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Abstract

Nighttime light imageries are widely used for mapping the gross domestic product (GDP)

over large areas. However, nighttime light imagery is inappropriate to disaggregate agricultural

GDP and inadequate to differentiate the GDP from the secondary and tertiary sectors. Points-of-
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interest, a kind of geospatial big data with geographic locations and textual descriptions of the

category, can effectively distinguish industrial and commercial areas, and therefore have the

potential to improve the precise GDP mapping from secondary and tertiary sectors. In this

study, a machine learning method, random forest, was used to disaggregate the 2010 county-

level census GDP data of mainland China to 1 km� 1 km grids. Six Random Forest models

were constructed for different economic sectors to explore the non-linear relationships

between various geographic predictors and GDP from different sectors. By fusing points-of-

interest of varying categories, the spatial distribution of economic activities from the secondary

and tertiary sectors was effectively distinguished. Compared to previous studies, the strategy

of developing specific Random Forest models for different sectors generated a more

reasonable distribution of GDP. Our results highlight the feasibility of using point-of-interest

data in disaggregating non-agricultural GDP by exploiting the complementary features of the

different data sources.
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Introduction

Gross domestic product (GDP) is the most widely used measure of economic activity

(Geiger, 2018; Henderson et al., 2012). GDP is usually collected at the administrative unit

level, such as province/state and county. Therefore, it is difficult to match GDP data with

other fine-scale environmental data for conducting cross-disciplinary research. Different

schemes of data collection have also been recognized as one of the major obstacles to the

widespread integration of the social and natural sciences (Zandbergen and Ignizio, 2010). It

is crucial that GDP data can be spatialized into a fine-scale so that data from different

disciplines can be easily integrated (Jia et al., 2015). The gridded GDP data offer the flex-

ibility to perform analysis at various spatial units, such as spatially explicit exposure assess-

ment (Dasgupta et al., 2011; Geiger et al., 2018; Paprotny et al., 2018), and may enable

policy planning for the reduction of economic inequality (Wang et al., 2019a), in a more

convenient way.
In many developing countries, there is usually a paucity of reliable GDP data. The

satellite-derived nighttime lights (NTL) data from the Defense Meteorological Satellite

Program’s Operational Linescan System (DMSP/OLS) and the Visible Infrared Imaging

Radiometer Suite (VIIRS) have been proven to correlate well with GDP and are a good

proxy for economic activities at all examined scales (Bennett and Smith, 2017; Ma et al.,

2012; Wu et al., 2013). Elvidge et al. (1997) first reported a strong correlation between

satellite observed area lit and economic activity for 21 countries. Economic researchers

have also demonstrated that NTL data are a good supplementary metric to the conventional

measures of GDP (Chen and Nordhaus, 2011; Henderson et al., 2012). Therefore, the NTL

data have been increasingly used to estimate the spatiotemporal dynamics of GDP at dif-

ferent spatial scales. Using the DMSP/OLS NTL dataset, Doll et al. (2000) produced the

first-ever map of Purchasing Power Parity-GDP of the world on a 1� � 1� grid and Sutton

and Costanza (2002) generated the first global high-resolution (1 km) map of estimated

GDP. A study by Doll et al. (2006) generated economic activity maps at 5 km resolution

for the United States and European Union countries.
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China has been experiencing rapid economic development since the late 1970s and
became the world’s second largest economy in 2010. The DMSP/OLS NTL imagery has
been utilized to spatially disaggregate GDP (Zhao et al., 2017b, 2011) and estimate the
poverty level across China (Wang et al., 2012). The VIIRS data showed a stronger capacity
to model the regional economy in China than the DMSP/OLS NTL data, especially at levels
such as prefecture or county (Dai et al., 2017; Li et al., 2013; Shi et al., 2014; Zhao et al.,
2017a). Also, both DMSP/OLS and VIIRS data have been integrated to model long-term
GDP dynamics in China (Zhu et al., 2017).

Although the use of NTL data as a proxy of GDP distribution has recently received
growing attention across the world, this method remains problematic in some aspects.
Firstly, agricultural activities usually occur in areas that emit marginal or no NTL.
Therefore, NTL data are not a good proxy for disaggregating GDP from the agricultural
sector, which comprises a large proportion of the national economy in many developing
countries (Ghosh et al., 2010; Keola et al., 2015). Secondly, disaggregating GDP based
solely on NTL data often suffers from the coarse spatial resolution, the blooming effect,
and signal saturation in urban centers, especially for the DMSP/OLS data. For example, the
lit area from DMSP/OLS is much larger than actual urban area due to the blooming effect
(Liu et al., 2016; Small et al., 2005). Only 2.3% of the lit area is built-up land in China while
cropland, grassland, and forests are the major land cover types in the lit area (Liu et al.,
2016). Finally, it is impossible to use only NTL as ancillary data to accurately disaggregate
GDP from secondary and tertiary sectors separately. Since medium-resolution NTL images
are not directly indicative of economic activities, it is difficult to extract detailed socioeco-
nomic features from NTL images, especially in complex urban areas (Liu et al., 2015).
Highly urbanized regions typically contain a mix of commercial, business, industrial, and
residential areas and infrastructure, affording different types of socio-economic activities.
Such complex urban environments present a great challenge to interpreting economic activ-
ities on the basis of only NTL data.

Recently, emerging geospatial big data, such as points-of-interest (POI), provide a wealth
of useful information about human activities and offer unprecedented opportunities to
reveal the distribution of economic activities from a more refined spatial perspective (Gao
et al., 2017; Zhao et al., 2018). POIs record the spatial and attribute information of geo-
graphic entities, such as geographic coordinates, short textual descriptions, and functional
categories (McKenzie et al., 2015; Yoshida et al., 2010). POI data provide inspiring insights
about the spatial distribution of population and economic activities, and therefore, they
have been increasingly used to extract information in relation to urban functional regions
(Gao et al., 2017; Yang et al., 2015), urban land use mapping (Hu et al., 2016; Jiang et al.,
2015; Liu et al., 2017; Yao et al., 2017), and population mapping (Bakillah et al., 2014; Yang
et al., 2019; Ye et al., 2019). Since certain types of entities may be associated with certain
economic activities, POIs can be useful for improving GDP estimates if relevant correlations
can be established and are particularly promising for disaggregating non-agricultural GDP.
POIs with different categories that are highly related to various human economic activities
could effectively differentiate industrial districts from service sector activity. Recently, Yang
et al. (2019) and Ye et al. (2019) proved that the integration of commercial POI data and
multisource remote sensing data can further refine population estimates across large geo-
graphic scales. Therefore, there is strong potential to integrate POI with remote sensing data
to gain better insights into the distribution of GDP over large areas.

Our study aimed to adopt a machine learning method, random forest (RF), that can fuse
the information from multi-sensor remote sensing data and POIs to disaggregate GDP from
different sectors (using GDP1, GDP2, and GDP3 for the production of the primary sector,
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the secondary sector, and the tertiary sector, respectively) in China from the county level to

1� 1 km grids. To our knowledge, this is the first study to disaggregate GDP using a

machine learning method on the basis of remote sensing and geospatial big data in China.

Data collection and pre-processing

Census data

This study takes mainland China as its case study area. Taiwan, Hong Kong, and Macao
were excluded due to their distinct political and economic status from mainland China.

Census data of GDP1 (including farming, forestry, livestock, and fishery), GDP2, and

GDP3 at the county level in China (with 1200, 2495, and 2495 units, respectively) were

collected from the China Statistical Yearbook for Regional Economy published in 2011.

All census GDP data for 2010 from different sectors were spatially joined to the correspond-

ing GIS-based administrative boundaries.

Remote sensing datasets

1. NTL data. The radiance calibrated NTL images from the DMSP/OLS were downloaded

from the National Geophysical Data Center (https://ngdc.noaa.gov/eog/dmsp/down

load_radcal.html). This global NTL dataset has eliminated the “saturation” problem in

the bright cores of urban areas, which happens in the ordinary DMSP/OLS NTL product
due to its very limited dynamic range (Hsu et al., 2015).

2. Vegetation Index data. The normalized difference vegetation index (NDVI) products

based on Satellite Pour I’Observation de la Terre Vegetation were downloaded from

the Vlaamse Instelling Voor Technologisch Onderzoek at a spatial resolution of 1 km

(http://www.vito-eodata.be/). An annual mean image (NDVImean) for 2010 was calculat-
ed based on the original 10-day composite NDVI data.

3. Land cover data. Land cover data in China for 2010 at a spatial resolution of 30 m were

obtained from the Data Center for Resources and Environmental Sciences, Chinese

Academy of Sciences (Liu et al., 2014). The proportions of four agriculture-related

land cover categories within each 1 km� 1 km grid (i.e. farm-rate, forest-rate, grass-

rate, and water-rate) were calculated.
4. Net Primary Production (NPP) data. The version-55 Terra/MODIS NPP products

(MOD17A3) at a spatial resolution of 1 km, produced by the Numerical Terra dynamic

Simulation Group/University of Montana were download from National Aeronautics

and Space Administration (https://ladsweb.modaps.eosdis.nasa.gov). The MODIS NPP

is an annual value and provides information on spatial patterns of productivity in the
biosphere (kg C/m2).

5. Digital elevation model (DEM) data. The ASTER GDEM (Advanced Spaceborne

Thermal Emission and Reflection Radiometer Global Digital Elevation Model)

Version 2 dataset was downloaded from the website of the Earth Remote Sensing

Data Analysis Center of Japan (http://www.gdem.aster.ersdac.or.jp/search.jsp). The orig-

inal DEM data, with a spatial resolution of 30 m, were re-projected into the Albers
Conical Equal Area projection and resampled to a new image at a spatial resolution of

1 km. Elevation and slope layers were generated by the new image in ArcGIS 10.4.1.
6. Temperature data. Land surface temperature (LST) data in this study were taken from the

MODIS MOD11A2 product (https://ladsweb.modaps.eosdis.nasa.gov/search/), which is
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an eight-day composite dataset averaging the daily MOD11A1 LST product. The average

daytime and nighttime measurements are stored in separate files with a spatial resolution

of 1 km. We choose the LST images observed from June to August and calculated the

mean daytime and mean nighttime LSTs (LST-day and LST-night) for the summer of

2010. The MODIS re-projection tool was used for data mosaicking and re-projection into

the Albers Conical Equal Area projection at a resolution of 1 km.

Road network data

The road network data across China, including China National Highways, railways,

provincial-level, county-level, and township-level roads and city roads, were obtained

from the Data Center for Resources and Environmental Sciences, Chinese Academy of

Sciences. The road network data were used to generate the corresponding road density

(road length per unit of area) raster layers (Railway-density, City-Rd-density, and

County-Rd-density) at a spatial resolution of 1 km in ArcGIS 10.4.1.

POI data

The POI dataset in this study was derived from the Baidu Map (http://map.baidu.com),

which is the largest desktop and mobile map service provider in China (Yao et al., 2017).

The application programming interface provided by the Baidu Map Service was used to

extract 5,152,850 Baidu POI records for 2010 within 20 categories, e.g., factories, commer-

cial buildings, retail, restaurants, companies, banks, educational facilities, governmental

agencies, and residential communities. Each POI record provides not only its location infor-

mation but also thematic information in the form of a Chinese phrase.

Methodology

RF model fitting and dasymetric GDP mapping

RF is a classic ensemble machine learning approach proposed by Breiman (2001). Differing

from traditional linear regression models, RF is a non-parametric method against over-

fitting that can deal with non-linear relationships, utilize continuous and categorical varia-

bles, and model complex interactions (Hastie et al., 2009). Variable importance rankings can

be measured by calculating the increased mean squared error (%IncMSE; Liaw and Wiener,

2002). With this quantified measure of variable importance in the RF model, the variables

were then further analyzed to reveal their respective effectiveness and the potential reasons.

RF model fitting and prediction of GDP density used the “randomForest” package in R

3.5.0. In this study, six RF models were constructed to effectively identify complex associ-

ations between various independent variables and GDP from different sectors.
Generally, it is difficult to estimate GDP1 from the NTL data (Ghosh et al., 2010; Keola

et al., 2015). Remote sensing data potentially related to agricultural productivity, such as

agriculture-related land cover, NDVI, NPP, LST, slope, elevation, and distance to the

coastline, were used as independent variables in RF models for GDP1 mapping from

each agricultural subsector. The proportions of agriculture-related land cover types

within each 1 km� 1 km grid were used to restrict the redistribution of GDP from farming,

forestry, and fishery to corresponding land cover grid cells. For livestock GDP estimation,

built-up land and water bodies were masked out. In doing so, built-up areas were given a

GDP1 value of 0.
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Various types of POIs that provide physical infrastructure for different economic activ-
ities can be considered as good indicators of non-agricultural GDP distribution. For
instance, factory POIs are geographical points that mark the place of various industrial
facilities such as iron and steel plants, power plants, cement and lime plants, papermaking
plants, and chemical plants. A region with more factory POIs or close to factory POIs
usually produce a larger GDP2. Similarly, service-industry-related POIs, such as banks,
retail, restaurants, accommodation services and companies, represent the occurrence of
economic activities which mainly contributed to GDP3. In addition, thermal anomalies
can be used to detect industrial heat emission (Liu et al., 2018; Zhang and Zhu, 2019)
and thus LST data were used in estimating non-agricultural GDP. Road network density
is also significantly related to the growth of GDP per capita (Fan and Chan-Kang, 2008).
Therefore, factory POIs, railways and county-level road network density, NTL, and LST
were used in the RF model for GDP2 mapping. Service-related POIs, NTL, county and city
road network density, and LST were employed in the RF model for GDP3 mapping.

The raster layers of predictors at 1 km resolution were aggregated by county and then
linked with the logarithm of the census GDP density from different sectors to fit the specific
RF models. Once all the RF models were fitted, the corresponding raster layers of the input
variables were utilized to predict GDP-distribution weight layers for different sectors at a
1 km resolution. Census GDP data for the individual sectors were then disaggregated using a
dasymetric mapping approach based on these weighting layers (Stevens et al., 2015; Ye
et al., 2019). Figure 1 illustrates the workflow of the data processing, RF model fitting,
and dasymetric GDP mapping. The variables used to fit the RF models are summarized in
Supplementary Table 1.

POI data processing

Relationship between non-agricultural GDP and POIs. According to the thematic characteristics of
POI data, we first calculated the Spearman’s correlation coefficient between the non-
agricultural GDP in China and the total number of corresponding POIs at the county
level. Table 1 shows that the total number of the factory POIs correlates with the census
GDP2 with an R of 0.64. Service-related POIs are also highly correlated with GDP3, with R
values ranging from 0.58 to 0.93. The categories of commercial buildings (R¼ 0.93) and
restaurant and entertainment POIs (R¼ 0.91) are the most strongly correlated with GDP3.
This analysis demonstrates that POI data have the potential to refine non-agricultural GDP
mapping.

Secondary sector-related POI data. Factory POIs were used to create two raster layers, i.e.,
factory POI density (POIs-density-Sec) and the distance to the nearest factory POI (DtN-
POIs-Sec), as predictor variables in the RF model for GDP2 mapping. To generate the
POIs-density-Sec layer, the kernel density estimation (KDE) tool in ArcGIS 10.4.1 was
employed to convert discrete factory POIs to a smoothly continuous surface. According
to the method by Ye et al. (2019), we tested different KDE bandwidths from 500m to
6000m with an interval of 100m and finally determined an optimal bandwidth with
4700m. The raster layer of DtN-POIs-Sec was generated with a 1 km� 1 km cell size and
each grid cell was assigned the Euclidean distance from the center of the grid to the nearest
factory POI in ArcGIS 10.4.1.

Tertiary sector-related POI data. The service-industry-related POIs were incorporated into the
RF model to estimate GDP3 density. Using the same method mentioned in the previous
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subsection, eight selected service-related POI categories were used to produce raster layers of

POI density and distance to the nearest service-sector POI, respectively. Following Ye et al.

(2019), the eight service-sector POI-density layers were combined into one layer (POIs-den-

sity-Ter) by utilizing %IncMSEs as weights. Similarly, the eight layers of distance to the

Table 1. Correlation between selected categories of POIs and GDP2 and GDP3 at county level
(n¼ 2495).

POI category GDP2 GDP3

Factory 0.64

Gasoline station 0.58

Bank 0.89

Commercial building 0.93

Retail 0.83

Accommodation services 0.85

Restaurant and entertainment 0.91

Company 0.71

Others (post office, etc.) 0.88

GDP: gross domestic product; POI: point-of-interest.

Figure 1. The flow diagram for producing the GDP maps of China.

1882 EPB: Urban Analytics and City Science 48(7)



nearest service-sector POI were combined into one raster layer (DtN-POIs-Ter). The %

IncMSEs and corresponding weights of different POI categories used to generate the final

POIs-density-Ter and DtN-POIs-Ter layers for tertiary industry are shown in

Supplementary Table 2.

Results

GDP density maps

Combining multi-source remote sensing data (e.g., NPP, temperature, land use data, vege-

tation index, and DEM data), four primary sector GDP density maps of China for

farming, forestry, livestock and fishery with a spatial resolution of 1 km were produced for

the year 2010 (Figure 2). Areas of high farming GDP density are located in the North China

Plain, the Yangtze River Delta, and the Guanzhong Plain, which are low relief areas with vast

tracts of arable land. The Northeast China Plain and Sichuan basin also have high economic

production from farming (Figure 2(a)). For forestry, relatively higher economic production

occurs in the mountainous area of eastern China (Figure 2(b)). Most of the livestock-sector

GDP contributions are from Sichuan, Xinjiang, Hubei, and Hunan Provinces, the Northeast

China Plain, and the North China Plain (Figure 2(c)). Coastal areas and some inland areas

with numerous lakes or rivers in east China support a large fishery GDP density (Figure 2

(d)). A composite GDP1 density map of mainland China, based on the above four maps, is

shown in Figure 3(a). Strong and heterogeneous GDP1 density was mainly distributed in the

plains of eastern China and the Sichuan basin. Some areas in Liaoning, Hubei, Hunan, and

Guangdong Provinces also have high GDP1 density.
The density of non-agricultural GDP across China in 2010 was spatialized separately

with the joint use of NTL satellite images and POI data (Figure 3(b) and (c)). Generally, the

urban areas exhibit high non-agricultural GDP densities. According to the spatial distribu-

tion of the final disaggregated total GDP density across mainland China for the year 2010

(Figure 3(d)), most of the GDP is distributed in plains and basin regions with a high

urbanization level. The highest GDP densities are located in the metropolitan area

of Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River Delta, and some pro-

vincial capitals.
Figure 4 shows the predicted GDP1, GDP2, and GDP3 density maps in four metropolitan

areas of Beijing–Tianjin, the Yangtze River Delta, the Pearl River Delta, and Chengdu–

Chongqing. There are no GDP1 in urban areas in the four regions. Areas with higher GDP2

density are mainly scattered at the urban fringe or some cities with relatively low

Table 2. Cross-validated accuracies of the Random Forest model for the logarithm of agricultural
(n¼ 1200) and non-agricultural GDP estimation (n¼ 2495).

R2 RMSE MAE

Farming 0.87 0.30 0.20

Forestry 0.70 0.47 0.34

Livestock 0.81 0.33 0.24

Fishery 0.82 0.54 0.39

GDP2 0.90 0.31 0.24

GDP3 0.95 0.20 0.15

MAE: mean absolute error; RMSE: root mean squared error.
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urbanization level, probably due to low land prices and less stringent environmental stand-

ards in this region (Hu et al., 2016). By contrast, very high GDP3 density occurs in the highly

urbanized metropolizes, particularly in downtown areas, presenting the character of

agglomeration (Figure 4). Our methodology captured the main spatial characteristics

of the different economic sectors and generated a more reasonable spatial distribution of

GDP density.

Accuracy assessment

While an ideal measure to validate the gridded GDP dataset would involve a cell-by-cell

comparison, the collection of such data is difficult and costly. Another common method

uses a summed gridded GDP value compared to a finer-level original census GDP.

Unfortunately, finer-level (such as township) census GDP data are also not available in

China. Here, we use 10-fold cross-validation to assess the predictive accuracy of each RF

model by calculating cross-validated R2, root mean squared error (RMSE), and mean abso-

lute error (MAE; Table 2). Overall, the RF models developed for the non-agricultural sector

(with R2 from 0.90 to 0.95) performed better than those for the agricultural sectors (with R2

ranging from 0.70 to 0.87). Agreement between the logarithm of census GDP and cross-

validated predictions was good, with RMSE varying from 0.20 to 0.54 and MAE from 0.15

to 0.39, which means that the proposed GDP modeling method has good predictive ability.

Figure 2. GDP density maps for the primary sectors of (a) farming, (b) forestry, (c) livestock, and (d)
fishery in 2010 (unit: million CNY/km2).
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Random Forest variable importance

Variable importance for the agricultural GDP estimation. According to the statistical outputs of RF
models for the primary industry, the variance explained in predicting GDP1 of farming,
forestry, livestock and fishery at the county level was 84.24%, 67.90%, 80.49%, and
78.52%, respectively. For farming and fishery (Figure 5(a) and (d)), the proportion of
corresponding land use in a county contributes largely in prediction of GDP density because
land use is the fundamental requirement for these agricultural activities. Due to the paucity
of information about forest land use rather than forest land cover, the proportion of forest
land had less importance (Figure 5(b)). For example, many forest lands were classified as
nature reserves for the requirements of ecological protection (Huang et al., 2019), and
forests around cities were usually developed as parks, rather than used for forestry produc-
tion. This may also explain the relatively poor performance of the RF model for forestry
GDP estimation compared to other agricultural sectors. NDVI and NPP, which reflect the
growth conditions of vegetation and are widely used to monitor agricultural and forest
production (Baisden, 2006; Huang et al., 2014; Mkhabela et al., 2011; Son et al., 2014;

Figure 3. GDP density maps for (a) the primary sectors, (b) the secondary sectors, (c) the tertiary sectors,
and (d) the summed GDP for all sectors in 2010 (unit: million CNY/km2).
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Tao et al., 2005), are top-ranked variables in the farming and forestry GDP modeling

(Figure 5(a) and (b)). These two vegetation-related variables also linked to the potential

output of livestock systems (Figure 5(c); Yu et al., 2010). The two topography-related

variables, elevation, and slope, were also important for the prediction of GDP density in

the four agricultural subsectors (Figure 5). Higher GDP1 was generally concentrated in low-

elevation, flat areas across China. Temperature is also crucial for agricultural production

with more importance of nighttime LST than daytime LST. Fishery activities include both

marine fishery and freshwater fishery. Distance to the ocean was an important predictor in

the RF model for fishery GDP estimation (Figure 5(d)).

Variable importance for the non-agricultural GDP estimation. For non-agricultural GDP estima-

tion, six predictors explained 89.91% and 95.26% of the variance of GDP2 and GDP3 in

China, respectively. At night, ceaseless industrial processes release large amounts of light

and waste heat and make industrial area brighter and warmer compared to other areas (Liu

et al., 2018; Zhang and Zhu, 2019; Zhao et al., 2013). Therefore, the brightness of NTL and

nighttime LST are the most important variables in predicting GDP2 (Figure 6(a)). County

road infrastructure also has a high variable importance. The coordinates of factory POIs

show the precise geographic location of industrial enterprises (Huang et al., 2018), which

can refine the GDP2 mapping. The DtN-POIs-Sec and railway density are identified as the

least important predictor variables in GDP2 estimation.
Most service industries are located in built-up areas. Daytime LST, which was positively

correlated with built-up areas (Xu, 2008), is the most important predictor in GDP3 estima-

tion. The two POI-based variables had large contributions to GDP3 estimation and the %

Figure 4. Comparison of the GDP density maps from (a) the primary sector, (b) the secondary sector, and
(c) the tertiary sector for four metropolitan agglomerations in China (unit: million CNY/km2).
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IncMSE value of POI-density-Ter was much larger than that of the brightness of NTL

(Figure 6(b)). High density service-related POIs can represent an area with high GDP3

density and exclude industrial regions.

Discussion

NTL data offer a unique view of the Earth’s surface and can be used to estimate and map

economic activities across a range of spatial scales. The main limitations of previous studies

are their overdependence on NTL data (Keola et al., 2015). Economic activities from agri-

culture are generally distributed in the darker areas at night. Therefore, the overall GDP

contributed by the primary sector cannot be accurately reflected by only NTL data, which

represents a higher value-added economic activity (Wang et al., 2019b). This is particularly

Figure 5. Percent increased mean square error (%IncMSE) that indicates the variable importance in RF
regression for the (a) farming, (b) forestry, (c) livestock, and (d) fishery GDP estimation of the primary
sector.
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troublesome in developing countries that often have a large share of total GDP contributed
from agriculture or forestry (Keola et al., 2015; Wang et al., 2019b). Recently, land use/

cover data have been used to estimate primary sector production (Cao et al., 2016; Chen
et al., 2016; Han et al., 2012; Keola et al., 2015; Yue et al., 2014). In this study, we further
integrated NDVI, NPP, elevation, slope, and LST which potentially influence agricultural

production in the RF models. Statistical outputs of the RF models indicated that the
abovementioned variables can play an important role in estimating GDP1.

Another limitation of using NTL images for GDP mapping is that the GDP2 and
GDP3 cannot be distinguished effectively. Compared with NTL data, POIs have an
inherent advantage in revealing the actual distribution of different economic activities,
especially in urbanized areas. Based on their taxonomy and names, the POIs can be

classified into different types, such as commerce, business offices, catering, recreation,
and factories. The density of a certain type of POI shows the spatial distribution pattern
of a certain group of related economic activities. Different functional distribution pat-

terns within cities can be identified based on the POI data (Figure S1), with a high
probability that the specific distributions of GDP2 and GDP3 can be differentiated effec-
tively. However, in urban fringe areas or rural areas, the POI density is significantly lower

than in urban areas and thus have limited capability to estimate GDP1. The NTL data
and POIs have specific disadvantages regarding the description of economic activities.
Given that GDP distribution should be recognized using both natural/physical and social

attributes, disaggregating GDP based on the sole use of either NTL or geospatial big data
has unavoidable limitations. Therefore, integrating the NTL data, land use data, POIs,
and other remote sensing data can effectively capture the distribution of economic activ-

ities from the different sectors and significantly improve the accuracy of GDP mapping.
The spatialized GDP maps also provide insights into the pattern of the value-added
commodity chain involving different economic sectors in China. Low value-added agri-

cultural production activities are generally founded in rural areas. The value of raw
material builds up across the process of manufacturing and assembly (medium value-
added activities), usually locating at the urban fringe or in less-urbanized cities while high
value-added activities such as design and marketing are often located in highly urbanized

areas.

Figure 6. Same as in Figure 5 but for (a) GDP2 and (b) GDP3.
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Currently, the most widely used POI is generally extracted from online platforms or

based on volunteered geographic information (VGI). The coverage and accuracy of these

types of geospatial big data depend heavily on the completeness of the online sources and

the veracity of user-contributed content (Jiang et al., 2015). VGI-based POIs were generally

recorded in urban areas and areas with more service entities or infrastructure (e.g., the

Central Business District or tourist attractions), while there were insufficient POIs in

rural areas as well as residential areas (Ma et al., 2015). The POI data used in this study

were based on commercial navigation data. Commercial POI data are collected by trained

persons and undergo rigorous inspections and corrections. As a result, the positional and

thematic accuracy of Baidu POI data is reasonably reliable. The superiority of commercial

POI data as good indicators of various economic activities without substantial user biases

make them more prominent in spatially disaggregating census GDP from different non-

agricultural activities to a very fine geographic scale.
However, an inevitable limitation of this study was that our current approach focuses on

the quantity rather than the quality of the POIs. One example is that a large department

store and a small convenience store, which generate distinct economic outputs, are treated

equally. Possible further incorporation of other forms of big data would provide supple-

mentary information to identify the intensity of economic activities in specific fine-scale

areas (Zhao et al., 2018). Moreover, the accuracy of GDP estimation is potentially limited

by the uncertainty of the RF models. The main limitation of the RF regression model is that

it cannot predict the values beyond the range in the training dataset (Heenkenda et al., 2015;

Houborg and McCabe, 2018).

Conclusions

This study proposes a novel solution for GDP mapping at the pixel level through RF

modeling using both remote sensing and POI data. Differing from previous studies, we

constructed individual RF models for each sector in order to capture the non-linear relation-

ships between the predictors and census GDP from different sectors. Benefiting from the

combination of the advantages of NTL and POI, we explored the potential for spatializing

GDP2 and GDP3 separately. The proposed methodology of GDP modeling shows good

predictive ability. On the countrywide scale, our case study of mainland China suggests that

the integration of multi-source data helps to generate a reasonable estimation of GDP

density, which offers an intuitive way of visualizing GDP distribution. The gridded GDP

maps can be used as an important scientific reference for governments and organizations

when formulating developmental strategies. Besides revealing the effectiveness of POIs in

non-agricultural GDP mapping, this study suggests the potential of POIs to improve the

disaggregation of other socioeconomic parameters in the future.
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