

Vol. 6, No. 2, April 2021, Webpage: http://rheumres.org Email: editor@rheumres.org

ISSN:2476-5856

doi: 10.22631/rr.2021.69997.1117

©2021, Iranian Rheumatology Association

Review Article Open Access

Musculoskeletal Manifestations of COVID-19: A Systematic Search and Review

Moshiur Rahman Khasru,^{1,6} Md Abu Bakar Siddiq,^{2,6} Tangila Marzen,³ Md Mubdiur Rahman,¹ Iffat Islam,¹ Syed Ahmed Refaie,¹ Md Tamjid Ali,¹ ATM Reaz Uddin,¹ Mohammad Hasan,⁴ Radia Naz,⁵ Fariha Haseen,⁴ Syed Shariful Islam,⁴ Daniel Clegg,⁶ Johannes J. Rasker⁷

¹Department of Physical Medicine and Rehabilitation, Bangabandhu Sheikh Mujib Medical University, Dhaka; ²Department of Physical Medicine and Rehabilitation, Brahmanbaria Medical College, Brahmanbaria, Bangladesh; ³Department of Obstetrics and Gynecology, Dhaka Medical College, Dhaka, Bangladesh; ⁴Department of Public Health and Informatics, Bangabandhu Sheikh Kunib Medical University, Dhaka, Bangladesh; ⁵Department of Epidemiology, National Institutute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh; ⁶Department of Rheumatolgy, University of South Wales, United Kingdom; ⁷Department of Psychology, Health & Technology, University of Twente, Enschede, Netherlands.

Coronavirus disease (COVID-19) started its journey around the world from Wuhan, China and gradually became a pandemic. COVID-19 often affects the respiratory system, but symptoms may include fatigue, myalgia, arthralgia, arthritis, and spine and bone pain as presenting complaints. In the present systematic search and review, we aim to highlight the musculoskeletal manifestations during COVID-19.

PubMed Central and Google Scholar search engines were searched for the key words "muscle pain", "joint pain", "body ache", and "fatigue", in Covid-19 patients.

After screening, a total of 76 articles dated between January 1 and July 1, 2020 met the inclusion criteria and were included in the study. All articles were published in English comprising 36,558 COVID-19 cases. In cross-sectional studies, fatigue was found in 55%, myalgia in 26%, and arthralgia in 20% of cases, respectively. In cohort studies, fatigue was found in 35%, myalgia in 15%, and arthralgia in 5%, respectively. Sporadic case reports also mention back pain, bone pain, myositis, and arthritis as presenting symptoms of COVID-19.

Fatigue was the most frequent musculoskeletal (MSK) manifestation of COVID-19 followed by myalgia and joint pain. The frequency of the different MSK manifestations in COVID-19 may vary widely among different geographic regions.

MSK like fatigue, myalgia and arthralgia are frequent symptoms in COVID-19 patients and may vary in different countries.

Keywords: COVID-19, MSK symptoms, fatigue, myalgia, arthralgia, systematic review

Introduction

In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronavirus 2 (SARS-CoV-2) began at Wuhan, China and was declared a threatening global pandemic by the World Health Organization on 11 March 2020 [1]. As of 10 April 2021, more than 134 million people have been affected by this SARS-CoV-2 infection, and more than 2.9 million people have died due to Covid-19 [2]. The mortality of this pandemic disease ranges between 0.4% and 7%, mostly from respiratory failure, sepsis, and coagulopathy [3]. However, the complete course of the disease is not yet understood [4]. According to Yang et al., SARS-CoV- 2 is transmitted from human to human at an estimated rate of transmission of 3.77 [5]. The incubation period of COVID-19 generally ranges between 1 to 14 days (median 5.1 days) [6]. Individuals with COVID-19 may present with a wide

range of symptoms such as fever, cough, nausea, vomiting, dyspnea, myalgia, fatigue, arthralgia, headache, diarrhea, and rarely arthritis [7]. Cohort studies in the United Kingdom [8] found clusters of symptoms on admission into hospital with COVID-19. The most common symptom cluster encompassed respiratory problems including cough, sputum, shortness of breath, and fever. Three other observed, have been clusters comprising musculoskeletal cluster symptoms of myalgia, joint pain, headache, and fatigue; (ii) Enteric cluster symptoms of abdominal pain, vomiting, and diarrhea; and (iii) mucocutaneous cluster, which is less common [8]. Chen et al. investigated 99 patients with SARS-C0V-2 infection at Wuhan, China, and found 51% of patients had pre-existing chronic diseases such as (i) cardiovascular and cerebrovascular diseases, (ii) endocrine system disease,

(iii) digestive system disease, (iv) airway diseases, (v) malignancies, and (vi) neurological diseases. In this epidemiological study, fever (83%) and cough (82%) were the most frequent presenting symptoms, followed by shortness of breath (31%), muscle ache (11%), fatigue (9%), headache (8%), sore throat (5%), rhinorrhea (4%), chest pain (2%), diarrhea (2%), and nausea and vomiting (1%) [9]. Myalgia and body ache are also common symptoms in patients with viral infections such as dengue and influenza [10]. Myalgia reflects generalized inflammation and cytokine response and can be the main symptom at onset in 36% of patients with COVID-19 [10]. Myalgia and fatigue in patients with COVID-19 may persist for a longer period than in other viral infections and may be unresponsive to conventional painkillers [11]. According to Kucuk et al., muscle pain may be associated with virus load [11]. An acute flare of inflammatory joint diseases, such as rheumatoid arthritis, lupus, ankylosing spondylitis, Sjogren's syndrome, polymyalgia rheumatic, and juvenile idiopathic arthritis, has been observed among hospitalized COVID-19 patients [12]. The neurological system [13] and the heart [14] may also be involved in COVID-19.

Muscle injury was found in 4.8-19.3% of patients with COVID-19 having myalgia with increased serum creatinine kinase (CK) > 200 U/L [15]. To the best of our knowledge, the only review article on the musculoskeletal manifestation of COVID-19 was published by Cipollaro et al., who categorized musculoskeletal manifestations into fatigue and arthralgia/myalgia [16]. These symptoms were mainly attributed to inflammation and immune response and associated with inflammatory and infection-related parameters such as Interleukin-6, Pro-calcitonin, and C reactive protein [16]. Cipollaro et al. hypothesized that the endothelium or the peripheral nerves can be damaged directly by the virus [16].

The current study purposed to review the musculoskeletal (MSK) manifestations of COVID-19 in order to aid physicians in recognizing the condition.

Materials and Methods

In this systematic search and review, studies published in English between January 1 and July 1, 2020 documenting MSK features of COVID-19 were enrolled for retrospective analysis. Medline (PubMed) and Google Scholar search engines were used to acquire relevant articles using the following keywords: "COVID-19" or "coronavirus" or "SARSCov2" and "myalgia", "muscle pain", "joint pain", "body ache", and "fatigue", and were used for the population (MSK problem in COVID-19), intervention, comparison (exposed to COVID-19), and outcome (PICO) model (Table 1). Boolean Logic (AND, OR, and NOT) was employed to generate different

combinations of search strings. Three researchers (KMR, RSA, and AMT) carefully studied every article and collected the information on a prefabricated data sheet. Insight regarding the treatment of these MSK features has not been provided. PRISMA [17] was used to show how articles were selected. This review is not registered with any international database. Microsoft Excel-16 was used for data screening and extraction. Articles other than English and review articles were excluded. A flowchart (Figure 1) summarizes the systematic search and review. A standard template was developed to capture relevant traits of the review objective, such as (i) author(s) information, (ii) publication year, (ii) study design, (iv) effect size (if any), (v) gender, (vi) MSK symptoms, and (vii) study locations. Study types such as cross-sectional, casecontrol, case report and case series describing MSK manifestations were included, but correspondence, letters to the editors, expert opinions, and editorials were excluded. It can be difficult to differentiate some musculoskeletal complaints from that of neurological symptoms, but only MSK features of COVID-19 were included in this study.

Quality assessment and data synthesis

Two reviewers (KMR and HM) independently assessed the quality of the studies using as standard guidelines "The Quality Assessment Tools for Quantitative Studies" developed by the Effective Public Health Practice Project [18] (EPHPP). Any disagreements between these two reviewers were resolved by discussion and with the involvement of another reviewer (HF). The Critical Appraisal Skills Program (CASP) checklist [19] was not used in the current review, because no randomized clinical trials were found. Moreover, systematic reviews were excluded in accordance with the inclusion criteria.

Quantitative variables were measures like frequency, and percentage. Confidence Interval (CI) values were also measured at 95%. The extracted data was analyzed, and the overall proportion was pooled for each MSK symptom.

Results_

The reviewers' tried to address the objective of this review; however, no randomized clinical trial nor epidemiological study was found specifically reporting musculoskeletal manifestations of COVID-19 in detail within the study period.

A total of 1623 articles were found when searching with the keywords, but only 76 of these [3, 8, 9, 15, 20-91] met the inclusion criteria (Figure 1). The majority (59 out of 76) of the included studies were cross-sectional type. There were also 5 cohort studies, 4 case series, and 8 case reports (Table 1). The reviewers rated all the included 76 studies [3, 8, 9, 15, 20-91] as 'weak' in quality assessment score (Table S1).

PRISMA Flow Diagram

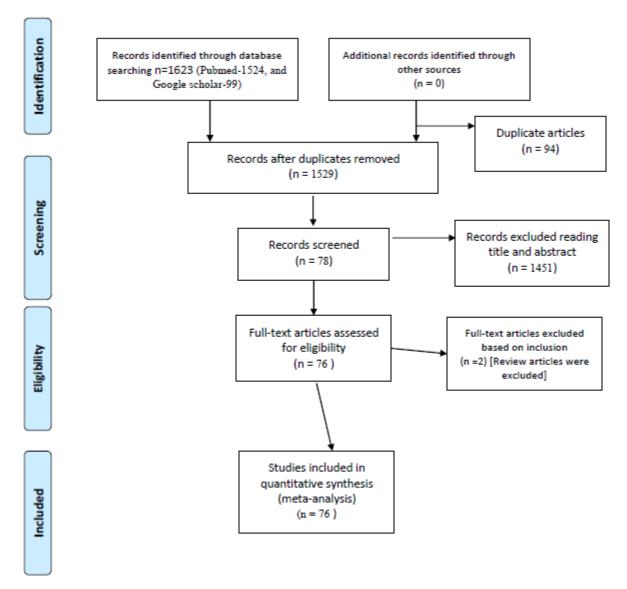


Figure 1. PRISMA flow diagram for the inclusion of articles in this review.

Table 1. Study design, year of publication, sample size, median age, and gender distribution reported in included articles

Articles	Country	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Female n (%)			
Docherty et al. [8]	UK	Prospective cohort study	2020	20,133	73	12,068 (60)	8065 (40)
Liang et al. [23]	China	Cross-sectional study	2020	1590	48.9	904 (56.8)	686 (43.2)
Lapostolle et al. [22]	France	Cross-sectional study	2020	1487	44	699 (47)	788 (53)
Guan et al. [36]	China	Cross-sectional study	2020	1099	47	640 (58.3)	459 (41.7)
Wang et al. [41]	China	Cross-sectional study	2020	1012	50	524 (51.8)	488 (48.2)
Lian et al. [44]	China	Cross-sectional study	2020	788	41	407 (51.6)	381 (48.4)
Zhang et al. [49]	China	Retrospective cohort	2020	663	55	321 (48.4)	342 (51.6)

Articles	Country	Study design	Year	Sample total (N)	Median age	Male n (%)	Female n (%)
Li et al. [38]	China	Case series	2020	655	43	367 (56)	288 (44)
Jin et al. [50]	China	Cross-sectional study	2020	652	46	331 (50.7)	246 (49.3)
Zhang et al. [43]	China	Cross-sectional study	2020	645	46	328 (50.9)	317 (49.1)
Li et al. [51]	China	Cross-sectional study	2020	548	60	279 (51)	269 (49)
Feng et al. [52]	China	Cross-sectional study	2020	476	53	271 (56.9)	205 (43.1)
Lechien et al. [24]	Europe	Cross-sectional study	2020	417	36	154 (36.9)	263 (63.7)
Goyal et al. [21]	USA	Cross-sectional study	2020	393	62.2	238 (60.6)	155 (39.4)
Gayam et al. [20]	USA	Retrospective cohort	2020	350	57		
Wang et al. [28]	China	Cross-sectional study	2020	339	71	166 (49)	173 (51)
Graef et al. [37]	Spain	Case series	2020	306			
Cai et al. [53]	China	Cross-sectional study	2020	298	47	145 (48.6)	153 (51.3)
Chen et al. [54]	China	Cross-sectional study	2020	274	62	171 (62.4)	103 (37.6)
Tian et al. [55]	China	Cross-sectional study	2020	262	47	127 (49.5)	135 (51.5)
Chen et al. [56]	China	Cross-sectional study	2020	249	51	126 (50.6)	123 (49.4)
Xiong et al. [57]	China	Cross-sectional study	2020	244	42	120 (49.2)	124 (50.8)
Dai et al. [45]	China	Cross-sectional study	2020	234	44.6	136 (58.1)	98 (41.9)
Mao et al. [15]	China	Cross-sectional study	2020	214	58.7	87 (40.7)	127 (59.3)
Chen et al. [35]	China	Cross-sectional study	2020	203	54	108 (53.2)	95 (46.8)
Wu et al. [58]	China	Cross-sectional study	2020	201	51	128 (63.7)	73 (36.3)
Zhou et al.[3]	China	Retrospective cohort	2020	191	56	119 (62)	72 (38)
Zheng et al. [32]	China	Cross-sectional study	2020	161	45	80 (49.7)	81 (50.3)
Mo et al. [33]	China	Cross-sectional study	2020	155	54	86 (55.5)	69 (44.5)
Zhang et al. [42]	China	Cross-sectional study	2020	140	57	71 (50.7)	69 (49.3)
Liu et al. [59]	China	Cross-sectional study	2020	137	57	61 (44.5)	76 (55.5)
Wan et al. [60]	China	Cross-sectional study	2020	135	47	72 (53.3)	63 (46.6)
Lei et al. [31]	China	Cross-sectional study	2020	119	49	77 (64.7)	42 (35.3)
Chen et al. [46]	China	Cross-sectional study	2020	118	31	0	118 (100)
Cao et al. [61]	China	Cross-sectional study	2020	102	54	53 (52)	49 (48)
Lovell et al. [27]	UK	Case series	2020	101	82	64 (63.4)	37 (36.6)
Zhao et al. [62]	China	Cross-sectional study	2020	101	44	56 (55.5)	45 (44.5)
MaChen et al. [9]	China	Cross-sectional study	2020	99	55	67 (67.6)	32 (32.3)
Zheng et al. [63]	China	Cross-sectional study	2020	99	49	51 (51.5)	48 (48.5)
Qian et al. [64]	China	Cross-sectional study	2020	91	50	37 (40.7)	54 (59.3)

Articles	Country	Study design	Year	Sample total (N)	Median age	Male n (%)	Female n (%)
Xu et al. [65]	China	Cross-sectional study	2020	90	50	39 (43.3)	51 (56.7)
Xu et al. [66]	China	Cross-sectional study	2020	90	50	39 (43.3)	51 (56.7)
Du et al. [67]	China	Cross-sectional study	2020	85	65.8	62 (72.9)	23 (27.1)
Qi et al. [68]	China	Cross-sectional study	2020	70	39.8	39 (55.7)	31 (44.3)
Wang et al. [25]	China	Cross-sectional study	2020	69	39	32 (46.5)	37 (53.5)
Xu et al. [69]	China	Cross-sectional study	2020	62	39	35 (56)	27 (46)
Helms et al. [47]	France	Cross-sectional study	2020	58	63		
Chu et al. [70]	China	Cross-sectional study	2020	54	39	36 (66.7)	18 (33.3)
Yang et al. [91]	China	Cross-sectional study	2020	52	59.7	35 (67)	17 (33)
Xu et al. [71]	China	Cross-sectional study	2020	50	39	29 (58)	21 (42)
Huang et al. [72]	China	Cross-sectional study	2020	41	39	30 (73)	11 (27)
Joob and Wiwanitkit [39]	Thailand	Cross-sectional study	2020	40			
Ma et al. [73]	China	Cross-sectional study	2020	37	39	20 (54.1)	17 (45.9)
Huang et al. [74]	China	Cross-sectional study	2020	34	39	14 (41.2)	20 (58.8)
Lei et al. [34]	China	Retrospective cohort	2020	34	39	14 (41.2)	20 (58.8)
Zhang et al. [75]	China	Cross-sectional study	2020	28	39	17 (60.7)	11 (39.3)
Li et al. [76]	China	Cross-sectional study	2020	25	39	10 (40)	15 (60)
Huang et al. [40]	China	Cross-sectional study	2020	22	39	6 (27.3)	16 (72.7)
Zhou et al. [77]	China	Cross-sectional study	2020	21	39	13 (61.9)	8 (38.1)
Xia et al. [78]	China	Cross-sectional study	2020	20	39	13 (65)	7 (35)
Godaert et al. [79]	France	Cross-sectional study	2020	17	39	8 (47.1)	9 (52.9)
Pung et al. [80]	Singapore	Cross-sectional study	2020	17	39	7 (41.2)	10 (58.2)
Escalera-Antezana et al. [81]	Bolivia	Cross-sectional study	2020	12	39	6 (50)	6 (50)
Dong et al. [82]	China	Cross-sectional study	2020	11	39	5 (45.5)	6 (54.5)
Lo et al. [83]	China	Cross-sectional study	2020	10	39	3 (30)	7 (70)
Xia et al. [84]	China	Cross-sectional study	2020	10	56.5	6 (60)	4 (40)
Ye et al. [85]	China	Cross-sectional study	2020	5	39	2 (40)	3 (60)
Toscano et al. [48]	Italy	Case series	2020	5	61	4 (75)	1 (25)
Zhu et al. [86]	China	Case report	2020	1	39	1 (100)	0
Zhang et al. [26]	USA	Case report	2020	1	39	1 (100)	0
Song et al. [29]	South Korea	Case report	2020	1	39	0	1 (100)
Kenanidis et al. [87]	Greece	Case report	2020	1	39	0	1 (100)
Sinha et al. [88]	USA	Case report	2020	1	39	1 (100)	0 (0)

Articles	Country	Study design	Year	Sample total (N)	Median age	Male n (%)	Female n (%)
Taşkın et al. [89]	Turkey	Case report	2020	1	39	0 (0)	1 (100)
Moeinzadeh et al. [90]	Iran	Case report	2020	1	39	1 (100)	0 (0)
Beydon et al. [30]	France	Case report	2020	1	25	1 (100)	0
Total 76				36,558		20,268 (55.4)	15,461 (42.3)

A total of 36,558 COVID-19 patients were described in these 76 studies, of whom 55.4% were male; for 2.4% of the patients, no gender had been mentioned (<u>Table 1</u>).

The majority of the 76 included studies were from China (Table 1). By far, the largest single study of COVID-19 patients (n=20,133) came from the UK cohort which reported fatigue, muscle aches, and joint pain at approximate frequencies of 35%, 15%, and 5%, respectively, as the presenting complaint (Docherty et al.) [8]. Seven additional articles from Europe [24, 30, 37, 47, 48, 79, 80, 87] and 3 from the USA [20, 21, 26] were also included. A study in Belgium with 417 (263 females) COVID-19 patients reported arthralgia in 32% and myalgia in 58% of the cases [24]. In one French study, MRI delineated myositis was described in an early COVID-19 patient [30]. COVID-19 MSK features had also been

documented in Singapore [80], Thailand [39], Bolivia [81], South Korea [29], and Turkey [89], and these countries each contributed one article. Evidence shows that fatigue, myalgia/body ache, and arthralgia are the most prevalent musculoskeletal symptoms in COVID-19. Sporadic case reports also mentioned back pain, bone pain, myositis, and arthritis as the presenting complaints of COVID-19 (Table 7). One study from Iran reported myopathy, myalgia, and arthralgia in COVID-19 patients complicated by glomerulonephritis [90].

Overall findings

All articles together comprised in total 36,561 COVID-19 cases. Fatigue was found in 55%, myalgia in 26%, and arthralgia in 20% of cases (<u>Tables 2</u>, <u>5</u>, and <u>6</u>) in cross-sectional studies. In cohort studies, fatigue was found in 35%, myalgia in 15%, and arthralgia in 5% of cases (<u>Table 3</u>).

Table 2. Fatigue as a manifestation in COVID-19 in cross-sectional studies

A ==41- = ==(=)	1 7	C	T	D	95	% CI
Author(s)	Year	Sample total	Frequency	Proportion	Upper limit	Lower limit
Liang et al. [23]	2020	1590	681	0.43	0.4	0.45
Lapostolle et al. [22]	2020	1487	886	0.6	0.57	0.62
Guan et al. [36]	2020	1099	419	0.38	0.35	0.41
Wang et al. [41]	2020	1012	419	0.41	0.38	0.45
Lian et al. [44]	2020	788	139	0.18	0.15	0.2
Jin et al. [50]	2020	652	23	0.04	0.02	0.05
Zhang et al. [43]	2020	645	118	0.18	0.15	0.21
Li et al. [51]	2020	548	258	0.47	0.43	0.51
Lechien et al. [24]	2020	417	129	0.31	0.27	0.36
Wang et al. [28]	2020	339	135	0.4	0.35	0.45
Cai et al. [53]	2020	298	13	0.04	0.02	0.07
Chen et al. [54]	2020	274	137	0.5	0.44	0.56
Tian et al. [55]	2020	262	69	0.26	0.21	0.32
Chen et al. [56]	2020	249	39	0.16	0.10	0.24

A 17 ()	• • •	G 1 1	_	- ·	95	% CI
Author(s)	Year	Sample total	Frequency	Proportion	Upper limit	Lower limit
Dai et al. [45]	2020	234	31	0.13	0.09	0.18
Chen et al. [35]	2020	203	16	0.08	0.05	0.12
Wu et al. [58]	2020	201	65	0.32	0.26	0.39
Zheng et al. [32]	2020	161	64	0.4	0.32	0.48
Mo et al. [33]	2020	155	113	0.73	0.65	0.8
Zhang et al. [42]	2020	140	105	0.75	0.67	0.82
Liu et al. [59]	2020	137	44	0.32	0.24	0.41
Chen et al. [46]	2020	118	19	0.16	0.11	0.21
Cao et al. [61]	2020	102	56	0.55	0.45	0.65
Zheng et al. [63]	2020	99	72	0.73	0.63	0.81
Qian et al. [64]	2020	91	40	0.44	0.34	0.55
Xu et al. [65]	2020	90	2	0.02	0.00	0.08
Xu et al. [66]	2020	90	19	0.21	0.13	0.31
Du et al. [67]	2020	85	50	0.59	0.48	0.69
Wang et al. [25]	2020	69	29	0.42	0.3	0.55
Chu et al. [69]	2020	54	9	0.17	0.08	0.29
Xu et al. [71]	2020	50	8	0.16	0.07	0.29
Huang et al. [72]	2020	41	18	0.44	0.28	0.6
Ma et al. [73]	2020	37	4	0.11	0.03	0.25
Huang et al. [74]	2020	34	22	0.65	0.46	0.8
Zhang et al. [75]	2020	28	18	0.64	0.44	0.81
Li et al. [76]	2020	25	17	0.68	0.46	0.85
Huang et al. [40]	2020	22	5	0.23	0.08	0.45
Zhou et al. [77]	2020	21	5	0.24	0.08	0.47
Xia et al. [78]	2020	20	1	0.05	0.00	0.25
Godaert et al. [79]	2020	17	10	0.59	0.33	0.82
Dong et al. [82]	2020	11	2	0.18	0.02	0.52
Xia et al. [84]	2020	10	3	0.3	0.07	0.65
Ye et al. [85]	2020	5	5	1.00	0.48	1.00
Total 43		Overall Positi	vity	0.55	0.29	0.67

Table 3. Fatigue, myalgia, and arthralgia as symptoms in COVID-19 in cohort studies

A mallo o m(a)	Vasu	Commis total	E	Duon oution	95% CI		
Author(s)	Year	Sample total	Frequency	Proportion	Lower limit	Upper limit	
			Fatigue				
Docherty et al. [8]	2020	20,133	7052	0.35	0.34	0.36	
Zhang et al. [49]	2020	663	208	0.31	0.28	0.35	
Gayam et al. [20]	2020	350	292	0.83	0.79	0.87	
Zhou et al. [3]	2020	191	44	0.23	0.17	0.3	
Lei et al. [34]	2020	34	25	0.74	0.56	0.87	
Total 5		Overall Positi	vity	0.36	0.21	0.49	
			Myalgia				
Docherty et al. [8]	2020	20133	3020	0.15	0.15	0.16	
Zhang et al. [49]	2020	663	63	0.1	0.07	0.12	
Gayam et al. [20]	2020	393	94	0.24	0.22	0.32	
Lei et al. [34]	2020	34	22	0.65	0.46	0.8	
Total 4		Overall positi	vity	0.15	0.11	0.53	
			Arthralgia				
Docherty et al. [8]	2020	20,133	1007	0.05	0.05	0.05	
Total 1		Overall Positi	vity	0.05	0.05	0.05	

Fatigue and Weakness

The overall prevalence of fatigue in cross-sectional studies was 55% [95% CI, 0.29-0.67] [Table 2]. The overall positivity for fatigue in cohorts was 36% [95% CI, 0.21-0.49] (Table 3). However, the overall positivity for fatigue in case series was 25% [95% CI, 0.22-.28] (Table 4). The frequency of fatigue varied widely between 4% and 68%, and between 23% and 83% in cross-sectional and cohort studies, respectively (Tables 2, 3).

Myalgia, myositis

The frequency of myalgia varied widely among the studies, e.g., between 5% and 63%, and 10% and 65% in crosssectional and cohort studies, respectively (Tables 5, 6). The overall positivity for myalgia in cross-sectional, cohort, and case series studies with COVID-19 was 26% [95% CI, 0.17-0.61] [Table 5], 15% [95% CI, 0.11-0.53] (Table 3), and 40% [95% CI, 0.03-.83] (Table 4), respectively. In a cross-sectional study among US citizens with COVID-19, Goyal et al. [21] enumerated myalgia in about 63% of cases. In another multicenter retrospective study with 1,487 COVID-19, Lapostolle et al. documented myalgia in 57% of the patients [22]. Lechien et al. found 13% among 417 patients presenting with myalgia [24]. Wang et al. [28] found that about 5% of cases presented with myalgia in their cross-sectional studies among an elderly Chinese population; Dai et al. [45] reported a similar frequency of myalgia in their study among a general Chinese population. Docherty et al. (2020) mentioned that approximately 15% of patients manifested myalgia in their prospective cohort study which included 20,133 SARS-CoV-2 cases [8]. Gayam et al. reported that about 1 in every 4 (~24%) COVID-19 patients reported myalgia among New York City dwellers [20]. Moreover, Lei et al. reported a frequency of myalgia in 65% cases of their cohort in China [34]. Zhang et al. [49], however, reported myalgia in only 10% of their cohort. Lovelli et al. reported myalgia in 35% in their case series [27]. Song et al. [29] reported raised muscle enzyme (creatinine kinase [CK] 42,670 U/L) in a patient with COVID-19 with coexisting rheumatoid arthritis. Zhang et al. reported muscle injury, evident by raised muscle enzyme CK at 42,670 unit per liter [26], and Beydon et al. described increased serum creatinine kinase concentration in a COVID-19 patient [30]. Myalgia was not reported by Guan et al. in their cross-sectional study, but 13.7% of the respondents had an elevated CK level at an average of 90 U/L [36]. Lei et al. [31] and Zheng et al. [32] also reported mild to moderately raised muscle enzymes in their retrospective studies.

In a 61- year- old woman, COVID-19 was described with myalgia, fever, fatigue, subcutaneous nodules, aphthous ulceration, and arthralgia. Histopathology of a skin biopsy unveiled diffuse neutrophilic infiltration in the upper dermis and vascular proliferation with swollen endothelial cells and extravasated erythrocytes; in the lower dermis and at the periphery of the lobules of subcutaneous fat

tissue, small granulomas were found composed of epithelioid histiocytes, multinuclear giant cells infiltrated with histocytes, lymphocytes, and sparse neutrophils, all favoring erythema nodosum- like Sweet's syndrome [89]. Zhang et al. documented muscle pain in 14.3% of cancer cases infected with COVID-19 [75]. MRI-documented myositis (external obturator muscle and quadricipital) has also been documented in COVID-19 patients [30]. One patient initially reported diffuse myalgia and proximal lower limb muscle weakness (on MRC bilateral hip flexors, strength was 3/5) with a history of frequent falls, before developing fever and respiratory symptoms and signs (ground-glass opacity on CT chest). He had elevated

serum creatinine kinase, C reactive protein, and lymphocytopenia [30]. Sporadic rhabdomyolysis had also been reported; for example, Guan et al. reported two cases of rhabdomyolysis in COVID-19 patients [36]. One study showed a statistical association between elevated CK levels and mortality [3]. As in autoimmune myositis, COVID-19 myositis may be linked with myocarditis and may lead to mortality. Studies have reported elevations in N-terminal pro-brain natriuretic peptide and troponin in myocarditis [92]. Lovell et al. described bone pain as a manifesting symptom in about 23% of COVID-19 cases in the UK [27].

Table 4. Fatigue, myalgia, and arthralgia as symptoms in case series studies in COVID-19

Author(s)	Year	Sample	Frequency	Proportion	At 95% CI		
Author (s)	Icai	total	Frequency	1 Topol tion	Lower limit	Upper limit	
			Fatigue				
Li et al. [38]	2020	655	184	0.28	0.25	0.32	
Lovell et al. [27]	2020	101	9	0.09	0.04	0.16	
Total 2	(Overall positiv	ity	0.25	0.22	0.28	
			Myalgia				
Graef et al. [37]	2020	306	233	0.76	0.71	0.81	
Li et al. [38]	2020	655	78	0.12	0.1	0.15	
Lovell et al. [27]	2020	101	35	0.35	0.25	0.45	
Total 3	(Overall positiv	ity	0.4	0.03	0.85	
		I	Arthralgia				
Graef et al. [37]	2020	306	4	0.01	0.0	0.03	
Li et al. [38]	2020	655	78	0.12	0.1	0.15	
Total 2	(Overall positiv	ity	0.07	0.06	0.09	

Table 5. Myalgia as a manifestation in COVID-19 in cross-sectional studies

			_		95% CI	
Author(s)	Year	Sample Total	Frequency	Proportion -	Lower limit	Upper limit
Lapostolle et al. [22]	2020	1487	845	0.57	0.54	0.59
Wang et al. [41]	2020	1012	170	0.17	0.09	0.28
Lian et al. [44]	2020	788	91	0.12	0.09	0.14
Zhang et al. [43]	2020	645	71	0.11	0.09	0.14
Li et al. [51]	2020	548	66	0.12	0.09	0.15
Feng et al. [52]	2020	476	111	0.23	0.2	0.27
Lechien et al. [24]	2020	417	55	0.13	0.1	0.17

Goyal et al. [21]	2020	393	246	0.63	0.58	0.67
Wang et al. [28]	2020	339	16	0.05	0.03	0.08
Cai et al. [53]	2020	298	81	0.27	0.22	0.33
Tian et al. [55]	2020	262	60	0.23	0.18	0.28
Dai et al. [45]	2020	234	11	0.05	0.02	0.08
Mao et al. [15]	2020	214	23	0.11	0.07	0.16
Chen et al. [35]	2020	203	21	0.1	0.07	0.15
Wu et al. [58]	2020	201	54	0.27	0.21	0.34
Zheng et al. [32]	2020	161	29	0.18	0.12	0.25
Mo et al. [33]	2020	155	95	0.61	0.53	0.69
Wan et al. [60]	2020	135	44	0.33	0.25	0.41
Lei et al. [31]	2020	119	44	0.37	0.28	0.46
Chen et al. [46]	2020	118	18	0.15	0.09	0.23
MaChen et al. [9]	2020	99	17	0.17	0.1	0.26
Zheng et al. [63]	2020	99	11	0.11	0.06	0.19
Qian et al. [64]	2020	91	12	0.13	0.07	0.22
Xu et al. [65]	2020	90	5	0.06	0.02	0.12
Xu et al.[66]	2020	90	8	0.09	0.04	0.17
Du et al. [67]	2020	85	25	0.29	0.2	0.4
Qi et al. [68]	2020	70	19	0.27	0.17	0.39
Wang et al. [25]	2020	69	12	0.17	0.15	0.19
Xu et al. [69]	2020	62	21	0.34	0.22	0.47
Chu et al. [70]	2020	54	32	0.59	0.45	0.72
Yang et al. [91]	2020	52	3	0.06	0.01	0.16
Xu et al. [71]	2020	50	6	0.12	0.05	0.24
Huang et al. [72]	2020	41	8	0.2	0.00	0.35
Joob and Wiwanitkit [39]	2020	40	18	0.45	0.29	0.62
Huang et al. [74]	2020	34	4	0.12	0.03	0.27
Zhang et al. [75]	2020	28	11	0.39	0.22	0.59

Total 43		Overall posit	tivity	0.26	0.17	0.61
Xia et al. [84]	2020	10	3	0.3	0.07	0.65
Lo et al. [83]	2020	10	1	0.1	0	0.45
Dong et al. [82]	2020	11	5	0.45	0.17	0.77
Escalera-Antezana et al. [81]	2020	12	5	0.42	0.15	0.72
Godaert et al. [79]	2020	17	1	0.06	0	0.29
Xia et al. [78]	2020	20	2	0.1	0.01	0.32
Zhou et al. [77]	2020	21	4	0.19	0.05	0.42

Table 6. Arthralgia as a manifestation in Covid-19 in cross-sectional studies

					95% CI	
Author(s)	Year	Sample total	Frequency	Proportion	Lower limit	Upper limit
Guan et al. [36]	2020	1099	164	0.15	0.13	0.17
Chen et al. [35]	2020	203	54	0.27	0.21	0.33
Mo et al. [33]	2020	155	95	0.61	0.53	0.69
Yang et al. [91]	2020	52	1	0.02	0.00	0.1
Joob and Wiwanitkit [39]	2020	40	1	0.03	0.00	0.13
Total 5		Overall positivity	y	0.20	0.09	0.35

Table 7. Predominant presentation among case reports

Author/s	Year	Predominant clinical features	Age	Gender
Zhu et al. [86]	2020	Arthralgia	39	Male
Zhang et al. [26]	2020	Myalgia and fatigue	39	Male
Song et al. [29]	2020	Myalgia, myositis, and arthralgia	39	Female
Kenanidis et al. [87]	2020	Myalgia, arthralgia, and fatigue	39	Female
Sinha et al. [88]	2020	Back pain and myalgia	39	Male
Taşkın et al. [89]	2020	Bone pain, arthralgia, and back pain	39	Female
Moeinzadeh et al. [90]	2020	Myalgia, arthralgia, and fatigue	39	Male
Beydon et al. [30]	2020	Myalgia, myositis, and fatigue	25	Male

Arthralgia

Arthralgia is less frequently seen in COVID-19 than myalgia [93]. The overall positivity for arthralgia is 20%

[95% CI, 0.09-0.35] in cross-sectional studies (<u>Table 6</u>) and 5% [95% CI, 0.05-0.05] in cohort studies (<u>Table 3</u>). However, the overall positivity for arthralgia in case series

is 7% [95% CI, 0.06- 0.09] (Table 4). Mo et al. reported 61% of their cases (n=155) in China manifested with arthralgia [33]. Chen et al. also reported arthralgia in about 27% of their study participants (n=203) in China [35]. Furthermore, Guan et al. reported that about 15% (164 out of 1099) participants in China developed arthralgia [36]. However, Docherty et al. reported that approximately 5% of cases manifested with joint pain among 20,133 COVID-19 patients in a UK cohort [8]. Graef et al. reported arthralgia in about one percent of COVID-19 patients (4 out of 306) in Spain in their case series [37]. Li et al. reported 78 out of 655 (~12%) respondents in their case series in China developed arthralgia [38].

Arthritis

About 3% of Thai patients manifested with arthritis [39]. Overt arthritis was otherwise not mentioned in the reviewed articles.

Low back pain (LBP)

Based on the emergency and out-patient data from 4 hospitals in Milan, the number of cases of acute LBP during the period from March 8, 2020 to April 8, 2020 was reduced to one-sixth of that during the same period in 2019. This may be ascribed to a reduction in traumatic cases owing to the lockdown and the reduced movement of people [94]. Huang et al. reported back pain as a presenting manifestation in 4.5% (1 out of 22) of their COVID-19 cases [40]. Sporadic case reports (Table 7) have mentioned LBP as the presenting symptom in COVID-19 [88, 89]; however, they could not classify whether the symptoms were due to involvement of the spine and/or due to the paraspinal soft tissues. Patients with LBP during COVID-19 underwent an MR of the lumbar spine, which revealed intramuscular edema (multifidua and erector spinae) in association with raised CRP, ESP, creatinine kinase, and Ddimer levels [95]. MRI-evidenced paraspinal myositis features were absent at the cervical and dorsal spine levels. Here, alongside muscular viral load, an immune-mediated parainfectious inflammatory response or adverse effects of drug- or critical illness-associated myopathy could be the explanation [95].

Mortality of COVID-19 cases with musculoskeletal manifestations

The rate of mortality of COVID-19 patients with musculoskeletal presentations has not been documented; however, patients with myositis associated with COVID-19 may have a prolonged hospital stay, increased disease severity, and mortality [30, 95]. There is yet more to learn about mortality in cases of COVID-19 with musculoskeletal manifestations.

Discussion

Fatigue and weakness are the most frequently seen nonspecific non-respiratory manifestations of COVID-19. The overall prevalence of fatigue in cross-sectional studies was 55% [95% CI, 0.29-0.67] [Table 2]. The overall

positivity for fatigue in cohorts was 35% [95% CI, 0.21-0.49] (<u>Table 3</u>). However, the overall positivity for fatigue in case series is 25% [95% CI, 0.22-0.28] (<u>Table 4</u>).

The prevalence of fatigue differs between countries. In the USA, fatigue was seen in 83.3% of COVID-19 patients [20], and in the UK, more than 35% of patients presented with fatigue and weakness [8]. In China, about 40% of respondents manifested with fatigue and weakness [23, 36, 41], while in France, 60% of COVID-19 patients presented with fatigue and weakness [22]. A multi-center European study found more than 30% of COVID-19 patients complained of fatigue [24]. Mo et al. and Zhang et al. reported fatigue in about three in every four (73.2% and 75%, respectively) patients [33, 42] in their series. However, less than 20% of patients reported fatigue in some other Chinese studies [43-46]. Cytokine storm with increased serum concentrations of both proinflammatory cytokines and anti-inflammatory cytokines including IL-2R, IL-6, TNF $-\alpha$ and IL-10 may be responsible for the fatigue [96,97]. Moreover, psychological morbidity and anxiety may also be responsible for fatigue in patients with COVID-19 [98, 99]. This virus is not merely an episode of illness for the infected individual, but a life-changing disastrous experience which not only impairs physical wellbeing, but also mental health [99]. A systematic review and meta-analysis done by Ciaffi et al. reported fatigue as an initial manifestation in 31.7% of cases, and the estimated prevalence of fatigue was 35.6% (95% CI 0.297-0.420) [100], which is comparable with the overall frequency of fatigue reported in the current review.

Bone and muscle manifestations

Myalgia is the second most frequent non-respiratory presentation in COVID-19. It may be due to increased lactate dehydrogenase (LDH) in muscle injury and tissue damage [11]. Increased LDH in association with anaerobic glycolysis leads to increased lactate levels in both the damaged muscle and the serum. Muscle pain may increase further due to increased lactate levels with cytosolic low pH and oxygen levels. Hence, improvement of hypoxia by reducing virus load and increasing erythrocytes oxygenation can also improve LDH levels and pain, and painkillers may not be effective in such case [11]. In the current review, 26% and 15% of cases had myalgia in cross-sectional and cohort studies, respectively. These findings are consistent with the findings of a systematic review and meta-analysis conducted by Abdullahi et al. [101], who found myalgia in 19% (95% CI 16–23; I² 95%) of their cases [101]. Furthermore, Ciaffi et al. reported a 15.6% (95% CI 0.116-0.206) pooled estimation for prevalence of myalgia in their systematic review and metaanalysis [100].

Bone

New onset osteonecrosis, osteosclerosis, and osteoporosis were reported in patients with COVID-19 [102]. Ramani et al. reported that the development of osteonecrosis with osteosclerosis and osteoporosis may

result from SARS-CoV-2-induced coagulopathy and steroid therapy [102].

Joint and spine manifestations

Joint pain was the third most frequent musculoskeletal manifestation of COVID-19 as revealed in the current review. Joint pain manifestations were more frequent among Chinese patients than in those in the UK and Spain [8, 33, 35, 38, 37, 49]. Ciaffi et al. reported joint pain as a manifestation of COVID-19 in their systematic review; however, they did not estimate the pooled frequency of joint pain [100].

Low Back Pain

The pooled prevalence of back pain in COVID-19 was 10% (95% CI 0.01–0.23) as reported by Abdullahi et al. in their systematic review and meta-analysis [101]. This percentage is higher than the findings in the current review, although the difference may be explained by the fact that Abdullahi et al. included chronic back pain, while the current study did not. It is important to take complaints of LBP seriously, as it may be due to intramuscular edema (multifidua and erector spinae) in association with raised CRP, ESP, creatinine kinase, and D-dimer levels [97]. An immune-mediated parainfectious inflammatory response may also be the explanation as well as adverse effects of drug- or critical illness-associated myopathy [97].

Arthralgia

As summarized in the current study, up to 15% of COVID-19 cases may have arthralgia.

Arthritis: Overt arthritis is very rare in COVID-19 as opposed to other viral infections where joint inflammation may be seen more frequently. In general, viral infections such as hepatitis C, Chikungunya, Ross River, Barmah Forest, Sindbis, O'nyong-nyong and Mayaro viruses, parvovirus B19, rubella or hepatitis B virus can cause self-limiting and/or persistent arthritis; as of today, however, that has not been proven for coronaviruses. It is suggested that treatment with glucocorticoids in SARS infection may suppress musculoskeletal manifestations. A large Korean study revealed a link between endemic human coronavirus, parainfluenza virus, and metapneumovirus and an increased prevalence of RA. However, this has not been proven with SARS-CoV-2 [93].

Non-specific MSK manifestations

Non-specific MSK complaints (for example, asthenia, and especially in the elderly) and limb weakness may cause diagnostic confusion with myopathy or neuropathy; hence before labeling these as COVID-19 complications, other explanations should be excluded [48, 79]. One case report stated that COVID-19 had been misdiagnosed as periprosthetic joint infection [87].

Neurological symptoms were excluded from the current study, but sometimes there is an overlap of pain due to affection of the (central) nervous system. Fatigue due to neurological symptoms cannot always be excluded as demonstrated in a young boy with Guillain Barré syndrome due to COVID-19 [103].

A limitation of the current study is that it cannot be estimated how long MSK symptoms may persist.

A strength of the current study is that to the best of our knowledge, it is the first systematic review of MSK symptoms in patients with COVID-19 and gives a complete review of MSK symptoms in all patients described in the first half year of the pandemic. It describes findings of studies from all over the world.

Conclusion_

MSK, like fatigue, myalgia, and arthralgia, are frequent symptoms in COVID-19 patients and may vary in different countries. Unlike with other viral infections, in COVID-19 patients, episodic or persistent arthritis has not been reported. Sporadic case reports have described that myositis-associated symptoms may be linked with COVID-19 severity and with mortality. Further prospective studies are needed to further clarify this point.

Acknowledgments_

The authors would like to express their sincere appreciation to the Systematic Review Center of the Department of Public Health and Information at the Bangabandhu Sheikh Mujib Medical University for providing basic training on conducting a systematic review and meta-analysis in February, 2019.

Declarations

- 1. Funding: Self-funded research by the authors.
- ii. Conflicts of interest/Competing interests: Nothing to disclose.
 - iii. Ethics approval: Not obtained.
 - iv. Consent to participate: Not applicable.
- v. Consent for publication: All authors voluntarily consent to publication of this review.
- vi. Availability of data and material (data transparency): All extracted data is kept by the principal author.
- vii. Code availability (software application or custom code): Excel 2016 was used to record and analyze extracted data.

viii. Authors' contributions: Research idea and protocol were developed by MRK, TM, JJR, ABS, FH, MH, and SSI. Literature search was conducted by TM, ABS, MH, JJR, FH, SSI, and MRK. The quality of the selected studies was assessed by KMR and HM and supplemented by HF, when required. Data extraction was done by MRK, TM, ABS, JJR; analysis was done by MH, FH, and SSI. The manuscript was drafted, edited, and finalized by JJR, MRK, ABS, TM, SSI, FH, and MH.

Conflict of interest _	
None.	

References

- WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. [https://www.who.int/directorgeneral/speeches/detail/who-director-general-s-openingremarks-at-the-media-briefing-on-covid-19---11-march-2020].
- 2. WHO Coronavirus (COVID-19) Dashboard. [https://covid19.who.int/].
- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229):1054–62. doi:10.1016/S0140-6736(20)30566-3.
- Vincent JL, Taccone FS. Understanding pathways to death in patients with COVID-19. *Lancet Respir Med* 2020; 8(5):430-32. doi:10.1016/S2213-2600(20)30165-X.
- Yang Y, Lu QB, Liu MJ, Wang YX, Zhang AR, Jalali N. et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv 2020. doi:10.1101/2020.02.10.20021675.
- Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR. et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med 2020; 172(9):577-82. doi:10.7326/M20-0504.
- Park M, Cook AR, Lim JT, Sun Y, Dickens BL. A systematic review of COVID-19 epidemiology based on current evidence. *J Clin Med* 2020; 9(4):967. doi:10.3390/jcm9040967.
- Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L. et al. Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterization Protocol: prospective observational cohort study. BMJ 2020; 369:m1985. doi: 10.1136/bmj.m1985.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020; 395(10223):507–13. doi:10.1016/S0140-6736(20)30211-7.

- Lippi G, Wong J, Henry BM. Myalgia may not be associated with severity of coronavirus disease 2019 (COVID-19). World J Emerg Med 2020;11(3):193–94. doi:10.5847/wjem.j.1920-8642.2020.03.013.
- Kucuk A, Cumhur Cure M, Cure E. Can COVID-19 cause myalgia with a completely different mechanism? A hypothesis. *Clin Rheumatol* 2020; 39(7): 2103–04. doi:10.1007/s10067-020-05178-1.
- Ye C, Cai S, Shen G, Guan H, Zhou L, Hu Y. et al. Clinical features of rheumatic patients infected with COVID-19 in Wuhan, China. Ann Rheum Dis 2020; 79(8):1007-13. doi: 10.1136/annrheumdis-2020-217627.
- 13. Marshall M. How covid-19 can damage the brain. *Nature* 2020; 585:342-43 doi: 10.1038/d41586-020-02599-5.
- Yancy CW, Fonarow GC. Coronavirus Disease 2019 (COVID-19) and the Heart— Is Heart Failure the Next Chapter? *JAMA Cardiol* 2020; 5(11):1216-17. doi:10.1001/jamacardio.2020.3575.
- 15. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. *JAMA Neurol* 2020; 77(6):683-90. doi:10.1001/jamaneurol.2020.1127.
- Cipollaro L, Giordano L, Padulo J. Oliva F, Maffulli N. Musculoskeletal symptoms in SARS-CoV-2 (COVID-19) patients. *J Orthop Surg Res* 2020; 15(1):178. doi:10.1186/s13018-020-01702-w.
- 17. PRISMAFlow Diagram. [http://www.prisma-statement.org/PRISMAStatement/FlowDiagram.aspx].
- 18. Quality Assessment tool for Quantitative Studies. [https://merst.ca/wpcontent/uploads/2018/02/quality-assessmenttool_2010.pdf].
- 19. CASP CHECKLISTS. [https://casp-uk.net/casp-tools-checklists/].
- Gayam V, Konala VM, Naramala S, Garlapati PR, Merghani MA, Regmi N. et al. Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J Med Virol 2020; 92(10):2181-87. doi:10.1002/jmv.26026.

- Goyal P, Choi J, Pinheiro L, Schenck E, Chen R, Jabri A. et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med 2020; 382(24):2372-74. doi:10.1056/NEJMc2010419.
- Lapostolle F, Schneider E, Vianu I, Dollet G, Roche B, Berdah J. et al. Clinical features of 1487 COVID-19 patients with outpatient management in the Greater Paris: the COVID-call study. *Intern Emerg Med* 2020; 15(5):813-17. doi:10.1007/s11739-020-02379-z.
- Liang WH, Guan WJ, Li CC, Li YM, Liang HR, Zhao Y. et al. Clinical characteristics and outcomes of hospitalised patients with COVID-19 treated in Hubei (epicentre) and outside Hubei (non-epicentre): a nationwide analysis of China. Eur Respir J 2020; 55(6):2000562. doi:10.1183/13993003.00562-2020.
- 24. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A. *et al.* Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. *Eur Arch Otorhinolaryngol* 2020; 277(8):2251-61. doi:10.1007/s00405-020-05965-1.
- 25. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. *Clin Infect Dis* 2020; 71(15):769-77. doi:10.1093/cid/ciaa272.
- Zhang Q, Shan KS, Minalyan A, O'Sullivan C, Nace T. A Rare Presentation of Coronavirus Disease 2019 (COVID-19) Induced Viral Myositis with Subsequent Rhabdomyolysis. *Cureus* 2020; 12(5):e8074. doi:10.7759/cureus.8074.
- 27. Lovell N, Maddocks M, Etkind SN, Taylor K, Carey I, Vora V. et al. Characteristics, Symptom Management, and Outcomes of 101 Patients With COVID-19 Referred for Hospital Palliative Care. J Pain Symptom Manage 2020; 60(1):e77-e81. doi:10.1016/j.jpainsymman.2020.04.015.
- 28. Wang L, He W, Yu X, Hu D, Bao M, Liu H. et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020; 80(6):639-45. doi:10.1016/j.jinf.2020.03.019.
- Song J, Kang S, Choi SW, Seo KW, Lee S, So MW. et al. Coronavirus Disease 19 (COVID-19) complicated with pneumonia in a patient with rheumatoid arthritis receiving conventional disease-modifying antirheumatic drugs. *Rheumatol Int* 2020; 40(6):991-95. doi:10.1007/s00296-020-04584-7.
- 30. Beydon M, Chevalier K, Al Tabaa O, Hamroun S, Delettre A, Thomas M. *et al.* Myositis as a manifestation

- of SARS-CoV-2. *Ann Rheum Dis* 2020; annrheumdis-2020-217573. doi:10.1136/annrheumdis-2020-217573.
- 31. Lei Z, Cao H, Jie Y, Huang Z, Guo X, Chen J. *et al.* A cross-sectional comparison of epidemiological and clinical features of patients with coronavirus disease (COVID-19) in Wuhan and outside Wuhan, China. *Travel Med Infect Dis* 2020; 35:101664. doi:10.1016/j.tmaid.2020.101664.
- 32. Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. *Eur Rev Med Pharmacol Sci* 2020; 24(6):3404–10. doi:10.26355/eurrev_202003_20711.
- Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis 2020; ciaa270. doi:10.1093/cid/ciaa270.
- Lei S, Jiang F, Su W, Chen C, Chen J, Mei W. et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine 2020; 21:100331. doi:10.1016/j.eclinm.2020.100331.
- 35. Chen T, Dai Z, Mo P, Li X, Ma Z, Song S. et al. Clinical Characteristics and Outcomes of Older Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Single-Centered, Retrospective Study. J Gerontol A Biol Sci Med Sci 2020; 75(9):1788-95. doi:10.1093/gerona/glaa089.
- Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382(18):1708-20. doi:10.1056/NEJMoa2002032.
- Graef ER, Liew JW, Kim AH, Sparks JA. Response to: 'Case series of acute arthritis in COVID-19 admission' by López-González et al. *Ann Rheum Dis* 2020; annrheumdis-2020-217989. doi:10.1136/annrheumdis-2020-217989.
- Li J, Chen Z, Nie Y, Ma Y, Guo Q, Dai X. Identification of Symptoms Prognostic of COVID-19 Severity:
 Multivariate Data Analysis of a Case Series in Henan Province. *J Med Internet Res* 2020; 22(6):e19636.

 doi:10.2196/19636.
- 39. Joob B, Wiwanitkit V. Arthralgia as an initial presentation of COVID-19: observation. *Rheumatol Int* 2020; 40(5):823. doi:10.1007/s00296-020-04561-0.
- 40. Huang L, Zhang X, Zhang X, Wei Z, Zhang L, Xu J. et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J

- *Infect* 2020; 80(6):e1-e13. doi:10.1016/j.jinf.2020.03.006.
- Wang X, Fang J, Zhu Y, Chen L, Ding F, Zhou R. et al. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin Microbiol Infect 2020; 26(8):1063-68. doi:10.1016/j.cmi.2020.03.032.
- Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ. *et al*. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Allergy* 2020; 75(7):1730-41. doi:10.1111/all.14238.
- 43. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S. *et al*. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. *Int J Infect Dis* 2020; 94:81-87. doi:10.1016/j.ijid.2020.03.040.
- 44. Lian J, Jin X, Hao S, Cai H, Zhang S, Zheng L. et al. Analysis of Epidemiological and Clinical Features in Older Patients With Coronavirus Disease 2019 (COVID-19) Outside Wuhan. Clin Infect Dis 2020; 71(15):740-47. doi:10.1093/cid/ciaa242.
- Dai H, Zhang X, Xia J, Zhang T, Shang Y, Huang R. et al. High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with COVID-19 in Jiangsu, China. Int J Infect Dis 2020; 95:106-12. doi:10.1016/j.ijid.2020.04.003.
- Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L. *et al*. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. *N Engl J Med* 2020; 382(25):e100. doi:10.1056/NEJMc2009226.
- Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C. *et al.* Neurologic Features in Severe SARS-CoV-2 Infection. *N Engl J Med* 2020; 382(23):2268-70. doi:10.1056/NEJMc2008597.
- 48. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG. *et al.* Guillain–Barré Syndrome Associated with SARS-CoV-2. *N Engl J Med* 2020; 382(26):2574-76. doi:10.1056/NEJMc2009191.
- Zhang J, Wang X, Jia X, Li J, Hu K, Chen G. et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect 2020; 26(6):767-72. doi:10.1016/j.cmi.2020.04.012.
- Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM. et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69(6):1002-09. doi:10.1136/gutjnl-2020-320926.

- Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y. et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. *J Allergy Clin Immunol* 2020; 146(1):110-18. doi:10.1016/j.jaci.2020.04.006.
- Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J. et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med 2020; 201(11):1380-88. doi:10.1164/rccm.202002-0445OC.
- 53. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z. *et al*. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. *Allergy* 2020; 75(7):1742-52. doi:10.1111/all.14309.
- Chen T, Wu D, Chen H, Yan W, Yang D, Chen G. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368:m1091. doi:10.1136/bmj.m1091.
- Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z. et al. Characteristics of COVID-19 infection in Beijing. J Infect 2020; 80(4):401-06. doi:10.1016/j.jinf.2020.02.018.
- Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T. *et al*. Clinical progression of patients with COVID-19 in Shanghai, China. *J Infect* 2020; 80(5):e1-e6. doi:10.1016/j.jinf.2020.03.004.
- 57. Xiong X, Chua GT, Chi S, Kwan MYW, Sang Wong WH, Zhou A. et al. A Comparison Between Chinese Children Infected with Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome 2003. J Pediatr 2020; 224:30-36. doi:10.1016/j.jpeds.2020.06.041.
- Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S. *et al*. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. *JAMA Intern Med* 2020; 180(7):934-43. doi:10.1001/jamainternmed.2020.0994.
- Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP. *et al*. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. *Chin Med J (Engl)* 2020; 133(9):1025-31. doi:10.1097/CM9.00000000000000744.
- Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y. et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. *J Med Virol* 2020; 92(7):797-06. doi:10.1002/jmv.25783.
- 61. Cao J, Tu WJ, Cheng W, Yu L, Liu YK, Hu X. *et al*. Clinical Features and Short-term Outcomes of 102 Patients with Coronavirus Disease 2019 in Wuhan,

- China. *Clin Infect Dis* 2020; 71(15):748–55. doi:10.1093/cid/ciaa243.
- 62. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. *AJR Am J Roentgenol* 2020; 214(5):1072-77. doi:10.2214/AJR.20.22976.
- 63. Zheng Y, Xu H, Yang M, Zeng Y, Chen H, Liu R. et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol 2020; 127:104366. doi:10.1016/j.jcv.2020.104366.
- 64. Qian GQ, Yang NB, Ding F, Ma AHY, Wang ZY, Shen YF *et al*. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series. *QJM* 2020; 113(7):474-81. doi:10.1093/qjmed/hcaa089.
- 65. Xu T, Chen C, Zhu Z, Cui M, Chen C, Dai H. *et al*. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. *Int J Infect Dis* 2020; 94:68-71. doi:10.1016/j.ijid.2020.03.022.
- Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D. et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47(5):1275-80. doi:10.1007/s00259-020-04735-9.
- 67. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P. et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. Am J Respir Crit Care Med 2020; 201(11):1372-79. doi:10.1164/rccm.202003-0543OC.
- 68. Qi X, Liu C, Jiang Z, Gu Y, Zhang G, Shao C. *et al*. Multicenter analysis of clinical characteristics and outcomes in patients with COVID-19 who develop liver injury. *J Hepatol* 2020; 73(2):455-58. doi:10.1016/j.jhep.2020.04.010.
- 69. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL. et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 368:m606. doi:10.1136/bmj.m606.
- Chu J, Yang N, Wei Y, Yue H, Zhang F, Zhao J. et al. Clinical characteristics of 54 medical staff with COVID-19: A retrospective study in a single center in Wuhan, China. J Med Virol 2020; 92(7):807-13. doi:10.1002/jmv.25793.
- Xu YH, Dong JH, An WM, Lv XY, Yin XP, Zhang JZ. et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect 2020; 80(4):394-00. doi:10.1016/j.jinf.2020.02.017.

- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-06. doi:10.1016/S0140-6736(20)30183-5.
- 73. Ma J, Yin J, Qian Y, Wu Y. Clinical characteristics and prognosis in cancer patients with COVID-19: A single center's retrospective study. *J Infect* 2020;81(2):318-56. doi:10.1016/j.jinf.2020.04.006.
- 74. Huang Y, Tu M, Wang S, Chen S, Zhou W, Chen D. et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. *Travel Med Infect Dis* 2020; 36:101606. doi:10.1016/j.tmaid.2020.101606.
- 75. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R. et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020; 31(7):894-01. doi:10.1016/j.annonc.2020.03.296.
- Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J. et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. *Int J Infect Dis* 2020; 94:128-32. doi:10.1016/j.ijid.2020.03.053.
- Zhou Y, Han T, Chen J, Hou C, Hua L, He S. et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci 2020; 13(6):1077-86. doi:10.1111/cts.12805.
- 78. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. *Pediatr Pulmonol* 2020; 55(5):1169-74. doi:10.1002/ppul.24718.
- 79. Godaert L, Proye E, Demoustier-Tampere D, Coulibaly PS, Hequet F, Dramé M. Clinical characteristics of older patients: The experience of a geriatric short-stay unit dedicated to patients with COVID-19 in France. *J Infect* 2020; 81(1):e93-e94. doi:10.1016/j.jinf.2020.04.009.
- 80. Pung R, Chiew CJ, Young BE, Chin S, Chen MI, Clapham HE. *et al.* Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. *Lancet* 2020; 395(10229):1039-46. doi:10.1016/S0140-6736(20)30528-6.
- 81. Escalera-Antezana JP, Lizon-Ferrufino NF, Maldonado-Alanoca A, Alarcón-De-la-Vega G, Alvarado-Arnez LE, Balderrama-Saavedra MA. *et al.* Clinical features of the first cases and a cluster of Coronavirus Disease 2019 (COVID-19) in Bolivia imported from Italy and Spain. *Travel Med Infect Dis* 2020; 35:101653. doi:10.1016/j.tmaid.2020.101653.

- 82. Dong X, Cao YY, Lu XX, Zhang JJ, Du H, Yan YQ. *et al*. Eleven faces of coronavirus disease 2019. *Allergy* 2020; 75(7):1699-09. doi:10.1111/all.14289.
- 83. Lo I L, Lio CF, Cheong H H, Lei CI, Cheong T H, Zhong X. et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. *Int J Biol Sci* 2020; 16(10):1698-07. doi:10.7150/ijbs.45357.
- 84. Xia XY, Wu J, Liu HL, Xia H, Jia B, Huang WX. Epidemiological and initial clinical characteristics of patients with family aggregation of COVID-19. *J Clin Virol* 2020; 127:104360. doi:10.1016/j.jcv.2020.104360.
- 85. Ye F, Xu S, Rong Z, Xu R, Liu X, Deng P. *et al*. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster. *Int J Infect Dis* 2020; 94:133-38. doi:10.1016/j.ijid.2020.03.042.
- Zhu CQ, Gao SD, Xu Y, Yang XH, Ye FQ, Ai L. et al. A COVID-19 case report from asymptomatic contact: implication for contact isolation and incubation management. *Infect Dis Poverty* 2020; 9(1):70. doi:10.1186/s40249-020-00686-3.
- Kenanidis E, Kakoulidis P, Anagnostis P, Beletsiotis A, Tsiridis E. Coronavirus Disease 2019 (COVID-19) Can Masquerade as Acute Postoperative Periprosthetic Joint Infection. *Cureus* 2020; 12(4):e7857 doi:10.7759/cureus.7857.
- Sinha P, Sinha S, Schlehr E, Schlehr JM. COVID-19 Incidental Diagnosis by 18F-FDG PET/CT. *Clin Nucl Med* 2020; 45(8): 659-60. doi:10.1097/RLU.000000000003154.
- Taşkın B, Vural S, Altuğ E, Demirkesen C, Kocatürk E, Çelebi İ. *et al*. Coronavirus 19 presenting with atypical Sweet's syndrome. *J Eur Acad Dermatol Venereol* 2020; 34(10):e534-e535. doi:10.1111/jdv.16662.
- Moeinzadeh F, Dezfouli M, Naimi A, Shahidi S, Moradi H. Newly Diagnosed Glomerulonephritis During COVID-19 Infection Undergoing Immunosuppression Therapy, a Case Report. *Iran J Kidney Dis* 2020; 14(3):239-42.
- 91. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H. *et al.* Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* 2020; 8(5):475-81. doi: 10.1016/S2213-2600(20)30079-5.
- 92. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. *Herz* 2020; 45(3):230-32. doi: 10.1007/s00059-020-04909-z.

- 93. Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. *Nat Rev Rheumatol* 2020; 16(8):465–70. doi:10.1038/s41584-020-0451-z.
- 94. Borsa S, Pluderi M, Carrabba G, Ampollini A, Pirovano M, Lombardi F. *et al.* Letter to the Editor: Impact of COVID-19 Outbreak on Acute Low Back Pain. *World Neurosurg* 2020; 139:749. doi:10.1016/j.wneu.2020.05.218.
- Mehan WA, Yoon BC, Lang M, Li MD, Rincon S, Buch K. Paraspinal myositis in patients with Covid-19 infection. *AJNR Am J Neuroradiol* 2020; 41(10):1949-52. doi:10.3174/ajnr.A6711.
- Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. *J Pharm Anal* 2020; 10(2):102-08. doi:10.1016/j.jpha.2020.03.001.
- 97. Perrin R, Riste L, Hann M, Walther A, Mukherjee A, Heald A. Into the looking glass: Post-viral syndrome post COVID-19. *Med Hypotheses* 2020; 144:110055. doi:10.1016/j.mehy.2020.110055.
- 98. Vindegaard N, Benros M E. COVID-19 Pandemic and mental health consequences: Systematic review of the current evidence. *Brain Behav Immun* 2020; 89: 531-42. doi:10.1016/j.bbi.2020.05.048.
- Morgul E, Bener A, Atak M, Akyel S, Aktaş S, Bhugra D. *et al*. COVID-19 pandemic and psychological fatigue in Turkey. *Int J Soc Psychiatry* 2020; 67(2):128-35. doi:10.1177/0020764020941889.
- 100. Ciaffi J, Meliconi R, Ruscitti P, Berardicurti O, Giacomelli R, Ursini F. Rheumatic manifestations of COVID-19: a systematic review and meta-analysis. *BMC Rheumatol* 2020; 4:65. doi:10.1186/s41927-020-00165-0.
- 101. Abdullahi A, Candan SA, Abba MA, Bello AH, Alshehri MA, Victor E A. et al. Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:687. doi:10.3389/fneur.2020.00687.
- 102. Ramani SL, Samet J, Franz CK, Hsieh C, Nguyen CV, Horbinski C. *et al*. Musculoskeletal involvement of COVID-19: review of imaging. *Skeletal Radiol* 2021 50(9):1763–73. doi:10.1007/s00256-021-03734-7.
- 103. Khalifa M, Zakaria F, Ragab Y, Saad A, Bamaga A, Emad Y, Rasker JJ. Guillain-Barre Syndrome Associated with SARS-CoV-2 Detection and a COVID-19 Infection in a Child. *J Pediatric Infect Dis Soc* 2020; 9(4): 510-13. doi:10.1093/jpids/piaa086.

Table S1. Effective Public Health Practice Project (EPHPP) - Quality assessment tool for quantitative studies

		Particu	ulars of the Studies		EPHPP Components								
Sl. No.	Author	Year	Journal	Study design	Selection bias	Study design	Confounders	Blinding	Data collection method	Withdrawals And dropouts	Global rating		
1.	Docherty et al. [8]	2020	ВМЈ	Prospective cohort study	M	M	NA	NA	W	NA	Weak		
2.	Liang et al. [23]	2020	European Respiratory Journal	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
3.	Lapostolle et al. [22]	2020	Internal and Emergency Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
4.	Guan et al. [36]	2020	New England Journal of Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
5.	Wang et al. [41]	2020	Clinical Microbiology and Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
6.	Lian et al. [44]	2020	Clinical Infectious Diseases	Cross- sectional study	W	W	NA	NA	w	NA	Weak		
7.	Zhang et al. [49]	2020	Clinical Microbiology and Infection	Retrospective cohort	W	M	NA	NA	М	S	Weak		
8.	Li et al. [38]	2020	Journal of Medical Internet Research	Case series	W	W	NA	NA	W	NA	Weak		
9.	Jin et al. [50]	2020	Gut	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
10.	Zhang et al. [43]	2020	International Journal of Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
11.	Li et al. [51]	2020	Journal of Allergy and Clinical Immunology	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
12.	Feng et al. [52]	2020	American Journal of Respiratory and Critical Care Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
13.	Lechien et al. [24]	2020	European Archives of Oto-Rhino- Laryngology	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
14.	Goyal et al. [21]	2020	New England Journal of Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
15.	Gayam et al. [20]	2020	Journal of Medical Virology	Retrospective cohort	W	M	NA	NA	W	S	Weak		
16.	Wang et al. [28]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
17.	Graef et al. [37]	2020	Annals of the Rheumatic Diseases	Case series	W	W	NA	NA	W	NA	Weak		
18.	Cai et al. [53]	2020	Allergy	Cross- sectional study	w	W	NA	NA	w	NA	Weak		
19.	Chen et al. [54]	2020	ВМЈ	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
20.	Tian et al. [55]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
21.	Chen et al. [56]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
22.	Xiong et al. [57]	2020	The Journal of Pediatrics	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
23.	Dai et al. [45]	2020	International Journal of Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Weak		
24.	Mao et al. [15]	2020	JAMA Neurol	Cross- sectional study	W	W	NA	NA	W	NA	Weak		

		Particu	ılars of the Studies		EPHPP Components								
Sl. No.	Author	Year	Journal	Study design	Selection bias	Study design	Confounders	Blinding	Data collection method	Withdrawals And dropouts	Globa ratin		
25.	Chen et al. [35]	2020	The Journals of Gerontology	Cross- sectional study	W	W	NA	NA	W	NA	Weal		
26.	Wu et al. [58]	2020	JAMA Internal Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weal		
27.	Zhou et al. [3]	2020	The Lancet	Retrospective cohort	W	M	NA	NA	W	S	Wea		
28.	Zheng et al. [32]	2020	Eur Rev Med Pharmacol Sci	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
29.	Mo et al. [33]	2020	Clinical Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
30.	Zhang et al. [42]	2020	Allergy	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
31.	Liu et al. [59]	2020	Chinese Medical Journal	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
32.	Wan et al. [60]	2020	Journal of Medical Virology	Cross- sectional study	W	W	NA	NA	w	NA	Wea		
33.	Lei et al. [31]	2020	Travel Medicine and Infectious Disease	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
34.	Chen et al. [46]	2020	New England Journal of Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
35.	Cao et al. [61]	2020	Clinical Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
36.	Lovell et al. [27]	2020	Journal of Pain and Symptom Management	Case series	W	W	NA	NA	w	NA	Wea		
37.	Zhao et al. [62]	2020	American Journal of Roentgenology	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
38.	MaChen et al. [9]	2020	The Lancet	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
39.	Zheng et al. [63]	2020	Journal of Clinical Virology	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
40.	Qian et al. [64]	2020	QJM: An International Journal of Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
41.	Xu et al. [65]	2020	International Journal of Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
42.	Xu et al. [66]	2020	European Journal of Nuclear Medicine and Molecular Imaging	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
43.	Du et al. [67]	2020	American Journal of Respiratory and Critical Care Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Wea		
44.	Qi et al. [68]	2020	Journal of Hepatology	Cross- sectional study	W	W	NA	NA	W	NA	We		
45.	Wang et al. [25]	2020	Clinical Infectious Diseases	Cross- sectional study	W	w	NA	NA	W	NA	We		
46.	Xu et al. [69]	2020	ВМЈ	Cross- sectional study	W	w	NA	NA	W	NA	We		
47.	Helms et al. [47]	2020	New England Journal of Medicine	Cross- sectional study	W	w	NA	NA	W	NA	We		
48.	Chu et al. [70]	2020	Journal of Medical Virology	Cross- sectional study	w	W	NA	NA	W	NA	We		

		Particu	lars of the Studies		EPHPP Components							
Sl. No.	Author	Year	Journal	Study design	Selection bias	Study design	Confounders	Blinding	Data collection method	Withdrawals And dropouts	Globa rating	
49.	Yang et al. [91]	2020	The Lancet Respiratory Medicine	Cross- sectional study	W	W	NA	NA	W	NA	Weak	
50.	Xu et al. [71]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weak	
51.	Huang et al. [72]	2020	The Lancet	Cross- sectional study	W	W	NA	NA	w	NA	Weal	
52.	Joob and Wiwanitkit [39]	2020	Rheumatology International	Cross- sectional study	W	W	NA	NA	W	NA	Weak	
53.	Ma et al. [73]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weal	
54.	Huang et al. [74]	2020	Travel Medicine and Infectious Disease	Cross- sectional study	W	W	NA	NA	W	NA	Weal	
55.	Lei et al. [34]	2020	E Clinical Medicine	Retrospective cohort	W	M	NA	NA	W	S	Weal	
56.	Zhang et al. [75]	2020	Annals of Oncology	Cross- sectional study	W	W	NA	NA	W	NA	Weal	
57.	Li et al. [76]	2020	International Journal of Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Weal	
58.	Huang et al. [40]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Weal	
59.	Zhou et al. [77]	2020	Clinical and Translational Science	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
60.	Xia et al. [78]	2020	Pediatric Pulmonology	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
61.	Godaert et al. [79]	2020	Journal of Infection	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
62.	Pung et al. [80]	2020	The Lancet	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
63.	Escalera- Antezana et al. [81]	2020	Travel Medicine and Infectious Disease	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
64.	Dong et al. [82]	2020	Allergy	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
65.	Lo et al. [83]	2020	International Journal of Biological Sciences	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
66.	Xia et al. [84]	2020	Journal of Clinical Virology	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
67.	Ye et al. [85]	2020	International Journal of Infectious Diseases	Cross- sectional study	W	W	NA	NA	W	NA	Wea	
68.	Toscano et al. [48]	2020	New England Journal of Medicine	Case series	W	W	NA	NA	W	NA	Wea	
69.	Zhu et al. [86]	2020	Infectious Diseases of Poverty	Case report	W	W	NA	NA	W	NA	Wea	
70.	Zhang et al. [26]	2020	Cureus	Case report	W	W	NA	NA	W	NA	Wea	
71.	Song, et al. [29]	2020	Rheumatology International	Case report	W	W	NA	NA	W	NA	Wea	
72.	Kenanidis et al. [87]	2020	Cureus	Case report	W	W	NA	NA	W	NA	Wea	
73.	Sinha et al. [88]	2020	Clinical Nuclear Medicine	Case report	W	W	NA	NA	W	NA	Wea	
74.	Taşkın et al. [89]	2020	Journal of the European Academy of Dermatology and Venereology	Case report	W	W	NA	NA	W	NA	Wea	

	Particulars of the Studies						EPHPP Components							
Sl. No.	Author	Year	Journal	Study design	Selection bias	Study design	Confounders	Blinding	Data collection method	Withdrawals And dropouts	Global rating			
75.	Moeinzadeh et al. [90]	2020	Iranian Journal of Kidney Diseases	Case report	W	W	NA	NA	W	NA	Weak			
76. S	Beydon et al. [30]	2020	Annals of the Rheumatic Diseases	Case report	W	W	NA	NA	W	NA	Weak			

S=STRONG, M=MODERATE, W=WEAK, and NA=NOT APPLICABLE

 $GLOBAL\ RATING:\ STRONG\ (no\ WEAK\ ratings),\ MODERATE\ (one\ WEAK\ ratings),\ WEAK\ (two\ or\ more\ WEAK\ ratings)$