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Abstract

The structure of edge‐colored complete graphs

containing no properly colored triangles has been

characterized by Gallai back in the 1960s. More re-

cently, Cǎda et al. and Fujita et al. independently

determined the structure of edge‐colored complete

bipartite graphs containing no properly colored C4.

We characterize the structure of edge‐colored com-

plete graphs containing no properly colored even

cycles, or equivalently, without a properly colored C4

or C6. In particular, we first deal with the simple case

of 2‐edge‐colored complete graphs, using a result of

Yeo. Next, for ≥k 3, we define four classes of k‐edge‐
colored complete graphs without properly colored

even cycles and prove that any k‐edge‐colored com-

plete graph without a properly colored even cycle

belongs to one of these four classes.
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1 | INTRODUCTION

We use the textbook [2] for terminology and notation not defined here and we consider finite
undirected graphs without loops or multiple edges only.

Let G be a graph with vertex set V G( ) and edge set E G( ). If a mapping →col E G: ( )  is
specified for the graph G, then G (together with col) is called an edge‐colored graph (or colored
graph for short). We say G is a properly colored graph (or PC graph) if each pair of incident
edges, i.e., edges sharing precisely one end vertex, are assigned distinct colors.

Let G be a colored graph. Denote by col G( ) the set of colors assigned to E G( ). We say G is a
k‐colored graph if the cardinality of col G( ) is k. The color degree of a vertex v inG, denoted by d v( )G

c ,
is the number of distinct colors assigned to the edges incident with v. If d v( ) = 1c for a vertex
∈v V G( ), then we say v is a monochromatic vertex. We use ∣ ∈δ G d v v V G( ) = min{ ( ) ( )}c

G
c to

denote theminimum color degree ofG. In this article, we are interested in characterizing the structure
of colored complete graphs containing no even PC cycles. Note that a monochromatic vertex is not
contained in any PC cycle. So in the following we only consider colored graphs of minimum color
degree at least 2. We use ℓC to denote a cycle of length ℓ. We sometimes use triangle instead of C3.

In graph‐theoretical approaches, forbidding certain subgraphs or induced subgraphs is a
commonly used method, because graphs without certain specified subgraphs may have very
nice structural properties. Well‐known examples are forests, bipartite graphs, planar graphs,
perfect graphs, and claw‐free graphs, to name just a few. Forbidden subgraphs are also well
studied in graph coloring [9] and in the research on hamiltonian properties [4].

To stay closer to the subject of this article, we introduce the following results for colored graphs.
Yeo [11] proved in 1997 that each colored graph G containing no PC cycle at all must contain a
vertex z such that each component of G z− is joined to z with edges of one color or no edge.
Already back in the 1960s, Gallai [6] showed that each colored complete graph containing no PC
triangle can be partitioned into ≥k ( 2) parts such that between all these parts there are (edges of) at
most two colors and between each pair of parts there is exactly one color. More recently, Cǎda et al.
[3] and Fujita et al. [5] independently characterized the structure of colored complete bipartite
graphs containing no PC C4. As a corollary, they showed that a colored complete bipartite graphG
contains a PC C4 if ≥δ G( ) 3c . Interestingly, Axenovich et al. [1] proved that the minimum color
degree guaranteeing that a colored complete graph contains a PCC4 is also 3. A natural question is:
can we characterize the structure of colored complete graphs which contain no PC C4? Recently,
Magnant et al. [8] studied the existence of monochromatic cliques, cycles, and stars in colored
complete graphs that contain no PC C4. Xu et al. [10] determined the structure of an n‐colored Kn
containing no PC C4 and gave sufficient conditions for the existence of PC C4's in edge‐colored
graphs. From a computational complexity angle, Gutin et al. [7] studied the complexity of
determining the existence of odd PC cycles in edge‐colored graphs.

In this article, our two main results deal with characterizing the structure of k‐colored
complete graphs without PC even cycles, for ≥k 3. This turns out to be equivalent to char-
acterizing the structure of k‐colored complete graphs without a PC C4 or C6. To be able to
determine this structure, we first focus on structural properties of colored complete graphs
containing no PC C4. We start with the following observation from [5].
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Observation 1 (Fujita et al. [5]). LetG be a colored complete bipartite graph. If ≥δ G( ) 2c ,
then G contains a PC C4 or a PC C6.

Note that each even PC cycle ⋯C a b a b a b a=k k k2 1 1 2 2 1 in a colored Kn corresponds to a
colored Kk k, with partition A B( , ), where ∣ ∈A a i k= { [1, ]}i and ∣ ∈B b j k= { [1, ]}j . Hence, by
Observation 1, a colored Kn that contains a PC even cycle also contains a PC C4 or a PC C6. So,
in a colored Kn, the existence of an even PC cycle is equivalent to the existence of a PC C4 or a
PC C6. Using this equivalence, for a 2‐colored complete graph it is easy to verify that the
existence of an even PC cycle is equivalent to the existence of a PC C4, by considering a PCC6 if
it exists and a chord that splits the C6 into two C4s.

The next observation is an easy consequence of the result of Yeo [11] mentioned above, that
each colored graphG containing no PC cycle must contain a vertex z such that each component
of G z− is joined to z with edges of one color or no edge.

Observation 2. Let G be a 2‐colored complete graph with δ G( ) = 2c . Then G contains a
PC C4.

So Yeo's result settles our problem when the minimum color degree is 2. The result clearly
implies that a 2‐colored complete graph containing no even PC cycle must contain a mono-
chromatic vertex. After deleting this vertex, the remaining graph again contains a mono-
chromatic vertex, etcetera. The structure of the graph is obvious.

For the above reasons, in the remainder of the article we focus on k‐colored complete
graphs with ≥k 3. By the following constructions, we introduce four classes of k‐colored
complete graphs containing no even PC cycles. These are depicted in Figure 1. Our two main
results show that every k‐colored complete graph G (with ≥δ G( ) 2c ) containing no even PC
cycles must belong to one of these classes.

In the sequel, for a nonempty vertex set S and a color c, we sometimes write
⊆col G S c( [ ]) { } to indicate that col G S c( [ ]) = { } when ∣ ∣ ≥S 2 (without specifying the cardin-

ality of S, thus allowing that ∣ ∣S = 1 and ∅col G S( [ ]) = ). For two disjoint nonempty vertex sets
X and Y in a colored graphG, we use X Y( , ) to denote the set of edges with one end vertex in X
and one end vertex in Y . We use x Y( , ) as shorthand for x Y({ }, ) and we use col X Y( , )G to
denote the set of different colors assigned to the edges of X Y( , ).

(A) (B)

(C) (D)

FIGURE 1 The four graph classes of Constructions 1–4. (A) The class 1 ; (B) the class 2 ; (C) the class 3 ;
and (D) the class 4 [Color figure can be viewed at wileyonlinelibrary.com]
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Construction 1. Let x{ }, Y , and Z be three disjoint nonempty vertex sets and let c c c, ,1 2 3

be three distinct colors. Construct a colored complete graph G with ∪ ∪V G x Y Z( ) = { }

such that the following conditions hold (See Figure 1A):

(a) col x Y c( , ) = { }1 , col x Z c( , ) = { }2 , ⊆col G Y c( [ ]) { }3 and ⊆col G Z c( [ ]) { }2 ;
(b) ⊆col Y Z c c( , ) { , }2 3 and Y Z( , ) contains no PC cycle;
(c) ∈c col z Y( , )3 for every vertex ∈z Z .

Let 1 denote the set of all colored complete graphs G that are constructed this way.

Construction 2. Let x{ }, Y and Z be three disjoint nonempty vertex sets and let
c c c, , …, k1 2 be ≥k 3 distinct colors. Construct a colored complete graph G with

∪ ∪V G x Y Z( ) = { } such that the following conditions hold (See Figure 1B):

(a) ∪ ∣ ≤ ≤col x Y c c i k( , ) = { } { 4 }i1 , col x Z c( , ) = { }2 and col Y Z c( , ) = { }3 ;
(b) ⊆col G Y c( [ ]) { }3 , ⊆col G Z c c( [ ]) { , }2 3 and G Z[ ] contains no PC cycle.

Let 2 denote the set of all colored complete graphs G that are constructed this way.

Note that, in particular, if k = 3, then col x Y c( , ) = { }1 (indicated by green in Figure 1) in the
above construction.

Construction 3. Let ∈H 1 with ∪ ∪V H x Y Z( ) = { } and col H c c c( ) = { , , }1 2 3 as in
Construction 1. Let H′ be an arbitrarily colored complete graph containing no even PC cycles
such that ∣ ∣ ≥V H( ′) 1 and ∩ ∅V H V H( ) ( ′) = . Construct a colored complete graph G by
joining H and H′ as follows (See Figure 1(C)): col x V H c( , ( ′)) = { }1 , col Z V H c( , ( ′)) = { }2 ,
and col Y V H c( , ( ′)) = { }3 . Let 3 denote the set of all colored complete graphs G that are
constructed this way.

Construction 4. Let ∈H 1 with ∪ ∪V H x Y Z( ) = { } and col H c c c( ) = { , , }1 2 3 as in
Construction 1. Let H′ be an arbitrarily colored complete graph with ⊆col H c c( ′) { , }2 3

such that H′ contains no even PC cycles and ∩ ∅V H V H( ) ( ′) = . Construct a colored
complete graph G by joining H and H′ as follows (See Figure 1(D)): col x V H c( , ( ′)) = { }2 ,
col Z V H c( , ( ′)) = { }2 and col Y V H c( , ( ′)) = { }3 . Let 4 denote the set of all colored complete
graphs G that are constructed this way.

We will prove the following two main results.

Theorem 1. Let G be a 3‐colored complete graph with ≥δ G( ) 2c . Then G contains no
even PC cycle if and only if ∈ ∪ ∪ ∪G 1 2 3 4    .

Theorem 2. Let G be a k‐colored complete graph with ≥k 4 and ≥δ G( ) 2c . Then G

contains no even PC cycle if and only if ∈ ∪G 2 3  .

Before delivering the proofs of the above two theorems in Section 3, we start off in the next
section with presenting some auxiliary definitions and lemmas. The lemmas reveal some useful
structural properties of graphs containing no PCC4 that we use in our proofs of Theorems 1 and
2. In particular, we introduce the concept of vertices that are “friendly” to two of the three
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colors of a 3‐colored complete graph. Based on this concept, the below Lemmas 1 and 2 imply a
partition of the vertex set into four classes that will form the basis for our proof of Theorem 1.
In that proof, Lemma 3 can be applied to deal with 3‐colored complete graphs satisfying an
additional assumption on the color properties of one specific vertex. For the remaining cases,
we were not able to avoid a rather tedious proof by case distinctions. Based on the result of
Theorem 1, we prove Theorem 2 by induction on k.

2 | TERMINOLOGY AND LEMMAS

LetG be a colored complete graph. Recall that for an edge e ofG, by col e( ) or col e( )G we denote the
color of e and ∣ ∈col G col e e E G( ) = { ( ) ( )}. For a color ∈α col G( ), let ∈ ∣E e E G col e= { ( ) ( )G

α
G

α= } be the set of edges of color α in G. Also recall that for two disjoint sets ⊆S T V G, ( ), we use
col S T( , )G to denote the set of colors appearing inG on the edges between S and T . If S v= { }, we
write col v T( , )G instead of col v T({ }, )G . We use the same notation for two vertex‐disjoint subgraphs
F and H ofG, so we use col F H( , )G to denote col V F V H( ( ), ( ))G . When there is no ambiguity, we
often write col instead of colG. Let v be a vertex in G. We say a color αappears at v if
∈α col v G v( , − ). Let α β{ , } be a pair of distinct colors in col G( ). We say v is friendly to α β{ , } if

there exists a PC triangle vuwv in G such that col vu α( ) = and col vw β( ) = .
Our first lemma reveals that in 3‐colored complete graphs without a PC C4, vertices cannot

be friendly to more than one pair of colors.

Lemma 1. Let G be a 3‐colored complete graph. If G contains no PC C4, then each vertex
of G is friendly to at most one pair of colors in col G( ).

Proof. Suppose to the contrary that G contains no PC C4 and there are two PC triangles
vuwv and vu w v′ ′ satisfying ≠col vw col vu col vw col vu{ ( ), ( )} { ( ′), ( ′)}. Without loss of
generality, assume that col G( ) = {1, 2, 3}, col vu col vu( ) = ( ′) = 1, col vw( ) = 2, and
col vw( ′) = 3 (and possibly u u= ′). Then, clearly col uw( ) = 3 and col u w( ′ ′) = 2. If
u u= ′, then wuw vw′ is a PC C4, a contradiction. So ≠u u′. However, in this case, by
considering the color of ww′, it is easy to check that either wvu w w′ ′ or wuvw w′ is a PCC4, a
contradiction. □

In our second lemma, we use the result of Lemma 1 to partition the vertex set of G and
obtain some additional structural properties concerning the colors that appear between the sets
in the partition.

Lemma 2. Let G be a 3‐colored complete graph with col G c c c( ) = { , , }1 2 3 , ≥δ G( ) 2c and
containing no PC C4. Let

∈ ∣

∈ ∣

∈ ∣

∪ ∪

X u V G u c c

Y u V G u c c

Z u V G u c c and

U V G X Y Z

= { ( ) is friendly to { , }},

= { ( ) is friendly to { , }},

= { ( ) is friendly to { , }},

= ( )\( ).

1 2

1 3

2 3

Then there exist vertices ∈x X , ∈y Y and ∈z Z with col x G x c c( , − ) = { , }1 2 , col y G y( , − )

c c= { , }1 3 and col z G z c c( , − ) = { , }2 3 , such that one of the following statements holds:
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(a) ∪col x Y U c( , ) = { }1 , ∪col y Z U c( , ) = { }3 and ∪col z X U c( , ) = { }2 ;
(b) ∪col x Z U c( , ) = { }2 , ∪col y X U c( , ) = { }1 and ∪col z Y U c( , ) = { }3 .

Proof. First, we show that there exist three distinct vertices x , y and z such
that col x G x c c( , − ) = { , }1 2 , col y G y c c( , − ) = { , }1 3 and col z G z c c( , − ) = { , }2 3 . Since

≥δ G( ) 2c and col G c c c( ) = { , , }1 2 3 , it is sufficient to show that for each c i( = 1, 2, 3)i , there
exists a vertex vi in G such that ci does not appear at vi in G. Suppose, to the contrary,
without loss of generality, that c1 appears at every vertex of G. Recoloring all the edges in
∈ ∣ ≠e E G col e c{ ( ) ( ) }1 with a new color α, we obtain a 2‐colored complete graph G′ with

δ G( ′) = 2c . By Observation 2,G′ contains a PCC4, implying thatG also contains a PCC4, a
contradiction. Now let x , y and z be three distinct vertices with col x G x c c( , − ) = { , }1 2 ,
col y G y c c( , − ) = { , }1 3 and col z G z c c( , − ) = { , }2 3 . Then xyzx is a PC triangle satisfying
col xy c( ) = 1, col xz c( ) = 2 and col yz c( ) = 3. So, x , y, and z are friendly to c c{ , }1 2 , c c{ , }1 3

and c c{ , }2 3 , respectively (consequently, ∈x X , ∈y Y and ∈z Z). To complete the proof, it
is sufficient to verify that if neither a( ) nor b( ) holds, then G contains a PC C4. We first
prove the following claim.

Claim 1. If b( ) does not hold, then there exists a vertex ∈w V G x y z( ) \ { , , } such that
col wx c( ) = 1, col wy c( ) = 3 and col wz c( ) = 2.

Proof. Suppose that b( ) does not hold. Then either ∪ ≠col x Z U c( , ) { }2 or ∪col y X U( , )

≠ c{ }1 or ∪ ≠col z Y U c( , ) { }3 .
Suppose that ∪ ≠col x Z U c( , ) { }2 . Since col x G x c c( , − ) = { , }1 2 , this implies there

exists a vertex ∈ ∪w Z U such that col xw c( ) = 1. Consider the triangle wzxw. Since w is
not friendly to c c{ , }1 3 (otherwise ∈w Y , a contradiction), it is clear that ≠col zw c( ) 3.
Recalling that col z G z c c( , − ) = { , }2 3 , we obtain that col zw c( ) = 2. Consider the triangle
wzyw. Since w is not friendly to c c{ , }1 2 (otherwise ∈w X , a contradiction), it is clear that

≠col yw c( ) 1. This implies that col yw c( ) = 3 (since col y G y c c( , − ) = { , }1 3 ). In summary,
w is a vertex in ∪Z z U( \ { }) such that col wx c( ) = 1, col wy c( ) = 3 and col wz c( ) = 2.

Lemma 1 implies that X , Y , and Z are three disjoint sets. It is easy to check that the
statement of b( ) is symmetric, in the sense that if we suppose ∪ ≠col y X U c( , ) { }1 (or

∪ ≠col z Y U c( , ) { }3 ), we can also find a vertex w satisfying the statement in Claim 1. □

Observing the symmetry between a( ) and b( ) and using Claim 1, we conclude that if a( )

does not hold, then there exists a vertex ∈v V G x y z( ) \ { , , } such that col vx c( ) = 2, col vy c( ) = 1

and col vz c( ) = 3. If both a( ) and b( ) do not hold, then wxvyw is a PC C4, a contradiction. This
completes the proof of Lemma 2. □

Our next lemma gives a partial solution to our aim of characterizing the structure of
3‐colored complete graphs without PC even cycles. It shows that under slightly stronger as-
sumptions, these graphs are contained in one of the four classes that we constructed earlier.

Lemma 3. Let G be a 3‐colored complete graph with col G c c c( ) = { , , }1 2 3 , ≥δ G( ) 2c and
containing no PCC4. If there exists a vertex ∈x V G( ) such that col x G x c c( , − ) = { , }1 2 and

⊆col G x c c( − ) { , }2 3 , then ∈ ∪ ∪ ∪G 1 2 3 4    .
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Proof. Let ∈x V G( ) be the vertex satisfying col x G x c c( , − ) = { , }1 2 and ⊆col G x( − )

c c{ , }2 3 . Let ∈ ∣U u V G col xu c= { ( ) ( ) = }1 andW = ∈ ∣w V G col xw c{ ( ) ( ) = }2 . Suppose that
there exist edges ∈uu E G U′ ( [ ]) and ∈ww E G W′ ( [ ]) such that col uu c( ′) = 2 and
col ww c( ′) = 3. Then, noting that ⊆col G x c c( − ) { , }2 3 and considering the color of edge uw,
it is easy to verify that either xu uwx′ or xw wux′ is a PC C4, a contradiction. Hence, we
have ⊆col G U c( [ ]) { }3 or ⊆col G W c( [ ]) { }2 . We complete the proof by distinguishing these
two cases.

Case 1. ⊆col G U c( [ ]) { }3 .
In this case, let W =1 ∈ ∣∃ ∈w W w W col ww c{ ′ such that ( ′) = }3 . Then

either ∣ ∣ ≥W 21 or ∣ ∣W = 01 . Let W W W= \2 1. Then ⊆col W W c( , ) { }1 2 2 ,
⊆col G W c( [ ]) { }2 2 and ⊆col W U c( , ) { }1 3 (otherwise, let ∈u U , ∈w W1 1 and

∈w W w′ \ { }1 1 be vertices satisfying col uw c( ) =1 2 and col w w c( ′) =1 3. Then
xuw w x′1 is a PCC4). If ∅W =2 , then ≠ ∅W1 and we see that ∈G 2 with Y U=

and Z G W= [ ]1 . Now assume that ≠ ∅W2 . Recall that ≥δ G( ) 2c . For each
vertex ∈w W2 2, there exists a vertex ∈u U such that ≠col uw c( )2 2 (in fact,
col uw c( ) =2 3). If ∅W =1 , then ∈G 1 with Y U= and Z W= 2. If ≠ ∅W1 , then
∈G 4 with Y U= , Z W= 2 and H G W′ = [ ]1 .

Case 2. ⊆col G W c( [ ]) { }2 .
In this case, let ∈ ∣∃ ∈U u U u U col uu c= { ′ such that ( ′) = }1 2 . Then either
∣ ∣ ≥U 21 or ∣ ∣U = 01 . Let U U U= \2 1. Then ⊆col U U c( , ) { }1 2 3 , col G U c( [ ]) = { }2 3

and ⊆col U W c( , ) { }1 2 (otherwise, let ∈w W , ∈u U1 1 and ∈u U u′ \ { }1 1 be vertices
satisfying col wu c( ) =1 3 and col u u c( ′) =1 2. Then xwu u x′1 is a PCC4). Since ≠ ∅W
and ≥δ G( ) 2c , for each vertex ∈w W , there must exist a vertex ∈u U2 such that

≠col wu c( ) 2. Thus ≠ ∅U2 . If ∅U =1 , then ∈G 1 . If ≠ ∅U1 , then ∈G 3 with
Y U= 2, Z W= and H G U′ = [ ]1 . □

Our final lemma of this section is a simple but useful observation that we use in our proof of
Theorem 2.

Lemma 4. Let G be a k‐colored complete graph with ≥k 4. Then there exist two distinct
colors ∈a b col G, ( ) such that ≠col v G v a b( , − ) { , } for all ∈v V G( ).

Proof. Let col G k( ) = {1, 2, …, }. Suppose to the contrary that for each pair of distinct
colors ∈a b col G, ( ), there exists a vertex va b, such that col v G v a b( , − ) = { , }a b a b, , . Then
consider the vertices v1,2 and v3,4. The color of the edge v v1,2 3,4 should be contained in
{1, 2} and also in {3, 4}, a contradiction. □

We now have all the necessary ingredients to present our proofs of Theorem 1 and Theorem 2.

3 | PROOFS OF THEOREMS 1 AND 2

For convenience of the reader, we first give a rough outline of the proofs of Theorems 1 and 2.
The “if” parts of the stated equivalences in both theorems are easy to check. Both “only if” parts
require rather involved technical proofs in which we were not able to avoid a number of tedious
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case distinctions. Apart from these case distinctions, the general structure of the proof of
Theorem 1 is as follows. We refer to Figure 2 for an illustration of the different sets of vertices
that play a key role in our proof.

Using Lemma 2, we obtain a partition of the vertex set V G( ) into three mutually disjoint
nonempty sets X , Y , and Z , and a set ∪ ∪U V G X Y Z= ( )\( ), as indicated in Figure 2. For
three specifically chosen vertices ∈x X , ∈y Y , and ∈z Z , we then define a set S consisting of
vertices u with col ux( ) = 1, col uy( ) = 3 and col uz( ) = 2, and we let ∪R V G S x y z= ( )\( { , , }).
Dealing with the case ∅R = first, we next assume that ≠ ∅R and we let ∩R R X=x ,

∩R R Y=y and ∩R R Z=z . We distinguish cases based on this partition, by first showing that
we may assume that ∅R =x and ≠ ∅Rz . For Ry, we have to deal with the two options
separately, but the main case distinction is between ∅S = (Case 1 in the proof) and ≠ ∅S

(Case 2 in the proof). In Case 1, both options for Ry lead to the conclusion thatG is in one of the
four sets. In Case 2, we first establish two facts on the colors at the edges incident with vertices
of Rz and of Ry (if ≠ ∅Ry ). Based on these facts, we finally define a vertex set P and deal with
the two cases that ∅P = and ≠ ∅P . We frequently use Lemma 3 to deal with specific cases.

For our proof of the “only if” part of Theorem 2, we apply induction on k. The proof is based
on Lemma 4 of the previous section. This lemma implies that for each k‐colored complete
graph G with ≥k 4 and ≥δ G( ) 2c , there exist two colors a and b such that a k( − 1)‐colored
complete graph G′ with ≥δ G( ′) 2c can be obtained by recoloring all the edges of color b with
color a. The case k = 4 leads to a 3‐colored complete graph G′, to which we can apply
Theorem 1. The case ≥k 5 leads to a k( − 1)‐colored complete graphG′, to which we can apply
the induction hypothesis. We analyzeG′ for (four) different choices of b (because the colors are
not symmetric in the definitions of the graphs in ∪ ∪ ∪1 2 3 4    ), and in each case conclude
that ∈ ∪G 2 3  . Next we present our proof of Theorem 1. For convenience, we recall the
statement of Theorem 1.

Theorem 1. Let G be a 3‐colored complete graph with ≥δ G( ) 2c . Then G contains no
even PC cycle if and only if ∈ ∪ ∪ ∪G 1 2 3 4    .

Proof of Theorem 1. By Constructions 1–4, we know that each colored graph in
∪ ∪ ∪1 2 3 4    contains no even PC cycle. Now let G be a 3‐colored complete graph

without even PC cycles with ≥δ G( ) 2c and assume that col G( ) = {1, 2, 3}. We will prove
that ∈ ∪ ∪ ∪G 1 2 3 4    . Referring to Lemma 2, let X , Y , and Z be the nonempty sets
of vertices that are friendly to {1, 2}, {1, 3}, and {2, 3}, respectively. Let

∪ ∪U V G X Y Z= ( )\( ). Lemma 1 implies that X , Y , and Z are three mutually

FIGURE 2 The vertex partition of G
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disjoint sets. By the symmetry of statements a( ) and b( ) in Lemma 2, without loss of
generality, we assume that there exist vertices ∈x X , ∈y Y , and ∈z Z such that:

(i) col x G x( , − ) = {1, 2}, col y G y( , − ) = {1, 3} and col z G z( , − ) = {2, 3};
(ii) ∪col x Y U( , ) = {1}, ∪col y Z U( , ) = {3} and ∪col z X U( , ) = {2}.

Based on this basic structure, we can see that xyzx is a PC triangle with col xy( ) = 1,
col yz( ) = 3 and col xz( ) = 2. Now we are going to derive additional structural properties
and we will consider several cases to conclude that ∈ ∪ ∪ ∪G 1 2 3 4    . To start, we
define ∈ ∣S u V G col ux col uy col uz= { ( ) ( ) = 1, ( ) = 3, and ( ) = 2}. Then by ii( ), it is
easy to verify that ⊆U S. Let ∪R V G S x y z= ( )\( { , , }). Then ⊆ ∪ ∪R X Y Z x y z( ) \ { , , }.
See Figure 2 for the relation between these vertex sets.

If ∅R = , then ∪V G S x y z( ) = { , , } and it is easy to check that ∈G 3 . Next, we
assume that ≠ ∅R and we let ∩R R X=x , ∩R R Y=y , and ∩R R Z=z . Note that not all
of these sets need to be nonempty. In fact, some of these sets will turn out to be empty, as
we will see after proving the following claim.

Claim 1. The following statements hold (see Figure 2):

(a) ⊆col R z( , ) {2}x and ⊆col R y( , ) {1}x ;
(b) ⊆col R x( , ) {1}y and ⊆col R z( , ) {3}y ;
(c) ⊆col R y( , ) {3}z and ⊆col R x( , ) {2}z ;
(d) if there exist vertices ∈x R′ x, ∈y R′ y, and ∈z R′ z, then xy zx yz x′ ′ ′ is a PC C6.

Proof. Suppose there exist vertices ∈x R′ x, ∈y R′ y, and ∈z R′ z. We first prove Claim
2(a). Note that by ii( ), ∪col z X U( , ) = {2}, so we have that col x z( ′ ) = 2. Suppose that

≠col x y( ′ ) 1. Then, since col y G y( , − ) = {1, 3} by i( ), we have that col x y( ′ ) = 3. Now
consider the color of xx′. Since col x z( ′ ) = 2, col x y( ′ ) = 3, and ∉x S′ , we have

≠col xx( ′) 1. Recall that col x G x( , − ) = {1, 2} by i( ). We have col xx( ′) = 2. Then xx yx′

is a PC triangle, implying that x′ is friendly to {2, 3}. This contradicts that ∈x X′ . Hence,
col x y( ′ ) = 1 and Claim 1 a( ) holds. Similarly, it is easy to validate Claims 1 b( ) and 1 c( ).
Claim 1 d( ) follows immediately from a( ), b( ) and c( ) of Claim 1. □

SinceG contains no PCC6, Claim 1 implies that R has a nonempty intersection with at most
two of the sets X , Y , and Z . Thus, by the symmetry of X , Y , and Z , and the assumption that
≠ ∅R , without loss of generality, we assume that ∅R =x and ≠ ∅Rz . We prove one more

claim before we start a case distinction.

Claim 2. ∪ ⊆col G R y( [ { }]) {1, 3}y and ∪ ⊆col G R z( [ { }]) {2, 3}z .

Proof. For each pair of distinct vertices ∈ ∪v v R y, ′ { }y , by Claim 1(b), col vx( ) = 1 and
col v z( ′ ) = 3. Recall that col xz( ) = 2. Since vxzv v′ is not a PC C4, we conclude that

∈col vv( ′) {1, 3}, hence ∪ ⊆col G R y( [ { }]) {1, 3}y . Similarly, ∪col G R z( [ { }])z ⊆{2, 3}. □

We continue the proof by distinguishing the cases that S is empty and nonempty.

Case 1. ∅S = .

118 | LI ET AL.



We first consider the subcase that ∅R =y . Then R R= z and ∪V G x R y z( ) \ { } = { , }z . Com-
bining ii( ), Claim 1(c) and Claim 2, we obtain that ∪ ⊆col G R y z( [ { , }]) {2, 3}z , so we have

⊆col G x( − ) {2, 3}. Recalling that col x G x( , − ) = {1, 2}, using Lemma 3, we conclude
that ∈ ∪ ∪ ∪G 1 2 3 4    .

Next, we consider the subcase that ≠ ∅Ry . We first prove that either ∪col G R y( [ { }]) = {3}y

or ∪col G R z( [ { }]) = {3}z . Suppose the contrary. Then by Claim 2, there are edges
∈ ∪e E G R y( [ { }])y and ∈ ∪f E G R z( [ { }])z such that col e( ) = 1 and col f( ) = 2. We analyze

the four possible cases and derive a contradiction in each of the cases, as follows.

• If e yu= and f zv= for some vertices ∈u Ry and ∈v Rz, then yuzvy is a PC C4, a
contradiction.

• If col y R( , ) = {3}y , e uu= ′ for ∈u u R, ′ y and f zv= for ∈v Rz, then consider the even cycles
uu zvu′ and uyxvu. We obtain that ∉col uv( ) {1, 3}. This implies that col uv( ) = 2, but then
uu zxyvu′ is a PC C6, a contradiction.

• If col z R( , ) = {3}z , e yu= for ∈u Ry and f vv= ′ for ∈v v R, ′ z, then consider the even cycles
vv yuv′ and vzxuv. We obtain that ∉col uv( ) {2, 3}. This implies that col uv( ) = 1, but then
vv yxzuv′ is a PC C6, a contradiction.

• The final case is that col y R( , ) = {3}y , col z R( , ) = {3}z , e uu= ′ and f vv= ′ for ∈u u R, ′ y and
∈v v R, ′ z. Consider the even cycles uu zxyvu′ and vv yxzuv′ . We obtain that ∉col uv( ) {1, 2},

hence col uv( ) = 3. By the symmetry of u v{ , } and u v{ ′, ′}, we also have col u v( ′ ′) = 3. This
implies that uu v vu′ ′ is a PC C4, a contradiction.

So we know that either ∪col G R y( [ { }]) = {3}y or ∪col G R z( [ { }]) = {3}z . Arbitrarily
choose vertices ∈y R′ y and ∈z R′ z. If ∪col G R y( [ { }]) = {3}y , then consider the cycle xyy z x′ ′ .
We get ∈col y z( ′ ′) {2, 3}. Thus ⊆col R R( , ) {2, 3}y z . Combining this with Claims 1 and 2,
we get ⊆col G x( − ) {2, 3}. Note that col x G x( , − ) = {1, 2}. By Lemma 3, we know that
∈ ∪ ∪ ∪G 1 2 3 4    . If ∪col G R z( [ { }]) = {3}z , then similarly, we have ⊆col G x( − ) {1, 3}.

By Lemma 3, we know that ∈ ∪ ∪ ∪G 1 2 3 4    . This completes the proof for Case 1.

Case 2. ≠ ∅S .

We first establish the following three facts. Recall that we assume ∅R =x and ≠ ∅Rz .

Fact 1. col R z( , ) = {2}z , ⊆col R S( , ) {2, 3}z and ⊆col G R( [ ]) {2, 3}z .

Proof. Let s and v be arbitrarily chosen vertices in S and Rz, respectively. By considering
the even cycles vxszv and syxvs, we observe that col zv( ) = 2 and ∈col sv( ) {2, 3}. Thus
col R z( , ) = {2}z and ⊆col R S( , ) {2, 3}z . Suppose that v′ is a vertex in R v\ { }z . Then
consider the even cycle xv vsx′ . We get ∈col vv( ′) {2, 3}. So ⊆col G R( [ ]) {2, 3}z . □

Fact 2. ∪ ⊆col R S y( , { }) {3}y , ⊆col G R( [ ]) {3}y and ⊆col R R( , ) {2, 3}y z .

Proof. It is sufficient to deal with the case that ≠ ∅Ry . Let s, u and v be arbitrarily
chosen vertices in S, Ry and Rz, respectively. By considering the even cycle uzsyu, we
observe that col yu( ) = 3. Thus col R y( , ) = {3}y . Consider the even cycle sxzus. We get

∈col su( ) {1, 3}. If col us( ) = 1, then consider the even cycle suzxyvs. We obtain that
≠col vs( ) 2. Thus col vs( ) = 3 (by Fact 1 that ⊆col R S( , ) {2, 3}z ). Considering the cycle
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uzsvu, we get col uv( ) = 3. However, this implies that suvxyzs is a PC C6, a contradiction.
So col su( ) = 3. In summary, we have ∪ ⊆col R S y( , { }) {3}y .

Assume that u′ is a vertex in R u\ { }y . Considering the cycle uszu u′ , we get col uu( ′) = 3.
Hence, ⊆col G R( [ ]) {3}y .

Suppose that there exist vertices ∈u Ry and ∈v Rz such that ∉col uv( ) {2, 3}. Then
col vu( ) = 1. By Claim 1 and Fact 1, we know that col zu( ) = 3 and col zv( ) = 2. Thus zuvz
is a PC triangle, which implies that v is friendly to {1, 2}. This contradicts that ∈v Z . We
conclude that ⊆col R R( , ) {2, 3}y z . □

Let ∈ ∣∃ ∈W w S u R col wu= { such that ( ) = 3}z and P S W= \ .

Fact 3. ⊆col P R( , ) {2}z , ⊆col G W( [ ]) {3} and ⊆col W P( , ) {3}.

Proof. From the definition ofW and P, and Fact 1, we conclude that ⊆col P R( , ) {2}z .
For a vertex ∈w W , let u be a vertex in Rz such that col uw( ) = 3. If there is a vertex
∈w S w′ \ { }, then, since neither wuxw w′ nor wuxyzw w′ is a PC cycle, we have that

col ww( ′) = 3. Hence, ⊆col w S w( , \ { }) {3} for every vertex ∈w W , so ⊆col G W( [ ]) {3}

and ⊆col W P( , ) {3}.
We are going to complete the proof by distinguishing the subcases that ∅P = and
≠ ∅P . First suppose that ∅P = . Then Facts 1, 2, and 3 imply that ⊆col G x( − ) {2, 3}.

Recall that col x G x( , − ) = {1, 2}. Now, G satisfies the conditions of Lemma 3, so
∈ ∪ ∪ ∪G 1 2 3 4    . Next, assume that ≠ ∅P . Let p be a vertex in P. For each pair of

distinct vertices ∈ ∪u u R z, ′ { }z , consider the cycle upxu u′ . We obtain that col uu( ′) = 2.
Thus ∪col R z( { }) = {2}z . Now, we observe that ∈G 3 , with ∪ ∪R W y{ }y in the role of
Y in Construction 3, ∪R z{ }z in the role of Z and G P[ ] in the role of H′.

This completes the proof of Theorem 1. □

We finish this section and article by presenting our proof of Theorem 2. For convenience,
we recall the statement of Theorem 2.

Theorem 2. Let G be a k‐colored complete graph with ≥k 4 and ≥δ G( ) 2c . Then G

contains no even PC cycle if and only if ∈ ∪G 2 3  .

Proof of Theorem 2. By Constructions 2 and 3, we know that each colored graph in
∪2 3  contains no even PC cycle. Now letG be a k‐colored complete graph without even

PC cycles with ≥k 4 and ≥δ G( ) 2c . We will prove that ∈ ∪G 2 3  by using Theorem 1
and applying induction on k. For ≥k 5, assume that Theorem 2 holds for each colored
graph with at most k − 1 colors. Let col G k( ) = {1, 2, …, }. Since ≥k 4, by Lemma 4, there
exist two distinct colors ∈a b col G, ( ) such that ≠col v G v a b( , − ) { , } for all ∈v V G( ).
Without loss of generality, assume that a k= and ∈b k{1, 2, …, − 1}. Recolor all the
edges with color k inG using color b. This way we obtain a colored graphG′ without even
PC cycles with col G k( ′) = {1, 2, …, − 1} and ≥δ G( ′) 2c . By Theorem 1 and the induction
hypothesis, ∈ ∪ ∪ ∪G′ 1 2 3 4    when k = 4 and ∈ ∪G′ 2 3  when ≥k 5. For each
∈i [1, 4], if ∈G′ i , then assume c j=j for j k= 1, 2, …, − 1. The notations x , Y , Z and
H′ referring to Constructions 1–4 will be frequently used in our proof.

Note that ⊂E EG
k

G
b
′. We say an edge ∈e E G( ) is recolored if col e k( ) =G and

col e b( ) =G′ . For two edges ∈e f G, ′, if e being recolored implies that f is recolored too
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when ∈G′ i for some ∈i [1, 4], then we write ⇝e fi . If ⇝e fi for all ∈i [1, 4], then we
write ⇝e f .

Let y and z be arbitrary vertices in Y and Z , respectively, and let s be an arbitrary
vertex in V H( ′) when ∈ ∪G′ 3 4  . We distinguish four cases, depending on the value
of b.

Case 1. b = 1.
First suppose that ∈ ∪G′ 1 4  . Then ∣ ∣col G( ′) = 3 and k = 4. Since
⊂E EG

k
G′
1 , we get col x Y k( , ) = {1, }G . If col z Y( , ) = {2, 3}G , then the bipartite

graph B x z Y= ({ , }, ) satisfies that ≥δ B( ) 2c . Thus, by Observation 2, B contains
an even PC cycle (actually, a PC C4), a contradiction. Recall Constructions 1 and
4. We can see that ∈ col z Y3 ( , )G . So col z Y( , ) = {3}G . Since z is an arbitrarily
chosen vertex in Z , we have col Y Z( , ) = {3}G . This implies that ∈G 2 with
c i=i for i = 1, 2, 3, 4.

Next, suppose that ∈G′ 3 and let ∪ ∪ ∪x Y Z V H{ } ( ′) be a partition of
V G( ) with ∣ ∣V H( ′) as large as possible. Then we deduce that ∈ col y Z3 ( , )

(otherwise, we should move y to H′). Let ∈z Z′ satisfying col yz( ′) = 3. Then,
by considering the cycle xyz sx′ , we get that ⇝xy xs3 and ⇝xs xy3 . So, either all
the edges between x and ∪V H Y( ′) are recolored or none of them are. In both
cases, we conclude that ∈G 3 .

The remaining case is that ∈G′ 2 . In this case, it is easy to see that ∈G 2 .

Case 2. b = 2.
In this case, let z′ be an arbitrary vertex in Z z\ { } when ∣ ∣ ≥Z 2. Let ∈y Y′

such that col zy( ′) = 3G (by Constructions 1–4, y′ always exists). We first prove
the following claim.

Claim 1. If z is incident with a recolored edge, then all the edges in ∩E z G z( , − )G′
2 are

recolored.

Proof. It is sufficient to prove the following three statements:

(i) if col zy( ) = 2G , then ⇝zx zy and ⇝zy zx ;
(ii) if ∣ ∣ ≥Z 2 and col zz( ′) = 2G′ , then ⇝zx zz′ and ⇝zz zx′ ;
(iii) ⇝zx zsi and ⇝zs zxi for i = 3, 4.

If col zy( ) = 2G , then ≠y y′. By considering the cycle xy yzx′ , we get i( ). If ∣ ∣ ≥Z 2 and
col zz( ′) = 2G′ , then let ∈y Y″ satisfy that col y z( ″ ′) = 3G . By considering the cycle
xy z zx″ ′ , we get ii( ). When ∈ ∪G′ 3 4  , the vertex s exists and col sz( ) = 2. By
considering the cycle syxzs, we get iii( ). So all the edges in ∩E z G z( , − )G′

2 are recolored.
Now we proceed with the proof of Case 2 by distinguishing the following two

subcases. □
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Subcase 2.1.
None of the vertices in Z is incident with a recolored edge.

In this case, it is easy to see that either ∈G′ 3 with all the recolored edges contained
in E H( ′), or ∈G′ 4 with the recolored edges contained in ∪E H x H( ′) ( , ′). In the
former case, clearly, ∈G 3 with c i=i for i = 1, 2, 3. For the latter case, by considering
the cycle sxy zs′ , we know that xs is not recolored. This implies that ss′ is not recolored
for all edges ∈ss E H′ ( ′) (considering the cycle xss yx′ ). Thus E E=G G′

2 2 and ∅E =G
k , a

contradiction.

Subcase 2.2.
The vertex z is incident with a recolored edge.

First suppose ∈ ∪ ∪G′ 1 3 4   . Then ⊆col G Z( ′[ ]) {2}. By Claim 1, every vertex in
Z z\ { } is joined to z by a recolored edge. Applying Claim 1 to every vertex in Z z\ { }, we
obtain that all the edges in ∪ ∩( )E G Z E Z G Z( [ ]) ( , − )G′

2 are recolored edges. Now, it
is impossible that ∈G′ 1 ; otherwise E E=G

k
G′
2 , a contradiction. It is also impossible that

∈G′ 4 ; otherwise, we assert that all the other edges of color 2 which are not incident to
Z in G′ are also recolored edges. Since sxy zs′ is not a PC C4, the edge xs must be
recolored. Let s′ be an arbitrary vertex in V H s( ′)\ { } when ∣ ∣ ≥V H( ′) 2. If col ss( ′) = 2,
then we can see that ss′ is also recolored by considering the cycle xss yx′ . In summary,
all the edges in EG′

2 are recolored edges, so E E=G G
k

′
2 , a contradiction. The remaining

subcase is that ∈G′ 3 . This implies that ∈G 3 with c = 11 , c k=2 , and c = 33 .
Next, suppose ∈G′ 2 . Then let G0 be the subgraph of G Z[ ] induced by EG′

2 . Clearly,
G0 is connected (otherwise, let uv and u v′ ′ be edges from two distinct components ofG0.
Then uvu v u′ ′ is a PC C4 inG, a contradiction). If ∣ ∣V G( ) = 00 , then col G Z( [ ]) = {3} and
G is obtained by joining x to a monochromatic clique. So ∈G 2 . The remaining case is
that ∣ ∣ ≥V G( ) 20 . If ∈z V G( )0 , then for each vertex ∈u V G z( ) \ { }0 , there exists a path
zu u u… t1 2 in G0 with u u= t. Recall that all the edges in ∩E z G z( , − )G′

2 are recolored.
So zu1 is recolored. Apply Claim 1 to u1. We get that all the edges in ∩E u G u( , − )G′

2
1 1

are recolored. Thus u u1 2 is recolored. By repeating this process, we can finally prove that
all the edges in ∩E u G u( , − )G′

2 are recolored. In summary, all the edges in G0 are
recolored and col x V G k( , ( )) = { }G 0 . Since ≠E EG G

k
′

2 , the set ∈ ∣U u Z col xu= { ( ) = 2}G is
nonempty. Let ∪Y Y U* = and Z Z U* = \ . Then ∪ ∪x Y Z{ } * * is a partition of G
showing that ∈G 2 with c k=2 , c = 33 and ∩ ∅k col x Y{3, } ( , *) =G .

Case 3. b = 3.
Since the bipartite graph induced by Y Z( , ) contains no PC cycles, there must

exist a vertex ∈y Y0 such that col y Z( , ) = {3}G′ 0 . Let y′ be an arbitrary vertex in
Y y\ { } when ∣ ∣ ≥Y 2. If ∈G′ 3 , then assume that ∪ ∪ ∪V H x Y Z( ′) { } is a
partition of V G( ′) as in Construction 3 such that V H( ′) is as large as possible.
Then for each vertex ∈y Y , ∈ col y Z3 ( , )G′ (otherwise, we can move y into
V H( ′) and G′ would still satisfy the rules of Construction 3). We distinguish
three subcases.
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Subcase 3.1.
None of the vertices of Y is incident with a recolored edge.

In this case, since ≠ ∅EG
k , it is impossible that ∈G′ 1 . It is also impossible that

∈ ∪G′ 2 4  ; otherwise, we can find a recolored edge uu′ in G Z[ ] when ∈G 2 (in H′

when ∈G 4 ). Thus xyuu x′ is a PC C4, a contradiction. The only remaining case is that
∈G′ 3 . In this case, all the recolored edges are contained in H′. Then ∈G 3 with

c i=i for i = 1, 2, 3.

Subcase 3.2.
∣ ∣ ≥Y 2 and the vertex y is incident with some recolored edges.

We will prove that all the edges in ∪ ∩( )E G Y E Y G Y( [ ]) ( , − )G′
3 are recolored.

Recall that s is an arbitrarily chosen vertex in H′ when ∈ ∪G′ 3 4  . Consider the even
cycles xy yzx′ , xsyzx , and xy ysx′ . We easily obtain the following three assertions:

(i) if col zy( ) = 3G , then ⇝yy yz′ and ⇝yz yy′;
(ii) if col zy( ) = 3G , then ⇝yz ys3 and ⇝ys yz3 ;
(iii) ⇝yy ys′ 4 and ⇝ys yy′4 .

If ∈ ∪G′ 1 2  , then i( ) implies that all the edges in ∩E y G y( , − )G′
3 are recolored. If

∈ ∪G′ 3 4  , then recall the assumption that ∈ col y Z3 ( , )G′ and apply i( ), ii( ), and iii( ) to y.
We conclude that all the edges in ∩E y G y( , − )G′

3 are recolored. In all cases, every vertex in
Y y\ { } is incident with a recolored edge. Now apply i( ), ii( ) and iii( ) to every vertex in Y y\ { }.
We conclude that all the edges in ∪ ∩E G Y E Y G Y( [ ]) ( ( , − ))G′

3 are recolored edges.
If ∈G′ 1 , then E E=G G

k
′

3 , a contradiction. If ∈ ∪G′ 2 4  , then let ww′ be an edge of
color 3 in G Z′[ ] when ∈G′ 2 (in H′ when ∈G′ 4 ). Consider the cycle xww yx′ . The edge
ww′must be recolored. Thus E E=G G

k
′

3 , again a contradiction. So, the only possible case is that
∈G′ 3 with all the recolored edges contained in H′. Then ∈G 3 with c = 11 , c = 22 ,

and c k=3 .

Subcase 3.3.
Y y= { }0 and y0 is incident with some recolored edges.

Since ∣ ∣Y = 1, we have ∣ ∣col x Y( , ) = 1G . Recall that in Constructions 1, 2, 3, and 4,
for each vertex ∈u Z , there exists a vertex ∈v Y such that col uv( ) = 3. So we have
col y Z( , ) = {3}G′ 0 . If ∈G′ 4 , then by merging H′ into Z , we can see thatG′ is also in 2
with c i=i for i = 1, 2, 3. Hence it is sufficient to distinguish the three subcases that
∈G′ i for i = 1, 2, 3.
If ∈G′ 1 , then ⊆col G Z( [ ]) {2} and all the recolored edges in G form a proper

subset of y Z( , )0 . Let x y* = 0, Y Z* = and Z x* = { }. Then the partition ∪ ∪x Y Z{ *} * *

shows that ∈G 2 with k = 4, c = 31 , c = 12 , c = 23 , and c = 44 .
If ∈G′ 3 , then consider the cycle xzy sx0 . We get ⇝y z y s0

3
0 and ⇝y s y z0

3
0 . This

implies that all the edges in ∩E y G y( , − )G′
3

0 0 are recolored. Thus ∈G 3 with c = 11 ,
c = 22 , and c k=3 .

If ∈G′ 2 , then define x y* = { }0 , Y x* = { }, and Z Z* = . Then the partition
∪ ∪x Y Z{ *} * * shows that ∈G′ 2 with c = 11 , c = 32 , and c = 23 . Let c = 44 . We

observe thatG′ is obtained by recoloring edges of color c4 inG with color c2. So this case
can be verified as that in Case 2.
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Case 4. ∈b k[4, − 1].
In this case, ∣ ∣ ≥col G( ′) 4. So ∈ ∪G′ 2 3  . If ∈G′ 3 , then all the recolored

edges are contained in E H( ′) and ∈G 3 . If ∈G′ 2 , then it is easy to see that
∈G 2 with c i=i for i k= 1, 2, …, . This completes the proof of

Theorem 2. □
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