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A Gallai-coloring (Gallai-k-coloring) is an edge-coloring (with colors from {1, 2, . . . , k}) of 
a complete graph without rainbow triangles. Given a graph H and a positive integer k, 
the k-colored Gallai-Ramsey number G Rk(H) is the minimum integer n such that every 
Gallai-k-coloring of the complete graph Kn contains a monochromatic copy of H . In this 
paper, we consider two extremal problems related to Gallai-k-colorings. First, we determine 
upper and lower bounds for the maximum number of edges that are not contained 
in any rainbow triangle or monochromatic triangle in a k-edge-coloring of Kn . Second, 
for n ≥ G Rk(K3), we determine upper and lower bounds for the minimum number of 
monochromatic triangles in a Gallai-k-coloring of Kn , yielding the exact value for k = 3. 
Furthermore, we determine the Gallai-Ramsey number G Rk(K4 + e) for the graph on five 
vertices consisting of a K4 with a pendant edge.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we only consider edge-colorings of finite simple graphs. For an integer k ≥ 1, let c : E(G) → [k] be a k-
edge-coloring (not necessarily a proper edge-coloring) of a graph G , where [k] := {1, 2, . . . , k}. A graph with an edge-coloring 
is called rainbow if all edges are colored differently, and monochromatic if all edges are colored the same. A Gallai-k-coloring
is a k-edge-coloring of a complete graph without rainbow triangles, i.e. at most two distinct colors are assigned to the edges 
of every copy of K3.

The term Gallai-coloring was first used by Gyárfás and Simonyi [17] in honor of Gallai’s decomposition lemma for rainbow 
triangle-free colorings [13], but the study of Gallai-colorings has arisen in a wide range of areas, such as poset theory [13], 
the Erdős-Hajnal conjecture [10], rainbow Erdős-Rothschild problem [1,2], information theory [25,26], perfect graph theory 
[4], and Ramsey-type problems [16,18].

Given a positive integer k and graphs H1, H2, . . . , Hk , the classical k-colored Ramsey number R(H1, H2, . . . , Hk) is the 
minimum integer n such that every k-edge-coloring of Kn contains a monochromatic copy of Hi in color i for some i ∈ [k]. It 
is well-known that determining the exact value of the Ramsey number is an extremely difficult problem, even for relatively 
small graphs. Many variants of Ramsey numbers concerning rainbow structures have been studied, such as rainbow-Ramsey 
numbers, anti-Ramsey numbers and Gallai-Ramsey numbers. We refer to two surveys [12,31] for more information on these 
topics.
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Given k graphs H1, H2, . . . , Hk , the k-colored Gallai-Ramsey number G R(H1, H2, . . . , Hk) is defined to be the minimum 
integer n such that every Gallai-k-coloring of the complete graph on n vertices contains a monochromatic copy of Hi in color 
i for some i ∈ [k]. In the special case when H1 = H2 = · · · = Hk = H , we simply write Rk(H) and G Rk(H) for R(H, H, . . . , H)

and G R(H, H, . . . , H), respectively. Gallai-Ramsey theory has been increasingly popular over the past decade. We refer to 
papers [3,11,17,18,27,28,34] for more information on some related problems.

A natural problem related to Gallai-Ramsey theory is to determine the maximum number of edges that are not contained 
in any rainbow copy of K3 or monochromatic copy of H . The analogous problem for Ramsey numbers was considered in 
[23,29,30]; in these papers the authors studied the maximum number of edges not contained in any monochromatic copy 
of H over all k-edge-colorings of Kn . For k ≥ 2, let fk(n, H) denote the maximum number of edges not contained in any 
rainbow triangle or monochromatic copy of H , over all k-edge-colorings of Kn . The first part of this paper is devoted to this 
problem.

Let ex(n, H) be the maximum number of edges of an H-free graph of order n, i.e., the Turán number of H . By Turán’s 
theorem, the unique Kr+1-free graph on n vertices with ex(n, Kr+1) edges is the Turán graph Tr(n), i.e., the complete r-
partite graph on n vertices with class sizes as equal as possible. Let t(n, r) be the number of edges of Tr(n). Note that we 
have the trivial upper bound fk(n, H) ≤ t(n, G Rk(H) − 1). We also have a trivial lower bound fk(n, H) ≥ f2(n, H) ≥ ex(n, H). 
For the case H = K3, we will prove the following theorem.

Theorem 1.1. For any real number δ > 0, there exists an n0 such that for all n ≥ n0 , we have t(n, G Rk−1(K3) − 1) ≤ fk(n, K3) <
t(n, G Rk−1(K3) − 1) + δn2 .

We conjecture that the lower bound on fk(n, K3) in Theorem 1.1 is in fact the exact value of fk(n, K3). Moreover, we 
can generalize this result to a general graph H (see Theorem 3.4).

The second part of this paper is devoted to the Gallai-Ramsey multiplicity problem. By the definition of the Gallai-Ramsey 
number, if n ≥ G Rk(H), then any Gallai-k-coloring of Kn contains a monochromatic copy of H . In fact, there could be more 
than one monochromatic copy of H . In light of this, it is natural to consider the minimum number of monochromatic copies 
of H (as an unlabeled graph) in a Gallai-k-coloring of Kn . Let gk(H, n) denote the minimum number of monochromatic 
copies of H taken over all Gallai-k-colorings of Kn . The analogous problem for Ramsey numbers is known as the Ramsey 
multiplicity problem, that is, to consider the minimum number Mk(H, n) of monochromatic copies of H taken over all k-
edge-colorings of Kn (see [7–9,20] for some recent results). With the additional restriction imposed on Gallai-colorings, it is 
obvious that gk(H, n) ≥ Mk(H, n). In 1959, Goodman [14] proved the following classical result concerning M2(K3, n).

Theorem 1.2. ([14]) For any positive integer n, we have

M2(K3,n) =

⎧⎪⎨
⎪⎩

n(n − 2)(n − 4)/24, if n is even,

n(n − 1)(n − 5)/24, if n ≡ 1 mod 4,

(n + 1)(n − 3)(n − 4)/24, if n ≡ 3 mod 4.

For the case of 3-edge-colorings, Cummings, Král’, Pfender, Sperfeld, Treglown and Young [8] proved the following result, 
using flag algebras and a probabilistic argument.

Theorem 1.3. ([8]) There exists an integer n0 such that for n ≥ n0 , if we write n = 5m + r for nonnegative integers m and r with 
0 ≤ r ≤ 4, then

M3(K3,n) = r

(
m + 1

3

)
+ (5 − r)

(
m

3

)
.

Our next result shows that g3(K3, n) = M3(K3, n), and gives upper and lower bounds for gk(K3, n) for other values of k.

Theorem 1.4. For n ≥ G Rk(K3), we write n = 5�(k−1)/2	m + r, where m and r are nonnegative integers with 0 ≤ r ≤ 5�(k−1)/2	 − 1. 
Then

gk(K3,n) ≤

⎧⎪⎨
⎪⎩

r

(
m + 1

3

)
+

(
5(k−1)/2 − r

)(
m

3

)
, if k is odd,

rM2(K3,m + 1) +
(

5(k−2)/2 − r
)

M2(K3,m), if k is even.

Moreover, let s0 = 1 if k is odd, and s0 = 2 if k is even. Then

gk(K3,n) ≥ s0n(n − 1)(n − 2)
.

G Rk(K3)(G Rk(K3) − 1)(G Rk(K3) − 2)
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In general, we conjecture that the above upper bound on gk(K3, n) in Theorem 1.4 is in fact the exact value of gk(K3, n), 
but we can only verify this for the following cases: (1) k = 3, (2) k ≥ 3 and n = G Rk(K3), (3) k is odd and G Rk(K3) ≤ n ≤
G Rk(K3) + 5(k−1)/2 − 1.

Finally, we consider the original problem, the Gallai-Ramsey number for a graph H . In [16], Gyárfás, Sárközy, Sebő and 
Selkow provided the following general statement on the value of the Gallai-Ramsey number G Rk(H).

Theorem 1.5. ([16]) For any graph H and positive integer k, if H is not bipartite, then G Rk(H) is exponential in k, and if H is bipartite 
but not a star, then G Rk(H) is linear in k.

In [10], Fox, Grinshpun and Pach posed the following conjecture on an expression for the Gallai-Ramsey numbers of 
complete graphs in terms of their 2-colored Ramsey numbers.

Conjecture 1.6. ([10]) For integers k ≥ 1 and t ≥ 3,

G Rk(Kt) =
{

(R2(Kt) − 1)k/2 + 1, if k is even,

(t − 1) · (R2(Kt) − 1)(k−1)/2 + 1, if k is odd.

The cases with t = 3 and t = 4 of the above conjecture were verified in [5,16] and [28], respectively. Let K4 + e denote 
the graph on five vertices consisting of a K4 with a pendant edge. We prove the following related result, confirming that 
the expression in the above conjecture in fact also holds for K4 + e (taking t = 5), since R2(K4 + e) = 18 by a result in [19].

Theorem 1.7. For integers k ≥ 1,

G Rk(K4 + e) =
{

17k/2 + 1, if k is even,

4 · 17(k−1)/2 + 1, if k is odd.

The remainder of this paper is organized as follows. In Section 2, we will introduce some additional terminology and 
notation, and list some known results that will be used in our proofs of the main results. In Section 3, we will prove 
Theorem 1.1, using a variant of the Gallai-Ramsey number. In Section 4, we will consider the Ramsey multiplicity problem 
for Gallai-colorings and prove Theorem 1.4. In Section 5, we will prove Theorem 1.7 in a more general form. Finally, we will 
conclude the paper with some remarks and open problems in Section 6.

2. Preliminaries

We begin with the following structural result on Gallai-colorings of complete graphs.

Theorem 2.1. ([13,17]) In any Gallai-coloring of a complete graph, the vertex set can be partitioned into at least two nonempty parts 
such that there is only one color on the edges between every pair of parts, and there are at most two colors between the parts in total.

We call a vertex partition as given by the statement in Theorem 2.1 a Gallai partition. Below we listed some known exact 
values of Gallai-Ramsey numbers and Ramsey numbers.

Theorem 2.2. ([5,16]) For integers k ≥ 1, we have

G Rk(K3) =
{

5k/2 + 1, if k is even,

2 · 5(k−1)/2 + 1, if k is odd.

Theorem 2.3. The following Ramsey numbers have been established:

(1) ([15]) R(K3, K3) = 6, R(K4, K4) = 18.
(2) ([6]) R(K4 + e, K3) = 9.
(3) ([19]) R(K4 + e, K4 + e) = 18.

For a graph H , let �(H) and χ(H) be the maximum degree and chromatic number of H , respectively. Given an edge-
colored graph F and an edge e ∈ E(F ), let cF (e) (or simply c(e)) be the color used on (i.e., assigned to) edge e. For U , 
V ⊆ V (F ) with U ∩ V = ∅, we use E(U , V ) (resp., C(U , V )) to denote the set of edges between U and V (resp., the set of 
colors used on the edges between U and V ). If all the edges in E(U , V ) are colored by a single color, then we use c(U , V )

to denote this color. Let F [U ] be the subgraph of F induced by U ⊆ V (F ), and F − U be the subgraph of F induced by 
3
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V (F ) \ U (if U = V (F )). In the special case when U = {u}, we simply write E(u, V ), C(u, V ), c(u, V ) and F − u for E({u}, V ), 
C({u}, V ), c({u}, V ) and F − {u}, respectively. Let C(F [U ]) (or simply, C(U )) and C(F − U ) denote the set of colors used on 
E(F [U ]) and E(F − U ), respectively. For two graphs F1 and F2, let F1 ∪ F2 be the disjoint union of F1 and F2.

Next, we define the blow-up of an edge-colored complete graph which will be used in our proofs of Theorems 1.4 and 
1.7. Let G be an edge-colored complete graph with vertex set {v1, v2, . . . , vn}, and H1, H2, . . . , Hn be n pairwise disjoint 
edge-colored complete graphs. The blow-up G(H1, H2, . . . , Hn) of G is an edge-colored complete graph with vertex set ⋃n

i=1 V (Hi) such that

cG(H1,H2,...,Hn)(xy) =
{

cG(vi v j), if x ∈ V (Hi) and y ∈ V (H j) for some 1 ≤ i = j ≤ n,

cHi (xy), if x, y ∈ V (Hi) for some i ∈ [n].
If H1 = H2 = · · · = Hn = H , we will write G(n · H) for G(H, H, . . . , H). If H1 = · · · = Hs = H ′ and Hs+1 = · · · = Hn = H ′′ for 
some 1 ≤ s < n, we will write G(s · H ′, (n − s) · H ′′) for G(H ′, . . . , H ′, H ′′, . . . , H ′′). Similarly, we will use the abbreviation 
G(s · H ′, t · H ′′, (n − s − t) · H ′′′).

In the following, we will introduce the Regularity Lemma, Embedding Lemma and Slicing Lemma that will be used in 
our proof of Theorem 1.1. Given a graph F and two disjoint nonempty sets X, Y ⊆ V (F ), the density of (X, Y ) is defined to 
be

d(X, Y ) := |E(X, Y )|
|X ||Y | .

We say that (X, Y ) is ε-regular if for any X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X | and |Y ′| ≥ ε|Y |, we have |d(X ′, Y ′) −d(X, Y )| ≤
ε. For a positive real number d, we say that an ε-regular pair (X, Y ) is (ε, d)-regular if d(X, Y ) ≥ d.

Lemma 2.4 (Multicolor Regularity Lemma). (See e.g. [24,29,33].) For any real ε > 0 and positive integers k and m, there exist n′ and 
M, such that every k-edge-colored graph F with n ≥ n′ vertices admits a partition V 1, V 2, . . . , Vt of V (F ) satisfying

(i) m ≤ t ≤ M;
(ii) for all 1 ≤ i < j ≤ t, we have ||V i| − |V j || ≤ 1; and

(iii) for all but at most ε
(t

2

)
pairs (i, j), the pair (V i, V j) is ε-regular for each color.

We call the partition as given in Lemma 2.4 a multicolored ε-regular partition. Given ε, d > 0, a k-edge-colored graph F
and a partition V 1, V 2, . . . , Vt of V (F ), we define the reduced graph R = R(d) as follows: V (R) = {1, 2, . . . , t} and i and j are 
adjacent in R if (V i, V j) is ε-regular for each color and there exists a color with density at least d in E(V i, V j). Moreover, 
we define the multicolored reduced graph Rc = Rc(d) as follows: V (Rc) = V (R), E(Rc) = E(R), and for each edge i j ∈ E(Rc), 
i j is assigned an arbitrary color c0 such that (V i, V j) has density at least d with respect to the subgraph of F induced by 
the edges of color c0.

Given two graphs G and H , we say that G is a homomorphic copy of H if there is a map ϕ : V (H) → V (G) such that 
ϕ(u)ϕ(v) ∈ E(G) for each edge uv ∈ E(H). Note that Ks is a homomorphic copy of H if and only if s ≥ χ(H). We will use 
the following consequence of the Embedding Lemma. Lemma 2.5 below is in fact a corollary of Lemma 2.4 in [21].

Lemma 2.5 (Multicolor Embedding Lemma). (See e.g. [21,22,24].) For every d > 0, any positive integer k and any graph G, there exist 
ε = ε(k, d, G) > 0 and a positive integer n0 = n0(k, d, G) with the following property. Suppose that F is a k-edge-colored graph on 
n ≥ n0 vertices with a multicolored ε-regular partition V 1, V 2, . . . , Vt which defines the multicolored reduced graph Rc = Rc(d). If 
Rc contains a monochromatic homomorphic copy of G, then F contains a monochromatic copy of G. If Rc contains a rainbow copy of 
G, then F contains a rainbow copy of G.

Lemma 2.6 (Slicing Lemma). (See e.g. [24,29].) Let 0 < ε, α, d < 1 with ε ≤ min {d,α,1/2}. If a pair (X, Y ) is (ε, d)-regular, then 
for any X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ α|X | and |Y ′| ≥ α|Y |, we have that (X ′, Y ′) is an (ε′, d − ε)-regular pair, where ε′ :=
max {2ε, ε/α}.

Finally, we consider the Turán number. It is well-known that ex(n, Kr+1) = t(n, r) = (1 − 1/r)
(n

2

) + o(n2). In fact, if n ≡ p
(mod r) where 0 ≤ p ≤ r −1, then t(n, r) = (1 − 1/r)n2/2 +(p −r)p/(2r). Thus (1 − 1/r)n2/2 −r/8 ≤ t(n, r) ≤ (1 − 1/r)n2/2. 
We will use this more precise bound in our proofs of the main results.

3. On edges not contained in a rainbow triangle or monochromatic copy of H

For the proof of Theorem 1.1, we first define the following variant of the Gallai-Ramsey number. Given a set V and an 
integer k ≤ |V |, let 

( V )
(resp., 

(V )
) be the set of all nonempty subsets of V of size at most k (resp., size k).
≤k k

4
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Definition 3.1. For a graph H and an integer k ≥ 2, let G R∗
k (H) be the minimum integer n∗ such that for every coloring 

c : ([n∗]
≤2

) → [k], at least one of the following statements holds:

(1∗) the restriction of c to 
([n∗]

2

)
contains either a rainbow triangle or a monochromatic homomorphic copy of H ;

(2∗) for some 1 ≤ i < j ≤ n∗ , we have c({i, j}) = c({i}) or c({i, j}) = c({ j}).

In other words, G R∗
k (H) − 1 is the maximum integer n∗∗ such that for the complete graph Kn∗∗ with vertex set [n∗∗], 

there exists a coloring c : ([n∗∗]
≤2

) → [k] satisfying

(1∗∗) the restriction of c to 
([n∗∗]

2

)
is a Gallai-k-coloring without a monochromatic homomorphic copy of H ; and

(2∗∗) for any 1 ≤ i < j ≤ n∗ , we have c({i, j}) = c({i}) and c({i, j}) = c({ j}).

For a set H of graphs, let G Rk(H ) denote the minimum integer n such that every Gallai-k-coloring of Kn contains a 
monochromatic copy of H for some H ∈ H .

Lemma 3.2. For a graph H, let H be the set of all homomorphic copies of H. Then

(1) G R∗
k (H) ≥ G Rk−1(H ),

(2) fk(n, H) ≥ t(n, G Rk−1(H ) − 1),

(3) if there exists a coloring c satisfying conditions (1∗∗) and (2∗∗) such that all elements of 
([G R∗

k (H)−1]
1

)
use a single color, then 

fk(n, H) ≥ t(n, G R∗
k (H) − 1).

Proof. Let n∗
k := G Rk−1(H ). We first prove (1). Let F be a Gallai-(k − 1)-coloring of Kn∗

k −1 without a monochromatic copy 

of H ′ for any H ′ ∈ H . We color the vertices of F with the kth color and then we obtain a k-coloring of 
([n∗

k −1]
≤2

)
satisfying 

conditions (1∗∗) and (2∗∗). Thus G R∗
k (H) ≥ n∗

k = G Rk−1(H ).
Next, we give the proof of (2). Let G be a Gallai-(k − 1)-coloring of Kn∗

k −1 without a monochromatic copy of H ′ for any 
H ′ ∈ H . Let V (G) = {1, 2, . . . , n∗

k − 1} and let G ′ be the Turán graph Tn∗
k −1(n) with parts V 1, . . . , Vn∗

k −1. We color the edges 
of G ′ such that for any 1 ≤ i < j ≤ n∗

k − 1, we have cG ′(V i, V j) = cG(i j). Let G ′′ be a k-edge-coloring of Kn obtained by 
coloring the edges within each part using color k from the above (k − 1)-edge-coloring of G ′ . We claim that all the edges 
between the n∗

k − 1 parts are neither contained in a rainbow copy of K3 nor in a monochromatic copy of H in G ′′ . Indeed, 
note that there is no rainbow copy of K3 using color k. Thus if G ′′ contains a rainbow copy of K3, then G is not a Gallai-
coloring, a contradiction. If there is an edge e between these n∗

k − 1 parts such that e is contained in a monochromatic copy 
of H , then G contains a monochromatic homomorphic copy of H , a contradiction. Thus fk(n, H) ≥ ∣∣E

(
G ′)∣∣ = t(n, n∗

k − 1).
Finally, we prove (3). Let nk := G R∗

k (H) − 1. Let c be a coloring as in the statement of the lemma, and we may assume 
that all elements of 

([nk]
1

)
are colored by color 1. Note that the restriction of c to 

([nk]
2

)
is a Gallai-(k − 1)-coloring without 

a monochromatic homomorphic copy of H . Let W be the Turán graph Tnk (n) with parts V 1, . . . , Vnk . We color the edges 
of W such that cW (V i, V j) = c(i j) for any 1 ≤ i < j ≤ nk . Let W ′ be a k-edge-coloring of Kn obtained by coloring the 
edges within each part using color 1 from the above (k − 1)-edge-coloring of W . It is easy to check that all the edges 
between the nk parts are neither contained in a rainbow copy of K3 nor in a monochromatic copy of H in W ′ . Thus 
fk(n, H) ≥ |E (W )| = t(n, nk). �

Note that we have G R∗
k (H) = G Rk−1(H ) = 2 whenever H is a bipartite graph, where H is the set of all homomorphic 

copies of H . A natural question is for which non-bipartite graph H it holds that G R∗
k (H) = G Rk−1(H )? We can verify that 

K3 is such a graph.

Lemma 3.3. Let H (K3) be the set of all homomorphic copies of K3. For integers k ≥ 2, we have G R∗
k(K3) = G Rk−1(H (K3)) =

G Rk−1(K3).

Proof. For every graph H ′ ∈ H (K3), we have that H ′ contains K3 as a subgraph by the definition. Thus G Rk−1(H (K3)) ≥
G Rk−1(K3). By Lemma 3.2 (1), we have G R∗

k (K3) ≥ G Rk−1(H (K3)) ≥ G Rk−1(K3).
For k ≥ 2, let n∗

k := G Rk−1(K3), and we will prove G R∗
k (K3) ≤ n∗

k by induction on k. When k = 2, we have G R∗
2(K3) = 3 =

n∗
2 clearly. Suppose that for all 2 ≤ k′ ≤ k − 1, we have G R∗

k′(K3) ≤ n∗
k′ . We will prove it for k′ = k. Let n be the maximum 

integer such that there is a coloring c : ([n]
≤2

) → [k] satisfying conditions (1∗∗) and (2∗∗). It suffices to show that n ≤ n∗
k −1. By 

Theorem 2.1, there is a Gallai partition V 1, V 2, . . . , Vm (m ≥ 2) of [n]. Note that K3 ∈ H (K3). For avoiding a monochromatic 
copy of K3, we have m ≤ 5. We choose such a partition so that m is minimum. Let R be an edge-coloring of a complete 
graph with V (R) = {v1, v2, . . . , vm} and c(vi v j) = c(V i, V j) for any i = j. If m = 5 (resp., m = 4), then R is the unique 
2-edge-coloring of K5 without a monochromatic copy of K3, i.e., each color forms a cycle of length 5 (resp., R is one of 
5
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Fig. 1. An extremal coloring of G R∗
4(K3) with two colors on singletons. (For interpretation of the colors in the figure, the reader is referred to the web 

version of this article.)

the two 2-edge-colorings of K4 without a monochromatic copy of K3, i.e., each color forms a path of length 3, or one color 
forms a cycle of length 4 and the other color forms a matching with two edges). Then there is no edge using color 1 or 2 
within each part V i for avoiding a monochromatic copy of K3, and there is no vertex using color 1 or 2 within each part V i
by condition (2∗∗). Thus if k = 3, then n ≤ 5 = n∗

3 − 1, and if k ≥ 4, then n ≤ 5(G R∗
k−2(K3) − 1) ≤ 5(G Rk−3(K3) − 1) ≤ n∗

k − 1
by the induction hypothesis. If m = 3, then at least two of the colors c(V 1, V 2), c(V 1, V 3) and c(V 2, V 3) are the same color, 
say c(V 1, V 2) = c(V 1, V 3). This implies that V 1 and V 2 ∪ V 3 form a Gallai partition with exactly two parts, contradicting 
the minimality of m. If m = 2, then we may assume c(V 1, V 2) = 1. Then color 1 cannot be used on 

(V 1≤2

)
and 

(V 2≤2

)
. Thus 

n ≤ 2(G R∗
k−1(K3) − 1) ≤ 2(G Rk−2(K3) − 1) ≤ n∗

k − 1 by the induction hypothesis. �
By Lemma 3.3, we have G R∗

k (K3) = G Rk−1(H (K3)). As in the proof of Lemma 3.2 (1), we can construct an extremal 
coloring 

([G R∗
k (K3)−1]
≤2

) → [k] satisfying conditions (1∗∗) and (2∗∗) in which we assign a single color to all elements of ([G R∗
k (K3)−1]

1

)
. It is worth noticing that not all the extremal colorings assign a single color to all singletons. For example, 

Fig. 1 gives an extremal coloring of G R∗
4(K3) with two colors on singletons.

Now we have all the ingredients for our proof of Theorem 1.1.

Proof of Theorem 1.1. The lower bound follows from Lemmas 3.2 (2) and 3.3. Next, we will prove that fk(n, K3) <
t(n, G Rk−1(K3) − 1) + δn2. Let nimk(n, K3) be the maximum number of edges not contained in any monochromatic copy 
of K3 over all k-edge-colorings of Kn . Note that fk(n, K3) ≤ nimk(n, K3). For sufficiently large n, since nim2(n, K3) = t(n, 2)

(proven in [23]) and nim3(n, K3) = t(n, 5) (proven in [29]), we have fk(n, K3) = t(n, G Rk−1(K3) − 1) for k ∈ {2, 3}. In the 
following, we may assume k ≥ 4.

Let Nk := G Rk−1(K3). We choose d such that d ≤ δ/k. Let ε1 = ε1(k, d/2, K3) and n1 = n1(k, d/2, K3) (resp., ε2 =
ε2(k, d, K3) and n2 = n2(k, d, K3)) be the values obtained by applying Lemma 2.5. Let n′

1 and M1 be the values obtained 
by applying Lemma 2.4 with ε1 and 1/ε1. Then we choose ε such that ε ≤ min {δ/4, ε1/M1, ε2,d/2}. Let n′ and M be the 
values obtained by applying Lemma 2.4 with ε and 1/ε. Let n0 = max

{
n′,n′

1M,
√

(Nk − 1)/(2δ), MM1n1/3,n2
}

and n ≥ n0.
Let F be a k-edge-coloring of Kn , and F ′ be the spanning subgraph of F with E(F ′) = {e ∈ E(F ) : e is not contained in 

any rainbow or monochromatic copy of K3}. For a contradiction, suppose |E(F ′)| ≥ t(n, Nk − 1) + δn2. Let V 1, V 2, . . . , Vt

be a partition of V (F ′) obtained by applying Lemma 2.4 to F ′ with ε and 1/ε, where 1/ε ≤ t ≤ M . Let R = R(d) be the 
reduced graph. Since there are at most 

(n/t
2

)
edges within a part, at most (n/t)2 edges between any two parts, and less than 

kd (n/t)2 edges between a pair of parts with density less than d for each color, we have

|E(R)| > t(n, Nk − 1) + δn2 − t
( n

t
2

) − ε
(t

2

) (n
t

)2 − kd
(n

t

)2 (t
2

)
(n

t

)2

>
t2

((
1 − 1

Nk−1

)
n2

2 − Nk−1
8 + δn2 − ( 1

t + ε + kd
) n2

2

)
n2

=
(

1 − 1

Nk − 1
+ 2δ − Nk − 1

4n2
− 1

t
− ε − kd

)
t2

2

≥
(

1 − 1

Nk − 1

)
t2

2
,

where the last inequality is by the choices of n, d and ε. Thus |E(R)| ≥ t(t, Nk − 1) + 1, so R contains a copy R ′ of K Nk . 
Without loss of generality, let V (R ′) = {1, 2, . . . , Nk}. Then for any 1 ≤ i < j ≤ Nk , we have that (V i, V j) is ε-regular for each 
color, and there exists a color ci j with density at least d in E(V i, V j).
6
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For each i ∈ [Nk], we have |V i| = n/t ≥ (n′
1M)/M = n′

1. Thus we can apply Lemma 2.4 with ε1 and 1/ε1 to F [V i] (note 
that here we consider F [V i], not only F ′[V i]). Then there exist two subsets V i,1, V i,2 ⊆ V i with |V i,1| = |V i,2| ≥ n′

1/M1 such 
that (V i,1, V i,2) is an (ε1, 1/k)-regular pair for some color ci ∈ [k]. From the choice of d, we have 1/k ≥ d/2, so (V i,1, V i,2)

is an (ε1, d/2)-regular pair for color ci . We define a coloring ϕ : (V (R ′)
≤2

) → [k] such that ϕ({i}) = ci and ϕ({i, j}) = ci j . Note 
that there might be more than one choice for ϕ({i}) and ϕ({i, j}), and we may choose an arbitrary one from these choices. 
By Lemma 3.3, we have |V (R ′)| = Nk = G Rk−1(K3) = G R∗

k (K3). Thus at least one of the following statements holds:

(1) R ′ contains a rainbow copy of K3;
(2) R ′ contains a monochromatic homomorphic copy of K3;
(3) ϕ({i, j}) = ϕ({i}) for some 1 ≤ i = j ≤ Nk .

If (1) or (2) holds, then there is a rainbow or monochromatic copy of K3 in F ′ by Lemma 2.5, a contradiction. If (3) 
holds, then by applying Lemma 2.6 with α = 1/M1, we have that (V j, V i,1) and (V j, V i,2) are two (εM1, d −ε)-regular (and 
thus (ε1, d/2)-regular) pairs for color ci . Thus (V i,1, V i,2), (V j, V i,1) and (V j, V i,2) are three (ε1, d/2)-regular pairs for color 
ci . By Lemma 2.5, there is a monochromatic copy of K3 which contains two edges of F ′ , a contradiction. �

By similar arguments as in the proof of Theorem 1.1, we can prove the following result for a general graph H . We omit 
the details.

Theorem 3.4. For any δ > 0, there exists an n0 such that for all n ≥ n0 and any graph H, we have t
(
n, G Rk−1(H ) − 1

) ≤ fk(n, H) <
t
(
n, G R∗

k (H) − 1
) + δn2 , where H is the set of all homomorphic copies of H.

4. The Ramsey multiplicity problem for Gallai-colorings

We first prove the upper bound in Theorem 1.4, by construction. Let G2 be a 2-edge-colored K5 using colors 1 and 
2 which contains no monochromatic copy of K3, i.e., colors 1 and 2 induce two monochromatic copies of C5. Suppose 
that 2i < k − 2 and we have constructed a Gallai-2i-coloring G2i of Kn2i without a monochromatic copy of K3, where 
n2i := 5i . Let G ′ be a 2-edge-colored K5 using colors 2i + 1 and 2i + 2 which contains no monochromatic copy of K3. Let 
G2i+2 = G ′(5 ·G2i), i.e., G2i+2 is a blow-up of G ′ . This way, when k is odd (resp., k is even), we obtain a Gallai-(k −1)-coloring 
Gk−1 of Knk−1 (resp., Gallai-(k − 2)-coloring Gk−2 of Knk−2 ) without a monochromatic copy of K3, where nk−1 = 5(k−1)/2

(resp., nk−2 = 5(k−2)/2). In the following, we will construct a Gallai-k-coloring Gk from Gk−1 or Gk−2.
If k is odd, then let A be a monochromatic copy of Km using color k, and let B be a monochromatic copy of Km+1

using color k. Let Gk = Gk−1(r · B, (5(k−1)/2 − r) · A). Then Gk is a Gallai-k-coloring of Kn with r
(m+1

3

) + (
5(k−1)/2 − r

) (m
3

)
monochromatic copies of K3 (here we define 

(1
3

) = (2
3

) = 0 for the sake of notation). If k is even, then let C be a 2-edge-
coloring (using colors k −1 and k) of Km with M2(K3, m) monochromatic copies of K3, and let D be a 2-edge-coloring (using 
colors k − 1 and k) of Km+1 with M2(K3, m + 1) monochromatic copies of K3. Let Gk = Gk−2(r · D, (5(k−2)/2 − r) · C). Then 
Gk is a Gallai-k-coloring of Kn with rM2(K3, m + 1) + (

5(k−2)/2 − r
)

M2(K3, m) monochromatic copies of K3. This completes 
the proof for the upper bound in Theorem 1.4.

It is worth noting that no matter whether k is odd or even, the above extremal coloring is a blow-up of a complete 
graph of order 5�(k−1)/2	 with a special edge-coloring. Recall that we have g3(K3, n) = r

(m+1
3

) + (5 − r)
(m

3

)
. An interesting 

fact is that the above sharpness example for k = 3 is the unique Gallai-3-coloring of Kn achieving the minimum number 
of monochromatic copies of K3, which can be derived from a result of [8]. But when k is an even number, the extremal 
colorings achieving the upper bound are not unique. For example, let F be a 2-edge-coloring (using colors k − 1 and k) of 
Km+2 with M2(K3, m + 2) monochromatic copies of K3. Since M2(K3, m) + M2(K3, m + 2) = 2M2(K3, m + 1) for any odd 
number m by Theorem 1.2, we can also construct Gk such that Gk = Gk−2(1 · F , (r − 2) · D, (5(k−2)/2 − r + 1) · C). However, 
it is still a blow-up of a complete graph of order 5�(k−1)/2	 with a special edge-coloring.

Before presenting our proof for the lower bound in Theorem 1.4, we first provide the exact value of gk(K3, G Rk(K3)).

Theorem 4.1. gk(K3, G Rk(K3)) = 1 if k is odd, and gk(K3, G Rk(K3)) = 2 if k is even.

Proof. By the definition of the Gallai-Ramsey number, we have gk(K3, G Rk(K3)) ≥ 1. Moreover, it follows from the above 
extremal coloring that gk(K3, G Rk(K3)) ≤ 1 if k is odd, and gk(K3, G Rk(K3)) ≤ 2 if k is even. Thus it suffices to prove 
that gk(K3, G Rk(K3)) ≥ 2 when k is even. We will prove this by induction on k. For k = 2, the statement is trivial since 
M2(K3, 6) = 2. We may assume that the statement holds for all even k′ ≤ k − 2 and we will prove it for k (k ≥ 4).

Let F be a Gallai-k-coloring of KG Rk(K3) and suppose (for a contradiction) that F contains only one monochromatic copy 
of K3. Using Theorem 2.1, let V 1, V 2, . . . , Vt (t ≥ 2) be a Gallai partition of V (F ). We choose such a partition so that t is 
minimum. We may assume that colors 1 and 2 are the two colors used between these parts. Let R be a 2-edge-coloring of 
Kt with V (R) = {v1, v2, . . . , vt} and c(vi v j) = c(V i, V j) for any 1 ≤ i < j ≤ t . Since M2(K3, 6) = 2, we have t ≤ 5; otherwise 
F contains at least two monochromatic copies of K3.
7
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If 2 ≤ t ≤ 3, then we may assume that t = 2 by the minimality of t (since every graph admitting a Gallai partition with 
three parts also admits a Gallai partition with two parts). Without loss of generality, let c(V 1, V 2) = 1 and |V 1| ≥ |V 2|. First, 
assume 1 /∈ C(V 1). Then F [V 1] is a Gallai-(k − 1)-coloring. Note that |V 1| ≥ |V (F )|/2 ≥ (5k/2 + 1)/2 > 2 · 5(k−2)/2 + 2. Since k
is even, we have G Rk−1(K3) = 2 · 5(k−2)/2 + 1. Thus there is a monochromatic copy of K3 in F [V 1]. Let v be a vertex of this 
K3. Since |V 1 \ {v}| ≥ 2 · 5(k−2)/2 + 1, there is a monochromatic copy of K3 in F [V 1 \ {v}]. So there exist two monochromatic 
copies of K3 in F [V 1], a contradiction. We conclude that 1 ∈ C(V 1). In order to avoid two monochromatic copies of K3, we 
have |V 2| = 1 and there is at most one edge with color 1 in F [V 1]. Thus there is a Gallai-(k − 1)-coloring of K |V 1|−1. Since 
|V 1| − 1 ≥ G Rk−1(K3), there is a monochromatic copy of K3 in F [V 1]. Then there exist two monochromatic copies of K3 in 
F , another contradiction. This solves the case 2 ≤ t ≤ 3.

If t = 4, then we first suppose that R contains a monochromatic copy of K3, say c(V 1, V 2) = c(V 2, V 3) = c(V 3, V 1) = 1. 
Let V ′ = V 1 ∪ V 2 ∪ V 3. If c(V 4, V ′) = 2, then V 4 and V ′ form a Gallai partition with exactly two parts, contradicting the 
minimality of t . Thus c(V 4, V i) = 1 for some i ∈ {1, 2, 3}. But then c(V i, V (G) \ V i) = 1, contradicting the minimality of t . 
Therefore, R is one of the two 2-edge-coloring of K4 without a monochromatic copy of K3, that is, each color induces a 
path of length three, or one color induces a cycle of length four and the other color induces a matching with two edges. In 
both cases we can derive that there is at most one edge with color 1 or 2 in 

⋃4
j=1 F [V j]. By the induction hypothesis, we 

have |V (F )| ≤ 4(G Rk−2(K3) − 1) + 1 < G Rk(K3), a contradiction.
The remaining case is t = 5. Then there is no edge with color 1 or 2 in 

⋃5
j=1 F [V j]; otherwise F contains a 2-edge-

coloring of K6 which contains at least two monochromatic copies of K3. Thus we have |V (F )| ≤ 5(G Rk−2(K3) −1) < G Rk(K3)

by the induction hypothesis, a contradiction. This completes the proof of Theorem 4.1. �
Now we have all ingredients to present our proof for the lower bound in Theorem 1.4. Let s0 = 1 if k is odd, and s0 = 2 if 

k is even. By Theorem 4.1, we have gk(K3, G Rk(K3)) = s0. This implies that if v1, v2, . . . , vG Rk(K3) are any G Rk(K3) vertices 
of Kn , then Kn[{v1, v2, . . . , vG Rk(K3)}] contains at least s0 monochromatic copies of K3. Since each monochromatic copy of 
K3 is contained in 

( n−3
G Rk(K3)−3

)
distinct copies of KG Rk(K3) , there are at least⌈

s0
( n

G Rk(K3)

)
( n−3

G Rk(K3)−3

)
⌉

=
⌈

s0n(n − 1)(n − 2)

G Rk(K3)(G Rk(K3) − 1)(G Rk(K3) − 2)

⌉

monochromatic copies of K3 in any Gallai-k-coloring of Kn . This completes the proof of Theorem 1.4.
We obtain the following corollary.

Corollary 4.2. If k is odd and 0 ≤ t ≤ 5(k−1)/2 − 1, then gk(K3, G Rk(K3) + t) = t + 1.

Proof. The upper bound follows from Theorem 1.4. For the proof of the lower bound, we will use induction on t . The case 
t = 0 follows from Theorem 4.1. We may assume that gk(K3, G Rk(K3) + (t − 1)) = (t − 1) + 1 = t holds and we will prove it 
for t (1 ≤ t ≤ 5(k−1)/2 − 1). Let n = G Rk(K3) + t . Note that each monochromatic copy of K3 is contained in 

( n−3
n−1−3

) = n − 3
distinct copies of Kn−1, and there are 

( n
n−1

) = n distinct copies of Kn−1 in Kn . By the induction hypothesis, there are at least 
�tn/(n − 3)� = t + 1 monochromatic copies of K3 in any Gallai-k-coloring of Kn . �
5. The Gallai-Ramsey number for K4 + e

For an integer s with 0 ≤ s ≤ k, if H1 = · · · = Hs = K4 + e and Hs+1 = · · · = Hk = K3, we will write G Rk(s · K4 + e, (k − s) ·
K3) for G R(K4 + e, . . . , K4 + e, K3, . . . , K3). In this section, we will prove Theorem 1.7 in the following more general form. 
Theorem 1.7 follows from Theorem 5.1 by choosing s = k.

Theorem 5.1. For integers k ≥ 1 and 0 ≤ s ≤ k, we have

G Rk(s · K4 + e, (k − s) · K3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

17s/2 · 5(k−s)/2 + 1, if s is even and k − s is even,

2 · 17s/2 · 5(k−s−1)/2 + 1, if s is even and k − s is odd,

8 · 17(s−1)/2 · 5(k−s−1)/2 + 1, if s is odd and k − s is odd,

4 · 17(s−1)/2 · 5(k−s)/2 + 1, if s is odd and k − s is even.

Proof. For convenience, let

g(k, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

17s/2 · 5(k−s)/2, if s is even and k − s is even,

2 · 17s/2 · 5(k−s−1)/2, if s is even and k − s is odd,

8 · 17(s−1)/2 · 5(k−s−1)/2, if s is odd and k − s is odd,

4 · 17(s−1)/2 · 5(k−s)/2, if s is odd and k − s is even.
8
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We first prove G Rk(s · K4 + e, (k − s) · K3) > g(k, s) by construction. Let G0 be a single vertex and G1 be a monochromatic 
copy of K4 using color 1. If s is even, then we will begin with G0 and iteratively construct Gallai-colored graphs. If s is 
odd, then we will begin with G1 and iteratively construct Gallai-colored graphs. Suppose we have constructed Gi for some 
i < k. Let G ′ be a 2-edge-colored K5 using colors i + 1 and i + 2 which contains no monochromatic copy of K3, and G ′′ be 
a 2-edge-colored K17 using colors i + 1 and i + 2 which contains no monochromatic copy of K4. We construct Gi+2 or Gi+1
based on the following rules:

(1) If i ≤ s − 2, then we construct Gi+2 such that Gi+2 = G ′′(17 · Gi).
(2) If s ≤ i ≤ k − 2, then we construct Gi+2 such that Gi+2 = G ′(5 · Gi).
(3) If i = k − 1, then we construct Gi+1 by connecting two copies of Gi with edges using color k.

Finally, we obtain a g(k, s)-vertex Gallai-k-colored graph Gk containing neither a monochromatic copy of K4 + e in any of 
the first s colors nor a monochromatic copy of K3 in any of the last k − s colors.

In the following, we will prove G Rk(s · K4 + e, (k − s) · K3) ≤ g(k, s) + 1 by induction on k + s. The case k = 1 is trivial, 
the case k = 2 follows from Theorem 2.3, and the case s = 0 follows from Theorem 2.2. So we may assume that the result 
holds for all k′ + s′ < k + s and we will prove it for k + s, where k ≥ 3 and 1 ≤ s ≤ k.

Let G be a Gallai-k-coloring of Kn , where n = g(k, s) +1. For a contradiction, suppose that G contains neither a monochro-
matic copy of K4 + e in any of the first s colors nor a monochromatic copy of K3 in any of the last k − s colors. By 
Theorem 2.1, let V 1, V 2, . . . , Vt (t ≥ 2) be a Gallai partition of V (G). We choose such a partition so that t is minimum. We 
may assume that red and blue are the two colors used between these parts, where red and blue are two of the k colors. 
Note that n = g(k, s) + 1 ≥ 21 since k ≥ 3 and 1 ≤ s ≤ k.

Claim 5.2. t ≥ 4.

Proof. If t = 3, then at least two of the colors c(V 1, V 2), c(V 1, V 3) and c(V 2, V 3) are the same color, say c(V 1, V 2) =
c(V 1, V 3). This implies that V 1 and V (G) \ V 1 form a Gallai partition with exactly two parts, contradicting the minimality 
of t . Hence, t = 2, and we may assume that c(V 1, V 2) is red without loss of generality.

If there is no red edge within both V 1 and V 2, then G[V 1] and G[V 2] are two Gallai-(k − 1)-colorings. By the induction 
hypothesis, if red is one of the first s colors, then we have

n = |V 1| + |V 2| ≤ 2 · g(k − 1, s − 1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 · 17(s−1)/2 · 5(k−s)/2, if s − 1 is even (s is odd) and k − s is even,

2 · 2 · 17(s−1)/2 · 5(k−s−1)/2, if s − 1 is even (s is odd) and k − s is odd,

2 · 8 · 17(s−2)/2 · 5(k−s−1)/2, if s − 1 is odd (s is even) and k − s is odd,

2 · 4 · 17(s−2)/2 · 5(k−s)/2, if s − 1 is odd (s is even) and k − s is even,

≤ g(k, s),

a contradiction. If red is one of the last k − s colors, then we have

n = |V 1| + |V 2| ≤ 2 · g(k − 1, s)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 · 17s/2 · 5(k−s−1)/2, if s is even and k − s − 1 is even (k − s is odd),

2 · 2 · 17s/2 · 5(k−s−2)/2, if s is even and k − s − 1 is odd (k − s is even),

2 · 8 · 17(s−1)/2 · 5(k−s−2)/2, if s is odd and k − s − 1 is odd (k − s is even),

2 · 4 · 17(s−1)/2 · 5(k−s−1)/2, if s is odd and k − s − 1 is even (k − s is odd),

≤ g(k, s),

a contradiction.
Thus we may assume that G[V 1] contains a red edge, so red is one of the first s colors. In order to avoid a red copy 

of K4 + e, there is no red edge within V 2 and there is no red copy of K3 within V 1 (recall that n ≥ 21). By the induction 
hypothesis, we have

n = |V 1| + |V 2| ≤ g(k, s − 1) + g(k − 1, s − 1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8 · 17(s−2)/2 · 5(k−s)/2 + 4 · 17(s−2)/2 · 5(k−s)/2, if s is even and k − s is even,

4 · 17(s−2)/2 · 5(k−s+1)/2 + 8 · 17(s−2)/2 · 5(k−s−1)/2, if s is even and k − s is odd,

17(s−1)/2 · 5(k−s+1)/2 + 2 · 17(s−1)/2 · 5(k−s−1)/2, if s is odd and k − s is odd,

2 · 17(s−1)/2 · 5(k−s)/2 + 17(s−1)/2 · 5(k−s)/2, if s is odd and k − s is even,

≤ g(k, s),
9
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a contradiction. This completes the proof of Claim 5.2. �
We define R to be a 2-edge-coloring of Kt with V (R) = {v1, v2, . . . , vt} and c(vi v j) = c(V i, V j) for any 1 ≤ i < j ≤ t . 

Note that if R contains a 2-edge-colored subgraph H , then G also contains a copy of H (in fact, G contains a blow-up of 
H). For each i ∈ [t], let Nr

i := { j ∈ [t] \ {i} : c(vi v j) is red}, Nb
i := { j ∈ [t] \ {i} : c(vi v j) is blue}, dr

i := ∣∣Nr
i

∣∣ and db
i := ∣∣Nb

i

∣∣. 
By Claim 5.2 and the minimality of t , we have dr

i ≥ 1 and db
i ≥ 1 for every i ∈ [t]. We claim that at least one of red 

and blue is among the first s colors. Indeed, if both red and blue are among the last k − s colors, then R contains no 
monochromatic copy of K3. So t ≤ R(K3, K3) − 1 = 5. Moreover, for every i ∈ [t], since dr

i ≥ 1 and db
i ≥ 1, there is no red 

edge and no blue edge within V i in G . By the induction hypothesis, we have n = ∑t
i=1 |V i | ≤ 5 · g(k − 2, s) ≤ g(k, s), a 

contradiction.
Let R := {i ∈ [t] : G[V i] contains a red edge} and B := {i ∈ [t] : G[V i] contains a blue edge}. Let x0 := |[t] \ (R∪B)|, 

x1 := |R�B| and x2 := |R∩B|, so t = x0 + x1 + x2. We have the following simple facts.

Fact 5.3.

(1) For any i ∈R (resp., i ∈B), we have that vi is not contained in any red copy of K3 (resp., blue copy of K3) in R.
(2) For any i, j ∈R (resp., i, j ∈B) with i = j, we have that c(V i, V j) is blue (resp., red).
(3) For any i ∈R (resp., i ∈B), we have dr

i ≤ 3 (resp., db
i ≤ 3).

(4) For any i ∈ [t], we have dr
i ≤ 8 and db

i ≤ 8.
(5) For any i ∈ [t], G[V i] contains neither a red copy of K3 nor a blue copy of K3 .
(6) x2 ≤ 1.

Proof. By the symmetry of red and blue, we will only prove the red case for (1)–(5). Note that if red is one of the last k − s
colors, then Fact 5.3 holds clearly. So we may assume that red is one of the first s colors.

(1) If there exists an i ∈ R such that vi is contained in a red copy of K3 in R , say vi v j v� , then in order to avoid a 
red copy of K4 + e, we have that c(V i ∪ V j ∪ V�, V (G) \ (V i ∪ V j ∪ V�)) is blue. By the minimality of t , we have t = 2, 
contradicting Claim 5.2.

(2) If there exist some i, j ∈R with i = j such that c(V i, V j) is red, then for avoiding a red copy of K4 + e, we have that 
c(V i ∪ V j, V (G) \ (V i ∪ V j)) is blue. By the minimality of t , we have t = 2, contradicting Claim 5.2.

(3) If there exists an i ∈ R such that dr
i ≥ 4, then {v j : j ∈ Nr

i } forms a blue copy of Kdr
i

by (1). In order to avoid a blue 
copy of K4 + e, we have dr

i = 4 and c(
⋃

j∈Nr
i

V j, 
⋃

�∈[t]\Nr
i

V�) is red. By the minimality of t , we have t = 2, contradicting 
Claim 5.2.

(4) Suppose dr
i ≥ 9 for some i ∈ [t]. In order to avoid a red copy of K4 + e, there is no red copy of K3 in R[{v j : j ∈ Nr

i

}]. 
Since R(K3, K4 + e) = 9, there is a blue copy of K4 + e (and thus a blue copy of K3), a contradiction.

(5) Suppose that G[V i] contains a red copy of K3 for some i ∈ [t]. Since dr
i ≥ 1, we may assume that c(V i, V j) is red for 

some j ∈ [t] \ {i}. In order to avoid a red copy of K4 + e, we have that c(V i ∪ V j, V (G) \ (V i ∪ V j)) is blue. By the minimality 
of t , we have t = 2, contradicting Claim 5.2.

(6) If x2 = |R∩B| ≥ 2, then we can derive a contradiction by (2). �
We divide the rest of the proof into two cases according to where red and blue are in the list of colors.

Case 1. Red is among the first s colors and blue is among the last k − s colors.
In this case, there is no red copy of K4 + e and no blue copy of K3 in G . Since R(K4 + e, K3) = 9, we have 4 ≤ t ≤ 8. 

Recall that dr
i ≥ 1 and db

i ≥ 1 for every i ∈ [t]. So there is no blue edge within each V i . Thus |B| = 0, x1 = |R|, x2 = 0 and 
x0 = t − x1. We claim that x1 ≤ 2, since otherwise if |R| ≥ 3, then there is a blue copy of K3 by Fact 5.3 (2).

For each i ∈R, G[V i] contains no red copy of K3 by Fact 5.3 (5). By the induction hypothesis, we have

|V i | ≤ g(k − 1, s − 1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

17(s−1)/2 · 5(k−s)/2, if s − 1 is even (s is odd) and k − s is even,

2 · 17(s−1)/2 · 5(k−s−1)/2, if s − 1 is even (s is odd) and k − s is odd,

8 · 17(s−2)/2 · 5(k−s−1)/2, if s − 1 is odd (s is even) and k − s is odd,

4 · 17(s−2)/2 · 5(k−s)/2, if s − 1 is odd (s is even) and k − s is even,

≤ 1

4
g(k, s).

For each i ∈ [t] \ (R ∪B), by the induction hypothesis, we have
10
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|V i | ≤ g(k − 2, s − 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17(s−1)/2 · 5(k−s−1)/2, if s − 1 is even and k − s − 1 is even

(s is odd and k − s is odd),

2 · 17(s−1)/2 · 5(k−s−2)/2, if s − 1 is even and k − s − 1 is odd

(s is odd and k − s is even),

8 · 17(s−2)/2 · 5(k−s−2)/2, if s − 1 is odd and k − s − 1 is odd

(s is even and k − s is even),

4 · 17(s−2)/2 · 5(k−s−1)/2, if s − 1 is odd and k − s − 1 is even

(s is even and k − s is odd),

≤ 1

8
g(k, s).

Thus n ≤ (x1/4 + x0/8)g(k, s). It suffices to prove that x1/4 + x0/8 ≤ 1. If x1 ≤ 8 − t , then x1/4 + x0/8 = (2x1 + x0)/8 =
(x1 + t)/8 ≤ 1. Thus we may assume x1 ≥ 8 − t + 1. Recall that we have t ≤ 8 and x1 ≤ 2 in this case. So |R| = x1 ≥ 1
and 7 ≤ t ≤ 8. For any i ∈ R, we have dr

i ≤ 2 for avoiding a blue copy of K3 and by Fact 5.3 (1). Thus db
i ≥ 4. Since there 

is no blue copy of K3, we have that {v j : j ∈ Nb
i } forms a red copy of Kdb

i
. Then c(

⋃
j∈Nb

i
V j, 

⋃
�∈[t]\Nb

i
V�) is blue. By the 

minimality of t , we have t = 2, contradicting Claim 5.2.

Case 2. Both red and blue are among the first s colors.

In this case, we have 4 ≤ t ≤ 17 since R(K4 + e, K4 + e) = 18. Moreover, we have s ≥ 2 and thus g(k, s) ≥ 34 (recall that 
k ≥ 3). By the induction hypothesis, for every i ∈ [t] \ (R ∪ B), we have |V i| ≤ g(k − 2, s − 2) = 1

17 g(k, s). For any i ∈ [t], 
G[V i] contains neither a red copy of K3 nor a blue copy of K3 by Fact 5.3 (5). Thus for each i ∈ R ∩ B, by the induction 
hypothesis, we have |V i | ≤ g(k, s − 2) = 5

17 g(k, s). And for each i ∈R �B, we have

|V i | ≤ g(k − 1, s − 2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

17(s−2)/2 · 5(k−s+1)/2, if s − 2 is even and k − s + 1 is even,

2 · 17(s−2)/2 · 5(k−s)/2, if s − 2 is even and k − s + 1 is odd,

8 · 17(s−3)/2 · 5(k−s)/2, if s − 2 is odd and k − s + 1 is odd,

4 · 17(s−3)/2 · 5(k−s+1)/2, if s − 2 is odd and k − s + 1 is even,

≤ 5

34
g(k, s).

Thus n ≤ (5x2/17 + 5x1/34 + x0/17)g(k, s). It suffices to prove that 10x2 + 5x1 + 2x0 = 2t + 8x2 + 3x1 ≤ 34.

Claim 5.4. x2 = 0.

Proof. By Fact 5.3 (6), we have x2 ≤ 1. For a contradiction, suppose R ∩B = {1}. By Fact 5.3 (3), we have dr
1 ≤ 3 and db

1 ≤ 3, 
so t ≤ 7. If t ≤ 5, then 2t + 8x2 + 3x1 ≤ 10 + 8 + 12 ≤ 34. If 6 ≤ t ≤ 7, then we may assume that dr

1 = 3 without loss of 
generality, say Nr

1 = {2, 3, 4}. By Fact 5.3 (1), we have that c(v2 v3) = c(v3 v4) = c(v2 v4) is blue. By Fact 5.3 (1) and (2), we 
have 2, 3, 4 /∈R ∪B. Thus x1 ≤ t − 4, so 2t + 8x2 + 3x1 ≤ 8 + 5t − 12 ≤ 34. �
Claim 5.5. |R| ≤ 3 and |B| ≤ 3. If |R| = 3 (resp., |B| = 3), then |B| ≤ 1 (resp., |R| ≤ 1).

Proof. If |R| ≥ 4 (resp., |B| ≥ 4), then G contains a blue (resp., red) K2,2,2,2 by Fact 5.3 (2). This implies a monochromatic 
copy of K4 + e in G . Thus |R| ≤ 3 and |B| ≤ 3.

If |R| = 3 and 2 ≤ |B| ≤ 3, then R[{vi : i ∈ R}] and R[{vi : i ∈ B}] form a blue clique and a red clique (by Fact 5.3
(2)), respectively. By Fact 5.3 (1), for any i ∈ R (resp., i ∈ B), there is at most one red (resp., blue) edge between vi and 
{v j : j ∈ B} (resp., {v j : j ∈ R}). Thus there are at most |R| + |B| < |R||B| edges between {vi : i ∈ R} and {vi : i ∈ B}, a 
contradiction. Therefore, if |R| = 3, then |B| ≤ 1, and similarly, if |B| = 3, then |R| ≤ 1. �
By Claims 5.4 and 5.5, we have x2 = 0 and x1 = |R| +|B| ≤ 4. If t ≤ 11, then 2t +8x2 +3x1 ≤ 22 +0 +12 = 34. If 13 ≤ t ≤ 17, 
then |R| = |B| = 0 by Fact 5.3 (3) and (4), so 2t + 8x2 + 3x1 ≤ 34 + 0 + 0 = 34. Thus t = 12. We have x1 = |R| + |B| = 4; 
otherwise 2t + 8x2 + 3x1 ≤ 24 + 0 + 9 ≤ 34. Then we further have |R| ≥ 1 and |B| ≥ 1 by Claim 5.5. Without loss of 
generality, let 1 ∈ R, 2 ∈ B and let c(V 1, V 2) be blue. Moreover, by Fact 5.3 (3) and (4), we have dr

1 = 3, db
1 = 8, db

2 = 3 and 
dr

2 = 8. We may further assume that c(V 1, V 3 ∪ V 4 ∪ · · · ∪ V 9) is blue. By Fact 5.3 (1), we have c(V 2, V 3 ∪ V 4 ∪ · · · ∪ V 9) is 
red. Since R(K3, K3) = 6, there is either a red copy of K3 or a blue copy of K3 in R[{v3, v4, . . . , v9}]. Then there is either a 
red copy of K4 + e or a blue copy of K4 + e in G , a contradiction. �
11
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6. Concluding remarks

In Section 3, we studied the maximum number (denoted by fk(n, H)) of edges that are not contained in any rainbow 
triangle or monochromatic copy of H . There we showed that fk(n, H) ≥ t(n, G Rk−1(H ) − 1), where H is the set of homo-
morphic copies of H . Let f ′

k(n, H) be the maximum number of edges not contained in any monochromatic copy of H over 
all Gallai-k-colorings of Kn . Then we clearly have f ′

k(n, H) ≤ fk(n, H). Using the sharpness example constructed in the proof 
of Lemma 3.2 (2), we can also show that f ′

k(n, H) ≥ t(n, G Rk−1(H ) − 1). Thus we have t(n, G Rk−1(H ) − 1) ≤ f ′
k(n, H) ≤

fk(n, H). An interesting and natural question is for which graphs H the equality f ′
k(n, H) = fk(n, H) holds.

Another problem related to Section 3 is to determine the maximum number nimk(n, H) of edges not contained in any 
monochromatic copy of H over all k-edge-colorings of Kn . As remarked in [29], if the Erdős-Sós conjecture holds for a tree T
(i.e., ex(n, T ) ≤ (|V (T )| −2)n/2), then for each n ≥ k2(|V (T )| −1)2 with (|V (T )| −1) | n, we have nimk(n, T ) ≥ (k −1)ex(n, T ). 
In fact, when T is a star, we can prove the above statement for all n ≥ k2(|V (T )| − 1)2. Let H be an n-vertex K1,h-free graph 
with ex(n, K1,h) edges. Note that the maximum degree of H is at most h − 1. For every i ∈ [k − 1], let f i : V (H) → [n] be 
an arbitrary bijection and let Hi be the graph obtained by mapping H on [n] via f i . Let H∗ be the graph with vertex set [n]
and edge set 

⋃
i∈[k−1] E(Hi). Note that �(H∗) ≤ (k − 1)(h − 1). For any vertex u, there is a vertex v that is at distance at 

least three from u in H∗ since n > �(H∗)2 + 1. If there is an edge e incident with u or v such that e ∈ E(Hi) ∩ E(H j) for 
some 1 ≤ i = j ≤ k − 1, then after switching u and v in f i , we claim that there is no edge e′ incident with u or v satisfying 
e′ ∈ E(Hi) ∩ E(H�) for any � ∈ [k − 1] \ {i}. Otherwise, suppose that there is an edge v w ∈ E(Hi) ∩ E(H�) after switching u
and v in f i . This implies that before switching u and v in f i , we have v w ∈ E(H�) and uw ∈ E(Hi). Thus uw v is a path 
of length two in H∗ , contradicting the fact that v is at distance at least three from u. Thus we can repeat this process to 
obtain a graph with no edge e such that e ∈ E(Hi) ∩ E(H j) for some 1 ≤ i = j ≤ k − 1. Hence, we can color Kn with c(e) = i
if e ∈ E(Hi) for each i ∈ [k − 1] and c(e) = k otherwise. Thus nimk(n, K1,h) ≥ ∑

i∈[k−1] |E(Hi)| = (k − 1)ex(n, K1,h).
Moreover, let G be a k-edge-coloring of Kn with nimk(n, K1,h) edges not contained in any monochromatic copy of 

K1,h . For i ∈ [k], let Gi (resp., Gnim
i ) denote the spanning subgraph of G with edge set E(Gi) = {e ∈ E(G) : c(e) = i} (resp., 

E(Gnim
i ) = {e ∈ E(G) : e is not contained in any monochromatic copy of K1,h, c(e) = i}) and let V i = {v ∈ V (G) : dGi (v) ≥

h}. If n > k(h − 1), then 
⋃

i∈[k] V i = V (G), and every vertex of V i is an isolated vertex in Gnim
i for every i ∈ [k]. Since 

ex(n, K1,h) = �(h − 1)n/2	, we have nimk(n, K1,h) = ∑
i∈[k] e(Gnim

i ) ≤ ∑
i∈[k] ex 

(
n − |V i|, K1,h

) ≤ ex 
(∑

i∈[k](n − |V i|), K1,h
) ≤

ex((k − 1)n, K1,h). Note that ex((k − 1)n, K1,h) = (k − 1)ex(n, K1,h) + η, where η = �(k − 1)/2	 if h is even and n is odd, 
and η = 0 otherwise. Therefore, for n ≥ k2h2, if h is even and n is odd, then (k − 1)ex(n, K1,h) ≤ nimk(n K1,h) ≤ (k −
1)ex(n, K1,h) + �(k − 1)/2	, and otherwise, we have nimk(n, K1,h) = (k − 1)ex(n, K1,h). In particular, we have the following 
result in the case k = 2, which partly answers a problem of Keevash and Sudakov [23] in the special case when H is a 
star.

Proposition 6.1. For n sufficiently large, we have nim2(n, K1,h) = ex(n, K1,h).

In Section 4, we studied the minimum number of copies of H over all Gallai-k-colorings of Kn . Given an arbitrary k-
edge-coloring G of Kn , let rk(K3, n) and mk(H, n) be the number of rainbow triangles and monochromatic copies of H in 
G , respectively. It is interesting to consider the behavior of rk(K3, n) + mk(H, n). Clearly if k ≤ 2, then rk(K3, n) + mk(H, n) =
mk(H, n), and if G is rainbow, then rk(K3, n) + mk(H, n) = (n

3

)
. However, the general behavior of rk(K3, n) + mk(H, n) seems 

difficult to determine.
Finally, we pose two conjectures. Note that we have shown that Conjecture 6.2 below holds for the following cases: (1) 

k = 3, (2) k ≥ 3 and n = G Rk(K3), (3) k is odd and G Rk(K3) ≤ n ≤ G Rk(K3) + 5(k−1)/2 − 1.

Conjecture 6.2. For n ≥ G Rk(K3), we write n = 5�(k−1)/2	m + r, where m and r are nonnegative integers with 0 ≤ r ≤ 5�(k−1)/2	 − 1. 
Then

gk(K3,n) =

⎧⎪⎨
⎪⎩

r

(
m + 1

3

)
+

(
5(k−1)/2 − r

)(
m

3

)
, if k is odd,

rM2(K3,m + 1) +
(

5(k−2)/2 − r
)

M2(K3,m), if k is even.

Conjecture 6.3. For integers k ≥ 2, we have fk(n, K3) = t(n, G Rk−1(K3) − 1).

Note. We recently discovered that Theorem 1.7 has been proved by Su and Liu [32] and Zhao and Wei [35] independently.
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