
Optimal Algorithm of Isolated Toughness
for Interval Graphs

Fengwei Li1, Qingfang Ye1, Hajo Broersma2, and Xiaoyan Zhang3(B)

1 College of Basic Science, Ningbo University of Finance and Economics,
Ningbo 315327, Zhejiang, People’s Republic of China

fengwei.li@hotmail.com, fqy-y@163.com
2 Faculty of EEMCS, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
h.j.broersma@utwente.nl

3 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China

zhangxiaoyan@njnu.edu.cn

Abstract. Factor and fractional factor are widely used in many fields
related to computer science. The isolated toughness of an incomplete
graph G is defined as iτ(G) = min{ |S|

i(G−S)
: S ∈ C(G), i(G − S) > 1}.

Otherwise, we set iτ(G) = ∞ if G is complete. This parameter has a
close relationship with the existence of factors and fractional factors of
graphs. In this paper, we pay our attention to computational complexity
of isolated toughness, and present an optimal polynomial time algorithm
to compute the isolated toughness for interval graphs, a subclass of co-
comparability graphs.

Keywords: Isolated toughness · Factor · Fractional factor · Interval
graph · Polynomial time algorithm

1 Introduction

Throughout this paper, we use Bondy and Murty [1] for terminology and nota-
tions not defined here and consider finite simple undirected graphs only. The
vertex set of a graph G is denoted by V and the edge set of G is denoted by E.
For X ⊆ V (G), let ω(G − X) and i(G − X), respectively, denote the number of
components, the number of components which are isolated vertices in G − X.
We use δ(G) and κ(G) to denote the minimum degree and connectivity of G,
respectively. For any X ⊆ V , denote G[X] to be the subgraph of G induced by
X. Let κ(G) denotes the connectivity of graph G. A subset X ⊆ V is a cutset of
a graph G = (V,E) if G − X has more than one component. Note that X = ∅
is a cutset of G if and only if G is disconnected. We let C(G) denote the set of
all cutsets of G. A clique of a graph is an induced subgraph that is a complete
graph.

c© Springer Nature Switzerland AG 2021
Y. Zhang et al. (Eds.): PDCAT 2020, LNCS 12606, pp. 379–388, 2021.
https://doi.org/10.1007/978-3-030-69244-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69244-5_34&domain=pdf
https://doi.org/10.1007/978-3-030-69244-5_34

380 F. Li et al.

The study of the factor and fractional factor of graphs is a new problem raised
in recent years [21]. Let g and f be two non-negative integer-valued functions
defined on V (G) such that g(x) ≤ f(x) for each x ∈ V (G). A (g, f)-factor of G
is a spanning subgraph H of G such that g(x) ≤ dH(x) ≤ f(x) holds for each
x ∈ V (G). Similarly, H is an f-factor of G if g(x) = f(x) for each x ∈ V (G).

Fractional factors can be considered as the rationalization of the traditional
factors by replacing integer-valued function by a more generous “fuzzy” func-
tion (i.e., a [0, 1]-valued indicator function). Fractional factors have wide-ranging
applications in areas such file transfer problems in computer networks, timetable
problems and scheduling, etc.

In 1973, Chvátal [5] introduced the notion of toughness for studying Hamil-
tonian cycles and regular factors in graphs. The toughness [5] of an incomplete
connected graph G is defined as

τ(G) = min{ |S|
ω(G − S)

: S ∈ C(G), ω(G − S) > 1}.

This parameter has become an important graph invariant for studying vari-
ous fundamental properties of graphs. In particular, Chvátal conjectured that
k-toughness implies a k-factor in graphs and this conjecture was confirmed pos-
itively by Enomoto et al. [6].

Motivated from Chvátal’s toughness by replacing ω(G−X) with i(G−X) in
the above definition, Ma and Liu [15] introduced the isolated toughness, iτ(G), as
a new parameter to investigate and discuss the necessary and sufficient condition
for a graph to have a (fractional) factor of the graph.

Definition 1 [15]. The isolated toughness of an incomplete connected graph G
is defined as

iτ(G) = min{ |S|
i(G − S)

: S ∈ C(G), i(G − S) > 1},

where the maximum is taken over all the cutsets of G. Especially, for complete
graph Kn, define iτ(Kn) = ∞.

The following result is basic in fractional factor theory.

Theorem 1 [21]. A graph G has a fractional 1-factor iff i(G − X) ≤ |X| for
any X ⊆ V (G).

Thus, we can easily get the following theorem which provides a characteriza-
tion for the existence of fractional 1-factors in terms of iτ(G).

Theorem 2 [22]. Let G be a graph of order n ≥ 2. Then G has a fractional
1-factor iff iτ(G) ≥ 1.

Ma and Liu [15] proved that graph G has a fractional 2-factor if iτ(G) ≥ 2
and δ(G) ≥ 2. Furthermore, they showed that graph G has a fractional k-factor
if iτ(G) ≥ k and δ(G) ≥ k, and if δ(G) ≥ iτ(G) ≥ a − 1 + a

b , then G has a

Optimal Algorithm of Isolated Toughness for Interval Graphs 381

fractional [a, b]-factor, where a < b are two positive integers [16]. Ma and Yu
[19] proved that if G is a graph with δ(G) ≥ a, iτ(G) ≥ a − 1 + a−1

b , and G − S
has no (a − 1)-regular component for any subset S ⊆ V (G), then G has an
[a, b]-factor. For more results about (isolated) toughness condition for existence
of (fractional) factor in graphs we refer to [17,18].

In this paper, we discuss the computational complexity of isolated toughness
in graphs and we give a polynomial time algorithm to compute isolated toughness
for interval graphs.

2 Preliminaries

In this section, we recall some definitions, notations and lemmas which will be
used throughout the paper.

First, we define the minimal cutset.

Definition 2 [11]. A subset X ⊆ V of G is called an a,b-cutset for nonadjacent
vertices a and b of graph G if the removal of X separates a and b in distinct
connected components. If no proper subset of X is an a, b-cutset of graph G,
then X is called a minimal a,b-cutset of G. A minimal cutset X of G is a set
of vertices such that X is a minimal a, b-cutset for some nonadjacent vertices a
and b.

The following Lemma provides an easy test of whether or not a given vertex
set X is a minimal cutset [12].

Lemma 1 [12]. Let X be a cutset of the graph G = (V,E). Then X is a minimal
cutset if and only if there are at least two different connected components of G−X
such that every vertex of X has a neighbor in both of these components.

For k ∈ {0, 1, 2 . . . , n} we define ik(G) as the maximum number of isolated
vertices the graph G can obtain after accurately removing k vertices from G,
i.e., in(G) = 0 and for k < n

ik(G) = max{i(G − S) : S ⊆ V, |S| = k}.

It is easy to see that for any incomplete graph G, we have

iτ(G) = min{ k

ik(G)
: ik(G) > 1}.

The following theorem give a formula to compute the ik(G) for k ∈
{0, 1, 2 . . . , n}.

Theorem 3. Let G be an incomplete graph and let k ∈ {0, 1, 2 . . . , n}. If
ik(G) > 1 then

ik(G) = max
|X∗|≤k

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Cj]) + h :
p∑

j=h+1

rj = k − |X∗|
⎫
⎬

⎭
,

382 F. Li et al.

where the maximum is taken over all minimal cutsets X∗ of the graph G,
and over all nonnegative integer vectors (rh+1, rh+2, . . . , rp). Furthermore,
C1, C2, . . . , Ch are the components of G − X∗ which are isolated vertices, and
Ch+1, Ch+2, . . . , Cp are the connected components of G − X∗ which are not iso-
lated vertices.

Proof. First let X be a cutset of G with |X| = k and i(G−X) = ik(G) > 1. Let
X∗ be a minimal cutset of G that is a subset of X, we suppose C1, C2, . . . , Ch be
the components of G−X∗ which are isolated vertices, and let Ch+1, Ch+2, . . . , Cp

be the connected components of G − X∗ which are not isolated vertices. Then
C1, C2, . . . , Ch are also the components of G − X, so, we consider the sets Xj =
X ∩ Cj , j ∈ {h + 1, h + 2, . . . , p}. Then, we know that

ik(G) = i(G − X) =
p∑

j=h+1

i(G[Cj − Xj]) + h ≤
p∑

j=l+1

i|Xj |(G[Cj]) + h

≤ max
|X∗|≤k

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Cj]) + h :
p∑

j=h+1

rj = k − |X∗|
⎫
⎬

⎭
.

On the other hand, let X∗ be a minimal cutset of G. Furthermore let
C1, C2, . . . , Ch be the components of G − X∗ which are isolated vertices, and
let Ch+1, Ch+2, . . . , Cp be the connected components of G − X∗ which are not
isolated vertices. Let (rh+1, rh+2, . . . , rp) be a vector making the right hand side
of the above formula to be maximal. For every j ∈ {h+1, h+2, . . . , p}, we choose
a set Xj of G[Cj] such that |Xj | = rj and irj (G[Cj]) + h = i(G[Cj − Xj]) + h.
Thus, X = X∗ ∪ (∪p

j=h+1Xj) is a subset of G and

|X| = |X∗| +
p∑

j=h+1

|Xj | = |X∗| +
p∑

j=h+1

rj = k.

Furthermore, we have

max
|X∗|≤k

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Cj]) + h :
p∑

j=h+1

rj = k − |X∗|
⎫
⎬

⎭

=
p∑

j=h+1

irj (G[Cj]) + h = i(G[Cj − Xj]) + h ≤ ik(G).

This completes the proof.

Theorem 4. Let G be an incomplete graph, let X∗ be a minimal cutset of G
and let C1, C2, . . . , Ch are the components of G − X∗ which are isolated ver-
tices, and Ch+1, Ch+2, . . . , Cp are the connected components of G − X∗ which

Optimal Algorithm of Isolated Toughness for Interval Graphs 383

are not isolated vertices. For every j ∈ {h + 1, h + 2 . . . , p}, let the list Hj be
(i0(G[Cj]), i1(G[Cj]), . . . , i|Cj |(G[Ci])). There is an algorithm computing

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Cj]) + h :
p∑

j=h+1

rj = k − |X∗|
⎫
⎬

⎭
,

for every k ≥ |X∗| from the list (Hh+1,Hh+2, . . . , Hp) in time O(n3).

Proof. Let X∗ be a minimal cutset of G, we suppose C1, C2, . . . , Ch be the
components of G − X∗ which are isolated vertices, and let Ch+1, Ch+2, . . . , Cp

be the connected components of G − X∗ which are not isolated vertices. let
i
(r)
j (G − X∗) (h + 1 ≤ r ≤ p) to be the largest number of isolated vertices of the

graph G[∪p
j=h+1Cj] after the deleting of k − |X∗| vertices in ∪r

j=h+1Cj . Thus,

i
(p)
j (G − X∗) is exactly the largest number of isolated vertices of G[∪p

j=h+1Cj]
can have after the removal of k − |X∗| vertices in ∪p

j=h+1Cj which is exactly

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Cj]) + h :
p∑

j=h+1

rj = k − |X∗|
⎫
⎬

⎭
,

Let the list L(r) be

(i(r)0 (G − X∗), i(r)1 (G − X∗), . . . , i(r)|∪t
j=h+1Cj |(G − X∗)),

h + 1 ≤ r ≤ p. Then L(h+1) = Hh+1.
Furthermore, the algorithm iteratively computes for r = h + 2, h + 3, . . . , p

the list L(r) from L(r−1) and Hr by using

i
(r)
k (G − X∗) = max

{
i(r−1)
a (G − X∗) + i

(r)
b (G[Cr]) : a + b = k

}
.

The calculation of an entry i
(r)
k (G−X∗) can be completed in time O(n). Hence,

we can compute all O(n2) entries in time O(n3) by the algorithm.
This completes the proof.

3 Isolated Toughness for Interval Graphs

An undirected graph G is called an interval graph if its vertices can be put into
one to one correspondence with a set of intervals � of a linearly ordered set (like
the real line) such that two vertices are connected by an edge if and only if their
corresponding intervals have nonempty intersection [9].

Interval graphs are a well-known family of perfect graphs with plenty of nice
structural properties [4,7,9,10,20]. Kratsch et al. [13] computed the toughness
and the scattering number for interval and other graphs. Li and Li [14] proved the
problem of computing the neighbor scattering number of an interval graph can

384 F. Li et al.

be solved in polynomial time. Broersma et al. [3] gave linear-time algorithms for
computing the scattering number and Hamilton-connectivity of interval graphs.
In this section, we prove that there exists polynomial time algorithm for com-
puting isolated toughness of an interval graph.

The following lemmas give some useful properties of interval graphs.

Lemma 2 [9]. Any induced subgraph of an interval graph is an interval graph.

Lemma 3 [2]. Any interval graph with order n and size m can be recognized in
O(m + n) time.

Lemma 4 [8]. A graph G is an interval graph if and only if the maximal cliques
of G can be linearly ordered, such that, for every vertex v of G, the maximal
cliques containing v occur consecutively.

We call such a linear ordering of the maximal cliques of an interval graph
a consecutive clique arrangement. Booth and Lueker [2] give a linear time PQ-
tree algorithm for interval graphs, meanwhile, this algorithm can compute a
consecutive clique arrangement of the interval graph too.

The following lemma determine the minimal cutsets of an interval graph.

Lemma 5 [13]. Let G be an interval graph and let L1, L2, · · · , Lt, t ≤ n, be a
consecutive clique arrangement of G. Then the set of all minimal cutsets of G
consists of vertex set Cs = Ls ∩ Ls+1, s ∈ {1, 2, · · · , t − 1}.

From Lemma 5, we know that an interval graph G of order n possess at most
n minimal cutsets.

Definition 3 [13]. Let G be an interval graph with consecutive clique arrange-
ment L1, L2, · · · , Lt. We define L0 = Lt+1 = ∅. For all l, r with 1 ≤ l ≤ r ≤ t
we define P(l, r) = (∪r

i=lLi) − (Ll−1 ∪ Lr+1). A set P(l, r), 1 ≤ l ≤ r ≤ t, is
said to be a piece of G if P(l, r)
= ∅ and G[P(l, r)] is connected. Furthermore,
V = P(1, t) is a piece of G (even if G is disconnected).

It is obvious that cliques in G[P(l, r)] are listed in the same order as that
they are listed in graph G.

Lemma 6 [13]. Let X be a minimal cutset of connected subgraph G[P(l, r)],
1 ≤ l ≤ r ≤ t. Then there exists a minimal cutset Cs of G, 1 ≤ s ≤ r, such that
X = Cs ∩P(l, r) = Cs − (Ll−1 ∪ Lr+1). Moreover, every connected component of
G[P(l, r) − X] is a piece of G.

From the definition of piece of G, any interval graph contains two kind of
pieces. A piece is named complete if it induces a complete graph. Otherwise, we
call it incomplete. For every complete piece G[P(l, r)], l ≤ r, holds

ik(G[P(l, r)]) =
{

0, if k ∈ {0, 1, 2, . . . , |G[P(l, r)]| − 2}
1, if k = |G[P(l, r)]| − 1 (1)

Optimal Algorithm of Isolated Toughness for Interval Graphs 385

The incomplete piece G[P(l, r)], 1 ≤ l ≤ r ≤ t, has minimal cutsets, and for
every k ∈ {κ(G[P(l, r)]), . . . , |G[P(l, r)]| − 2}, the following equality holds

ik(G[P(l, r)]) = max
p∑

j=h+1

irj (G[Ci]) + h, (2)

where the maximum is taken over all Cs∩P(l, r), s ∈ {l+1, l+2, · · · , r−1}, that
are minimal cutsets of G[P(l, r)], satisfying the condition that |Cs ∩P(l, r)| ≤ k
and over all nonnegative integer vectors (rl+1, rl+2, . . . , rp) fulfilling the condi-
tion that

∑p
j=h+1 rj = k − |Cs ∩ P(l, r)|. C1, C2, · · · , Ch are the components

of G[P(l, r) − Cs] which are isolated vertices, and Ch+1, Ch+2, · · · , Cp are the
connected components of G[P(l, r) − Cs] which are not isolated vertices.

Let G be a complete interval graph. Then iτ(G) = ∞. Otherwise, based on
Theorem 3, the isolated toughness of incomplete interval graphs can be computed
by Algorithm 1.

In the following theorem, we prove the correctness of Algorithm 1 and make
clear that the algorithm can be executed in polynomial time.

Theorem 5. Algorithm 1 outputs the isolated toughness for an input interval
graph G of order n within time complexity O(n6).

Proof. The correctness of the algorithm can be deduced from the Theorem 3
and Lemma 6. It is easy to see that the steps at lines 2–3 can be performed in
O(1) time. The steps at lines 5–11 and 19 can be executed in time O(n4) in a
straightforward manner.

In the steps at line 12 and lines 16–18, an O(n+m) algorithm can be used to
test connectedness and calculation components for up to n2 graphs G[P(l, r)].
If G[P(l, r)] is disconnected and Qj is a component, then Qj = P(lj , rj) with
l(j) = min{l(v) : v ∈ Qj} and r(j) = max{l(v) : v ∈ Qj} which can be computed
in time O(n). Hence, the steps at line 12 and lines 16–18 can be executed in time
O(n4).

The steps at lines 13–15 can be executed for at most n3 triples (s, l, r) with l ≤
s ≤ r. If P(l, r)−C(s)
= ∅, then the components of G[P(l, r)−C(s)] are computed
as indicated in Lemma 6, by using the marks of (l, s) and (s + 1, r), namely, if
the mark is ‘complete’ or ‘incomplete’, then (l, s) and (s + 1, r), respectively,
are stored, and if the mark is ‘disconnected’, then the corresponding linked list
is added. Thus the linked list of (s, l, r) can be computed in time O(n). From
Lemma 1 we know that P(l, r) ∩ C(s) is a minimal cutset of G[P(l, r) − C(s)] if
and only if there are at least two components in the list of (s, l, r) such as every
vertex of P(l, r) ∩ C(s) has a neighbour in them. From the consecutive clique
arrangement, it suffices to check the two components Qj of G[P(l, s)] with the
two largest values of rj and the two components Qj of G[P(s + 1, r)] with the
two smallest values of lj , this can be done in time O(n). Hence, the steps at lines
13–15 can be executed in time O(n4).

The steps on lines 20–22 require that the right side of the Eq. (2) be cal-
culated for each k ∈ {κ(G[P(l, l + d)]), . . . , |P(l, l + d)| − 2}. The list Hj =

386 F. Li et al.

Algorithm 1: Algorithm Isolated Toughness
Input: An interval graph G with consecutive clique arrangement L1, L2, · · · , Lt.
Output: Isolated toughness iτ(G).

1 begin
2 L0 ← ∅;
3 �Lt+1 ← ∅;
4 for w ← 0 to t + 1 do
5 compute l(v) = min{w : v ∈ Lw} and r(v) = max{k : v ∈ Lw} for every

v ∈ V , and then compute all minimal cutsets Cs = Ls ∩ Ls−1,
s ∈ {1, 2, · · · , t − 1}. For all l, r (1 ≤ l ≤ r ≤ t) compute the vertex set
P(l, r);

6 if P(l, r) = ∅ then
7 mark (l, r) ‘empty’;
8 end
9 if P(l, r) �= ∅ and G[P(l, r)] is a complete induced subgraph then

10 mark (l, r) ‘complete’.
11 end
12 For all nonmarked tuples (l, r), check whether G[P(l, r)] is connected;
13 if G[P(l, r)] is connected then
14 mark (l, r) ‘incomplete’, and for every s ∈ {l, l + 1, . . . , r − 1},

compute the components Qj = P(lj , rj) of G[P(l, r) − Cs],
1 ≤ jt ≤ k. Check whether Cs ∩ P(l, r) is a minimal cutset of
G[P(l, r)], and if so mark (s, i, j) ‘minimal’, store
(l1, r1), (l2, r2), . . . , (lk, rk) in a linked list with a pointer from
(s, l, r) to the head of this list, and compute
κ(G[P(l, r)]) = min{|Cs ∩ P(l, r)|} for (s, l, r) marked ‘minimal’.

15 end
16 if G[P(l, r)] is disconnected then
17 compute the components Qj = P(lj , rj), 1 ≤ j ≤ q, of G[P(l, r)] and

store (l1, r1), (l2, r2), . . . , (lq, rq) in a linked list with a pointer from
(l, r) to the head of this list.

18 end
19 For every pair (l, r) marked ‘complete’ compute ik(G[P(l, r)]),

k ∈ {0, 1, . . . , |P(l, r)|}, according to equation (1);
20 for d ← 1 to t and for l ← 1 to t − d do
21 if (l, l + d) is marked ‘incomplete’, compute ik(G[P(l, r)]) for every

k ∈ {κ(G[P(l, l + d)]), . . . , |P(l, l + d)| − 2} according to
equation (2). Set ik(G[P(l, r)]) = 0 for k = |P(l, l + d)]| or
k < κ(G[P(l, l + d)]), and let ik(G[P(l, r)]) = 1 for
k = |P(l, l + d)]| − 1.

22 end

23 end

24 end

Optimal Algorithm of Isolated Toughness for Interval Graphs 387

(i0(Qj), i1(Qj), . . . , i|Qj |(Qj), j ∈ {1, 2, . . . , t}, for each component Qj = (lj , rj)
of G[P(l, l+d)−C(s)] can be determined in constant time O(n2) by table look-up,
since these lists of smaller pieces are already known. Thus

max
0≤rh+1,rh+2,...,rp≤n

⎧
⎨

⎩

p∑

j=h+1

irj (G[Qj]) + h :
p∑

j=h+1

rj = k − |P(l, l + d) ∩ C(s)|
⎫
⎬

⎭

can be evaluated in time O(n3) for a given minimal cutset P(l, l + d) ∩ C(s) and
for every k with |P(l, l + d) ∩ C(s)| ≤ k in time O(n3).

Consequently, from the above analysis we know that the running time of
isolated toughness algorithm is O(n6).
This completes the proof.

Acknowledgements. This work was supported by NSFC (No.11871280), Natural
Science Foundation of Zhejiang Province(China) (No. LY17A010017) and Qing Lan
Project. Especially, the authors are very thankful to anonymous referees for their con-
structive suggestions and critical comments, which led to this improved version.

References

1. Bondy, J., Murty, U.: Graph Theory with Applications. Macmillan, London and
Elsevier, New york (1976)

2. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–
379 (1976)

3. Broersma, H., Fiala, J., Golovach, P., Kaiser, T., Paulusma, D., Proskurowski, A.:
Linear-time algorithms for scattering number and hamilton-connectivity of interval
graphs. J. Graph Theor. 79(4), 282–299 (2015)

4. Carlisle, M.C., Lloyd, E.L.: On the k-coloring of intervals. In: Dehne, F., Fiala,
F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp. 90–101. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54029-6 157

5. Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5, 215–228
(1973)

6. Enomoto, H., Jackson, B., Katerinis, P., Saito, A.: Toughness and the existence of
k-factors. J. Graph Theor. 9, 87–95 (1985)

7. Fabri, J.: Automatic Storage Optimization. UMI Press Ann Arbor, MI (1982)
8. Gilmore, P., Hoffman, A.: A characterization of comparability graphs and of inter-

val graphs. Can. J. Math. 16(99), 539–548 (1964)
9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press

(1980)
10. Jungck, J., Dick, O., Dick, A.: Computer assisted sequencing, interval graphs and

molecular evolution. Biosystem 15, 259–273 (1982)
11. Kloks, T., Kratschz, D.: Listing all minimal separators of a graph. SIAM J. Com-

put. 27(3), 605–613 (1998)
12. Kloks, A.J.J., Kratsch, D., Spinrad, J.P.: Treewidth and pathwidth of co compa-

rability graphs of bounded dimension. Computing Science Note. Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands 9346 (1993)

https://doi.org/10.1007/3-540-54029-6_157

388 F. Li et al.

13. Kratsch, D., Klocks, T., Müller, H.: Computing the toughness and the scattering
number for interval and other graphs. IRISA resarch report. France (1994)

14. Li, F., LI, X.: Neighbor-scattering number can be computed in polynomial time
for interval graphs. Comput. Math. Appl. 54(5), 679–686 (2007)

15. Ma, Y., Liu, G.: Isolated toughness and the existence of fractional factors in graphs.
Acta Appl. Math. Sinica (in Chinese) 62, 133–140 (2003)

16. Ma, Y., Liu, G.: Fractional factors and isolated toughness of graphs. Mathematica
Applicata 19(1), 188–194 (2006)

17. Ma, Y., Wang, A., Li, J.: Isolated toughness and fractional (g, f)-factors of graphs.
Ars Comb. 93, 153–160 (2009)

18. Ma, Y., Yu, Q.: Isolated toughness and existence of f -factors. In: Akiyama, J.,
Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol.
4381, pp. 120–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70666-3 13

19. Ma, Y., Yu, Q.: Isolated toughness and existence of [a, b]-factors in graphs. J.
Combin. Math. Combin. Comput. 62, 1–12 (2007)

20. Ohtsuki, T., Mori, H., Khu, E., Kashiwabara, T., Fujisawa, T.: One dimensional
logic gate assignment and interval graph. IEEE Trans. Circ. Syst. 26, 675–684
(1979)

21. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. John Wiley and Son
Inc., New York (1997)

22. Yang, J., Ma, Y., Liu, G.: fractional (g, f)-factor in graphs. Acta Mathematica
Scientia 16(4), 385–390 (2001)

https://doi.org/10.1007/978-3-540-70666-3_13
https://doi.org/10.1007/978-3-540-70666-3_13

	Optimal Algorithm of Isolated Toughness for Interval Graphs
	1 Introduction
	2 Preliminaries
	3 Isolated Toughness for Interval Graphs
	References

