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ABSTRACT

Despite extensive efforts to maximize ground coverage and improve upscaling functions within core val-

idation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of point-

scale soil moisture observations often fail to accurately capture the true average of the reference pixels.

Therefore, some level of pixel-scale sampling error from in situ observations must be considered during the

validation of SMAP soil moisture retrievals. Here, uncertainties in the SMAP core site average soil moisture

(CSASM) due to spatial sampling errors are examined and their impact on CSASM-based SMAP calibration

and validation metrics is discussed. The estimated uncertainty (due to spatial sampling limitations) of mean

CSASM over time is found to be large, translating into relatively large sampling uncertainty levels for SMAP

retrieval bias when calculated against CSASM. As a result, CSASM-based SMAP bias estimates are statis-

tically insignificant at nearly all SMAP CVS. In addition, observations from temporary networks suggest that

these (already large) bias uncertainties may be underestimated due to undersampled spatial variability. The

unbiased root-mean-square error (ubRMSE) of CSASM is estimated via two approaches: classical sampling

theory and triple collocation, both of which suggest that CSASM ubRMSE is generally within the range of

0.01–0.02m3m23. Although limitations in both methods likely lead to underestimation of ubRMSE, the

results suggest that CSASMcaptures the temporal dynamics of the footprint-scale soil moisture relativelywell

and is thus a reliable reference for SMAP ubRMSE calculations. Therefore, spatial sampling errors are re-

vealed to have very different impacts on efforts to estimate SMAP bias and ubRMSEmetrics using CVS data.

1. Introduction

In theory, satellite-based soil moisture retrievals

represent a spatial average of the surface-layer soil wa-

ter content within a ground-projected satellite footprint.

The performance of these retrievals is usually evaluated

against a set of in situ observations acquired within a

reference footprint area. In practice, this is based on

establishing a ground-based network of sensors from

which observations are spatially aggregated, or upscaled,

to obtain an average soil moisture value within the refer-

ence pixel. This strategy is the dominant validation prac-

tice for recent satellite soil moisturemissions (e.g., Jackson

et al. 2010, 2012; Colliander et al. 2017a; Kerr et al. 2016)Corresponding author: Fan Chen, fan.chen@ars.usda.gov
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and, in particular, forms the basis of the core validation site

(CVS) strategy employed to validate surface and root-zone

soil moisture retrievals acquired by the NASA Soil Mois-

ture Active Passive (SMAP) mission launched in 2015.

Although extensive efforts have been made to maxi-

mize the sampling coverage of the reference pixels, the

spatial density of the sensor network is generally limited

by financial, siting and maintenance constraints. This is

particularly true for cases of significant subgrid vari-

ability in soil texture, land cover/land use (e.g., irriga-

tion, mixed croplands and forests), complex topography,

or in the presence of strong contrasts in land surface

conditions/land use. A range of upscaling strategies has

been proposed to mitigate such limitations (Crow et al.

2012). For example, studies have been conducted to find

locations manifesting temporal stability that can be used

directly, or with some bias correction, to accurately

capture the large-scale spatial mean of a soil moisture

field (Cosh et al. 2006, 2008; Brocca et al. 2009). How-

ever, even a statistically representative measurement

site can miss heterogeneous wetting or drying events

within the pixel and deviate from the true average for

the duration, which makes it a less stable and desirable

validation source than a network average acquired from

dense random sampling (e.g., Ran et al. 2017). In addi-

tion, the temporal stability method is not recommended

when cropped land is present, as representative stations

in agricultural areas are often misidentified as tempo-

rally unstable due to unpredictable irrigation events

(Yee et al. 2016). Other potential techniques include

using block kriging, data collected during intensive

sampling campaign, and land surface modeling to derive

optimal upscaling functions (Crow et al. 2012), as well

as the application of random forest regression (e.g.,

Clewley et al. 2017). However, despite these efforts, a

perfect representation of the true soil moisture average

of the satellite pixel remains elusive and some level of

underlying uncertainty must generally be tolerated.

Over the past few decades, dense gravimetric sam-

pling has been conducted to calibrate probe-based soil

moisture networks at several USDA experimental wa-

tersheds and examine the temporal stability of network

sensors (e.g., Cosh et al. 2006; Bosch et al. 2006; Cosh

et al. 2008, 2013). Other studies have examined key

processes driving soil moisture spatial variability over

different spatial scales using extensive (but short-term)

field experiment data (Famiglietti et al. 1999; Choi et al.

2007; Famiglietti et al. 2008). Based on empirical rela-

tionships derived from observed spatial variance and

mean at the footprint scale, the number of soil moisture

samples needed to meet certain accuracy levels can be

calculated (Famiglietti et al. 2008). These results establish

the reliability of using such in situ networks for the

calibration and/or validation of satellite products and

thus provide guidance on the construction of a soil mois-

ture network for such a purpose. However, the uncer-

tainty in the network average itself, as well as its impact on

key validation metrics, has not been widely explored.

Soil moisture data collected from a set of established

SMAP CVS provides an opportunity to examine the

uncertainty in the sensor network spatial averages due

to spatiotemporal sampling limitations, and thus clarify

the implications of this uncertainty on the validation of

satellite soil moisture products. The footprint-scale of

interest here is the 33-km grid cells representing the

ground spatial support of the SMAP level 2 enhanced

soil moisture product (Chan et al. 2018; Jackson et al.

2018). At each SMAP CVS, a core site average soil

moisture reference value (CSASM) is typically obtained

as the weighted spatial average of point-scale ground

observations acquired within the domain of the corre-

sponding soil moisture retrieval grid cell (i.e., the ref-

erence pixel). Note that, in this context, the CSASM is

an error-prone estimate of the reference pixel true soil

moisture average rather than the truth itself.

The goal of this paper is to quantify the uncertainty, or

random sampling error, present in the current SMAP

33-km-scale CSASM dataset, for example, deviation

between CSASM uWA and the true soil moisture aver-

age uT of the reference pixel. Two useful descriptions—

based on both first- and second-order error statistics—of

this uncertainty are examined. First, the uncertainty in

the long-term CSASM mean values expressed as confi-

dence intervals, which determine the significance of the

sampled SMAP biases at CVS locations. Second, estimates

of theunbiased root-mean-square error (ubRMSE)between

daily CSASM and uT. If available, such estimates can be

applied to correct the raw ubRMSE metric in a valida-

tion analysis and thus recover the true SMAP-versus-uT
ubRMSE from SMAP-versus-CSASM ubRMSE by re-

moving the root-mean-square differences contributed by

CSASM errors. The implications of these different types of

CSASM uncertainty for the CSASM-based validation of

remote sensing soil moisture products will be discussed.

This paper is organized as follows. Section 2 describes

the classical statistical analysis and triple collocation ap-

proach used to derive the sampling uncertainties for

CSASM obtained at SMAP CVS. Section 3 describes the

in situ, remote sensing, and land surface modeling soil

moisture datasets applied in the analyses. Results are

presented and discussed in sections 4 and 5, respectively.

2. Estimate uncertainty of CSASM

As discussed above, suboptimal sampling density and

upscaling functions leads to error in CSASM that then
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directly impacts the reliability of the SMAP validation

metrics calculated against the CSASM values. Here,

CSASM error statistics are estimated from two per-

spectives: 1) a statistical analysis based on classical

spatial sampling theory that estimates sampling uncer-

tainty in CSASM temporal average and 2) a triple col-

location (TC) analysis that quantifies random error

variances in CSASM estimates of true soil moisture

spatial averages.

a. Spatial sampling uncertainty in time-averaged
CSASM

The CSASM is essentially a sampled mean of obser-

vations drawn from discrete sampling points within the

reference pixel. In practice, purely random or stratified

sampling across the domain is impossible. Instead, in-

stalled sites are typically selected based (in part) on

practical considerations (e.g., accessibility and land

ownership) and often preferentially sample certain land

cover types. Nevertheless, the resulting network is gen-

erally assumed to provide a representative sample of

spatial variability within the reference pixel. Thus, at least

initially, the soil moisture observations acquired from the

network are assumed here to be based on random spatial

sampling. Based on this assumption, classical statistical

analysis tools can be applied to estimate the probability

distribution of their sample mean.

To start, a classical statistical analysis used to ob-

tain confidence intervals for time average values of the

CSASM due to random error in sparse spatial sampling

is described. This time-averaged error in the CSASM

directly reflects uncertainty in CSASM-based bias esti-

mates (i.e., the temporal average of differences between

satellite retrievals and CSASM). Given the difficulty of

directly measuring CSASM sampling error, sampling un-

certainty is estimated by applying the central limit theo-

rem, based on an assumption of unbiased sampling with

sufficient spatial coverage to guarantee independent sam-

pling errors (Crow et al. 2005; see discussion above). This

spatial sampling uncertainty, in turn, provides confidence

intervals for the CSASM-based SMAP bias estimates.

Given an in situ soil moisture network consisting of

N sensors, the weighted-average soil moisture (CSASM

or uWA) at time j is obtained by

u
WA,j

5 �
N

i51

u
i,j
w

i
, (1)

where wi is the normalized weight assigned to the ith

sensor with �N

i51wi 5 1, and ui,j is the observed volu-

metric soil moisture at location i and time j. Equation (1)

is a typical form of upscaling function applied at SMAP

CVS (Colliander et al. 2017a).

The spatial variance of time-averaged soil moisture

for each of theN sensors, adjusted for uneven weighting,

is then given as
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where the overbar for ui and uWA denotes temporal

averaging. The standard error of CSASM is then ob-

tained as

SE
WA

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
WA/Neff

q
, (3)

whereNeff is the effective sample size (Kish 1965) and an

approximation of the size of a simple random-sampling

sample that produces the same spatial variance s2
WA

obtained from the CVS network given by

N
eff
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i . (4)

With the assumption that the weighted soil moisture

observed at the CVS sensor network is randomly sam-

pled within the reference pixel, the distribution of sam-

ple mean (CSASM) approaches a normal distribution.

The 95% confidence interval for uWA can therefore be

obtained as

u
WA

6 t
0:025,Neff21

SE
WA

, (5)

where t0:025,Neff21 is the critical value at 0.025 for the

t distribution with Neff 2 1 degrees of freedom. Stated

in a different, but equivalent way, (5) indicates that, if

SMAP retrievals were bias free, 95% of the sampled

SMAP bias should fall within the range defined by

6t0:025,Neff21SEWA.

For time-averaged CSASM, an evenly spaced, fixed-

location sampling network of appropriate density

would provide sampled statistics that are unbiased

with respect to a spatially random, independent sam-

pling scheme, repeated many times temporally. Ap-

plying different weights within SMAP CVS is often

aimed at compensating for uneven spatial sampling

and to obtain a more representative (and reliable)

estimate of the reference pixel mean. For example, in

SMAP validation weights are generally assigned to be

proportional to the area of Voronoi polygons deter-

mined for associated sampling points (Colliander et al.

2017a). Therefore, it is a corrective procedure applied to
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compensate for nonrandom sampling. However, this

correction comes at a cost since usingNeff to obtain the t

value penalizes and inflates the random sample uncer-

tainty of CSASM (since Neff # N). Nevertheless, it is

worth noting that (4) is not the only method to estimate

Neff and there is controversy over the definition and

calculation of Neff (e.g., Thiébaux and Zwiers 1984).

Given this, CSASM uncertainty estimates have been

calculated here using both N and Neff in (5) and Neff

has been replaced with N 2 1 in (3) when N is used.

These two slightly different estimates of CSASM un-

certainty are presented and discussed further in

section 4a.

b. The unbiased root-mean-square error (ubRMSE)
of CSASM

In addition to bias, ubRMSE has become a critical

accuracy metric for recent satellite soil moisture assess-

ments. By removing a fixed, long-term temporal average

from both the reference and retrieval time series (prior to

taking a root-mean-square error), the ubRMSE describes

the combination of random error and time-varying sea-

sonal differences in a given remote sensing product rel-

ative to the reference time series.However, ubRMSEof a

remote sensing product calculated against CSASM

(i.e., ubRMSERS,WA) reflects not only the true error of

the product but also the random error in the CSASM

itself. Given that the goal of any satellite validation

project is estimating errors in the satellite product

versus an unknown truth (i.e., ubRMSERS,T), it is

useful to estimate errors in the CSASM time series (i.e.,

ubRMSEWA,T) in order to isolate ubRMSERS,T from

ubRMSERS,WA. If remote sensing and CSASM errors

are assumed to be independent, these three quantities

are linked as

ubRMSE
RS,WA

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ubRMSE2

RS,T 1 ubRMSE2
WA,T

q
,

(6)

where the subscript RS represents a remote sensing

product, WA represents CSASM (weighted average soil

moisture of the reference pixel), and T denotes the true

footprint-average soil moisture value. As noted earlier,

two different approaches are applied below to estimate

ubRMSEWA,T.

1) ubRMSEWA BASED ON SAMPLING THEORY

While ubRMSEWA,T cannot be directly obtained from

the available observations, it can be approximated by the

temporalmean of the sampled spatial variance of temporal

anomalies (relative to a single, long-term temporal mean)

for cases where spatial sampling is assumed to be random

such that

ubRMSE
WA,T

’
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(7)

where Nj is the number of temporal observations ob-

tained by the soil moisture network. Ground-based ob-

servations at SMAP CVS are commonly obtained at

high temporal frequencies (#30min). However, here

only the daily observations closest to each SMAP re-

trieval time [approximately 0600 and 1800 local solar

time (LST)] were used in the calculation. As the CVS

sampling networks are designed with the intention to

best represent the corresponding reference pixel, (7) can

generally be considered to give a close approximation

of ubRMSEWA,T. The 95% confidence interval for

ubRMSEWA,T is calculated based on Faber (1999); that

is, the uncertainty of the mean squared error of pre-

diction can be approximated by a x2 distribution with

the degrees of freedom equal to the number of samples.

2) ubRMSEWA BASED ON TRIPLE COLLOCATION

ANALYSIS

Despite our assumption of random sampling, it should

be noted that obtaining an unbiased sample of reference

pixel conditions is challenging for sites with substantial

heterogeneity in soil, vegetation, and/or topography—

especially when soil moisture sensors are installed at

permanent locations that favor certain land cover con-

ditions. In such cases, systematic bias in the CSASM

relative to the true reference pixel average is unavoid-

able, which cannot be estimated by statistical analysis

using classical sampling theory alone. Neither can sta-

tistical analysis reveal the error variance of the CSASM

due to the spatial variability not captured by the existing

(potentially biased) spatial sampling scheme.

The direct measurement of total sampling error (in-

cluding both sample bias and/or random error variance)

requires access to data collected from (more) spatially

intensive field work incorporating a much denser sam-

pling network. Unfortunately, such data are not com-

monly available. In its absence, triple collocation (TC)

analysis provides an alternative estimate of the ‘‘total’’

ubRMSE in the CSASM relative to the reference pixel

truth, which includes time-varying errors contributed by

instrumentation errors and unsampled spatial variability.

In this way, the need to assume a purely random spatial

sample is avoided. However, TC is based on a different

set of assumptions—principally, mutually independent

time-varying errors in each of its three input datasets.
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Given this contrast in their underlying assumptions, it is

of interest to compare the CSASM error estimates ob-

tained from TC and classical sampling theory.

TC has been widely applied in remote sensing valida-

tion and assessment studies to estimate the error variance

of a data product in the absence of an error-free bench-

mark (e.g., Draper et al. 2013). The application here is

based on an assumption that independent estimates of uT
can be obtained from ground-based observations via

uWA, a land surface model uLSM, and remote sensing uRS,

each of which is linearly related to uT by

u5au
T
1b1 « , (8)

where a and b are multiplicative and additive bias terms,

and « is random error. TC solves the error variance of the

input datasets when the following principle assumptions

are met: 1) zero error cross correlation, 2) zero correla-

tion between errors and the truth, and 3) stationary signal

and error statistics (Gruber et al. 2016; Draper et al. 2013;

Zwieback et al. 2012).

In practice, the three measurement sources often

present differences in representative depths, contribut-

ing area, dynamic ranges and seasonalities, as well as

nonstationary a and b parameters that result in violation

of the TC assumptions. Therefore, it is often necessary

to transform estimates into anomalies by removing slowly

varying temporal averages and/or climatologies present in

each dataset (i.e., to remove b). Chen et al. (2017) demon-

strates that the most robust TC results are achieved after the

removal of seasonal trends in the form of 30-day moving

averages from the input time series. In addition, to account

for differences in the scaling factora, one of the three datasets

must be selected as a scaling reference (Chen et al. 2017).

Note that, applying the same ubRMSE-correction

strategy via (6) when only point-scale observations

(i.e., from sparse network stations) are available is not

recommended (Chen et al. 2017) because, unlike the

CSASM which can be assumed to be close to calibrated

(i.e., a ’ 1 and b’ 0), an unknown a of the point-scale

observation introduces additional uncertainty in the

‘‘corrected’’ ubRMSE of the satellite product via (6).

Because the error variance of the CSASM s2
«WA

is of

interest here, the uWAanomaly (i.e., uWA* ) was chosen as

the reference dataset, with uRS and uLSM anomalies re-

scaled to uWA (i.e., uRS/WA* , uLSM/WA* ) using the opti-

mal rescaling method described in Yilmaz and Crow

(2014). Following this transformation, the unbiased-

RMSE of the CSASM time series was estimated via TC:

ubRMSE
WA,T

5
ffiffiffiffiffiffiffiffiffiffi
s2
«WA

q
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

uWA
*

2
COV(u

WA
* , u

RS/WA
* )COV(u

WA
* , u

LSM/WA
* )

COV(u
RS/WA
* , u

LSM/WA
* )

s
. (9)

SeeMcColl et al. (2014) for background on the derivation

of (9).

It is important to note that, even if these underlying

assumptions are met, subtle differences exist between

the TC-based estimates of ubRMSEWA,T obtained from

(9) and the corresponding ubRMSEWA,T derived via (7).

First, the two differ in that (7) reflects error after the

removal of a single, long-term temporal mean, while (9)

reflects error after the removal of 30-daymoving averages

following the recommendation in Chen et al. (2017).

Values of ubRMSE calculated based on 30-day anoma-

lies lack sensitivity to low-frequency and/or seasonally

varying errors. To demonstrate the impact of excluding

seasonality (and/or low-frequency variability) at varying

temporal scales on TC-based ubRMSEWA,T estimates,

TC results based on soil moisture anomalies relative to

different averaging window lengths are also presented

and discussed below.

A second difference lies in the range of error sources

considered by (7) and (9). Error statistics calculated

using (7) depend entirely on the observed spatial vari-

ability derived from the scaling function and sampling

network, whose actual spatial support may not perfectly

alignwith the intended reference pixel. Likewise, random

sampling errors are the only source of uncertainty cap-

tured. In contrast, TC theoretically solves the total

random CSASM error statistic at the footprint scale

(provided at least one of the other two datasets used in

TC has a spatial resolution close to the footprint size; see

discussion in Draper et al. 2013). Hence, ubRMSEWA,T

estimates acquired by TC in (9) reflects a broader range

of error sources (including, e.g., random error due to

instrumentation noise and nonrandom sampling effects)

than ubRMSEWA,T calculated via (7).

3) MOVING BLOCK BOOTSTRAP

Uncertainties in estimates of ubRMSEWA,T acquired

from both (7) and (9) were estimated by applying a

moving-block bootstrap (MBB) resampling method.

Since autocorrelation reduces the effective sample

size of a time series, applying ordinary bootstrapping

methods to autocorrelated variables (like soil mois-

ture) will underestimate the probability that the sam-

pled confidence interval contains the true statistical
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property (Zwiers 1990; von Storch and Zwiers 1999).

MBBwas proposed as a better resampling method than

ordinary bootstrap for estimating confidence intervals

of correlation coefficients for autocorrelated time se-

ries (Mudelsee 2003, 2010). MBB was applied here to

estimate the confidence intervals of ubRMSEbecause 1)

the ubRMSE metric is mathematically related to cor-

relation (Draper et al. 2013) and 2) despite the removal

of temporal means (30-day or long-term) from the raw

time series before calculation of ubRMSE, the anomaly

time series still contains significant first-order autocor-

relation. To obtain the confidence interval of the clas-

sical sampling theory-derived ubRMSE of CSASM, the

methods in Mudelsee (2002) and Sherman et al. (1998)

were followed to calculate the persistence time and block

length parameters of MBB, which is outlined below in this

section. TheMBBprocedure applied to triple collocationwas

adapted from Ólafsdóttir and Mudelsee’s (2014) bivariate

correlation problem, which is described in Chen et al. (2018).

MBB draws blocks of data from the original time

series (i.e., soil moisture anomalies here) to form

resamples that preserve the characteristic temporal

dependence of the original dataset (Künsch 1989; Liu

and Singh 1992). Block length was determined from the

autocorrelation coefficient, which is calculated from the

persistence time t of the soil moisture anomaly time

series [i.e., CSASM, or uWA in (7)]. Persistence time was

estimated by minimizing the sum of squares:

S(t
uWA

)5 �
n

i52

u
WA,i

2 exp 2(t
i
2 t

i21
)/t

uWA

h i
u
WA,i21

n o2

,

(10)

where n is the length of the time series, uWA,i is the ith

data point, and ti is the linear time point (in unit of day)

with potentially uneven intervals. The equivalent first-

order autoregressive process [AR(1)] autocorrelation

coefficient is given by a5 exp(2d/t), where d5 (tn 2 t1)/

(n2 1) is the average time spacing. The autocorrelation

coefficient was then bias-corrected to approximate the

AR(1) process with an even time spacing:

a0 5 [a(n2 1)1 1]/(n2 4). (11)

The optimal block length was then estimated as

l
opt

5NINTf[
ffiffiffi
6

p
a0/(12 a02)]2/3n1/3g , (12)

where NINT denotes rounding to the nearest integer.

Overlapping blocks of data with the length of lopt were

then randomly drawn with replacement to form a new

sample of the original data length. The resampling

procedure was repeated 1000 times in each grid pixel.

Estimated 95% confidence intervals for ubRMSE were

obtained from the 2.5th and 97.5th percentiles of the

MBB-sampled distribution.

3. Data

a. CSASM at SMAP core validation sites

A set of CVSs, operated by independent Cal/Val

Partners, containing calibrated in situ measurements

were chosen by the SMAP mission to determine the

quality of the SMAP data products (Colliander et al.

2017a). Table 1 lists the CVS that provide average soil

moisture at the 33-km scale reference pixels to validate

the SMAP L2_SM_P_E product (Chan et al. 2018).

Locations of these CVS are shown in Fig. 1a along with

examples of their internal soil moisture networks. At

each site, scaling functions have been established and

calibrated to upscale point-based observations within

each CVS to the grid cell averages. Specifically, the SMAP

Cal/Val team used a Voronoi diagram approach to de-

termine the relative weighting between individual mea-

surement stations within most CVS (Colliander et al.

2017a). The number of sensors N listed in the table cor-

responds to the subset of stations used for computing

CSASM for the 33-km reference pixel. Additional stations

located too far outside the 33-kmpixel or having significant

data gaps were excluded.

Temporary, denser in situ networks were installed for

short-term soil moisture field experiments at four SMAP

CVS: WG (23 June–27 October 2015, 30 temporary

sensors; Colliander et al. 2017b), SF (18 May–17 August

2016, 20 temporary sensors; Colliander et al. 2019), LR

(5May–6 October 2017, 19 temporary sensors), and CM

(17 May–18 August 2016, 34 sensors; Bhuiyan et al.

2018). These temporary networks, including both tem-

porary and permanent soil moisture sensors, provided

much denser spatial sampling, and thus more accurate

assessments of spatial variability, within the CVS ref-

erence pixels—albeit for relatively short time periods.

b. Satellite soil moisture retrievals

1) SMAP LEVEL 2 ENHANCED SOIL MOISTURE

NASA’s SMAP satellite observes global soil moisture

with the onboard L-band (1.41GHz) radiometer since

January 2015 (Entekhabi et al. 2010). The SMAP En-

hanced Passive Soil Moisture (L2_SM_P_E; Chan et al.

2018) is retrieved on the 9-km global EASE Grid 2.0

with a contributing spatial domain of 33 km 3 33 km.

SMAP L2_SM_P_E data (version 4, CRID T15570)

used in the analysis were acquired from both ascending

(1800 LST) and descending (0600 LST) orbits between

31 March 2015 and 28 February 2018.
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2) ASCAT SOIL MOISTURE

The European Organization for the Exploitation of

Meteorological Satellites (EUMETSAT) Advanced

Scatterometer (ASCAT) sensor on board the Meteoro-

logical Operational-B (MetOp-B) satellite measures

C-band (5.3GHz) radar backscatter since September

2012, with 25–34km spatial resolution and equatorial

ascending and descending overpasses at 2130 and 0930

LST, respectively. The ASCAT level 2 soil moisture

index product in a 12.5-km swath grid utilized here is

based on the change-detection algorithm developed

by Vienna University of Technology (Wagner et al.

1999; Naeimi et al. 2009). Here, grid cells were masked if

probabilities of snow cover, frozen soil moisture, and

estimated retrieval error are greater than 50%, and if

rainfall probability is greater than 10%. The ASCAT

soil moisture index data were converted to volumetric

units (m3m23) and resampled to the 33-km SMAP ref-

erence pixels by spatial averaging of 12.5-km grid

cells that fell within a 33-km reference pixel whenever a

minimum of four ASCAT grid cells were present.

3) SOIL MOISTURE OCEAN SALINITY

The Soil Moisture Ocean Salinity (SMOS) satellite

was launched in 2009 by the European Space Agency

(ESA;Kerr et al. 2001) andmeasures L-bandmicrowave

emission (1.400–1.427GHz) with equatorial ascending

and descending overpasses at 0600 and 1800 LST, re-

spectively. The SMOSLevel 2 v650_001 soilmoisture data

used in this analysis are acquired from both ascending and

descending overpasses in an equal-area ISEA 4H9 15-km

grid (Carr et al. 1997). Retrievals withDataQuality indeX

(DQX) of greater than 0.07m3m23 or covered by snow

or ice were removed. Remaining grid cells with valid data

were resampled to the 33-kmSMAPreference pixels using

the same approach described above for ASCAT.

d. Land surface modeling soil moisture

1) SMAP NATURE RUN

The SMAP Nature Run, version 3 (NRv3 or NR),

surface soil moisture field was generated with theNASA

Catchment land surface model with an early version of

TABLE 1. SMAP soil moisture core validation sites in this analysis. In the rightmost column,N is the number of sensors contributing to

the CSASM in each corresponding 33-km reference pixel, andNeff is the effective sample size determined by the sensor weights applied in

the upscaling function (see section 2a).

Code PI Location Climate IGBP land cover Reference N (Neff)

Walnut Gulch WG D. C. Goodrich United States

(Arizona)

Arid Shrub open Keefer et al.

(2008)

18 (11)

Reynolds

Creek

RC M. Seyfried United States

(Idaho)

Arid Grasslands Seyfried et al.

(2001)

7 (5)

TxSON TX T. Caldwell United States

(Texas)

Temperate Grasslands Caldwell et al.

(2018)

28 (12)

Fort Cobb FC P. J. Starks United States

(Oklahoma)

Temperate Grasslands 11 (7)

Little Washita LW P. J. Starks United States

(Oklahoma)

Temperate Grasslands Cosh et al.

(2006)

12 (9)

South Fork SF M. H. Cosh/J. Prueger United States

(Iowa)

Cold Croplands Coopersmith et al.

(2015)

19 (15)

Little River LR D. Bosch United States

(Georgia)

Temperate Cropland/natural

mosaic

Bosch et al.

(2007)

19 (9)

Kenaston KN A. Berg Canada Cold Croplands Tetlock et al.

(2019)

30 (12)

Carman CM H. McNairn Canada Cold Croplands McNairn et al.

(2015)

20 (17)

Monte Buey MB M. Thibeault Argentina Arid Croplands 12 (5)

REMEDHUS RD J. Martínez-Fernández Spain Temperate Croplands Martinez-Fernandez

and Ceballos (2005)

15 (13)

Twente TW Z. Su The Netherlands Temperate Cropland/natural

mosaic

Dente et al. (2012) 5 (5)

HOBE HB K. Jensen Denmark Temperate Cropland/natural

mosaic

Bircher et al.

(2012)

15 (13)

Mongolian

Grasslands

MH J. Asanuma Mongolia Cold Grasslands Wen et al.

(2014)

5 (5)

Yanco YC J. Walker Australia Semiarid Croplands/grasslands Smith et al.

(2012)

23 (8)
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the SMAP level 4 surface and root zone soil mois-

ture algorithm by the NASA Goddard Space Flight

Center (GSFC) Global Modeling and Assimilation Of-

fice (Reichle et al. 2014). It was generated in a model-

only configuration using a single ensemble member

without perturbations or assimilation of SMAP bright-

ness temperature observations. NRv3 is available at a 3-

hourly interval on the 9-km EASEv2 grid. These values

were aggregated to match 33-km SMAP CVS reference

pixels via spatial averaging.

2) ECMWF

The land surface model soil moisture product used in

the triple collocation analysis was the operational

analysis layer-1 (0–7 cm) volumetric soil moisture field

acquired from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Hydrology-Tiled ECMWF

Scheme for Surface Exchanges over Land (H-TESSEL)

land surface scheme (Balsamoet al. 2009). Theoperational

soil moisture analysis product data are produced by

ECMWF’s Land Data Assimilation System via the as-

similation of 2-m air temperature and relative humidity

observations into the H-TESSEL land surface model

(Drusch et al. 2009; de Rosnay et al. 2014). The ECMWF

soilmoisture analysis data are available at 0000, 0600, 1200,

and 1800 UTC and on a N640 reduced Gaussian grid.

ECMWF soil moisture data were resampled to the SMAP

33-km reference pixels using a nearest-neighbor approach.

FIG. 1. (a) Location of SMAP soil moisture core validation sites for the L2_SM_P_Eproduct. Examples of soil moisture sensor networks

(red circles) are shown for the (b) Twente (TW), (c) Little River (LR), and (d) Yanco (YC) 33-km reference pixels (bounded by

black boxes).
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4. Results and discussion

a. Uncertainty bounds on time-averaged CSASM

As discussed in section 2a, the uncertainty of temporal-

average CSASM uWA were estimated using both effective

(Neff) and raw (N) sample sizes (Fig. 2). The 95% con-

fidence intervals for uWA obtained with Neff (dashed

lines) range from 0.0025m3m23 (MH) to 0.091m3m23

(RC) and are, on average, 25.7% (standard deviation:

16.5%) of the long-term CSASM mean across all

15 CVS. The N-based confidence intervals (solid lines)

are relatively tighter thanNeff-based numbers due to the

higher standard error of the CSASM obtained through

(3). Nevertheless, even N-based sampling uncertainty

was found to be large relative to the time-averaged

CSASM values, which translates into substantial rela-

tive uncertainty in SMAP bias estimates. In fact, at most

sites, even after the collection of 31 years of SMAP

data, the observed SMAP biases (for baseline SMAP

L2_SM_P_E retrievals) fall within the 95% confidence

interval, suggesting these biases are not statistically

significant and can therefore be reasonably attributed

to spatial sampling limitations within each individual

core site.

Note that the 95% CI was estimated via the Student’s

t-test procedure that assumes soil moisture is randomly

sampled in space within the reference pixel. In reality,

networks are constructed from permanent soil moisture

measurement locations, some of which chosen for rea-

sons of practicality (e.g., accessibility and compatibility

with farm operations). This results in either some degree

of spatial clustering—for example, the YC network

(Fig. 1d)—or preferential sampling of certain land cover

types—for example, croplands by the LR network

(Fig. 1c). Such clustering, in turn, can lead to a low bias

in sampled spatial variability within the true soil mois-

ture field. Therefore, the confidence intervals in Fig. 2

(even when calculated with Neff) are still likely conser-

vative estimates of the true uncertainty in the CSASM.

In addition to surface soil moisture observations ob-

tained from permanent sampling locations, measure-

ments were also collected from additional temporary

sensors installed within the WG, SF, LR, and CM core-

site domains during limited field campaign periods (see

section 3a above). Due to their large number of sam-

pling sites, these expanded (temporary plus permanent

station) networks provide a more robust estimate of

the actual spatial variability within each CVS reference

pixel. This updated information was also applied with

the original sample size (i.e., the number of permanent

stations) in (5) to simulate the situation where accu-

rate spatial variance could be observed solely from the

permanent network. The results (vertical error bars in

Fig. 2) suggest that confidence intervals estimated from

permanent network observations are indeed often un-

derestimated (see, e.g., the SF, LR, and CM sites). In

particular, permanent sensors at LR are all installed on

agricultural land, while a large fraction of the reference

pixel (55%) occupied by forests is not sampled (Fig. 1c).

The smaller CSASM uncertainty observed from the LR

FIG. 2. The 95% confidence intervals (CI) for zero bias and observed SMAP L2SM_P_E soil

moisture bias at SMAP CVS (see Table 1 for site abbreviations).
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permanent network is therefore an underestimate of

true spatial variability within the entire reference pixel.

These observations suggest that the network configura-

tions at some CVS should be adjusted to better capture

the subpixel soil moisture average and variance. This

shortcoming has been noted previously by high-resolution

hydrologic modeling at the LR site (Chaney et al. 2015).

This bias further underscores the spatial sampling chal-

lenges faced when attempting to estimate bias in SMAP

surface soil moisture retrievals within areas of mixed

land cover.

One direct way to reduce the bias uncertainty origi-

nating from the CSASM is (naturally) through increased

network sample density. As suggested by Famiglietti

et al. (2008), the effective sample size required to

achieve a specific uncertainty level can be calculated

by inverting (3) and (5). For example, to achieve a bias

uncertainty of under 0.03m3m23 with the currently

sampled spatial variance, some of the SMAP CVS (i.e.,

TW, RC, FC, LW, RD, HB, and CM) would need to

increase their current network density by about a factor

of 2 (Table 2). Reasons behind the relatively low sam-

pling power of SMAP CVS (with respect to bias) are

discussed further in section 5 below.

As an alternative to the relatively high-cost option of

increasing network density, improving scaling functions

for CSASM is a potential means of better reflecting the

contribution from underrepresented land cover or soil

types within the reference pixels. To capture under-

sampled forested sites and better approximate the true

average soil moisture of the 33-km reference pixel at the

Little River (LR) CVS, an updated scaling function was

derived by linear transformation of the permanent

network-based CSASM using observations from the

temporary network. While the LR CSASM time series

used in this analysis is based on an old (not updated)

scaling function, the updated scaling function has been

applied to CSASM calculations used in current SMAP

routine validation activities and assessment reports (e.g.,

Chan et al. 2018; Jackson et al. 2018). Updated CSASM

based on the improved scaling function results in a sig-

nificantly reduced SMAP L2_SM_P_E retrieval bias

(;0.06m3m23, compared to ;0.12m3m23 using older

scaling function) at the LR CVS.

b. Time-varying error in CSASM

In addition to uncertainty bounds on time-average

CSASM values, section 2 described two methods

to estimate the ubRMSE of CSASM time series

(ubRMSEWA,T: 1) a classical sampling theory as sum-

marized in (7) and 2) TC as summarized in (9). Figure 3

compares ubRMSEWA,T obtained from both methods at

SMAP CVS with associated 95% confidence intervals.

TC analysis was performed with six different data

triplets, each containing CSASM and one of the fol-

lowing remote sensing–LSM soil moisture data pairs:

SMAP–ECMWF, SMAP–NR, SMOS–ECMWF, SMOS–

NR, ASCAT–ECMWF, and ASCAT–NR. Each of these

data triplets should theoretically yield the same TC-based

estimate of ubRMSEWA,T. TC estimates shown in Fig. 3

were averaged from analyses from six data triplets

(without resampling). The 95% confidence intervals for

TC-derived ubRMSEWA,T were generated from a 6000-

member moving-block bootstrap resampling analysis

(i.e., 1000 samples fromeach triplet). Confidence intervals

for classical sampling theory-derived ubRMSEWA,T were

generated from a 1000-member moving-block bootstrap

resampling analysis. To isolate the impact of random

error at different time scales, ubRMSEWA,T were cal-

culated for the case of anomalies calculation against

both a single, long-term mean and a 30-day moving-

window average.

Overall, both methods (sampling theory and TC) es-

timate ubRMSEWA,T values that (generally) fall within

the range from 0.01 to 0.02m3m23. While this level of

error is well below the 0.04m3m23 ubRMSE target ac-

curacy for both SMAP and SMOS, users of CSASM

should be aware of nontrivial CSASM ubRMSE that

will impact remote sensing (and/or model) soil moisture

ubRMSE assessments calculated from direct CSASM

comparisons. When seasonal signals are removed from

the observations, so is much of the temporally persistent

spatial variation within the pixel. This explains the smaller

ubRMSE values in Fig. 3b compared to Fig. 3a.

Both cases examined in Fig. 3 indicated that TC

ubRMSE estimates are generally larger than compara-

ble estimates based on sampling theory. This difference

is pronounced in the case of anomalies relative to 30-day

moving averages (Fig. 3b). However, there is a clear

reduction in scatterplot correlation (from a correlation

TABLE 2. Estimated effective sampling sizes for SMAP CVS

required for 95% confidence intervals of zero bias to fall below

0.03m3m23. SMAP CVS with uncertainty bounds (already) below

0.03m3m23 are excluded from the table.

Current N Current Neff

Neff for

CI # 0.03m3m23

TW 5 5 8

RC 7 5 15

FC 11 7 16

LW 12 9 17

RD 15 13 17

HB 15 13 34

CM 20 17 26

TX 28 12 14

KN 30 12 13
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of 0.70 in Fig. 3b to 0.12 in Fig. 3a) for the case of anom-

alies relative to a long-term mean (Fig. 3a), which

suggests a partial breakdown in the consistency of the two

ubRMSEWA,T estimates. This lackof correlation in Fig. 3a

may result, in part, from the very large sampling error bars

associated with the TC ubRMSEWA,T estimates. See

section 5 below for further discussion of these results.

A notable outlier in Fig. 3a is the Twente (TW) CVS

site, where ubRMSEWA,T estimates acquired from

sampling theory are significantly higher than from based

on TC. A closer look of the TW site was undertaken by

considering all available observations within the TW

reference pixel (i.e., 12 active soil moisture stations in-

cluding the 5 currently used to obtain the CSASM via

arithmetic averaging). Classical sampling theory was

also applied to estimate the ubRMSE of a new CSASM

time series calculated as the arithmetic average of all

twelve stations. These results (not shown) suggest that 1)

soil moisture observed at different locations within the

reference pixel show markedly different seasonality and

dynamic range, 2) the current CSASM network (five

stations) at TW is representative of the spatial variability

of the reference pixel, and 3) the estimated ubRMSEWA,T

of ;0.03m3m23 (with removal of long-term mean) is

relatively stable and reliable.

These observations are consistent with Dente et al.

(2012), which identified land cover and groundwater

table height as the main drivers of soil moisture spatial

variability at the Twente site. Four of the five stations

used in the Twente CSASM calculates are located on

grasslands. The one station located in a corn field is

found to be drier than the grass stations in spring and

summer (Dente et al. 2012). One of the grassland sites

has the most variable water table height (lowest

depth.120 cm, highest depth at 25–40 cm) that leads to

the large dynamic range and disparity between its time

series and other sites (and CSASM as well). The large

spatial variability in surface soil moisture at the TW site

is, therefore, responsible for the relatively high esti-

mates of ubRMSEWA,T obtained from classical sam-

pling theory. Conversely, lower values of ubRMSEWA,T

(0.019m3m23) estimated by TC are greatly affected by

the extremely low ubRMSE value provided by the

CSASM–SMOS–NR triplet (see Fig. 5), which is outside

the 95% confidence interval generated from all boot-

strapping samples of the other six triplets. Ignoring this

outlier, the average TC-based ubRMSEWA,T estimate in-

creases to 0.024m3m23—which is much closer to the

ubRMSEWA,T estimate obtained from sampling theory. In

addition, as discussed below, TC results were generally less

robust when only the long-term mean (versus the season-

ally varying climatology) was removed from the raw time

series, which likely contributes to the TWoutlier in Fig. 3a.

5. Discussion

A striking result from Fig. 2 is that, even after 31 years

of data collection, the CSASM time series still lacks

FIG. 3. Comparison of CSASMubRMSE (ubRMSEWA,T) estimated from both TC (y axis) and classical sampling

theory (x axis) based on the removal of (a) a fixed long-term average and (b) 30-day moving-window averages.

TC results were averaged from analyses based on six different data triplets (see section 4b) without bootstrap

resampling. Error bars (solid gray lines) for sampling theory results reflect 95% confidence intervals obtained from

a 1000-member moving-block bootstrap (MBB) sampling. Confidence intervals for TC results were obtained from

joint distribution of ubRMSEWA,T sampled via separate application of MBB to TC analyses with six different soil

moisture data triplets (1000 samples each).
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sufficient sampling power to resolve long-term SMAP

biases smaller than 0.05m3m23 at approximately half of

the SMAP core sites. This lack of sampling power has

important consequences for the design of future satellite

validation strategies. To understand the reasons under-

lying such results, it is useful to consider the differences

between spatial variability expressed in soil mois-

ture versus precipitation data fields. Footprint-scale soil

moisture variability is predominantly controlled by

precipitation in wet conditions and by soil hydraulic

properties and vegetation water content during inter-

storm periods (Kim and Barros 2002; Oldak et al. 2002).

However, when averaged over long periods, the spatial

variability of soil moisture and rainfall across the foot-

print decreases at markedly different rates. Figure 4

compares the changes of spatial standard deviation of

soil moisture and precipitation temporal averages for

increasing time-averaging intervals for 10 reference

pixels with concurrent surface soil moisture and pre-

cipitation observations (i.e., the FC, LW, RD, WG, SF,

LR, YC, CM, TX, and KN CVS, permanent stations

only). The spatial standard deviations associated with

each averaging interval are normalized by the 1-day

standard deviation values.

Figure 4 illustrates the contrasting behavior of spatial

variability in soil moisture and rainfall accumulation.

While soil moisture spatial variability is relatively per-

sistent over longer temporal averaging periods, spatial

variability in rainfall accumulation decreases sharply

over time. This observation is consistent with scale

differences in the known drivers of soil moisture and

rainfall. Spatial patterns of rainfall are mainly affected

by (spatially and temporally variable) mesoscale atmo-

spheric conditions, while soil moisture spatial variability

is strongly linked to static distributions of soil texture

and land cover that control the evapotranspiration rate

at finer scales. As a result, soil moisture spatial errors are

more autocorrelated in time, and sampling approaches

that attempt to reduce spatial sampling uncertainty via

the use of expanded temporal sampling are much less

effective for soil moisture than for rainfall. Put another

way, Fig. 4 reflects that spatial patterns in rainfall ac-

cumulation vary widely from event to event (and thus

cancel out in a mean sense when averaged over long

periods) while patterns in soil moisture variability per-

sist over time (and are therefore resistant to removal via

simple temporal averaging). Since the bias confidence

intervals calculated from (5) are based on the spatial

variability present within each CVS after temporal av-

eraging, this persistence leads directly to the larger soil

moisture uncertainty bounds seen in Fig. 2. Therefore, in

contrast to rainfall, specific aspects of soil moisture

time–space variability make it particularly difficult to

accurately sample soil moisture biases via comparison

with the CSASM.

The generalization of soil moisture time–space dy-

namics (i.e., dry stays dry and wet stays wet) underlying

this result is obviously a simplification of the complex

time–space variability in soil moisture fields [see, e.g.,

Molero et al. (2018) for a more complete analysis].

However, it is consistent with the assumptions under-

lying the application of temporal stability approaches

for upscaling point-scale soil moisture (Cosh et al. 2006,

2008), as well as a study that showed a large fraction of

FIG. 4. (a) Normalized spatial standard deviation of temporally averaged soil moisture (within each CVS) for

various time-averaging intervals. (b) As in (a), but for rainfall accumulations. Each line represents a different

SMAP CVS reference pixel. Mean standard deviations for each time interval are normalized by 1-day standard

deviation values.
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soil moisture time–space variability can be explained

using a small set of empirical orthogonal functions

(Joshi and Mohanty 2010). The importance of tempo-

rally fixed land surface properties for generating soil

moisture spatial variability is also highlighted by a re-

cent study inOklahoma,United States, which revealed a

higher correlation between mesoscale (1–100 km) soil

moisture spatial patterns and sand content than that

sampled against antecedent precipitation index (Dong

and Ochsner 2018).

Two key points also stand out in Fig. 3, regarding es-

timated CSASM ubRMSE (ubRMSEWA,T). First, as

noted above, TC-based ubRMSEWA,T estimates are

clearly biased high relative to comparable sampling

theory results. This bias is expected since TC-based

ubRMSEWA,T includes other sources of error—in addi-

tion to the random sampling error (the only error source

captured by sampling theory). In addition, nonrandom

sampling causes the ubRMSEWA,T estimates from clas-

sical sampling to be biased low. The only apparent ex-

ception to this trend is the TW site in Fig. 3a, which can be

explained by the extremely low ubRMSEWA,T estimate

provided by one of the potential TC triplets (see discus-

sion in section 4).

Second, the correspondence between TC and classical

sampling cases is much weaker for the case of anoma-

lies calculated against a long-term mean (Fig. 3a). This

is likely due to a breakdown in the reliability of TC

estimates in the presence of significant soil moisture

seasonality. As discussed earlier, TC estimates include

additional error sources not considered in the sampling

theory-based ubRMSE [section 2b(2)]. However, non-

stationary components (e.g., seasonality) were removed

from the datasets prior to TC analysis, and therefore

errors beyond the temporal scale of normalizing were

filtered from the resulting ubRMSE. Figure 5 directly

examines this issue by showing TC-based ubRMSEWA,T

estimates acquired from the application of different

temporal normalization lengths to calculate soil moisture

anomalies. At most CVS, higher ubRMSEWA,T estimates

are indeed associated with larger normalizing window

lengths.

In addition, if all TC assumptions are met, all six data

triplets (represented in Fig. 5 with different colored

lines) should produce the same ubRMSEWA,T estimate

for a certain anomaly treatment. However, progres-

sively larger discrepancies between triplets are observed

as the normalizing window was made longer—indicating a

FIG. 5. Estimated ubRMSE for the CSASM temporal anomalies (ubRMSEWA,T) acquired from TC using six different satellite–LSM

combinations (combined with CSASM to form a data triplet) as a function of various anomaly window lengths. ‘‘LT’’ refers to anomalies

relative to a single, long-termmean value. Plotted 95%confidence intervals (CI95) are calculated using the same procedure as those in Fig. 3.
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deterioration in TC stability due to violation of TC as-

sumptions when low-frequency variability is not filtered.

This tendency is most obvious at the RD, TW,WG, LW,

FC, LR, and MB CVS sites. Since TC results are the

most robust when variations between the six lines are

minimized, ubRMSE calculated using anomalies against

a single, long-term average is, in general, the least-

reliable TC approach. This effect causes the reduced

consistency between TC and sampling theory results

demonstrated in Fig. 3a.

Therefore, while the TC error measures can be con-

sidered more complete than those based on sampling

theory (since they consider errors sources arising from a

wider variety of sources), their reliability is limited to

cases where low-frequency soil moisture variability has

been masked or is negligible. This is a serious limitation

given the typically large seasonal variability present in

soil moisture time series and the need to accurately

represent this seasonality for many applications.

6. Summary

Reflecting current practices in the validation of

satellite-based surface soil moisture products, SMAP

soil moisture retrievals have been validated via direct

comparison of core site average soil moisture (CSASM)

obtained via the weighted averaging of point-scale mea-

surements from ground networks established within each

core validation site. Here, errors in the CSASM arising

from limited spatial sampling within these networks are

examined. Accurate statistical representations of these

errors are highly useful when interpreting validation

metrics acquired via comparisons between SMAP soil

moisture retrievals and CSASM time series.

Sampling error in estimates of temporally average

CSASM are found to be relatively large, translating into

large uncertainty bounds for SMAP bias estimates ob-

tained from the CSASM comparisons. At most CVS,

observed SMAP bias falls within the 95% confidence

intervals of zero bias and therefore is statistically insig-

nificant (i.e., reasonably attributable to spatial sampling

limitations within each CVS). In addition, observations

from temporary networks with better sampling density

suggest that spatial variability is generally undersampled

by theCVSpermanent networks. This implies that classical

sampling theory is, if anything, understating the magnitude

of the bias sampling uncertainty. Moreover, temporal

persistence in soil moisture spatial variability suggests that

such spatial uncertainty in CSASM cannot be removed

even after temporal averaging over a long period (Fig. 4).

The magnitude of this uncertainty must be considered

when attempting to use CSASM values to estimate biases

in coarse-scale satellite or modeled soil moisture products.

In general, the reliability of the currently available

CSASM as a reference to estimate bias of a soil moisture

product range from 0.01 to 0.09m3m23 depending on

the geophysical characteristics of the site and layout of

the network. This uncertainty can be reduced by better

characterizing the soil moisture spatial variability of the

reference pixel through measures such as 1) increasing

the network density, 2) calibrating the upscaling func-

tion (against a more reliable ground truth obtained

through field campaigns of intensive sampling; e.g., in

the LR case discussed earlier), and 3) optimizing sam-

pling locations. For example, an estimated average of

about seven additional in situ probes are required to

reduce the current bias uncertainty to below 0.03m3m23

across seven SMAP CVS listed in Table 2.

Unbiased-RMSE of the CSASM is estimated via two

methods—classical sampling theory and triple colloca-

tion. As expected, due to their sensitivity to a wider

variety of error sources, TC-derived ubRMSE estimates

were generally larger than those estimated from sam-

pling theory. In addition, correlation between the two

methods was degraded when anomalies are calculated

relative to a long-termmean (rather than a 30-daymoving-

average climatology). This is due to reduced robustness in

TC estimates acquired when soil moisture seasonality is

present (Fig. 5). Despite these differences, both methods

estimated the ubRMSE of CSASM at most CVS to be

0.01–0.02m3m23—well below the 0.04m3m23 target ac-

curacy for SMAP and SMOS missions. This modest

CSASM ubRMSE obtained at 33-km reference pixels is

the result of the relatively coarse spatial scale of dynamic

forcings (i.e., mesoscale precipitation events) principally

driving the temporal dynamics of soil moisture fields.

Overall, results point out a contrast in the ability of

the CSASM to be used for ubRMSE versus bias assess-

ments. Given that the ubRMSE of CSASM is generally in

the range 0.01–0.02m3m23, and assuming an ubRMSE

(against unknown truth) of 0.04m3m23 for SMAP re-

trievals, estimates of SMAP ubRMSE obtained via direct

comparisons against the CSASM will be on the order of

0.041–0.045m3m23—following the root-sum-square adding

procedure described in (6). While this inflation of ubRMSE

is not trivial, it does not seriously degrade the ability of the

CSASM to assess the temporal precision of SMAP soil

moisture retrievals.

In contrast, the impact of CSASM spatial sampling

errors on bias are more profound. The temporally stable

nature of the soil moisture spatial variability leads to

highly autocorrelated CSASM spatial sampling errors

that cannot be effectively eliminated by ergodic sam-

pling approaches (which attempt to remedy spatial

sampling shortcoming by first averaging over long time

periods). Fully addressing this issue will likely require
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either enhanced short-term spatial sampling to improve

the upscaling functions or a permanent increase of the

spatial density of CVS ground sampling networks (e.g.,

see Table 2). Therefore, the spatial sampling requirements

for soil moisture bias assessments are muchmore stringent

than those required for temporal precision assessments

(via metrics like temporal correlation or ubRMSE). This

tendency should be considered in future soil moisture

calibration/validation efforts.
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