
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 1

Automatic inference of fault tree models via
multi-objective evolutionary algorithms

Lisandro A. Jimenez-Roa, Tom Heskes, Tiedo Tinga, and Mariëlle Stoelinga

Abstract—Fault tree analysis is a well-known technique in reliability engineering and risk assessment, which supports
decision-making processes and the management of complex systems. Traditionally, fault tree (FT) models are built
manually together with domain experts, considered a time-consuming process prone to human errors. With Industry 4.0,
there is an increasing availability of inspection and monitoring data, making techniques that enable knowledge extraction
from large data sets relevant. Thus, our goal with this work is to propose a data-driven approach to infer efficient FT
structures that achieve a complete representation of the failure mechanisms contained in the failure data set without
human intervention. Our algorithm, the FT-MOEA, based on multi-objective evolutionary algorithms, enables the
simultaneous optimization of different relevant metrics such as the FT size, the error computed based on the failure data
set and the Minimal Cut Sets. Our results show that, for six case studies from the literature, our approach successfully
achieved automatic, efficient, and consistent inference of the associated FT models. We also present the results of a
parametric analysis that tests our algorithm for different relevant conditions that influence its performance, as well as an
overview of the data-driven methods used to automatically infer FT models.

Index Terms—Fault tree analysis, evolutionary algorithms, multi-objective optimization, complex systems, model learning,
parametric analysis.

F

LIST OF ABBREVIATIONS

FTA: Fault Tree Analysis
FT: Fault Tree
MCS: Minimal Cut Set
BE: Basic Event
TE: Top Event
EA: Evolutionary Algorithm
MOEA: Multi-Objective Evolutionary Algorithm
m.o.f: Multi objective function

1 INTRODUCTION

FAULT Tree Analysis (FTA) is a widely used me-
thod in reliability engineering and risk analysis,

• Lisandro A. Jimenez-Roa is with the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science (EEMCS), University of
Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
E-mail: l.jimenezroa@utwente.nl

• Tom Heskes is with the Institute for Computing and Informa-
tion Sciences (iCIS), Radboud University Nijmegen, 6525 EC
Nijmegen, The Netherlands.
E-mail: Tom.Heskes@ru.nl

• Tiedo Tinga is with the Faculty of Engineering Technology (ET),
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The
Netherlands.
E-mail: t.tinga@utwente.nl

• Mariëlle Stoelinga is with the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science (EEMCS), University
of Twente, and the Department of Software Science, Radboud
University Nijmegen, The Netherlands.
E-mail: m.i.a.stoelinga@utwente.nl

Manuscript received September 24, 2021; revised -, 2021.

mainly because it enables modeling complex systems
by encoding and displaying logical relationships that
can be used, among others, to understand how a
system might fail, trace the root cause of the failure,
identify critical components, and calculate the system
and subsystem failure probabilities.

Fault tree (FT) models exist since the 1960s and
have been used in a wide range of domains, including
the automotive, aerospace, and nuclear industries [1].
However, a major drawback of FTs is related to their
construction, which is traditionally carried out in con-
junction with domain expertise and in a hand-crafted
manner, resulting in a tedious and time-consuming
task. In the case of complex industrial systems, manual
development of these models can lead to incomplete-
ness, inconsistencies, and even errors [2].

The above challenge has been discussed since the
1970s, and it is referred to in the literature as con-
struction [3], synthesis [4], or induction [5] of FTs. In
this work, we refer to this as automatic inference of FT
models, which in general, is the process that automat-
ically (with limited human intervention) produces an
FT model given compatible input information.

This problem shares some similarities with System
Identification (SI), where the objective is to identify the
mathematical model of a given system [6], although
one difference we observe between SI and FTs infer-
ence is that for SI it is necessary to pre-define a model
structure (e.g., based on laws of physics), which is not

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 2

possible in the case of FTs inference as this is a task of
the inference process.

We identify FTs inference challenging because
there are many possible FTs for a given failure data
set, and finding the best match is not trivial. Exist-
ing methods fail as (i) they need too much human
intervention to add assumptions e.g., to deal with
complex dependencies between components; (ii) they
do not scale adequately in real-world applications,
especially algorithms that perform exhaustive search
have exponential time complexity; (iii) they result in
complex FT structures, (iv) it is unknown how reliable
they are under noisy data.

TABLE 1: Toy input
failure data set.

BE1 BE2 BE3 Top

1 1 1 1
1 0 1 1
0 1 1 1
1 1 0 1
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

We are interested in data-
driven approaches, whose
challenge is illustrated by the
following example: Table 1
shows an toy input failure data
set (Section 4.1). Suppose the
associated system is composed
of the components BE1, BE2
and BE3, where 0 and 1
are used as non-faulty and
faulty states, respectively. Top corresponds to the
system-level failure.

Thus, for this failure data set, we want to find the
FT structure that best encodes the logic that descri-
bes the failure propagation in the system. Moreover,
we are interested in the FT composed of a minimal
amount of elements.

Top

G1

BE1 BE2

BE3

Fig. 1: Inferred FT.

The desired output is pre-
sented in Fig. 1 , where the in-
ferred FT is composed of ba-
sic events BE1, BE2, connected
to an And gate (G1), which to-
gether with BE3, is connected
with an Or gate to the top event
Top.

Here the gates, which con-
nect the basic events and the top
event, result from the inference
process following the logic de-
scribed by the failure data set.

And although for this example the solution is rather
simple, for larger failure data sets (i.e., with more basic
events) the solution is not straightforward.

Our contributions with this paper are that (i) we
show it is possible to achieve more consistent and
efficient FT structures via multi-objective evolutionary
algorithms (MOEAs), which simultaneously optimize
various criteria in a multi-dimensional space, (ii) we
propose a metric to compare FT structures via Min-
imal Cut Sets using the RV-coefficient, (iii) we carry
out a parametric analysis that explains the perfor-
mance of the algorithm under different assumptions,
(iv) we show that maintaining compact FTs bene-

fits scalability by enabling faster convergence. The
implementation and all data are available at zen-
odo.org/record/5536431.

The remaining part of this paper is organized as
follows. Section 2 summarizes the related work. Sec-
tion 3 formally defines FTA and provides the tech-
nical background of MOEAs. Section 4 explains our
methodology. Section 5 presents how we apply the
NSGA-II (an MOEA) to infer FTs. Section 6 presents
the results of a thorough parametric analysis. Section
7 discusses our findings and presents our conclusions.

2 RELATED WORK

Different ways of inferring FTs have been dis-
cussed in the past. We identify three main groups
namely knowledge-based, model-based, and data-driven.
The main differences between these categories are that
knowledge-based approaches mainly employ different
heuristics for knowledge representation and domain
expertise [7]; model-based approaches translate existing
system models and/or graphs into FTs, and data-driven
approaches have structured databases as the primary
source of information, where the goal is to identify
causal relationships present in a failure data set with
minimal domain expertise and human intervention.

Carpignano & Poucet [8] thoroughly review se-
veral knowledge-based approaches. An example of a
model-based approach can be found in Mhenni et al.
[9] where the authors used SysML System Models
as a base to obtain FT models. However, a major
drawback of model-based approaches is the need for
a pre-existing model [10].

As mentioned before, we focus our attention on
data-driven approaches, where the applications of ma-
chine learning techniques and data analytics fall into
this category. In Appendix A, Table 6 (divided into two
parts) we summarise and compare relevant literature
in data-driven methods for the automatic inference of
FT models. Below we briefly discuss these methods.

To the best of our knowledge, the very first at-
tempt to tackle the challenge in a data-driven manner
was made by Madden & Nolan [5] with their IFT
algorithm, which is based on Quinlan’s ID3 algorithm
to induce Decision Trees (DTs) [11]. The authors also
continued with this work in the subsequent years [12],
[13]. Mukherjee & Chakraborty [14] addressed this
challenge via linguistic analysis and domain knowledge
to identify the nature of the failure from short plain
text descriptions of equipment faults, and from this
generate an FT model. Roth et al. [15] propose a
method that follows the Structural Complexity Man-
agement (StCM) methodology, where their main goal
is to deduce dependencies that are later on used to
infer the Boolean logic operators of the FT models.
Inspired by Causal Decision Trees [16], in Nauta et al.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

https://zenodo.org/record/5536431
https://zenodo.org/record/5536431

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 3

[17] they proposed an approach based on the Mantel-
Haenszel statistical test.

Based on Knowledge Discovery in Database, Waghen
& Ouali [18] propose a method for hierarchical causal-
ity analysis called Interpretable Logic Tree Analysis
(ILTA), that looks for patterns in a data set which
are translated into Interpretable Logic Trees. Linard et
al. [19] proposed a method that consists of learning
a Bayesian Network graph, which is later translated
into an FT model. Lazarova-Molnaretal [20] presents
DDFTA, an approach based on time series of failure
data, binarization techniques, Minimal Cut Sets, and
Boolean algebra. This algorithm also manages to infer
FT models with VoT gates. In Waghen & Ouali [21] the
authors further extended their work to the Multi-level
Interpretable Logic Tree Analysis (MILTA), which tackles
the problem of multiple cause-and-effect sequences
(the latter a limitation of their ILTA algorithm) by
incorporating Bayesian probability rules.

The first attempt based on evolutionary algorithms
was carried out by Linard et al. [22], here the authors
created an algorithm to generate FT models from a
labeled binary failure data set using a uni-dimensional
cost function based on the accuracy i.e., the proportion
of correctly predicted top events by a given FT.

A drawback of the above approach is that it focuses
solely on achieving high accuracy without considering
the FT structure. The latter has negative implications
such as: running the algorithm twice for the same
failure data set may yield considerably different FT
structures; it is prone to complexity explosion, leading
to massive FTs that are difficult to handle; long compu-
tational time, and bad convergence of the algorithm.

3 THEORETICAL BACKGROUND

3.1 Fault Tree Analysis

Fault Tree Analysis (FTA) is one of the most famous
methods in reliability engineering that supports de-
cisions in the design and maintenance of complex
systems. FTA enables qualitative and quantitative anal-
yses. Qualitative analysis is based on the FT structure
and aims at finding the critical system components.
Here, an important concept refers to the Minimal Cut
Sets (MCSs), which are minimal combinations of com-
ponent failures that lead to a system failure. Small
minimal cut sets point to system vulnerabilities.

The quantitative analysis aims at computing var-
ious dependability metrics, such as system Reliabil-
ity; Availability; and the Mean-Time-to-Failure. Estima-
tion of these metrics requires that the FT leaves are
equipped with failure probabilities.

A Fault Tree (FT) helps in understanding why
a system fails by modeling how low-level fail-
ures propagate through the system and lead to
the system-level failure. As similarly done by

Ruijters and Stoelinga [23], to formally define
an FT, we first define GateType = {And,Or} ∪
{VoT(k/N) | k, N ∈ N≥1, k ≤ N}. Then, an FT is a
5-tuple F = 〈BE,G,T, I,TE〉 where

• BE is a set of basic events, which may be anno-
tated with a probability of occurrence pi.

• G is a set of logic gates, with BE ∩G = ∅.
• E = BE ∪G for the set of elements.
• T : G→ GateTypes is a function that describes

the type of each gate.
• I : G→ P(E) describes the inputs of each gate.

We require I(g) 6= ∅ and that |I(g)| = N if
T(g) = VoT(k/N).

• And gate is a tuple 〈And, I,O〉 where O outputs
true, if every i ∈ I occurs.

• Or gate is a tuple 〈Or, I,O〉 where O outputs true,
if at least one i ∈ I occurs.

• VoT(k/N) gate is a tuple 〈VoT, k, I,O〉 where O
outputs true, if at least k of i ∈ I occur.

• TE ∈ E is a unique root called the top event, and
it is reachable from all other nodes.

Importantly, the graph formed by (E, I) should be
a directed acyclic graph. Fig. 2.(a) and 2.(b) depict re-
spectively the event and gate symbols used to construct
the FT model.

Fig. 2.(c) provides an example of an FT. This is
the FT of a Container Seal Design adapted from [24].
In this FT, the top event, the sealing function fails, either
occurs if a common cause seal failure occurs or if the seals
fail independently. For the former, it is necessary that
the contamination tape fails, and a basic cause seal failure
occurs. For the latter, it is necessary for the metal-to-
metal seal, the fused plug, and at least two of the three
compression seals to fail.

3.2 Multi-Objective Evolutionary algorithms

Evolutionary algorithms (EAs) are population-based
search strategies that use the fundamental principle
of natural selection, where the best individuals are
more likely to reproduce and, therefore, to pass on
to the next generations [25]. When the EA deals with
several conflicting objective functions to be simulta-
neously optimized in a multi-dimensional space [26],
we call these Multi-Objective Evolutionary Algorithms
(MOEAs). The result of MOEAs is a set of solutions
with trade-offs, better known as Pareto-optimal solu-
tions, from which the user can decide on the basis of
higher-level qualitative considerations [27].

As a first step to tackle the challenge of automat-
ically inferring FTs from a failure data set by simul-
taneously optimizing different metrics, we decided
to use one of the most popular algorithms in multi-
objective optimization called the Elitist Non-dominated
Sorting Genetic Algorithm (NSGA-II) (Section 3.2.1) and
the Crowding-Distance (Section 3.2.2).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 4

Fig. 2: Elements in an FT: (a) event symbols, (b) gate
symbols, and (c) example of an FT, adapted from [24].

3.2.1 Elitist Non-dominated Sorting Genetic Algo-
rithms (NSGA-II)

The Elitist Non-dominated Sorting Genetic Algorithms
(NSGA-II) [28] aim at finding multiple Pareto-optimal
solutions. NSGA-II uses the elitist principle which is a
diversity preserving mechanism that emphasizes the
non-dominated solutions [27]. Moreover, the elitist
principle guarantees that the quality of the solution
does not decrease, by letting the best individual(s) of
the current generation pass to the next one.

Non-dominated MOEAs use the concept of dom-
inance, where two solutions are compared to evalu-
ate whether one dominates the other or not. Non-
dominated sorting is a crucial step to uncovering elitist
efficient solutions in MOEAs, but it is computationally
expensive since it involves numerous comparisons
[29]. A set of solutions that do not dominate each other
is known as a non-dominated front. In Appendix B.1
we provide a detailed explanation of these concepts
and exemplify how the NSGA-II is applied in the

automatic inference of FTs.

3.2.2 Crowding-Distance
Since it may be the case that the last non-dominated
front obtained through the NSGA-II does not fully
accommodate the available slots to complete the new
population, the Crowding-Distance is used to decide
which individuals of the last front can pass to the
next generation, acting as a mechanism that promotes
diversity [30]. In Appendix B.2 we provide details on
how the Crowding-Distance is applied in the auto-
matic inference of FTs.

4 METHODOLOGY

Fig. 3 depicts the general methodology we followed
in this paper. First, we selected some case studies of
existing FTs (Section 6.2), these FTs act as ground truth.
Then, we selected some parameters of interest (Section
6.4) to be evaluated in the parametric analysis. We
used the Monte Carlo method (Section 6.1) to generate
failure data sets (Section 4.1) based on selected case
studies (Section 6.2). Then we used our FT-MOEA
algorithm (Section 5) to infer the FT based on the
provided failure data set. Finally, we compared the
ground truth with the inferred FTs and evaluate the
experiment (Section 6).

4.1 The failure data set
Our methodology needs the following assumptions
for the input failure data set:

• Labeled: Our data set consists of combinations of
BE and their corresponding TE.

• Binary: Both BE and TE are binary. This poses an
advantage because we can make use of Boolean
operations which makes the algorithm faster. In
our case, 0 and 1 are used as non-faulty and faulty
states, respectively.

• Monotonic/consistent: For a given set of BE, if a
single BE changes from state 0 to 1, it is possible
that TE changes from state 0 to 1, but it will never
change from state 1 to 0.

• Complete: The total number of unique combina-
tions of BE in the failure data set equals the space
complexity O(2w), where w corresponds to the
number of unique BE for a given FT.

• Noise-free: There is no corrupted information con-
tained in the failure data set. In other words, the
relation BE→ TE is always true for a given FT.

Table 2 presents an example of the data set asso-
ciated with the FT in Fig. 2. To generate this data set,
we used the Monte Carlo method described in Section
6.1 for N = 250, 000 data points and using a failure
rate for the BE of pi = 0.5. Ob. refers to the observation
associated with a unique combination of values of BE,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 5

Fig. 3: General methodology.

and the associated TE. The columns BE1, BE2, ...,
BE7 show the states of the set of BE. TE corresponds
to the top event. Finally, the last column refers to the
count of each of the observations in the failure data
set.

TABLE 2: Example of failure data set associated to the
example in Fig. 2.

Ob. BE1 BE2 BE3 BE4 BE5 BE6 BE7 TE Count

1 0 0 0 0 0 0 0 0 1,968
2 0 0 0 0 0 0 1 0 2,039
...

...
...

...
...

...
...

...
...

...
24 0 0 1 0 1 1 1 1 1,976
...

...
...

...
...

...
...

...
...

...
128 1 1 1 1 1 1 1 1 1,947
p ≈ 0.50 0.50 0.50 0.50 0.50 0.50 0.50 N = 250,000

5 INFERRING FAULT TREES VIA MULTI-
OBJECTIVE EVOLUTIONARY ALGORITHMS
(FT-MOEA)

The input of the algorithm is composed of the failure
data set, described in Section 4.1, and the initial pa-
rameters of the MOEA, described in Section 5.1. The
output of the algorithm is a string that describes the
structure of the inferred FT (based solely on And and
Or gates), and metrics of interest that tell about the
error between the inferred FT and the failure data
set. These metrics are explained in detail in Section
5.5.1. Fig. 4 provides an overview of our approach,
consisting of the following five steps:

1) Step 1: Initialize the algorithm by loading the
failure data set (Section 4.1) as well as the initial
parameters (Section 5.1). An optional step is the
extraction of the MCSs from the failure data set
(Section 5.2), which is executed only when the ob-
jective function considers metrics based on MCSs.

2) Step 2: Initialize the population with the parent
fault tree(s) (Section 5.3) on which the genetic
operators are applied until the desired population
size is reached.

3) Step 3: Apply the genetic operators (Section 5.4) to
randomly modify the structure of the FTs. These

genetic operators are recursively applied to a pop-
ulation of FTs until reaching at least the desired
population size.

4) Step 4: For each FT in the offspring population,
compute the metrics to be optimized (Section
5.5.1). Then, using the concept of Pareto efficiency
through the Elitist Non-Dominated Sorting Algo-
rithm (NSGA-II) and Crowding-Distance (Section
3.2), determine the population of FTs for the next
generation.

5) Step 5: Check whether any of the convergence
criteria (Section 5.6) are met. If not, the genetic
operators (Step 3) are applied to the new popula-
tion, and Steps 4 and 5 are applied recursively
until at least one of the convergence criteria is
met, outputting a Pareto set of inferred FTs where
we chose the best individual i.e., the FT with the
smallest size, and smallest error(s) within the first
Pareto set.

5.1 Step 1 - Initialization

We have the following initial parameters.
• Population size (ps): Corresponds to the number of

FTs within a generation. Only the best ps FTs can
pass to the next generation.

• Selection strategy: For the NSGA-II algorithm we
only use the elitist selection strategy.

• Max. generations with unchanged best candidate (uc):
if after uc number of generations the best indi-
vidual (i.e., the FT with the smallest size, and
smallest error(s) within the best Pareto set) re-
mains unchanged, then we assume the process
has converged and is therefore terminated.

• Max. number of generations (ng): Terminates the
optimization process if the number of generations
exceeds ng and none of the other convergence
criteria is met.

5.2 Step 1.2 - Extraction of MCSs from the failure
data set (optional step)

As mentioned before, MCSs are a minimal combi-
nations of component failures that lead to a system
failure. This information is extremely valuable because
it encodes the failure modes of the system. By con-
sidering this information in our optimization process
we are adding additional criteria that can help our

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 6

Fig. 4: General process of the FT-MOEA algorithm to
infer FTs from a failure data set.

algorithm to find better solutions in a shorter amount
of time. However, the user can decide whether to
consider MCSs within the optimization process.

One should consider MCSs only if it is guaranteed
that the failure data set is noise-free, and if the expected
FT is not too complex (see Section 6.4.3 where we
address the topic of complexity in FTs). The former
because otherwise one cannot be sure whether MCSs
are correct, and the latter because computing MCSs
is computationally expensive (we will discuss this in
Section 5.5.1) and for complex FTs, this could increase
the convergence time.

The process of extracting MCSs from a failure data
set is done as described by Lazarova-Molnar et al.
[20] with the following four steps. Step 1: identify
all the combinations of BE that output class 1 (i.e.,
TE = 1). Step 2: from this sub-set, identify the one
with the minimal order (where the order is defined
as the number of true BE in an observation) and save
this observation as part of the MCSs matrix computed
from the failure data set (MD). Step 3: look in the sub-
set for other observations that include the previously
identified MCS. If any, delete them from the sub-set.
Step 4: repeat Steps 2 and 3 until the sub-set is empty.

The obtained MD can be used as an input argument
to compute the accuracy based on the MCSs (φc) (see
Eq. 3). Table 3 provides an example of MD for the
failure data set described in Table 2.

TABLE 3: Example of MCS matrix (MD) computed
from the failure data set described in Table 2 associ-
ated with the example in Figure 2.

MCS BE1 BE2 BE3 BE4 BE5 BE6 BE7

1 1 1 0 0 0 0 0
2 0 0 1 1 1 0 1
3 0 0 1 0 1 1 1
4 0 0 1 1 0 1 1

5.3 Step 2 - parent fault tree(s)
The parent fault tree(s) can be seen as that one (or
those ones) from which the offspring population is
generated when applying the genetic operators (Section
5.4). Defining the parent FT(s) is important because it
determines how far away, from the global optimum,
one starts the optimization process. In Linard et al.
[22] two parent FTs are used to generate the offspring
population, one in which the set of BE are connected
to a single Or gate, and the other to a single And gate.

5.4 Step 3 - Genetic operators
The genetic operators are mathematical operations
that seek to modify the structure of an FT. We use
the seven genetic operators proposed by Linard et al.
[22], which also gives the formal definitions of these
operators. For completeness, we here provide a short
description.

(i) G-create: randomly creates an And or Or gate
under an existing gate in the set G for a given FT.
(ii) G-mutate: randomly selects a gate in the set G and
changes its type (i.e., Or → And, or And → Or). (iii)
G-delete: from a given FT takes a gate in the set G
and deletes it, including its children. (iv) BE-disconnect:
from a given FT takes a basic event in the set BE and
disconnects it. (v) BE-connect: from a given FT takes
a disconnected basic event and randomly places it
under a gate in the set G. (vi) BE-swap: from a given
FT takes a basic event in the set BE and randomly
moves it under a different parent gate in the set G. (vii)
Crossover: randomly chooses two FTs in the offspring
population, then an element in the set E of each FT is
randomly selected and exchanged.

5.5 Step 4 - Multi-objective function
In Section 5.5.1 we define the metrics to be minimized,
and in Section 5.5.2 we describe the different setups of
our multi-objective optimization function.

5.5.1 Computation of metrics
We consider three metrics in our multi-objective func-
tion, namely the fault tree size (φs), the error based on
the failure data set (φd), and the error based on the MCSs
(φc).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 7

• Fault Tree Size (φs): corresponds to the number of
elements in the FT i.e., the value of E in the FT
(Eq. 1).

φs = |E| = |BE|+ |G| (1)

Here note that φs ≥ 2, as each FT has at least one
BE and one G (i.e., the TE).

• Error based on the failure data set (φd): First we need
to compute a one-dimensional vector P with N
values, where N is the number of data points. P
contains the value of the TE of an FT for a given
set BE. For the same set BE, we count with the
value of the ground truth top event (TE∗), which
is in the failure data set (Section 4.1). Thus, φd is
computed as follows

φd = 1−
∑N

i=1 xi
N

{
xi = 1, if Pi = TE∗

i .
xi = 0, Otherwise. (2)

Here φd varies in the closed interval [0, 1], where
0 means that an FT manages to perfectly map
the given set BE in the failure data set into the
corresponding TE in the failure data set.

• Error based on the MCSs (φc): we propose to com-
pute the error of an FT based on MCSs by means
of the RV-coefficient [31]. The RV-coefficient is a
generalization of the squared Pearson correlation
coefficient and measures the similarity between the
MCS matrix computed from the failure data set
(MD) (see Section 5.2) and the MCS matrix of a
given FT (MF).
MF is computed based on the disjunctive normal
form (DNF), which in Boolean logic is also known
as an Or of Ands. Thus, we transform a given
FT into its DNF and identify from it the MCSs
to construct MF. However, this transformation
showed to be computationally expensive for large
FT sizes.
In our context, MD is a p×w matrix, MF is a q×w
matrix, w corresponds to the number of unique
BEs considered in the problem and p and q are
the number of MCSs in the failure data set in an
FT, respectively. The computation of φc is defined
as

φc = 1− tr(MDM
T
FMFM

T
D)√

tr(MDMT
D)

2tr(MFMT
F)

2
(3)

Here tr(.) is the trace, and φc varies in the closed
interval [0, 1], where 0 indicates perfect corre-
lation or similarity between MD and MF. We
choose to use the RV-coefficient as a means to
compute the error based on MCSs because, for a
given problem, the number of unique BEs always
remains the same, but the FTs within a population

for a given generation often have different num-
ber of MCSs with respect the ones found in the
failure data set (i.e., p 6= q).

5.5.2 Setups of the multi-objective functions
Since our multi-objective function (m.o.f.) has three
arguments, we can play with different setups and
assess their influence (see Section 6.4.2 for the results
of the parametric analysis). For example, if we want
to minimize only the error based on the MCSs (φc),
we can “turn off” φs and φd by assigning constant
values (i.e., φs = φd = 1). To differentiate between the
different configurations in the m.o.f., we propose the
nomenclature presented in Table 4. Here ‘x’ refers to
whether a metric is being considered (or active) in the
m.o.f.

TABLE 4: Different setups of the m.o.f.

m.o.f. φs φd φc

sdc x x x
dc x x
sc x x
sd x x
c x
d x

5.6 Step 5 - Convergence criterion
Our convergence criterion is based on two initial pa-
rameters namely the max. number of generations (ng),
and the max. generations with unchanged best candidate
(see Section 5.1). Additionally, we terminate the con-
vergence process if φc = 0 or φd = 0 when the
minimization of the FT size is “turned off” i.e., for
the m.o.f.’s cd, c, or d.

6 EXPERIMENTAL EVALUATION

For our experimental evaluation, we first selected six
case studies from the literature (Section 6.2), then we
made the implementation of our FT-MOEA algorithm
in Python, whose source code and data are avail-
able at zenodo.org/record/5536431. We evaluate our
algorithm using synthetic failure data sets (Section
6.1). Section 6.3 compares FT-MOEA with FT-EA and
shows details on convergence. Our parametric analy-
sis is presented in Section 6.4.

6.1 The Monte Carlo method
We use the Monte Carlo method to generate synthetic
failure data sets using the case studies presented in
Section 6.2 and keeping the same properties of the
input data set described in Section 4.1. To generate
the synthetic dataset (i) we randomly generate (N)
data points, by drawing the BE independently from
a binomial distribution with a probability of success
equal to pi, where i corresponds to a basic event,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

https://zenodo.org/record/5536431

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 8

TABLE 5: Case studies and associated relevant information. The number of: unique BEs (w), total BEs
(W), And gates (#And), Or gates (#Or), VoT gates (#VoT), Minimal Cut Sets (#MCS), order of MCSs
(O-MCSs), and space complexity (O(2w)).

Case study Ref. w W #And #Or #VoT FTsize #MCSs O-MCSs O(2w)

CSD(a) [24] 6 6 2 2 0 10 3 {2,3,3} 64
PT(b) [24] 6 6 1 4 0 11 5 {1,1,2,2,2} 64
COVID-19(c) [32] 9 21 9 3 0 33 6 {3,4,4,4,4,4} 512
ddFT(d) [20] 8 8 3 1 1 13 6 {3,4,4,5,6,6} 256
MPPS(e) [24] 8 12 3 8 0 23 7 {2,2,2,2,2,2,2} 256
SMS(f) [33] 13 17 0 8 0 25 13 {1,1,1,1,1,1,1,1,1,1,1,1,1} 8,192
(a)CSD: Container Seal Design; (b)PT: Pressure Tank ; (c)COVID-19: COVID-19 infection risk; (d)ddFT: Data-

driven Fault Tree; (d)MPPS: Mono-propellant propulsion system; (d)SMS: Spread Monitoring System.

and (ii) computing the corresponding TE by following
the logical rules of the given FT (e.g., case studies in
Section 6.2). As one of the main requirements for the
failure data set is to be complete (see Section 4.1) we
satisfied this condition for each case study by drawing
enough data points from the Monte Carlo simulation
ensuring that the number of unique observations of
BE equals the space complexity O(2w), where w cor-
responds to the number of unique BE for a give FT.

6.2 Case studies
In order to establish a sensible ground truth, we
used existing FTs in the literature with different ap-
plications. Our selection criteria were the number of
elements in the FT as well as the number of MCSs
and their orders. Table 5 presents the case studies we
selected together information on their number of BE,
the total number of And, Or, and VoT gates, the num-
ber of MCSs, their orders, and the space complexity
which is measured as O(2w). Since we work only with
complete data sets, the space complexity in Table 5
also indicates the size of the failure data set. We make
a distinction between the number of unique BE (w)
and the total number of BE (W) because some FTs
have shared BE.

6.3 Key findings of the FT-MOEA algorithm
To illustrate our findings and main contributions, we
will use the case study Mono-propellant propulsion
system (MPPS) from Table 5. We first generate the
failure data set as described in Section 6.1, with
N = 250.000 data points. Then, we used this failure
data set as part of the input data of the FT-MOEA algo-
rithm, together with the following initial parameters:
ps = 400, ng = 100, and uc = 20.

We first compare the evolutionary process between
generations for two m.o.f.’s d and sdc. In this way we
can respectively compare the approach by Linard et
al. [22] (FT-EA, only minimizing φd) and our multi-
objective optimization process (FT-MOEA, minimiz-
ing φs, φd, and φc).

Fig. 5: Evolution of metrics over generations. In (a)
using the m.o.f. d, in (b) using the m.o.f. sdc, for the
MPPS case study (ps = 400, ng = 100, uc = 20). The
red dashed circle with the arrow at the bottom of (b)
indicates the global optimum.

Fig. 5.(a) shows the results of different generations
minimizing solely φd. One can observe that within the
first generations there is a rapid decrease in φd but
from the 10th generation onwards, there is a rapid
growth in the size of the FTs (φs) (up to φs = 100)
without decreasing φd, whereas the ground truth FT
is φs = 23. On the other hand, by using the FT-
MOEA (Fig. 5.(b)) we observe a smoother decrease
in all directions. Additionally, we observe that the FT-
MOEA found the global optimum (i.e., φd = φc = 0.0)
in the 20th generation with φs = 14 (red dashed
circle with the arrow at the bottom of 5.(b)) i.e., a
compressed version of the ground truth.

In Fig. 6 we compare both m.o.f.’s across gen-
erations using only the metrics of the best FT per
generation (i.e., that one in the first Pareto front that
has the smallest error φd and φc). In Fig. 6.(a) we
analyze φd across the generations for both objective
functions, we can see that the m.o.f. d more rapidly
minimize φd compared to the m.o.f. sdc. However, the
latter m.o.f. managed to achieve the global optimum
in the 20th generation, whereas the former m.o.f. did

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 9

Fig. 6: Metrics over generations for the best FTs using
the m.o.f.’s d and sdc. Convergence of (a) φd, (b) φc, (c)
φs, (d) cumulative convergence time. Using the MPPS
case study (ps = 400, ng = 100, uc = 20).

not find the global optimum. Fig. 6.(b) compares φc,
with pretty similar results.

Fig. 6.(c) depicts the variation of φs over the gener-
ations. One can observe that our m.o.f. keeps smaller
FT structures, and although the size of the ground
truth FT is 23, the FT-MOEA found one of φs = 14,
i.e., a compressed version of the original one (for more
details see Appendix C, Fig. 11)

Fig. 6.(d) depicts the cumulative time to conver-
gence (t) for both m.o.f.’s. We can observe that our al-
gorithm manages to find the optimal solution in about
20 minutes. On the other hand, by just minimizing φd
the process takes about 4 hours without finding the
global optimum. In Appendix D we provide details
on the convergence of metrics over the generations for
the whole population.

6.4 Parametric analysis
We consider in our parametric analysis the population
size, the multi-objective functions, the FT complexity,
and the influence of superfluous variables. Addition-
ally, we evaluate the influence of varying the parent
FT in the Appendix E. We decided to explore these
parameters to understand their impact on the compu-
tational time and convergence.

We generate the failure data set as described in
Section 6.1. Since the evolutionary algorithm is a
stochastic process, we run our algorithm five times per
combination of parameters until convergence, and by
using box charts in Matlab (e.g., Fig. 7) we depict the
groups of numerical data through their quartiles.

6.4.1 Population size
Fig. 7 presents the results of the parametric analysis
when varying the population size for the m.o.f.’s d
and sdc. Here we use the MPPS case study (Table 5).

Fig. 7: Influence of population size (ps) on (a) φd, (b)
φc, (c) φs, and (d) convergence time. For the m.o.f’s sdc
and d, for the case study MPPS (ps = 400, ng = 100,
uc = 20).

From Fig. 7.(a) and 7.(b), the m.o.f. sdc is more
consistent when the population size is larger, also
both errors (φc and φd) tend to decrease with larger
population sizes. On the other hand, when using the
m.o.f. d, it seems that the errors decrease for larger
population sizes, but with less consistency.

Fig. 7.(c) shows that the m.o.f. sdc always retrieves
smaller FTs compared with the m.o.f. d, even smaller
than the ground truth (i.e., φs ≤ 23) indicated by the
horizontal red line.

Fig. 7.(d) shows that larger population sizes ex-
ponentially increases the computational time for both
m.o.f.’s. However, the m.o.f. sdc is consistently faster.

6.4.2 Multi-objective functions
We evaluate all Setups of our m.o.f. (Table 4), for this,
we use the case studies in Table 5, and keep the input
parameters ps = 400, ng = 100, uc = 20 fixed. Fig.
8 presents the results for the case studies COVID-19,
MPPS, and ddFT. Fig. 15 (Appendix F) presents the
results of the case studies CSD, PT, and SMS.

Fig. 8.(a) shows the error based on the failure data
set (φd). We observe different behaviors per objective
function. The m.o.f. dc achieves the exact solution for
all the cases, whereas the other m.o.f.’s failed in at least
one of the cases to find the global optimum.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

https://www.mathworks.com/help/matlab/ref/boxchart.html

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 10

Fig. 8: Comparing the performance of m.o.f.’s for all
the case studies in Table 5, using ps = 400, ng = 100,
uc = 20. In (a) error based on the failure data set (φd),
(b) error based on the MCSs (φc), (c) fault tree size (φs),
and (d) convergence time.

Similarly, Fig. 8.(b) shows the error based on
MCSs (φc). As expected, we observe that the m.o.f.
dc achieves φc = 0.0 for all the cases. Nevertheless,
notice that a low φd does not imply an optimal FT, as
an example, compare φd and φc for the case MPPS for
the m.o.f.’s d and sd.

We note that both errors φd and φc (especially for
the ddFT case study) appear to increase when φs is
minimized, (i.e., m.o.f.s sc, sd, and sdc), this is because
FT-MOEA may converge to a FT with a slightly larger
error, but smaller size.

Fig. 8.(c) shows the sizes of the inferred FTs (φs).
Here we can clearly observe the influence of minimiz-
ing φs. When accounted, φs for most of the cases is
equal or less than the ground truth, indicated with
the horizontal lines for the different case studies (see
Appendix C for examples and details). When not
accounted for, in some cases, φs may be significantly
larger than the ground truth.

6.4.3 Fault tree complexity

Fig. 8.(d) depicts the convergence time. We observe
that in general, for all the m.o.f.’s, sorting the case
studies based on the convergence time from the
longest to the shortest, we have ddFT, MPPS, COVID-
19, CSD, PT, and SMS. This indicates that there is a
relationship between the complexity of the underlying

FT model of a failure data set and the time that takes
the algorithm to find it.

We believe this complexity is ruled by the amount
of MCSs and their orders (see O-MCSs in Table 5).
For example, the case study ddFT has six MCSs and
with orders between 3 and 6, the FT-MOEA generally
took the longest time to converge. In contrast, the SMS
case study has 13 MCSs but all have order 1, here
the FT-MOEA converged almost immediately. Thus,
the greater the number of MCSs and their orders, the
longer will take the algorithm to retrieve the global
optimum. We believe that further research is needed
to better quantify this type of complexity.

6.4.4 Influence of superfluous variables
Real-world data sets may consider a different number
of BEs where possibly not all of them contribute to
the failure of the system. In other words, regardless of
the state of superfluous BEs, they will not have any
effect on the TE. We call these superfluous variables (ρ).
We assess ρ ranging from 0 to 6 using the MPPS case
study with ps = 400, ng = 100, and uc = 20, and the
m.o.f.’s sdc and d. The results are presented in Fig 9.

Fig. 9: Influence of superfluous variables (ρ) on (a) size of
the resulting FT (φs), (b) additional or missing number
of BEs (± BEs). Using the m.o.f’s sdc and d, and the
MPPS case study (ps = 400, ng = 100, uc = 20).

Fig. 9.(a) presents φs for different values of ρ. Here
φs is smaller than the ground truth (indicated with the
dashed horizontal red line) when using the m.o.f. sdc.
On the other hand, when using the m.o.f. d, φs seems
to increase for a larger number of ρ.

Fig. 9.(b) shows for different values of ρ the ad-
ditional or missing number of BEs (± BEs). Recall
that the case study MPPS has 7 unique BEs. Thus, we
subtract this number from the unique number of BEs
per each inferred FT. As we can observe, the m.o.f.
sdc, despite ρ, it always outputted an FT with 7 BEs
(i.e., ± BEs = 0), in other words, the superfluous
variables were removed in the optimization process.
On the other hand, the m.o.f. d shows inconsistency for
different values of ρ, and it seems to perform poorly
for larger values of ρ.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 11

7 DISCUSSION AND CONCLUSIONS

We demonstrate that it is possible to infer efficient and
interpretable FT structures by implementing multi-
objective evolutionary algorithms. However, there are
several aspects that still need to be addressed before
thinking about real-world applications.

Even though our algorithm fares better than alter-
native approaches, its scalability will become an issue
for FTs with many BEs. A plausible way to overcome
this drawback is by means of “guided” multi-objective
evolutionary algorithms. This concept consists of help-
ing the optimization process by injecting additional
knowledge. One way to address this is by searching
out for patterns (e.g., Waghen & Ouali [21]) in the
failure data set that enables identifying parts of the
FT and then assembling them.

Another way is by guiding the application of the ge-
netic operators. In our current procedure, these are ran-
domly applied, whereas one may be able to increase
the chances of finding the global optimum by targeting
parts of the FT that most likely need to be modified.
The latter might be possible to achieve by implement-
ing Bayesian optimization. A more challenging path is
exploring deep learning-based approaches like the one
by Cranmer et al. [34] to derive symbolic rules from a
Graph Neural Networks.

We found that the inclusion of MCSs in the multi-
objective optimization function greatly improves the
optimization process. However, the FT-MOEA com-
putes the MCSs based on the disjunctive normal form,
which is computationally expensive for large FTs.
Moreover, MCSs cannot be computed in noisy data
(see some preliminary results regarding the effects of
noise in the Appendix G). Thus, alternatives to over-
come these issues are worth exploring. Finally, some
spare but equally interesting challenges are enlisted
next.

• Having noise-free, balanced and complete fail-
ure data sets for complex engineering systems
is virtually impossible. Thus, a more thorough
evaluation of the performance of our algorithm
under incomplete, noisy, and unbalanced failure
data sets is necessary.

• Real-world problems often contain symmetries,
e.g., when two basic events are known to be
fully exchangeable. This property could be used
as an advantage, because we expect to reduce
the solution space, leading to faster convergence.
Thus, research in this direction is needed.

• In order to obtain more compact and efficient FT
structures, exploring alternatives that enable the
inference of more sophisticated gates (e.g., VoT
gates) is necessary.

• We believe that a methodology similar to the one
used in this paper could be applied for the infer-

ence of other reliability models, such as reliability
block diagrams, as well as Boolean circuits.

• System identification techniques may be applica-
ble to the inference of FTs, and research in this
direction is needed.

• Further research is needed to better understand
and quantify the complexity in the inference of
FT models. In addition, guidelines and metrics to
properly identify the practical capabilities of FT
inference algorithms remain an open problem.

Our novel algorithm, the FT-MOEA, has in general
a better performance than its predecessor, the FT-EA,
by converging faster, inferring more compact FT struc-
tures, achieving lower error levels, better removing
superfluous variables, and being consistent.

ACKNOWLEDGMENTS

Thanks to Matthias Volk for providing us with useful
advice. This research has been partially funded by
NWO under the grant PrimaVera (https://primavera-
project.com) number NWA.1160.18.238.

REFERENCES

[1] S. Kabir, “An overview of fault tree analysis and its applica-
tion in model based dependability analysis,” Expert Systems
with Applications, vol. 77, pp. 114–135, 2017.

[2] J.-P. Signoret, A. Leroy et al., “Automated fault tree build-
ing,” Springer Series in Reliability Engineering, pp. 423–426,
2021.

[3] S. L. Salem, G. Apostolakis, and D. Okrent, “Computer-
oriented approach to fault-tree construction,” California
Univ., Tech. Rep., 1976.

[4] A. Hunt, B. Kelly, J. Mullhi, F. Lees, and A. Rushton, “The
propagation of faults in process plants: 6, overview of, and
modelling for, fault tree synthesis,” Reliability Engineering &
System Safety, vol. 39, no. 2, pp. 173–194, 1993.

[5] M. G. Madden and P. J. Nolan, “Generation of fault trees
from simulated incipient fault case data,” WIT Transactions
on Information and Communication Technologies, vol. 6, 1994.

[6] T. Johnson and P. Husbands, “System identification using
genetic algorithms,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1990, pp. 85–89.

[7] G. Latif-Shabgahi, “Comparing selected knowledge-based
fault tree construction tools,” in Proc. IASTED Int. Conf.
Intell. Syst. Control, 2002.

[8] A. Carpignano and A. Poucet, “Computer assisted fault tree
construction: a review of methods and concerns,” Reliability
Engineering & System Safety, vol. 44, no. 3, pp. 265–278, 1994.

[9] F. Mhenni, N. Nguyen, and J.-Y. Choley, “Automatic
fault tree generation from sysml system models,” in 2014
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics. IEEE, 2014, pp. 715–720.

[10] C. E. Dickerson, R. Roslan, and S. Ji, “A formal transfor-
mation method for automated fault tree generation from a
uml activity model,” IEEE Transactions on Reliability, vol. 67,
no. 3, pp. 1219–1236, 2018.

[11] J. R. Quinlan, “Induction of decision trees,” Machine learn-
ing, vol. 1, no. 1, pp. 81–106, 1986.

[12] M. G. Madden, “Hierarchically structured inductive learn-
ing for fault diagnosis,” WIT Transactions on Information and
Communication Technologies, vol. 20, 1998.

[13] M. G. Madden and P. J. Nolan, “Monitoring and diagnosis
of multiple incipient faults using fault tree induction,” IEE
Proceedings-Control Theory and Applications, vol. 146, no. 2,
pp. 204–212, 1999.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING VOL. XX, NO. X, SEPTEMBER 2021 12

[14] S. Mukherjee and A. Chakraborty, “Automated fault tree
generation: bridging reliability with text mining,” in 2007
Annual Reliability and Maintainability Symposium. IEEE,
2007, pp. 83–88.

[15] M. Roth, M. Wolf, and U. Lindemann, “Integrated matrix-
based fault tree generation and evaluation,” Procedia Com-
puter Science, vol. 44, pp. 599–608, 2015.

[16] J. Li, S. Ma, T. Le, L. Liu, and J. Liu, “Causal decision trees,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29,
no. 2, pp. 257–271, 2016.

[17] M. Nauta, D. Bucur, and M. Stoelinga, “Lift: Learning fault
trees from observational data,” in International Conference
on Quantitative Evaluation of Systems. Springer, 2018, pp.
306–322.

[18] K. Waghen and M.-S. Ouali, “Interpretable logic tree anal-
ysis: A data-driven fault tree methodology for causality
analysis,” Expert Systems with Applications, vol. 136, pp. 376–
391, 2019.

[19] A. Linard, M. L. Bueno, D. Bucur, and M. Stoelinga, “Induc-
tion of fault trees through bayesian networks,” 09 2019.

[20] S. Lazarova-Molnar, P. Niloofar, and G. K. Barta, “Data-
driven fault tree modeling for reliability assessment of
cyber-physical systems,” in Proceedings of the 2020 Winter
Simulation Conference, 2020.

[21] K. Waghen and M.-S. Ouali, “Multi-level interpretable
logic tree analysis: A data-driven approach for hierarchical
causality analysis,” Expert Systems with Applications, vol.
178, p. 115035, 2021.

[22] A. Linard, D. Bucur, and M. Stoelinga, “Fault trees from
data: Efficient learning with an evolutionary algorithm,” in
International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications. Springer, 2019, pp. 19–37.

[23] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey
of the state-of-the-art in modeling, analysis and tools,”
Computer science review, vol. 15, pp. 29–62, 2015.

[24] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minar-
ick, and J. Railsback, “Fault tree handbook with aerospace
applications,” 2002.

[25] M. Ojha, K. P. Singh, P. Chakraborty, and S. Verma, “A
review of multi-objective optimisation and decision making
using evolutionary algorithms,” International Journal of Bio-
Inspired Computation, vol. 14, no. 2, pp. 69–84, 2019.

[26] K. Deb, “Multi-objective optimisation using evolutionary
algorithms: an introduction,” in Multi-objective evolutionary
optimisation for product design and manufacturing. Springer,
2011, pp. 3–34.

[27] ——, “Multi-objective optimization,” in Search methodolo-
gies. Springer, 2014, pp. 403–449.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE
transactions on evolutionary computation, vol. 6, no. 2, pp.
182–197, 2002.

[29] Q. Long, X. Wu, and C. Wu, “Non-dominated sorting
methods for multi-objective optimization: Review and nu-
merical comparison,” Journal of Industrial & Management
Optimization, vol. 17, no. 2, p. 1001, 2021.

[30] L. Marti, E. Segredo, E. Hart et al., “Impact of selection
methods on the diversity of many-objective pareto set ap-
proximations,” Procedia computer science, vol. 112, pp. 844–
853, 2017.

[31] P. Robert and Y. Escoufier, “A unifying tool for linear
multivariate statistical methods: The rv-coefficient,” Journal
of the Royal Statistical Society: Series C (Applied Statistics),
vol. 25, no. 3, pp. 257–265, 1976.

[32] T. Bakeli, A. A. Hafidi et al., “Covid-19 infection risk
management during construction activities: An approach
based on fault tree analysis (fta),” Journal of Emergency
Management, vol. 18, no. 7, pp. 161–176, 2020.

[33] A. Mentes and I. H. Helvacioglu, “An application of fuzzy
fault tree analysis for spread mooring systems,” Ocean
Engineering, vol. 38, no. 2-3, pp. 285–294, 2011.

[34] M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu,
K. Cranmer, D. Spergel, and S. Ho, “Discovering symbolic
models from deep learning with inductive biases,” arXiv
preprint arXiv:2006.11287, 2020.

Lisandro A. Jimenez-Roa is a doctor-
ate candidate in Computer Science at the
University of Twente, The Netherlands.
His background is in civil engineering and
has worked on a variety of projects in the
fields of structural health monitoring, finite
element modeling, and damage detection
via data analytics and machine learning.
Currently, he is conducting research on
system-level prognostics of complex en-
gineering systems within the PrimaVera

project (https://primavera-project.com), with a particular interest
in hybrid integration of domain expertise, physics-informed, and
data-driven approaches.

Tom Heskes is full professor of Artificial
Intelligence. After receiving his Ph.D. on
neural networks, he worked as a postdoc
at the Beckman Institute in Champaign-
Urbana, Illinois. Back in the Netherlands,
he joined SNN, the Foundation for Neu-
ral Networks, and later the Institute for
Computing and Information Sciences at
Radboud University. Tom Heskes is the
former Editor-in-Chief of Neurocomputing
and has been (co-)leading various na-

tional and European projects. Heskes’ research concerns the
development, understanding, and application of machine learning
methods, currently particular deep learning and causal inference.
He works on applications in other scientific disciplines, as well
as in industry, among others through his spin-off company Ma-
chine2Learn.

Tiedo Tinga is a full professor in dynam-
ics based maintenance at the University
of Twente since 2012 and full professor
of Life Cycle Management at the Nether-
lands Defence Academy since 2016. He
received his Ph.D. degree in mechanics
of materials from Eindhoven University
in 2009. He is chairing the smart main-
tenance knowledge center and leads a
number of research projects on devel-
oping predictive maintenance concepts,

mainly based on the physics of failure models, but also following
data-driven approaches.

Mariëlle Stoelinga is a full professor of
risk analysis for high-tech systems, both
at the University of Twente and Radboud
University, the Netherlands. She holds a
Master’s degree in Mathematics & Com-
puter Science, and a Ph.D. in Computer
Science. After her Ph.D., she has been a
postdoctoral researcher at the University
of California at Santa Cruz, USA. Prof.
Stoelinga leads the executive Master of
Risk Management at the University of

Twente, a part-time program for risk professionals. She also leads
various research projects, including a large national consortium
on Predictive Maintenance and an ERC consolidator grant on
safety and security interactions.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3203805

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 27,2023 at 13:48:06 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related work
	Theoretical background
	Fault Tree Analysis
	Multi-Objective Evolutionary algorithms
	Elitist Non-dominated Sorting Genetic Algorithms (NSGA-II)
	Crowding-Distance

	Methodology
	The failure data set

	Inferring fault trees via multi-Objective evolutionary algorithms (FT-MOEA)
	Step 1 - Initialization
	Step 1.2 - Extraction of MCSs from the failure data set (optional step)
	Step 2 - parent fault tree(s)
	Step 3 - Genetic operators
	Step 4 - Multi-objective function
	Computation of metrics
	Setups of the multi-objective functions

	Step 5 - Convergence criterion

	Experimental evaluation
	The Monte Carlo method
	Case studies
	Key findings of the FT-MOEA algorithm
	Parametric analysis
	Population size
	Multi-objective functions
	Fault tree complexity
	Influence of superfluous variables

	Discussion and Conclusions
	References
	Biographies
	Lisandro A. Jimenez-Roa
	Tom Heskes
	Tiedo Tinga
	Mariëlle Stoelinga

