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Abstract Biological actuators are different from their mechatronic counterparts in
terms of form and function. In this chapter, we discuss a data-driven neuromechanical
model-based approach to estimate howmuscles are neurally recruited as well as how
they contribute to actuate multiple biological joints.

Human movement emerges from the coordinated interaction between the neuro-
muscular and the musculoskeletal systems (Enoka 2008). Despite knowledge of the
mechanisms underlying movement neuromuscular and musculoskeletal functions,
there currently is no relevant understanding of the neuro-mechanical interplay in the
composite neuro-musculo-skeletal system. This represents a major challenge to the
understanding of human movement, where the characterisation of mechanisms at
one level, i.e., skeletal level, requires knowledge of mechanisms at the other levels,
i.e., neuro-muscular (Enoka 2008; Sartori et al. 2017b).

This chapter proposes a neuromechanical modelling approach developed by the
author and colleagues in the past years for the study of human movement neurome-
chanics. This is based on solving for how muscles are neurally recruited and for how
they transfer mechanical forces to skeletal structures (Fig. 1).

1 Sampling α-Motor Neuron Discharges in Vivo

The motor unit is the actual biological interface between neural and musculoskeletal
functions in humans and animals (Enoka and Pearson 2013). The ‘α-motor neuron
side’ of the motor unit is the final common pathway of synaptic inputs produced in
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Fig. 1 High-density electromyograms (HD-EMGs) are recorded and decomposed into constituent
motor unit discharges. This enables inferring spinal cord neural activity in vivo and non-invasively.
Decoded discharges are used to drive forward neuro-musculo-skeletal models that can estimate a
larger spectrum of neuromuscular mechanisms than is possible via signal-based techniques alone
(a). Example spike trains decoded for 19 active motor units in the soleus muscle during isometric
plantar flexion. The graph also shows the ankle plantar flexion torque generated during the task (b)

different areas of the nervous system and represents the optimal level for bridging
the neuro-muscular ‘knowledge gap’ in movement.

In this context, advances in electromyography (EMG) are enabling discerning
the activity of motor units from interferent EMGs data. This is helping understand
how α-motor neurons receive synaptic input from spinal and supraspinal levels and
regulate muscle activation (Bizzi et al. 2008; Farina and Negro 2015).

The α-motor neurons can be recorded from the intact moving human in vivo
using soft-electronic skins; highly dense (HD) grids of electrodes that can be placed
on the skin surface for recording HD-EMGs from a large number of muscle fibers
simultaneously (Fig. 1a). This is possible because of the safe synaptic connection
between a motor neuron and the innervated muscle fibers. As a result, there is a one
to one relationship between action potential produced by an α-motor neuron and
that generated by the innervated fibers. That is, each motor neuron action potential
is transduced into a compound muscle fiber action potential that carries the same
neural information. HD-EMGs carry this information in the form of an interferent
signal, from which the underlying α-motor neuron discharges can be unmixed via
deconvolution-based blind source separation (Farina et al. 2017). This provides the
same feature that direct nerve interfacing extracts via implanted electrodes, i.e., nerve
intrafascicular or epimysial electrodes. That is, it provides access to the time series
of discharge events of populations of motor neurons, i.e., > 30 neurons per controlled
muscle.
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Fig. 2 Neural discharge-drivenmodelling. In vivomotor neuron cellular cumulative spike trains are
decoded for muscles including tibialis anterior (tibant), peroneus tertius (pertert), brevis (perbrev),
longus (perlong), gastricnemius medialis (gasmed), lateralis (gaslat), and soleus (sol). These drive
forward musculoskeletal models enabling prediction of isometric ankle moment (a). Reference and
predicted ankle joint stiffness via electromyography-drivenmodelling during locomotion. This data-
model fusion framework shows how agonist–antagonist co-activation ratio varies from dominant
dorsi flexors (+1; initial stance) to plantar flexors(−1; late stance) and regulates joint-equivalent
stiffness (b)

We recently showed how multi-muscle spatial sampling and deconvolution of
high-density fiber electrical activity could be used to decode accurate alpha-motor
neuron discharges across five lumbosacral segments in the human spinal cord (Sartori
et al. 2017a, b). This was achieved by recording HD-EMG from five ankle muscles
using more than 250 recording sites (Fig. 2b). This provides a window into α-motor
neuron pool activity and its distribution across the rostrocaudal axis of the spinal
cord (Sartori et al. 2017a, b).

This information can be used to estimate motor unit anatomical properties
including fiber diameter and fatiguability (Del Vecchio et al. 2017). This enables
building motor unit-specific twitch models that can convert decoded α-motor neuron
discharges into muscle activation profiles.

Moreover, complete motor neuron decoding potentially provides a window into
the synaptic inputs converging onto these pools (Negro et al. 2016), thus enabling
understanding the organization and connections in higher spinal neural networks
(Fig. 2). Coherence analysis can be employed to determine the proportion of common
and independent synaptic input converging to α-motor neuron pools (Farina and
Negro 2015, Gogeascoechea et al. 2020). Dimensionality reduction techniques (Lee
and Seung 1999), can be used to extract estimates ofmusclemodularity and synergies
(Sartori et al. 2013b; Gonzalez-Vargas et al. 2015).

2 From α-Motor Neurons Discharges to Muscle–Tendon
Force

Commonneurophysiological analyses typically focus on the ‘motor neuron side’with
less emphasis on the ‘muscle fiber side’ and how its contractile dynamics contributes
to motor control and function (Herzog 2014). However, human movement must be
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understoodwith a linked perspective tomotor neurons andmuscle contractile proper-
ties simultaneously. It was shown that the difference between muscle isometric force
to microstimulation and dynamic force during movement produced by the same
microstimulation can be one order of magnitude different (Barbeau et al. 1999).
Studies established that central nervous system (CNS) control strategies change
across contraction types, i.e., lengthening, shortening or isometric (Duchateau and
Enoka 2016). Furthermore, muscle contraction history dependence (not regulated
by the CNS) can directly affect muscle excitation–contraction couplings, i.e., force
enhancement following stretch can reach values of almost 50% of the corresponding
isometric reference force (Herzog et al. 2015). These differences need to be accounted
for via mechanistic models of the contribution of fiber contractile properties.

A possible way of doing this is via neural data-driven musculoskeletal modelling
formulations (Sartori et al. 2016). Previous research demonstrated that this can effec-
tively translatemotor neuron discharges intomulti-muscle coordinated force patterns
resulting into net ankle joint moment (Sartori et al. 2017b).

This is a “predictive formulation” where cumulative spike trains (CSTs) decoded
from all motor neurons active in the control of a specificmuscle directly drive muscle
fibers and series elastic tendons, i.e., muscle–tendon units (MTUs, Fig. 2). This
modelling formulation comprises six main components (Sartori et al. 2012a, b, c,
2013a).

The neural activation component converts incomingCSTs into the resulting twitch
response triggered in the innervated muscle fibers using a critically damped, linear,
second-order, differential system (Milner-Brown et al. 1973). This can be expressed
in a discrete form using a time history-dependent, infinite impulsive response filter
(Lloyd and Besier 2003):

u(t) = α · x(t− d) − β1 · u(t− 1) − β2 · u(t− 2) (1)

where x(t) is the motor neuron spike train at time sample t, u(t) is the innervated fiber
twitch response whereas α, β1, β2 are the recursive filtering coefficients. These are
constrained to obtain a filter positive stable solution and unit gain: β1 = C1 + C2, β2
= C1 · C2, α−β1−β2 = 1, with−1 < C1, C2 < 0. The term d is the electromechanical
delay. The resulting u(t) is further processed via a nonlinear transfer function to
compute the resulting neural activation:

a(t) = eAu(t) − 1

eA − 1
, (2)

where −3 < A < 0 is the non-linear shape factor, with 0 being a linear relationship.
Neural activation a(t) reflects the ensemble dynamics of all electro-chemical trans-
formations triggered at the muscle fiber level by themotor neuron discharges (Sartori
et al. 2016).

The musculotendon kinematics component synthetizes subject-specific muscu-
loskeletal geometry (e.g., MTU length and moment arms) into a set of MTU-specific
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multidimensional cubic B-splines (Sartori et al. 2012c). Each B-spline computes
MTU kinematics (i.e., MTU length and moment arms) as a function of input joint
knee and ankle angles (Sartori et al. 2012c).

The musculotendon dynamics component uses neural activation and MTU length
�mt and velocity vmt to control a Hill-type muscle model and estimate instantaneous
length, contraction velocity, and force in the muscle fibers, as well as strain and force
in the series-elastic tendon within each MTU (Sartori et al. 2012a, 2013a).

The static properties of muscle fibers are modelled using parallel force–length
passive fP

(̃
lm

)
and activation-dependent f A

(̃
lm

)
curves (Lloyd and Besier 2003).

The dynamic properties of fibers are modelled using an activation-dependent force–
velocity f (̃vm) curve. These curves are normalized to maximum isometric muscle
force (Fmax), while l̃m and ṽm represent fiber length and velocity normalized to
optimal fiber length lmO andmaximummuscle contraction velocity respectively (Zajac
1989). The tendon properties are modelled using a force-strain function f (ε) with
non-linear toe region normalized to Fmax (Zajac 1989). The total MTU force FMTU

is calculated as a function of a(t), normalized fiber length l̃m and contraction velocity
ṽm :

FMTU = Ft = Fm cos
(
φ
(
lm

)) = ⌊
a(t) f

(̃
lm

)
f
(
ṽm

) + fP
(̃
lm

)⌋
Fmax cos

(
φ
(
lm

))

(3)

2.1 From α-Motor Neurons Discharges to Muscle–Tendon
Stiffness

The total stiffness KMTU
i in each MTU can be modelled as muscle fiber stiffness Km

in series with tendon stiffness Kt (Sartori et al. 2015):

KMTU =
(

1

Km
+ 1

K t

)−1

(4)

Tendon stiffness Kt can be estimated from the slope of the non-linear force-
strain relationship f (ε) in the correspondence of the instantaneous tendon strain
value E. The tendon strain can be calculated at each simulation frame by solving for
equilibrium between tendon and fiber force in the MTU dynamics equation (Eq. 3).
Muscle fiber stiffness Km is calculated as the partial derivative of fiber force Fm

(Eq. 3) with respect to the normalized fiber length l̃m :

Km = ∂Fm
(
a, l̃m, Ṽ m

)

∂ l̃m
(5)
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The partial derivative in Eq. 4 is calculated by creating a multi-dimensional cubic
B-spline function per muscle (Sartori et al. 2015).

2.2 α-Motor Neurons Regulation of Joint Torque
and Stiffness

Net joint moments are directly computed as the product of each MTU force (Eq. 3)
and their associated moment arms from theMTU kinematics block. The net stiffness
about a joint DOF, KDOF , is determined as:

K DOF =
#MTU∑

i=1

KMTU
i · r2i +

∂ri
∂θ DOF

· FMTU
i (6)

where KMTU
i and ri respectively represent the stiffness and moment arm of the ith

MTU spanning the specific DOF, whereas θDOF is the joint angle about the specific
DOF, as previously described (Sartori et al. 2015).

Previous research showed that the proposed neural data-driven modelling method
could translate motor neuron spike trains into accurate joint moments in an open-
loop way (Sartori et al. 2017a, b). This demonstrated the ability of establishing
subject-specific modelling formulations that could convert neural activity from high-
dimensional sets ofmotor neurons (on average 56.7±10.2 for allmuscles) intomulti-
muscle coordinated force profiles that well reconstruct experimental joint moments
over all subjects and conditions (Fig. 2a).

These studies showed that that the effective part of the cumulative spike train
responsible for force modulation was in the low frequency band (Negro and Farina
2011; Dideriksen et al. 2012; Sartori et al. 2017b). This was represented via slow
neural activation profiles i.e., motor neuron spike trains filtered via a second-order
twitch model. The direct association found between neural activation and joint
moment is explained by the fact that the musculoskeletal system acts as a natural
low pass filter of the spinal segments neural output. The neural drive high frequency
band is filtered out by the slow twitch response of muscle fibers triggering electro-
chemical transformations (i.e., calcium dynamic) and inducing limits in fiber action
potential propagation velocity as well as by intrinsic viscoelasticity properties of
muscle–tendon units (Enoka 2004).

Recent research proposed musculoskeletal models for estimating dynamic knee-
ankle stiffness from muscle forces (Sartori et al. 2015). These studies suggested
that the ankle joint modulates stiffness for accelerating or decelerating the body with
co-contraction transitioning from dominant dorsi-flexors to dominant plantar-flexors
throughout the stance phase of walking and running. On the other hand, knee joint
stiffness appeared to be modulated for optimizing body weight acceptance and joint
stability with more distributed co-contraction between flexor and extensor muscles
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in the correspondence of the stiffness peaks produced during walking and running
(Fig. 2b).

3 Conclusion

This chapter proposed the use of multi-muscle high-density EMG sampling and
decomposition in combination with subject-specific neuromechanical modelling.
This enables opening up a window into spinal motor neuron behavior and resulting
mechanical function in vivo in the intact moving human.
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