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Abstract
The dynamic response of the host structure to a high-frequency actuation is usually used for the detection of tiny damage in

structures in the form of breathing crack. The simulation of the microcrack’s effect on the response is essential for several
damage identification targets. The conventional finite element method suffers from very small mesh size requirements to

address the high-frequency problems, resulting in very large mass and stiffness matrices. In this study, the scaled boundary

finite element method was applied to model different schemes of structural health monitoring of a structure with breathing

cracks based on high-frequency vibration. The scaled boundary finite element method discretizes only the boundary of the

model and thus substantially reduces the size of structural matrices. The node-to-node contact strategy was introduced to

the scaled boundary finite element method to capture the contact problem that occurs during the vibration of the breathing

crack. As breathing crack vibration results in some nonlinear effects, the simulation of three phenomena was of interest:

higher harmonic generation, frequency shift, and vibro-acoustic modulation. A shooting method was used for efficient time

integration and description of the frequency response function in the nonlinear regime. According to the results, the scaled

boundary finite element method is of great power, efficiency, and accuracy to treat the contact problems, especially in high-

frequency regimes. Moreover, the nonlinear methods provide certain advantages over the linear techniques in the early

detection of incipient damage.
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1. Introduction

Vibration response of structures that is typically used for
their health monitoring has some superiority over methods
based on frequency response. The damage effects better
emerge in the frequency content of the dynamic response
and open a category of monitoring methods called fre-
quency methods (Giurgiutiu, 2007; Sepehry et al., 2014; Xu
et al., 2019; Zhang et al., 2016). Increasing the excitation
frequency decreases the wavelength to a comparable size
with tiny damages and makes them detectable. Thus, high-
frequency vibration-based health monitoring methods are
of great importance for early detection of damage and more
reliable estimation of the remaining useful life (Giurgiutiu,
2007; Sepehry et al., 2014).

The contact between breathing crack faces usually in-
duces nonlinear effects in the vibration response of the host

structure (He and Ng, 2017; Nandi and Neogy, 2002). This
type of nonlinear behavior emerges in the frequency content
of the system response in the form of subharmonic and
higher harmonics (Trojniar et al., 2014), the linear or
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nonlinear shift of the peak frequencies (Jalali and Bonab,
2013; Matlack et al., 2015), and also modulation fre-
quencies (Jhang, 2009). The last one (also called vibro-
acoustic modulation (VAM) in the literature) categorizes the
breathing cracks as nonclassical nonlinearity sources. Ac-
cording to the previous studies, nonlinear symptoms of
damage emerge much earlier than the linear ones. Hence,
nonlinear metrics will assist in damage identification in the
very early stages of progressive damage.

Generally, the types of nonlinear behavior of the
structure are divided into two classical and nonclassical
categories (Ostrovsky and Johnson, 2001). Classical non-
linearities, which include microstructural distortion, stress
concentration, thermoelastic dependence, and large strains,
emerge as the formation of higher harmonic generation
(HHG) (Trojniar et al., 2014) or frequency shift (FS) (Jalali
and Bonab, 2013; Matlack et al., 2015) in the frequency
response function, whereas the nonclassical nonlinear be-
haviors mainly arise from the kissing contact (due to
cracked edges or loose joints) (Guyer and Johnson, 1999) or
the hysteresis damping factors in the structure (Guyer and
Johnson, 2009). In the technical literature, various phe-
nomena, such as contact acoustic nonlinearity (Solodov
et al., 2002; Turnbull et al., 1995), the Luxemburg–Gorky
effect (Zaitsev et al., 2002), the memory effect (Solodov and
Korshak, 2001), and the VAM (Donskoy and Sutin, 1998;
Motaharifar et al., 2019), are attributed to nonclassical
nonlinear behavior of structures. The nonclassical non-
linearities in the frequency response spectrum of the
structure are represented by the formation of higher and
lower harmonics, frequency mixing, linear (first degree)
resonant frequency transfer (Meo et al., 2008), and fre-
quency modulation (Jhang, 2009).

The possibility to predict the dynamic response of the
host structure to the high-frequency actuation would be of
great importance in the damage identification procedure
which is an inverse problem. The finite element method
(FEM), as one of the most popular approaches in this regard,
suffers from very fine mesh size (10–20 elements per
wavelength) required for capturing the high-frequency re-
sponse of the problem (Ha and Chang, 2009). It also leads to
extremely large mass and stiffness matrices which make the
solution very time-consuming. To address this drawback,
spectral elements emerged that try to approximate the
displacement field with more efficient shape functions (Ha
and Chang, 2009; Sepehry et al., 2017a, 2017c). The time
domain spectral FEM takes advantage of higher order
polynomials for efficient approximation field and is of great
interest in the steady state and transient wave field mod-
eling. Although much more efficient than the FEM, they
still need a lot of nodes on and within the intended domain
for discretization which leads to large structural matrices.
Frequency domain spectral methods, on the other hand,
transform the governing equation to the frequency domain
using the Fourier or wavelet transformation and solve it in

that domain with effective shape functions (Joglekar and
Mitra, 2016). Although very efficient, they are limited to
some very limited cases that an analytical solution could be
found for the transformed spatial differential equation.
Model order reduction has also been proposed by Sepehry
et al. to reduce the size of the structural matrices even more
(Sepehry et al., 2017c, 2018a). However, decreasing the
computational costs in this field is still of great interest.

Nodes, used in the spectral FEM, are on the boundary
and inside the element. This leads to huge structure matrices
for a very large structure, whereas the scaled boundary finite
element method (SBFEM) uses only the nodes on the
boundary. Therefore, this method has very small matrices
compared with the higher order FEM (Deeks and Wolf,
2002; Ooi et al., 2013; Song, 2009; Song and Wolf, 1997,
2000) and can be used for modeling high-frequency ap-
plications (Gravenkamp et al., 2012, 2015, 2017; Sepehry
et al., 2018b). In the case of a simple structure, although the
spectral method needs a lower number of degrees of
freedom (DOFs) than the SBFEM (Gravenkamp et al.,
2017), they proposed a model reduction method to de-
crease the DOFs used in the SBFEM in comparison with
that used in the spectral method for high-frequency ap-
plication (Gravenkamp et al., 2017). Also, they showed that
the number of DOFs of the SBFEM was significantly lower
than that of the spectral method for complex geometry (such
as stress singularities and domains with different materials)
which is common in structural health monitoring. Several
works include static analysis of the crack (Song and Wolf,
1997, 2002), a contact model of the crack in the static
analysis (Xing et al., 2018; Zhang et al., 2018), crack
propagation (Ooi et al., 2012, 2013; Yang, 2006), piezo-
electric material (Li et al., 2013a, 2013b; Man et al., 2014),
andmodeling of the crack in wave propagation (Gravenkamp
et al., 2012, 2015) in the SBFEM.

Recently, many researchers have investigated the
SBFEM (Chongshuai et al., 2018; Li et al., 2019; Song,
2004, 2009; Song et al., 2018; Zou et al., 2019;Wolf, 2002).
The equation of singular stress at cracks by the SBFEM is
derived by Song and Wolf, (2002). The dynamic stress
intensity factors using the SBFEMwere developed by Song
(2004) and Yang et al. (2007).

The effect of opening–closing crack on the vibration of
a structure was studied by Chatterjee (2010), Rezaee and
Hassannejad (2011). Some works investigated a breathing
crack using a fully open or fully closed crack (Chondros
et al., 2001; Cheng et al., 1999; Lu et al., 2016; Nandi and
Neogy, 2002; Rubio et al., 2017; Yang et al., 2010; Zhang
and Li, 2014). Also, this type of crack was studied in the
field of wave propagation using the FEM (Bouboulas and
Anifantis, 2011; Friswell and Penny, 2002), the time do-
main spectral element method (He and Ng, 2017; Nandi and
Neogy, 2002), and the wavelet spectral element method
for the beam structure (Joglekar and Mitra, 2016). The
nonlinear vibration of a dual-rotor system containing
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a breathing transverse crack was investigated by Lu et al.
(2016). Sepehry et al. (2017b) investigated the breathing
crack modeling for the Euler–Bernoulli beam using the
impedance method. Moreover, they showed that damping
increased with the increase of frequency, and this leads to
a decrease in the detection ability of damage in the fre-
quency domain (Sepehry et al., 2017a).

In this study, a general formulation for the modeling of
a tiny breathing crack in the SBFEM based on the node-to-
node face contact strategy of a crack is developed. Because
of the nonlinear nature of this phenomenon, the nonlinear
frequency response of a 2D structure is calculated using
the shooting method (Ibrahim et al., 2009; Nayfeh and
Balachandran, 2008). In the following, three methods are
used to detect an early crack in the vibration method in-
cluding nonlinear frequency response of contact modeling
of the crack using the shooting method, higher harmonics of
one harmonic excitation, and VAM based on system ex-
citation using two different frequencies. The results of the
vibration of the breathing crack in the SBFEM are verified
with the FEM. Moreover, the VAM is verified by the ex-
perimental result (Long et al., 2019). The obtained data using
the three mentioned methods show that the linear methods,
unlike nonlinear methods, cannot detect early damage.

2. Fundamentals of the SBFEM

A two-dimensional geometry of the domain is presented in
Figure 1. The spectral element is used to discretize the
boundaries of geometry. The radial coordinate ðξÞ equals
zero at the origin (scaling center) and one everywhere on the
boundary. The coordinate η is the other local coordinate of
the element. For the crack element, several works use the tip
of crack as a scaling center (Ooi et al., 2012, 2013; Song and
Wolf, 2002; Yang, 2006). In this study, a node-to-node
strategy contact face is considered. The crack section of
the structure is discretized as Figure 2. These nodes applied
for the node-to-node contact strategy. The boundary dis-
cretization is interpolated by the set of shape functionsNðηÞ.

The Cartesian coordinates xb and yb are transformed to
the scaled coordinates ξ and η as follows

xb ¼ ξNðηÞx (1)

yb ¼ ξNðηÞy (2)

where x and y represent the node coordinates. The dis-
placement field is given as

buðη,ξÞ ¼ NðηÞuðξÞ (3)

where buðη,ξÞ is the displacement field at a given location in
the domain, and uðξÞ is the displacement as a function of ξ
corresponding to the nodes on the boundary.

After applying the virtual work principle (Deeks and
Wolf, 2002) or weighted residual method (Song, 2009;
Song and Wolf, 1997), the SBFEM is obtained as
(Gravenkamp et al., 2017)

E0ξ
2u,ξξ þ

�
E0 � E1 þ ET

1

�
ξu,ξ � E2uþ ω2ξ2M0u ¼ 0

(4)

where M0 is the mass matrix of line element, ω is the
frequency, and E0,E1, and E2 are defined as follows

E0 ¼
Z 1

�1

BT
1DB1jJjdη (5)

E1 ¼
Z 1

�1

BT
2DB1jJjdη (6)

E2 ¼
Z 1

�1

BT
2DB2jJjdη (7)

Figure 1. Scaled boundary finite element method discretization

of a simple subdomain.

Figure 2. Section of cracked structure with crack tip and crack

faces with four subdomains.
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M0 ¼ ρ
Z 1

�1

NTNjJjdη (8)

with the elasticity matrix D and ρ mass density. The Ja-
cobian matrix is (Ooi et al., 2013)

jJj ¼ ðNðηÞxÞ
�
NðηÞ,ηy

�
� ðNðηÞyÞ

�
NðηÞ,ηx

�
(9)

And the matrices B1 and B2 are defined as (Gravenkamp
et al., 2017)

B1 ¼ b1N; B2 ¼ b2N,η (10)

where

b1 ¼ 1

jJj

24 y,η 0
0 �x,η

�x,η y,η

35; b2 ¼ 1

jJj

24�y 0
0 x
x �y

35 (11)

The dynamic stiffness matrix SðωÞ differential equation
on the boundary can be derived (Gravenkamp et al., 2017;
Song, 2009)

ðSðωÞ � E1ÞE�1
0

�
SðωÞ � ET

1

�� E2 þ ωSðωÞ,ω þ ω2M0 ¼ 0

(12)

For high frequency, the dynamic stiffness matrix is
obtained as (Song, 2009)

where matrices K and M are derived for low frequency and
by solving algebraic Riccati and Lyapunov equations
(Gravenkamp et al., 2017; Li et al., 2013a; Song, 2009). The
integer Mcf represents the order of the continued fraction
expansion. The higher order terms SðiÞ0 and SðiÞ1 are defined
in Song (2009). The matrices XðiÞ are introduced for pre-
conditioning (Chen et al., 2014); the dynamic stiffness is
obtained as (Gravenkamp et al., 2014)

Based on this expansion, an equation of motion in the
frequency domain can be derived as (Gravenkamp et al., 2017)

KhzðωÞ � ω2MhzðωÞ ¼ fðωÞ (15)

where

Kh ¼ ðdiagÞ
�
K,Sð1Þ

0 ,Sð2Þ
0 ,…,S

ðMcfÞ
0

�
(16)

Mh ¼

M �Xð1Þ 0 / 0

��Xð1Þ	T Sð1Þ
1 �Xð2Þ / 0

0 ��Xð2Þ	T Sð2Þ
1 / 0

« « « 1 «

0 0 0 / S
ðMcfÞ
1

0BBBBBBB@

1CCCCCCCA
(17)

z ¼

8>>>>>><>>>>>>:

u

uð1Þ

uð2Þ

«

uðMcfÞ

9>>>>>>=>>>>>>;
(18)

f ¼

8>>>><>>>>:
R
0
0
«
0

9>>>>=>>>>; (19)

The vector u is the nodal displacements on the boundary.
The vectors uð1Þ,uð2Þ,…,uðMcf Þ represent auxiliary variables

associated with the higher order terms. After computing the
dynamic stiffness and mass matrices for all subdomains,
they can be assembled like conventional finite elements.

3. Modeling of contact dynamics

In this section, the SBFEM is used to model the constrained
equation of motion with normal contact conditions. The

solution of the contact problem involves the following
steps: define proper contact conditions, find the con-
strained equation of motion, using a search algorithm to
find points which are interacted with each other, and pre-
vent the penetration (Zienkiewicz and Taylor, 2005). For

SðωÞ ¼ K � ω2M� ω4

 
Sð1Þ
0 � ω2 Sð1Þ

1 � ω4

 
Sð2Þ
0 � ω2 Sð2Þ

1 �/� ω4

�
S
ðMcfÞ
0 � ω2 S

ðMcfÞ
1 �/�

��1
!�1!�1

(13)

SðωÞ¼K�ω2M�ω4Xð1Þ

×

 
Sð1Þ
0 �ω2Sð1Þ

1 �ω4Xð2Þ
 
Sð2Þ
0 �ω2Sð2Þ

1 �/�ω4XðMcfÞ
�
S
ðMcfÞ
0 �ω2S

ðMcfÞ
1

��1h
XðMcfÞiT!�1�

Xð2Þ	T!�1�
Xð1Þ	T

(14)
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formulating the contact conditions and constrained equa-
tions of motion, many different methods can be used
(Behzad et al., 2013). In this study, the Lagrange multiplier
method is considered for the contact problem. For the
implementation of the Lagrange multiplier method, the gap
function is defined and then the variational procedure is
used to enforce contact conditions to the equation of mo-
tion. Finally, implicit time integration is used as a numerical
solution of nonlinear system equations.

3.1. Node-to-node contact method

According to Figure 2, the faces of the crack can be in
contact with each other. On the other hand, the crack faces
are discretized to obtain the numerical solution. The nodes
on the one side of the crack are considered as slave nodes
and those of the other side of the crack as master nodes. The
distance between the crack faces does not penetrate by
applying contact conditions. To determination of which
“nodes” of one side of the crack penetrates the other side,
the search algorithm is used. Because the one side of the
crack may contact with several nodes of the other side, this
approach is called “node-to-node.”

3.2. Definition of the gap function

Points A and B in Figure 3 are the one node of the one side
of the crack and one node of the other side of the crack. Let
xA and xB be the current position vectors and uA and uB be
the current displacement vectors of the points A and B,
respectively. The normal gap function can be written as
follows if A and B are considered the one nodal contact pair

gN ¼ nTðxA � xBÞ (20)

where n is the unit normal vector of the crack face of point B
pointing to A and gN is the normal gap function. The local
contact matrix ðGLÞ could be written as

gN ¼ ½ nx ny �nx �ny �

264 xA
yA
xB
yB

375 ¼ ½GL�

264 xA
yA
xB
yB

375 (21)

where x and y are the horizontal and vertical components of
the position vector x, respectively. The global contact
matrix ðGNÞ is obtained by assembling of the local contact
matrix for all nodal contact pairs defined as (Behzad et al.,
2013)

½GN� ¼
��
G1

L0
	T

�G2

L0
	T

…

�Gs

L0
	T	T

(22)

where s denotes the number of activated nodal contact pairs
and Gi

L is the local contact matrix of ith nodal contact pair.
So, the gap function can be defined as

gN ¼ GNx ¼ GNðuþ x0Þ (23)

where u and x0 are the initial displacement vectors and
position of nodes, respectively.

3.3. Contact conditions

In this study, only the normal contact problem is studied.
The contact conditions also famous as Hertz–Signorini–
Moreau conditions (Wriggers and Zavarise, 2004) should
make sure that: the penetration of the side faces of crack will
not occur; if the normal gap is negative, then the gap will be
zero else the gap is positive, and the normal contact force
would be zero and described as

giN ≥ 0

piN ≤ 0

piNg
i
N ¼ 0

for i ¼ 1; 2,…,s

8><>: (24)

where piN for the ith nodal contact pair is the normal contact
pressure.

3.4. Motion equation with constraints

The Lagrange multiplier method is used to add constraints
to the equation. The variation of the energy related to the
contact interface Γ c without a slip condition is given by
(Wriggers and Zavarise, 2004)

δΠc ¼
Z
Γ c

ðpNδgNÞdAþ
Z
Γ c

ðgNδpNÞdA (25)

where pN is the pressure contact. By applying the node-to-
node contact approach in the SBFEM discretization,Figure 3. Gap function for the faces of the crack.
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equation (28) for the s nodal contact pair is as follows
(Wriggers and Zavarise, 2004)

δΠc ¼ δgTNλN þ δλTNgN (26)

where λN ¼ � λ1N λ2N / λsN
	T
, gN ¼ � g1N g2N /

gsN
	T
, and λiN for the ith nodal contact pair are the Lagrange

multipliers. The potential energy of the contact inserts to the
potential energy related to the elastic deformation; static
deformation of the elastic bodies being in contact is as
follows �

KuþGT
NλN ¼ f

gN ≥ 0; λN ≤ 0; gNλ
T
N ¼ 0

(27)

where K is the stiffness matrix and f is the vector of body
forces and surfacetractions. The dynamic deformation of the
elastic bodies with contact is rewritten as follows(

M€u þ C _uþKuþGT
NλN ¼ f

GNðuþ x0Þ ≥ 0; λN ≤ 0; gNλ
T
N ¼ 0

(28)

where M and C are mass and stiffness matrices,
respectively.

3.5. Time integration solution of motion equation
in contact

The method of “forward increment Lagrange multiplier
method” is used as a numerical solution (Carpenter et al.,
1991). The equation of motion in time tn is expressed by(

M€un þ C _un þKun þ �Gnþ1
N

�T
λnN ¼ f n

Gnþ1
N

�
unþ1 þ x0

�
≥ 0

(29)

It is assumed that in the current time tn, no contact is ob-
served. So λnN ¼ 0 and the Newmark time integration is used
to calculate the displacement ðunþ1

exp Þ at the next time ðtnþ1Þ
Keffu

nþ1
exp ¼ Feff (30)

where Keff and Feff are defined in Teixeira (2009). If in this
step time gap function in equation (32) is positive, then
unþ1 ¼ unþ1

exp . Otherwise, contact has occurred and λ
n
N should

be calculated. So the displacement at time tnþ1 is as follows

unþ1 ¼ unþ1
exp þ ucon (31)

where ucon is a displacement corrected by the Lagrange
multiplier vector. So according to equation (32), we have(

Keffucon þ
�
Gnþ1

N

�T
λnN ¼ 0

Gnþ1
N

�
unþ1
exp þ ucon þ x0

�
¼ 0

(32)

By using equation (35), the Lagrange multiplier vector is
calculated as

λnN ¼ �Gnþ1
N K�1

eff

�
Gnþ1

N

�T �
Gnþ1

N

�
unþ1
exp þ x0

��
(33)

Finally, ucon is calculated

ucon ¼ �K�1
eff

�
Gnþ1

N

�T
λnN (34)

4. Shooting method

The nonlinear frequency response of the structure is
calculated by the shooting method. For finding the peri-
odic response of the nonlinear system equation, the
shooting method is applied. For the system of second-
order ordinary differential equations, this method is pre-
sented in Ibrahim et al. (2009); Ribeiro (2004). This
method is also given here shortly. The shooting method
aims to find the initial conditions which cause the periodic
response. In this approach, the initial condition��

uð0Þ
_uð0Þ

�
¼ μ

�
must be equal with the solution in

ðt ¼ TÞ as follows (Ibrahim et al., 2009)�
uð0Þ
_uð0Þ

�
¼
�
uðT,μ;ωextÞ
_uðT,μ;ωextÞ

�
(35)

where T ¼ 2π=ωext is the minimal period and ωext is the
harmonic excitation of the system. For obtaining the
nonlinear frequency response, period T is taken as an in-
teger multiple of fundamental period. The initial condition
μ is not known, so it must be corrected as�

uðT,μ0 þ Δμ;ωextÞ
_uðT,μ0 þ Δμ;ωextÞ

�
� ðμ0 þ ΔμÞ ¼ 0 (36)

where μ0 is the initial guess and Δμ is the correction. By
using the Taylor series, equation (39) can be rewritten as

Table 1. Pseudocode for calculating of system equations.

1. Guess initial condition μ0
2. t ¼ 0

3. Solve equation (30)

4. Check equation (29), if contact occurred go to 6 else go to 5

5. Set unþ1 ¼ unþ1
exp and go to 9

6. Calculate λn using equation (33)

7. Calculate ucon using equation (34)

8. Set unþ1 ¼ unþ1
exp þ ucon

9. If tnþ1 ¼ T go to 10 else go to 3

10. If

�
uð0Þ
_uð0Þ

�
¼
�
uðT,μ;ωextÞ
_uðT,μ;ωextÞ

�
go to 13 else go to 11

11. Calculate Δμ using equation (37)

12. Update initial condition ðμ0 ¼ μ0 þ ΔμÞ and go to 2

13. End
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Table 3. Comparison of the displacement in the y-direction of the scaled boundary finite element method and the finite element

method for force 1 N.

Point p = 5, 2752 DOF p = 7, 3884 DOF p = 9, 5014 DOF FEM, 58194 DOF p5 � FEM=FME× 100

A 3.1602 × 10�5 3.1511 × 10�5 3.1224 × 10�5 3.1401 × 10�5 0.64

B 1.6365 × 10�6 1.6345 × 10�6 1.6321 × 10�6 1.6364 × 10�6 0.006

C 1.6364 × 10�6 1.6344 × 10�6 1.6320 × 10�6 1.6362 × 10�6 0.012

Note: FEM: finite element method; SBFEM: scaled boundary finite element method; DOF: degree of freedom.

Table 4. Comparison of the displacement in the y-direction of the scaled boundary finite element method and the finite element

method for force 100 N.

Point p = 5, 2752 DOF p = 7, 3884 DOF p = 9, 5014 DOF FEM, 58194 DOF p5 � FEM=FME× 100

A �2.8928 × 10�5 �2.8905 × 10�5 �2.8872 × 10�5 �2.8933 × 10�5 �0.017

B �1.1619 × 10�5 �1.1607 × 10�5 �1.1592 × 10�5 �1.1605 × 10�5 0.12

C �9.6191 × 10�6 �9.6073 × 10�6 �9.5923 × 10�6 �9.6353 × 10�6 �0.16

Note: FEM: finite element method; SBFEM: scaled boundary finite element method; DOF: degree of freedom.

Table 5. Comparison of the displacement in the y-direction of the scaled boundary finite element method and the finite element

method for force 100 N.

Point p = 5, 2752 DOF p = 7, 3884 DOF p = 9, 5014 DOF FEM, 58194 DOF p5 � FEM=FME× 100

A 3.0532 × 10�3 3.0503 × 10�3 3.0465 × 10�3 3.0535 × 10�3 �0.01

B 1.6365 × 10�4 1.6345 × 10�4 1.6322 × 10�4 1.6366 × 10�4 �0.006

C 1.6364 × 10�4 1.6344 × 10�4 1.6321 × 10�4 1.6365 × 10�4 �0.006

Note: FEM: finite element method; SBFEM: scaled boundary finite element method; DOF: degree of freedom.

Table 2. Comparison of the displacement in the y-direction of the scaled boundary finite element method and the finite element

method for force 1 N.

Point p = 5, 2752 DOF p = 7, 3884 DOF p = 9, 5014 DOF FEM, 58194 DOF p5 � FEM=FME× 100

A �3.0231 × 10�7 �3.0202 × 10�7 �2.9791 × 10�7 �2.9981 × 10�7 0.83

B �1.2947 × 10�7 �1.2765 × 10�7 �1.2527 × 10�7 �1.2694 × 10�7 2

C �9.5942 × 10�8 �9.5876 × 10�8 �9.5777 × 10�7 �9.5954 × 10�8 �0.01

Note: FEM: finite element method; SBFEM: scaled boundary finite element method; DOF: degree of freedom.

Figure 4. Schematic of the cantilever cracked 2D structure.
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26664
∂u
∂μ

ðT,μ0;ωextÞ

∂ _u
∂μ

ðT,μ0;ωextÞ
� I

37775Δμ¼ μ0�
�
uðT,μ0;ωextÞ
_uðT,μ0;ωextÞ

�
(37)

where I is the identity matrix. For the evaluation of ∂u=∂μ
and ∂ _u=∂μ, it is not straightforward to differentiate equation
(32); therefore, the finite difference method is used (Nayfeh
and Balachandran, 2008) based on the following initial
condition

26664
∂u
∂μ

∂ _u
∂μ

37775
t¼0

¼ I (38)

The convergence of the shooting method is quadratic
if the initial guess is close to the solution (Nayfeh and
Balachandran, 2008).

The pseudocode for calculation of system equations
based on the shooting method and time integration is
presented in Table 1.

Figure 5. Comparison of the time history of cracked structure between the FEM and SBFEM for force 1 N. (a) 0–33 ms. (b) 30–33 ms.

Note: FEM: finite element method; SBFEM: scaled boundary finite element method.
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5. Results and discussion

5.1. Validation of the proposed method
The developed procedure to model the breathing crack
using the SBFEM is validated for both static and dynamic
solutions in this section. The response of a damaged
structure to a static load at a certain point is studied in the
static scheme to check the stiffness matrix extraction and
assembly separately. For the dynamic solution, the eigen-
value analysis is performed to compute the eigen-
frequencies and check them against a converged FE model

results. The time domain analysis is performed to validate
the solution procedure presented in this section against the
FEM results. Also, the proposed method result is confirmed
using the experimental results of Long et al. (2019).

The configuration used to verify the applicability of the
SBFEM for modeling crack is a 2D beam with a small V-
shaped slit on it (Figure 4). The length and thickness of the
beam are L = 400 mm and h = 5 mm. Isotropic material with
the following properties is assumed as the constituent
material: E = 70 GPa (Young’s modulus), ρ = 2700 kg/m3

(density), and ν = 0.3 (Poisson’s ratio). The clamped

Figure 6. Comparison of the time history of cracked structure between the FEM and SBFEM for force 300N. (a) 0–33ms. (b) 30–33ms.

Note: FEM: finite element method; SBFEM: scaled boundary finite element method.
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boundary condition is applied at one end of the beam, and
the other is free. The crack tip is located at 100 mm ðxcÞ
from the fixed end, with the depth of 0.0025 mm from the
top edge. The opening of the crack is specified using α =
0.06° and θ = 0°. In the static case, a force is applied at point
A, and the results are gathered as the displacement of three
points A, B, and C in Figure 4. Displacement results in the
x- and y-direction are compared with the conventional FEM
results in Tables 2–5 for 1 N (noncontact) and 100 N
(contact) applied forces. The p-refinement (increasing the
element order on the boundary nodes) is performed to in-
vestigate the convergence of the results through different
polynomial degrees of the SBFEM and forces 1 N (non-
contact) and 100 N (contact), respectively.

Finally, the displacement of point A is calculated for the
dynamic force as follows

f ¼ F sinð2πf ctÞ
�
1� cos

�
2πf c
n

�
t

�
(39)

where f c ¼ 3000 and n ¼ 100. The results of two forces
F = 1 N and 300 N applied in point A are compared with
the commercial FEM and presented in Figures 5 and 6,
respectively.

The some linear (noncontact) natural frequencies of the
structure are presented in Table 6 for different polynomial
degrees and with Mcf ¼ 1.

For validation of the SBFEM with breathing crack, the
result is compared with experimental results (Long et al.,
2019). The dimension of the cantilever cracked beam is
406 mm × 12 mm, the crack depth is 3.8 mm, and the crack
location is 176 mm. The Young modulus is 206 Gpa,
density is 7850 kg/m3, and Poisson’s ratio is ν = 0.3. For this
model, a force is applied in point A, and the acceleration of
point A in Figure 4 is calculated. The frequency of the
applied force is 2f 1, where f 1 ¼ 58:2 is the fundamental
natural frequency. The result is shown in Figure 7. Ac-
cording to this figure, a frequency modulation between
fundamental frequency f 1 and exciting frequency f ω ¼ 2f 1

Table 6. Comparison of the natural frequency (Hz) of the scaled boundary finite element method and the finite element method.

Mode p = 5, 2752 DOF p = 7, 3884 DOF p = 9, 5014 DOF FEM, 58194 DOF p5 � FEM=FME× 100

1 24.643 24.628 24.800 24.6208 0.092

2 160.911 160.910 160.922 160.909 0.001

3 444.747 444.601 445.397 444.63 0.026

4 853.891 853.223 856.953 853.353 0.063

5 1417.326 1416.512 1421.080 1416.67 0.046

6 2150.495 2150.152 2151.949 2150.23 0.012

7 3006.460 3006.069 3007.685 3006.16 0.010

8 3099.337 3096.627 3111.312 3097.08 0.073

9 3930.735 3929.379 3936.716 3929.67 0.027

10 4963.642 4960.785 4976.877 4961.38 0.046

20 18338.579 18336.125 18324.659 18337.5 0.006

21 20137.118 20126.589 20169.344 20129.8 0.036

22 21894.697 21881.759 21939.504 21885.8 0.041

23 22458.509 22455.228 22461.429 22457.9 0.003

24 24711.481 24704.356 24713.056 24707.4 0.017

25 27345.556 27335.281 27305.233 27342.3 0.012

26 28155.690 28138.662 28205.056 28145.6 0.036

27 29919.705 29910.864 29863.303 29918 0.006

28 32034.836 32016.466 32066.360 32027.3 0.024

29 34038.594 34014.097 34074.495 34026.4 0.036

30 35081.695 35071.399 35061.556 35081.5 0.001

40 55363.949 55321.159 55073.518 55360 0.007

41 58304.745 58240.470 58281.628 58291.5 0.023

42 59228.239 59167.213 59250.206 59210.2 0.030

43 61352.939 61300.295 61074.920 61351.3 0.003

44 64029.528 63963.683 63473.836 64022 0.012

45 66156.888 66082.818 66058.672 66148.8 0.012

46 67906.430 67834.466 67196.383 67903.9 0.004

Note: FEM: finite element method; SBFEM: scaled boundary finite element method; DOF: degree of freedom.
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was demonstrated as f 1 þ f ω in the SBFEM similar to
experimental results.

5.2. Breathing crack detection for a rectangular
2D structure

5.2.1. Apply force and calculate the displacement of a 2D
structure. In the first model, frequency response of point A

vs. harmonics by applying a harmonic force for two
forces 1 N and 300N in the cracked structure in point A is
computed. Also, this result for force 1 N is calculated
for the health structure. Figures 8 and 9 show these
results for frequency excitations 3000 and 20140 Hz,
respectively. Because of the dimension of the crack,
this model could be used as a model of early crack
detection.

Figure 7. Comparison of the spectrum of cracked structure between (a) experimental results (Long et al., 2019) and (b) scaled

boundary finite element method.
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Figure 9. Displacement versus harmonic number for frequency 20140 Hz.

Figure 8. Displacement versus harmonic number for frequency 3000 Hz.
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In these figures, the healthy and noncontact model
only includes the first harmonic, but in contact model,
higher harmonic also appeared. According to these fig-
ures, the early crack could be detected using a breathing
model.

The sum of two forces with low and high frequencies is
applied to point A. Figure 10 shows the results of the y-
displacement of point A for the crack and health structure.
The low frequency is 433 Hz with force 300N, and the high
frequency is 3000 Hz with force 1 N. 433 Hz is selected
because this frequency is near the natural frequency of the
structure, and the less force is needed to the face of crack to
be in contact.

The frequency response of the cracked structure is shown
in Figure 11. This figure shows that in low force, the fre-
quency response of the displacement is symmetric around
the natural frequency of the structure. However, with
increasing force, this symmetricity disappeared. This is
because of the nonlinearity of contact phenomena.
Therefore, this nonlinearity leads to unstable regions in
frequency response. Also with increasing force, sub-
harmonics appeared in the frequency response of the
contact crack.

5.2.2. Breathing crack detection for a rectangular 2D structure
with a hole. In this section, the breathing crack of a rect-
angular 2D structure with the hole is studied. The model of
the structure is presented in Figure 12.

The dimension of the structure is 400 × 5 mm, and hole
radius is 2.5 mm, and the hole location is xr ¼ 65mm. The
crack depth is 1.5 mm and α = 0.06°. A force in point A in
the y-direction is applied, and displacement of point A is
calculated for the frequency 3000 Hz. The result of health
and cracked structure 3000 Hz is presented in Figure 13.

Figure 10. Displacement versus harmonic number for the sum of two frequencies 433 Hz at 300 N and 3000 Hz at 1 N.

Figure 11. Frequency response for range 13.9–14.6 kHz for

crack without contact and crack in contact with force 300 N,

500 N, 700 N, and 1500 N.
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This figure also shows that nonlinear breathing crack is
detected in the frequency response. However, nonbreathing
is not distinct from the health structure.

6. Conclusion

The node-to-node contact strategy was introduced to the
SBFEM for efficient modeling of the dynamic behavior of
breathing cracks. The proposed method was implemented to
simulate three common vibration-based health monitoring
techniques: HHG, FS, and VAM. The shooting method was
used to check the vibration regime effectively and to ensure
that the steady-state regime has been achieved. The pro-
posed method was verified against experimental and FEM
results. The conformity of the SBFEM outcomes in all

static, eigenfrequency, and time domain solutions with the
FEM proved its ability to capture the contact problem with
great accuracy. Comparing the number of DOFs in the
SBFEM model with the FEM revealed the considerable
efficiency of this method to reduce the computational time.
It was also demonstrated that the SBFEM could effectively
capture the HHG, FS, and VAM caused by nonlinear effects
of the breathing crack. Therefore, the SBFEM is a prom-
ising approach that can facilitate and also improve the
damage identification procedure.
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Figure 12. Schematic of the cantilever cracked 2D structure with a hole.

Figure 13. Displacement versus harmonic number for frequency 3000 Hz.
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