or depth of roughness
elements on the surface, for example, the depth of pits and gouges in figure 6.15.
Determination of the equivalent sand grain roughness height, ks, from the roughness
height k is an active area of research. The roughness density parameter, Λs, is widely
used in literature as a means of relating geometric surface roughness with equivalent
sand grain roughness

Λs = S

Sf

(
Af

As

)1.6

, (6.11)

where S is the total wall area where roughness is present, Sf is the roughness frontal
area, Af is the frontal area of a single roughness element, and As is the surface area
of a single roughness element in the direction of the flow. Based on data from
Schlichtling’s experiments, Danberg and Sigal [31] proposed the following relations
for 2-D

ks

k
=

⎧⎪⎨⎪⎩
3.21 × 10−3Λ4.935

s , 1.4 ≤ Λs ≤ 4.89,
8, 4.89 ≤ Λs ≤ 13.25,
151.71Λ−1.1379

s , 13.25 ≤ Λs ≤ 100,
(6.12)

and 3-D
ks

k
= 160.77Λ−1.3376

s , 16 ≤ Λs ≤ 200. (6.13)

Van Rij et al. [32] generalized the roughness shape factor Af/As for irregular 3-D
roughness elements as Sf/Sw where Sf is the total frontal area of all roughness
elements and Sw is the total wetted area of all roughness elements and proposed the
following relation

ks

k
=

⎧⎪⎨⎪⎩
1.58 × 10−5Λ5.683

s , Λs ≤ 7.84,
1.802Λ0.03038

s , 7.84 ≤ Λs ≤ 28.12,
255.5Λ−1.454

s , 28.12 ≤ Λs.

(6.14)

McClain [33] used the discrete element method approach and proposed a single
relation as

ks

k
= 927.317Λ−1.669

s . (6.15)

However, these correlations are mainly derived by adding roughness elements like
spheres, cones and hemispheres and their validity for negative roughness like pits
and gouges is not clear. Various researchers have used statistical representations
of rough surfaces in combination with experiments and numerical simulations using
LES and DNS to obtain more general correlations based on rms height (krms),
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skewness (Sk) and higher order moments of the rough surface height probability
density functions. The krms and skewness Sk can be computed as

krms =
√

1
N

∑
i

k2
i , Sk = 1

N

∑
i

(
ki

krms

)3

, (6.16)

where ki are the heights or depths of individual roughness elements, for example a
pit, and N is the total number of such roughness elements. Flack and Schultz [34]
proposed

ks = 4.43krms(1 + Sk)1.37 (6.17)
but note that it is not very general since it does not include information about rough-
ness density. In a more recent study, Flack et al [35] proposed different relations for
different types of skewness as

ks = 2.48krms(1 + Sk)2.24 (6.18)

for positive skewness,
ks = 2.73krms(2 + Sk)−0.45 (6.19)

for negative skewness and
ks = 2.11krms (6.20)

for zero skewness. They also note that negatively skewed surfaces like those with
pits and gouges have a smaller impact on drag due to roughness elements than
positive skewness. Flack and Schultz [36] and Forooghi et al. [37] also note that
another parameter that accounts for sparse roughness is necessary and propose a
relation of the form

ks/kz = F (Sk)G(ES), (6.21)
where ES is the effective slope which is related to the solidity of roughness (λ) as
ES = 2λ and kz is related to krms as kz = 4.4krms. Note that solidity is defined as
the ratio of total roughness frontal area (Sf ) to total wall area (S) i.e. λ = Sf/S.
They recommend

F (Sk) = 0.67Sk2 + 0.93Sk + 1.3 (6.22)
and

G(ES) = 1.07(1 − e−3.5ES). (6.23)
In this study, equations. 6.21, 6.22 and 6.23 suggested by [37] are used.

Roughness definition
Sareen et al. [7] create different amounts of roughness on the upper and lower surface
with the lower surface being 1.3 times rougher than the upper surface. For the type
B stage 3 erosion level they add 400 pits and 200 gouges on the upper surface and
520 pits and 260 gouges on the lower surface. In stage 4 the number of pits and
gouges are doubled both on the upper and lower surfaces. The rough surface extends
from the leading edge to x/c = 0.1 on the upper surface and from the leading edge
to x/c = 0.13 on the lower surface in both cases. The computed statistics are listed
in table 6.6.
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Stage 3 Stage 4
krms 1.524mm 1.524mm
Sk −1.56695 −1.56695
ES 0.0563 0.1126
ks/c 0.00418 0.00760

Table 6.6: Roughness definition for DU-96-W-180 based on Sareen et al[7].

Rough results
Figure 6.18 shows the comparison of the lift coefficient as a function of the angle
of attack between SU2 and experiments for stage 3 erosion. There is a small un-
derprediction of lift at lower angles of attack, similar to what was observed in the
clean case. This is likely due to the flow still being mildly transitional at lower
angles of attack. With increasing angle of attack, the prediction from SU2 matches
the experimental data quite closely, likely due to the flow becoming fully turbulent
in the experiment. Figure 6.19 shows the drag and lift coefficients. Once again,
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Figure 6.18: Comparison of lift coefficient (Cl) against angle of attack for fully turbulent flow
against experimental data (stage 3 see table 6.6).

the numerical results from SU2 overpredict the drag compared to the experimental
data. Flow separation starts to occur before AoA ≈ 8◦ in the experiments whereas
SU2 does not predict separation till after AoA ≈ 9◦.

Figure 6.20 shows the comparison of the lift coefficient as a function of the angle
of attack between SU2 and experiments forstage 4 erosion. The numerical results
agree with the experiments more closely compared to stage 3 likely due to the flow
being fully turbulent due to the higher roughness level. Figure 6.21 shows the drag
and lift coefficients. Once again, numerical results from SU2 overpredict the drag
compared to the experimental data.

Figures 6.19 and 6.21 also show the lift and drag values in clean conditions. The
increase in drag even at lower angles of attack can be seen clearly. The maximum lift
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Figure 6.19: Comparison of lift coefficient (Cl) against drag coefficient (Cd) for fully turbulent
flow against experimental data (stage 3 see table 6.6).
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Figure 6.20: Comparison of lift coefficient (Cl) against angle of attack for fully turbulent flow
against experimental data (stage 4 see table 6.6).

also decreases in rough conditions for both roughness levels considered. However,
since Sareen et al. [7] do not report lift and drag values at higher angles of attack,
the magnitude of reduction cannot be compared. It is very likely that the airfoil
will stall earlier for both the roughness cases compared to the clean conditions.

Discussion In this section the SA roughness model was first validated against ex-
periments on the NACA 652215 airfoil with a given equivalent sand grain roughness.
The SA model predicted the drop in lift very closely compared to the experiments.
Subsequently, the SA model was used on the DU-96-W-180 airfoil with ’negative’
roughness. It was seen that a statistical description of the surface is required to
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Figure 6.21: Comparison of lift coefficient (Cl) against drag coefficient (Cd) for fully turbulent
flow against experimental data (stage 4 see table 6.6).

accurately calculate the equivalent sand grain roughness. Results under clean con-
ditions differed from the experiments likely due to the the experiments not being
under fully turbulent conditions, but the numerical results, especially lift coefficient,
matched closely with the experimental data under roughness when the flow is likely
fully turbulent. It was seen that roughness causes a considerable reduction in lift
and increase in drag and can lead to premature stalling of the airfoils.

6.5. Boundary layer analysis
Since the NACA 652215 airfoil has a larger rough surface than the DU-96-W-180, it
is chosen for the boundary layer analysis. The boundary layer parameters for SU2
are computed by extracting the velocity vector along surface normals at various
points along the airfoil. The edge of the boundary layer is assumed to be at the
location where the ratio of the magnitude of the vorticity at that location to the
value at the wall is less than 10−4. In this section the effect of roughness on the
boundary layer properties of airfoils will be investigated.

6.5.1. Integral boundary layer methods
Viscous inviscid interaction methods like RFOIL [9] are widely used to analyze the
performance of airfoils. Panel methods are typically used to model the inviscid
part of the flow and integral boundary layer methods for the viscous part. Integral
boundary layer equations are obtained by integrating the boundary layer equations
in the direction normal to the wall. More details on deriving the governing equations
can be found in [38, 39]. The new integral quantities introduced are displacement
thickness δ∗, momentum thickness θ and kinetic energy thickness δk.

δ∗ =
∫ δ

0

(
1 − u

ue

)
dy, θ =

∫ δ

0

u

ue

(
1 − u

ue

)
dy.
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δk =
∫ δ

0

u

ue

(
1 −

(
u

ue

)2)
dy, (6.24)

Here u is the local velocity, δ is the boundary layer thickness, ue is the velocity
magnitude at the edge of the boundary layer and y is the wall normal direction.
Further, the following shape parameters are defined

H = δ∗

θ
, Hk = δk

θ
. (6.25)

The governing equations, resulting from integration of the continuity and momentum
equations, used in RFOIL are

dθ

dx
+ (2 +H −M2

e ) θ
ue

due

dx
= Cf/2, (6.26)

θ
dHk

dx
+ (2H∗∗ +Hk(1 −H)) θ

ue

due

dx
= 2CD −HkCf/2. (6.27)

Note that other formulations of the integral boundary layer equations are used
in other tools [39]. In order to close the equations, closure relations [38, 39] are
defined for the kinetic energy shape factor Hk, the skin friction coefficient Cf and
the dissipation coefficient CD. The closure relations are different for laminar and
turbulent flows. For turbulent flows, an additional equation for lag in Reynolds
shear stress (Cτ ) is also solved. H∗∗ is a shape factor based on the variation of
density within the boundary layer and Me is the Mach number of the external flow.
Both can be ignored for incompressible flows. These closure relations are defined
in terms of the shape factors introduced earlier and the Reynolds number based on
momentum thickness Reθ, where Reθ = ueθ/ν with ν being the kinematic viscosity.
In the following sections, the effect of roughness on the different thicknesses, shape
factors and closure relations are examined.

6.5.2. Clean results
First the calculated integral boundary layer quantities from SU2 under clean condi-
tions are compared against the RFOIL results. It must be noted that the X−axis
of all the plots in this section range from x/c = 0.025 to x/c = 1 to avoid the stag-
nation region. Figure 6.22 shows the displacement thickness on both the upper and
lower sides at angles of attack of 0◦ and 4◦. The calculated displacement thickness
matches closely with the values from RFOIL with some deviation near the trailing
edge in both cases. The momentum thickness is slightly overpredicted by SU2 after
x/c = 0.4 at an angle of attack of 0◦ but matches closely for an angle of attack of 4◦

as seen in figure 6.23. The comparisons of the shape factors are shown in figure 6.24.
The shape factor is larger for AoA = 4◦ compared to AoA = 0◦ indicating a thicker
boundary layer as the angle of attack increases. While the computed shape factors
from RFOIL and SU2 do not match exactly, both display similar behavior initially
decreasing towards the middle of the airfoil and increasing near the trailing edge.
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Figure 6.22: Displacement thickness (δ∗) from SU2 and RFOIL at an angle of attack of 0◦ (left)
and 4◦ (right) for the NACA 652215 airfoil.
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Figure 6.23: Momentum thickness (θ) from SU2 and RFOIL at an angle of attack of 0◦ (left) and
4◦ (right) for the NACA 652215 airfoil.
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Figure 6.24: Shape factor (H) from SU2 and RFOIL at an angle of attack of 0◦ (left) and 4◦

(right) for the NACA 652215 airfoil.

In RFOIL the local skin friction coefficient is computed as [38]

Cf = 0.3 exp(−1.33H)
(log10Reθ)1.74+0.31H

+

0.00011
(
tanh

(
4.0 − H

0.875

)
− 1.0

)
. (6.28)

Here Reθ is the local Reynolds number based on momentum thickness θ. Figure 6.25
shows the comparison of the skin friction coefficient between RFOIL, the values orig-
inally reported by SU2 for the RANS computation (denoted as ’SU2 original’) and
the skin friction calculated based on the computed integral boundary layer quantities
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in equation 6.28 (denoted as ’SU2 Computed’). The Cf computed from the integral
quantities using equation 6.28 match the SU2 RANS solution and RFOIL results
quite well after x/c = 0.25. The mismatch near the leading edge for AoA = 0◦ is
likely due to errors in computing the integral quantities near the stagnation region.
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Figure 6.25: Skin friction coefficient (Cf ) from SU2 and RFOIL at an angle of attack of 0◦ (left)
and 4◦ (right) for the NACA 652215 airfoil.

6.5.3. Rough results
Since only the entire upper surface is rough, only the results for the upper surface
only are presented in this section. Figures 6.26 and 6.27 show the displacement
and momentum thickness for different roughness levels compared to the clean case.
As expected, these thicknesses increase with increasing roughness. A very steep
increase is observed in the momentum thickness near the trailing edge for the largest
roughness.
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Figure 6.26: Displacement thickness (δ∗) from SU2 under different roughness levels at an angle of
attack of 0◦ (left) and 4◦ (right) for the NACA 652215 airfoil.

Figure 6.28 shows the shape factors for different roughness levels compared to
the clean case at AoA = 0◦ and AoA = 4◦. The shape factor increases for all
roughness levels with the largest increase for ks = 1.23 × 10−3. The maximum k+

s

values varies with angle of attack. At an angle of attack of 0◦, the k+
s are 25, 75

and 286 indicating that the flow is in the transitional rough region for the two lower
roughness levels and is fully rough for the highest roughness level. However, at an
angle of attack of 4◦, the maximum k+

s values are 75, 180 and 750 indicating that
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Figure 6.27: Momentum thickness (θ) from SU2 under different roughness levels at an angle of
attack of 0◦ (left) and 4◦ (right) for the NACA 652215 airfoil.

the flow is fully rough for the ks/c = 3.08 × 10−4 case also. From figure 6.28 it is
seen that the behavior of the shape factor in the ks/c = 3.08 × 10−4 case is similar
for both angles of attack despite one being transitionally rough and the other fully
rough.
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Figure 6.28: Shape factor (H) from SU2 under different roughness levels at an angle of attack of
0◦ (left) and 4◦ (right) for the NACA 652215 airfoil.

Skin friction coefficient
Equation 6.28 will not be valid here as the properties of the boundary layer change
due to roughness. Olsen et al. [10] suggested a new closure relation for skin friction
for rough surfaces including the Reynolds number based on roughness height, Rek =
uek/ν as

Cf = 0.9 exp(−2.4H)
(|log10Reθ − log10Rek + 1.11|)2.45−0.15H

. (6.29)

Figure 6.29 shows the skin friction from equations 6.28 and 6.29, clean and rough
SU2 results at angles of attack of 0◦ (left) and 4◦ (right). Clearly equation 6.28 is
not valid for rough surfaces. The new closure relation proposed by Olsen et al.
appears to overpredict the skin friction. However, since the computed Rek for the
first two roughness levels are approximately 400 and 800, it is outside the range
of the data used by the authors in their study. The third roughness level has an
average Rek ≈ 3000 and is within the valid range of data used to derive the model.
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Figure 6.29: Skin friction coefficient (Cf ) comparison between RANS solution from SU2 (clean in
red and rough in blue) and closure relations from Olsen et al.[10] and RFOIL[9] at an angle of

attack of 0◦ (top) and 4◦ (bottom) for the NACA 652215 airfoil.

The authors report convergence difficulties when roughness was applied to regions
before x/c = 0.6 and from the figure 6.29 it can be seen that Cf is overpredicted
by a significant amount in that region and is closer to the values reported by SU2
after x/c = 0.6.

Kinetic energy shape factor
As seen above the closure sets for skin friction are not valid for rough airfoils. The
other closure relation defined in terms of H and Reθ is for the kinetic energy shape
factor Hk. Closure relations for other quantities are defined in terms of Cf and Hk.
Thus, the validity of the Hk closure is examined here in detail. For turbulent flows
in RFOIL the following closure relations are used to compute Hk. First define

H0 =
{

3.0 + 400
Reθ

, Reθ > 400,
4.0 Reθ ≤ 400.

(6.30)

Then for H < H0

Hk =
(

0.5 − 4.0
Reθ

)(
H0 −H

H0 − 1

)2 1.5
H + 0.5 + 1.5 + 4

Reθ
, (6.31)

otherwise

Hk = 1.5 + 4.0
Reθ

+ (H −H0)2
[

0.04
Reθ

+ 0.007 lnReθ(
H −H0 + 4

Reθ

)2

]
(6.32)

The computed Hk based on equation 6.25 (denoted by symbols) and those based on
the closure relations in equations 6.31 and 6.32 (denoted by solid lines) are shown
in figure 6.30. The computed values agree with the closure relations closely for the
clean case and also for the two lowest roughness cases. However, as the level of
roughness increases the closure relation does not predict Hk accurately. The Reks

of the first two roughness cases are approximately 400 and 800, indicating that
the closure sets are likely valid for small roughness levels but deviate for higher
roughness levels. The deviation observed in the third roughness level is also much
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less than the deviation observed for the skin friction coefficient. Figure 6.31 shows
the variation of Hk for a higher angle of attack of 12◦. From the top figure it is seen
that the behavior of Hk is similar to that observed for lower angles of attack when
the flow is attached. However, as the bottom figure shows, the deviation increases
for all roughness levels when the flow separates. The wiggles observed are likely an
artifact of how the edge of the boundary layer is detected during the post processing.
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Figure 6.30: Hk from SU2 under different roughness levels at an angle of attack of 0◦ (left) and
4◦ (right) for the NACA 652215 airfoil. Computed values (equation 6.25) shown as symbols and

result from the closure relations (equations 6.31 and 6.32) as solid lines.
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Figure 6.31: Hk from SU2 under different roughness levels at an angle of attack of 12◦ for the
NACA 652215 airfoil. Left figure shows the plot from x/c = 0.025 to x/c = 0.5. Right figure

shows the zoomed in region around the TE for all roughness levels. Computed values
(equation 6.25) shown as symbols and result from the closure relations (equations 6.31 and 6.32)

as solid lines.

Since the closure relations for the dissipation coefficient (CD) and for turbulent
flows the Reynolds shear stress coefficient (Cτ ) are based on H, Reθ, Cf and Hk, all
of which change with roughness, new closure relations need to be defined. Thus, in
order to model roughness in integral boundary layer method based tools like RFOIL,
new closure relations need to be derived for all of the above quantities.

Discussion In this section, the different integral boundary layer quantities and
closure relations used in RFOIL are examined under clean and rough conditions.
Three different roughness levels were considered corresponding to Reks

of approxi-
mately 400, 800 and 3000. The boundary layer thicknesses increase due to roughness
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and the shape factor is also higher. A larger shape factor typically implies a thicker
boundary layer that is prone to separation. The shape factor remained less than
2 for the lower two roughness levels but for the highest roughness level the shape
factor neared the value for separation even at low angles of attack. Additionally, it
was seen that the variation of the shape factor followed the variation of Reks more
closely than the variation of k+

s .
Closure relations are crucial for an accurate solution in integral boundary layer

methods. The performance of the closures for skin friction and kinetic energy shape
factor was examined under rough conditions. The closure relation for skin friction
underpredicted significantly for all cases. The new closure relation proposed by
Olsen et al. [10] was observed to overpredict the skin friction. The kinetic energy
shape factor closure relation was less sensitive to roughness and showed significant
deviation only for the largest roughness case and separated flow.

6.6. Conclusions and future outlook
Roughness models for two RANS turbulence models, SA and SST, were implemented
in SU2 and the accuracy was examined via grid refinement. The models were vali-
dated against empirical models for the shift in velocity profiles in the boundary layer
and experimental skin friction data for flat plates. It was seen that that the SST
roughness model required a much finer grid compared to the SA roughness model
to give a grid independent solutions. However, despite the finer grid the results
from the SST roughness model did not match the experimental data or the empir-
ical models under fully rough conditions, unlike the SA roughness model. Based
on these results the SA roughness model was further validated against experimen-
tal data on two different airfoils. The SA model predicted the reduction in lift for
different roughness levels accurately for the NACA 652215 airfoil. The SA model
was also validated against an experiment with negative roughness (pits and gouges)
on the DU-96-W-180 airfoil. Encouraging results were observed for both roughness
levels tested. The statistical method to determine the equivalent sand grain rough-
ness proved to be accurate. Some differences were observed in the clean simulation,
most likely due to the fact the simulations were run under fully turbulent conditions,
unlike the experiments.

Further, the behavior of different integral boundary layer properties like dis-
placement thickness, momentum thickness, shape factors and closures were inves-
tigated for the NACA 652215 airfoil. The existing skin friction closure relations
for clean surfaces greatly underpredict the skin friction (Cf ) and are not valid for
rough surfaces. However, the closure relation for the kinetic energy shape factor
(Hk) performed well for low roughness levels (Reks

< 1000)) but deviated at higher
roughness levels and under separation. The deviation was only marginal compared
to the skin friction closure relation. However, since the closure relations for other
quantities like the dissipation coefficient and the Reynolds shear stress coefficient
depend on Cf and Hk new closure relations will be needed in order to simulate
rough surfaces in integral boundary layer tools like RFOIL.

The main focus of this study was on the effect of roughness on turbulent bound-
ary layers. For laminar boundary layers, roughness leads to premature transition to
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turbulence. In order to fully capture the effect of roughness, the effect on transition
will also be considered in the future. Further, more boundary layer data at different
roughness levels are needed to derive new closure relations for integral boundary
layer methods.
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7
Wind energy applications:

MEXICO rotor
In this chapter, the flow past the MEXICO rotor is simulated with the new pressure
based solver in SU2 using the SA and SST turbulence models on two different grids.
The resulting pressure coefficient, normal and tangential loads, axial velocity traces
and skin friction coefficient is compared against experimental data and numerical
results from OpenFOAM and EllipSys. Good agreement is found between the results
from SU2 and experimental data for pressure coefficient and loads. Finally, some
of the numerical issues faced during this study are discussed.

7.1. Introduction
Modeling the flow past a wind turbine rotor has mostly been done using inviscid
methods based on lifting line theory or lifting surface theory which use two dimen-
sional airfoil data to predict the rotor performance. The airfoil data from such
methods are usually computed from two dimensional methods like RFOIL. Two di-
mensional methods cannot accurately replicate three dimensional aerodynamics like
rotational effects on the flow [1, 2]. CFD modeling of rotors was first reported by
Sorenson [3], Duque[4] and Varela [5]. Since then, CFD has been used widely for
rotor modeling. While the first attempts used the RANS turbulence models, the use
of hybrid LES-RANS modeling is also gaining popularity [6]. In this chapter, the
performance of the new pressure based solver for modeling turbine rotors is tested
by simulating the rotor studied in the MEXICO (Model experiments in Controlled
Conditions) project.

The MEXICO rotor is a three bladed wind turbine with a diameter of 4.5m.
The experimental campaigns were carried out in the open section (9.5 × 9.5m2) of
the Large Scale Facility of the DNW (German-Netherlands) wind tunnel [7, 8] (see
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(a) MEXICO experiment set up [7].

(b) New MEXICO experiment setup [8].

Figure 7.1: Setup of the rotor in the two MEXICO experimental campaigns.

figure 7.1). Measurements were made for different tip speed ratios under different
operating conditions. In this chapter a tip speed ratio,

λ = ΩR
U∞

, (7.1)
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of λ = 6.7 is chosen. Here Ω is the rotational rate of the wind turbine blade
expressed in rad/s and R is the radius of the rotor. The resulting tunnel velocity is
U∞ = 15m/s. This case corresponds to the design conditions of the rotor blade. The
details of the turbine blade and the operating conditions considered for the numerical
simulation is listed in table 7.1. The results from SU2 are compared to the data from

Number of blades, Z 3
Rotor diameter, D(m) 4.5

Pitch angle, θ (◦) −2.3
Yaw angle, Ψ (◦) 0.0

Rotational speed, n(rpm) 424.5
Wind speed, U∞(m/s) 15

Tip speed ratio, λ 6.7

Table 7.1: MEXICO rotor details and flow conditions.

the second campaign and the results from numerical simulations using OpenFOAM
and EllipSys. The results of EllipSys are obtained from Scheppers et al. [9] and
the results from OpenFOAM were obtained from the simulations performed by a
colleague [10].

7.2. Numerical set up
Flow past wind turbine rotors are generally unsteady and turbulent. The rotation
of the turbine blade introduces additional complications. In order to simplify the
computational effort, the simulation is carried out in a reference frame that rotates
with the wind turbine rotor. The governing equations for simulations in a moving
reference frame were given in section 3.5. In this case, the grid is rotating at a con-
stant rotation rate, Ω, which is the rotational speed of the rotor blade. Additionally,
since the three rotors are identical, instead of modeling all three rotors, a periodic
simulation of only one rotor is considered.

The domain used for the simulation is shown in figure 7.2. In the streamwise di-
rection, the domain extends from −2.5D upstream of the rotor to 5.5D downstream
of the turbine. In the radial direction, the domain consists of a cylinder of radius
1.5D around the hub. However, since periodic boundary conditions are used, only
a 120◦ sector of the cylinder as shown in figure 7.2 is modeled.

Free stream boundary conditions are used on the streamwise boundaries and the
top of the cylinder. A solid wall boundary condition is used on the rotor blade and
hub. Periodic boundary conditions are used on the two faces of the 120◦ sectors.
The reference frame is rotating at a constant rate of Ω = 44.51rad/s. However,
the hub has no rotational motion and is handled via a boundary condition. The
simulations are carried out using both the SA and k-ω SST turbulence models. The
free stream velocity is set to U∞ = 15m/s.

Two different grids are considered. The fine mesh has 160 nodes along the chord
of the rotor and 388 nodes along the span of the rotor. A y+ < 1 on the rotor
surface is maintained around the rotor. The coarse mesh has 60 nodes along the
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Figure 7.2: Domain of the MEXICO rotor case.

chord and 305 nodes along the span. A y+ < 1 is maintained in the coarse grid as
well. The height of the first cell is 4.0 × 10−6m in both meshes. A bounding box

Figure 7.3: Bounding box around the rotor.

of height 1.75m × 0.8m × 2.5m is created around the rotor (figure 7.3). A hybrid
meshing strategy (figure 7.4a) is used within this bounding box. The boundary layer
mesh consists of hexahedral cells (figure 7.4b). A total of 54 layers of hexahedral
cells were created in the fine mesh and 50 layers in the coarse mesh. Subsequently,
tetrahedral cells and pyramid cells fill the bounding box. The faces of the bounding
box are then extruded in the streamwise and radial directions using hexahedral cells
only. The fine mesh contains 25.4×106 cells and the coarse mesh contains 14.9×106

cells. The commercial grid generation package Pointwise is used for meshing.

7.3. CFD Results
Preliminary results from the pressure based solver of the pressure coefficients com-
pared to data from experiments and another CFD code EllipSys are shown below.
Full convergence was difficult to achieve due to the complexity around the hub re-
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(a) Hybrid meshing around the rotor. (b) Boundary layer mesh.

Figure 7.4: Meshing strategy around the rotor. Images from the fine grid.

gion. The OpenFOAM simulations were done on the same fine mesh that was used
in SU2.

7.3.1. Streamlines
Flow streamlines on the surface on the pressure side of the rotor blade from the
SA turbulence model is shown in figure 7.5a and the k-ω SST turbulence model
in figure 7.5b. Flow separation is observed near the root of the rotor. The flow
remains attached near the tip. The k-ω SST turbulence model predicts a slightly
large separation compared to the SA turbulence model. The skin friction coefficient

(a) SA turbulence model.

(b) k-ω SST turbulence model.

Figure 7.5: Skin friction coefficient streamlines using line convolution integral method.

streamlines are generated using ParaView’s Surface Line Integration Convolution
(LIC) method.

7.3.2. Pressure coefficient
The pressure coefficients at different radial positions are presented below. The fine
grid is denoted as "lvl1" and the coarse grid as "lvl2" in the following section. The
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pressure coefficients are normalized using the local reference velocity at a radius r,
Urlocal, given by

Cp = p− p∞
1
2ρU

2
rlocal

,

Urlocal =
√
U2

∞ + (Ωr)2
.

r/R = 0.25: Figure 7.6a shows the comparison of Cp from the fine and the coarse
grids at a radial location of r/R = 0.25. Results from both the grids show similar
behavior as the results from other numerical methods. The coarse grid results on
the suction side are generally higher than the fine grid. Similar behavior is observed
in the results from the SST turbulence model shown in figure 7.6b. The numerical
results from all the codes differ significantly from the experimental data as there is
massive flow separation in this region.
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Figure 7.6: Pressure coefficient at r/R = 0.25 from the SA and the k-ω SST turbulence models.

r/R = 0.35: Figures 7.7a and 7.7b show the Cp at a radial location of r/R = 0.35.
Results from both the fine and coarse grids using both turbulence models show the
same behavior as the other numerical codes. There is an over prediction of the peak
suction pressure in all the numerical methods. However, the results from the SST
turbulence model matches the experimental data more closely near the suction peak
compared to the SA model.

r/R = 0.60: Figures 7.8a and 7.8b show the Cp at a radial location of r/R = 0.6.
There is a deviation near the suction peak from the experimental data in the results
from the fine grid using both the SA and SST turbulence models. This mismatch is
observed in other numerical results too. The results from the coarse grid using both
the SA and SST turbulence models deviate more significantly than the fine mesh
and does not follow the same trend as other numerical methods. However, all the
numerical methods match the experimental data on the pressure side.

r/R = 0.82: Figures 7.9a and 7.9b show the Cp at a radial location of r/R = 0.82.
In this case, all the numerical methods under predict the suction peak but match the
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Figure 7.7: Pressure coefficient at r/R = 0.35 from the SA and the k-ω SST turbulence models.
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Figure 7.8: Pressure coefficient at r/R = 0.60 from the SA and the k-ω SST turbulence models.

experimental data closely immediately after the suction peak. The results from the
fine grid matches those from other numerical methods closely. The coarse grid over
predicts the pressure values near the leading edge on both the suction and pressure
side.
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Figure 7.9: Pressure coefficient at r/R = 0.82 from the SA and the k-ω SST turbulence models.

r/R = 0.92: Figures 7.10a and 7.10b show the Cp at a radial location of r/R =
0.92. Once again, the suction peak is under predicted in all the numerical results
compared to the experimental data. The results from the fine and coarse grid match
the experimental results and other numerical results closely after the suction peak.
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Figure 7.10: Pressure coefficient at r/R = 0.92 from the SA and the k-ω SST turbulence models.

7.3.3. Loads
The normal and tangential loads from the fine mesh using both the SA and k-ω SST
turbulence models are compared to data from the experiments and results from the
two other numerical tools - OpenFOAM and EllipSys. The normal and tangential
forces are found by integrating the pressure and skin friction coefficients along the
chord at the five radial locations listed earlier. The loads are the dimensionalized
based on local velocity, density and free stream pressure. All the numerical results
show similar trends in predicting the normal and tangential loads.

Normal loads Figure 7.11a shows the normal loads computed using the different
numerical methods compared to the experimental data. The results from the SA
turbulence model appears to predict consistently higher loads than the SST turbu-
lence model. A close agreement with experimental data is observed near the root for
all the numerical results, but starts to deviate at higher radii. An under prediction
of normal loads near the tip is observed. There is a dip in the experimental data at
the r/R = 0.6 section which could be an error in the measurements.
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Figure 7.11: Loads calculated using the numerical methods compared to experimental data.

Tangential loads Figure 7.11b shows the tangential loads computed using the
different numerical methods compared to the experimental data. Once again, the
results from the SA turbulence model appears to predict consistently higher loads
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than the SST turbulence model. However, the results from the SA turbulence model
match the other numerical results. A relatively close agreement between experimen-
tal data and numerical results along the rotor blade is obtained, except at r/R = 0.6.
Though the results from the SST turbulence model match the experimental data at
this point, it is likely a coincidence since the trends are different.

7.3.4. Axial velocity traces
The axial velocity at two radial locations, r/R = 0.61 (inboard) and r/R = 0.82
(outboard), is compared to the experimental data and the numerical results from
EllipSys. This is a preliminary result, especially for the SST turbulence model, since
convergence issues were experienced which will be described later. The velocity in
the inboard region is under predicted for both the SA and SST turbulence mod-
els. However, the results from the SA turbulence model matches closely with the
experimental and other numerical results in the outboard region.

(a) Axial velocity trace at r/R = 0.61. (b) Axial velocity trace at r/R = 0.82.

Figure 7.12: Axial velocity comparison in the induction and near wake region.

7.3.5. Skin friction coefficients
Figures 7.13a to 7.14b show the comparison of the skin friction coefficient between
the SU2 results from the two turbulence models and OpenFOAM. While both the
turbulence models predict the trend in the skin friction coefficient similar to the
results from OpenFOAM, wiggles are observed near the leading edge in all cases.

7.4. Numerical issues
The numerical simulation was first initialized at a lower rotational rate, starting from
Ω = 10rad/s, and increased gradually to Ω = 25rad/s, 35rad/s and Ω = 40rad/s
before reaching Ω = 44.51rad/s. Only an initialization was sought at intermediate
rotational speeds, and thus the simulations were not run to reach a steady state at
these intermediate values.

Two numerical issues were observed during the simulation. The major issue was
the modeling of the hub. Since the hub was modeled as a solid non-rotating object
in a rotating reference frame, convergence was hindered and at times not possible
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Figure 7.13: Skin friction coefficient (Cf ) comparison between results from SU2 and OpenFOAM.
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Figure 7.14: Skin friction coefficient (Cf ) comparison between results from SU2 and OpenFOAM.

because of the nature of the cells near the hub. This was caused because of the hybrid
meshing technique used to generate the grids. The hybrid meshing technique creates
a region of cells that are heavily skewed near the hub which coupled with the fact
that the hub is stationary in a rotating reference frame led to strong gradients in
velocity.

One potential solution to this is to model the rotor only as the intention of per-
forming these simulations is to study the performance of the rotor and the near wake
region. Alternately, the hub can be treated as a slip wall to ease the convergence
issues as was done in Zhang [11].

The second numerical issue is the wiggles observed in the skin friction coefficient
plots. The wiggles are non physical but were observed even when using first order
upwind schemes with no reconstruction of velocities. Similar behavior was observed
when performing two dimensional simulations on certain airfoils as well. A deeper
investigation is necessary to determine the cause of this anomaly.

7.5. Conclusion
The new pressure based incompressible solver has been used to simulate the flow
past the MEXICO rotor. Two different grid resolutions were considered. Results
from the fine grid using the SA and k-ω SST turbulence model match results from
other numerical tools and are in agreement with experimental data. Discrepancies
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in the pressure coefficient and loads observed between the results from the new
pressure based solver and the experimental results are similar to those observed in
other numerical tools as well.

The pressure based solver is capable of simulating flow past a wind turbine with
reasonable accuracy. However, numerical issues still persist and improvements must
be made to make the solver more robust.
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Conclusion
This thesis consists of two parts. The first part of the thesis from chapters 1 to
4 present the development and validation of the new pressure based solver. The
second part of the thesis from chapters 5 to 7 present three typical wind turbine
aerodynamics problems that are solved using the newly developed solver.

Development and validation
A new pressure based solver has been implemented within the framework of SU2
with the intention of using it as a base for further research into wind turbine design
and analysis. A finite volume discretization scheme is used and the new solver has
been shown to be second order accurate in space and is capable of simulating a
wide array of problems including steady, unsteady and rotating flow problems. The
accuracy of the solver has been verified against analytical solutions for simplified
flows. Validation of the solver has been done using widely used test cases like laminar
and turbulent flow over a flat plate, backward facing step, turbulent flow over an
airfoil and an airfoil undergoing pitching motion.

Wind turbine aerodynamics applications
In the second part of the thesis, three typical wind turbine aerodynamics applica-
tions are presented - flow past vortex generators, effect of leading edge erosion and
flow past a rotor blade.

Vortex generator modeling
As a first step towards modeling vortex generators (VGs) in integral boundary layer
equation based methods, the flow past a pair of VGs on a flat plate is simulated
using the pressure based solver. Since, the integral boundary layer equations are 1D
and the flow 3D, a reduction in dimension is necessary. To this end, the difference
between a 3D flow field and a two dimensional approximation is studied. The two
dimensional flow field can then be used to derive the closure relations necessary for
the IBL equations analogous to the laminar and turbulent boundary layers.

Effect of leading edge erosion
The roughness model has been validated against an empirical boundary layer profile
for rough surfaces. Subsequently, the roughness model has been applied to flow over
airfoils to analyze the impact of erosion on aerodynamic efficiency and turbulent
boundary layer quantities like displacement thickness, momentum thickness and
skin friction. Additionally, methods to convert observed roughness into equivalent
sand grain roughness are presented.
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Rotor simulations using CFD
CFD simulations of full rotors are becoming increasingly common and in order
test the capability of the new pressure based solver, the flow past the rotor blade
used in the New MEXICO experimental campaign has been simulated. Design
conditions with incoming wind speed of 15 m/s and a tip speed ratio of 6.7 is used.
The resulting pressure distributions and loads matched the experimental results
and other numerical data closely. Fully converged results for velocity were not yet
obtained.

Future work
While the solver has been successfully used for a variety of applications, many
improvements are still necessary. Some of the improvements are

• Improve robustness for skewed cells - Skewed cells are commonly observed in
industrial problems (like rotors, thick airfoils) and cause many issues with con-
vergence. In order to obtain a good solution for such problems, the handling
of the skewed cells especially in the Poisson solver must be improved.

• Multigrid solver for the Poisson equation to improve convergence speed - The
solution of the pressure Poisson problem is a crucial part of the solution algo-
rithm for pressure based flow solvers. Multigrid methods are commonly used
to solve Poisson equations and greatly improve solution time. This can be
crucial for unsteady problems where the Poisson problem has to be solved
multiple times within a time step.

• Relaxation of the solution in the initial stages of the iterative process - Since
the momentum and pressure Poisson equations are solved in a decoupled man-
ner, large changes in the solution can lead to divergence especially during the
initialization phase. Large changes in the solution can occur either as a re-
sult of the problem specification, bad initial conditions or the use of large
CFL numbers. Regardless of the cause, the robustness of the solver must be
improved if the solver will have to be used for state of the art problems.

• Implement a low dissipation convective discretization scheme in order to per-
form Large Eddy Simulations (LES) - The second order upwind scheme, widely
used for RANS simulations, introduces a relatively large amount of artificial
dissipation to the solution. While this artificial dissipation can stabilize RANS
problems, it is very inaccurate for performing Large Eddy Simulations. A low
dissipation scheme like central differencing or higher order upwind schemes
will need to be implemented in order to use the pressure based solver for LES.
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