2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) | 978-1-6654-4139-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/AIM46487.2021.9517402

2021 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM)

Efficient Formulation of Hexapod Kinematics Enabling Real Time
Adaptive Feedforward Control

1%' Bram Seinhorst
Precision Engineering, Engineering technology
University of Twente
Enschede, the Netherlands
b.seinhorst@utwente.nl

Abstract—The tracking performance of manipulators can be
improved considerably by adaptive feedforward control (AFFC).
However, complex kinematics hinder the application to parallel
kinematic manipulators (PKMs). This paper proposes a compact
and efficient formulation of the full PKM kinematics enabling
real-time application of AFFC to complex PKMs. The efficient
kinematic formulation is the basis for the inverse dynamics used
to compute the feedforward signal. A Kalman filter is used for
online estimation of the parameters in the equations of motion.
A parallel multi-rate implementation is used, which, together
with the efficient kinematic formulation, allows for a feedforward
sampling time as low as 0.5 ms. The parameters are updated every
30ms, which suffices to track the slow parameter variations. The
application to a highly repeatable flexure-based manipulator is
considered. Experimental results for the manipulator show that
the tracking error can be reduced by 97.5% compared to using
feedback control only.

I. INTRODUCTION

Parallel kinematic manipulators (PKMs) have several advan-
tages over their serial counterparts due to their high rigidity
and low moving mass [1]. The low moving mass typically
allows for high accelerations and a relatively high payload
mass. Recently the T-Flex, a fully flexure-based 6 degree of
freedom (DoF) PKM, was developed [2]. The use of flexures
instead of conventional bearings results in a highly repeatable
system. Exploiting the high repeatability of the manipulator to
improve its tracking accuracy would extend its applicability.

Accurate tracking for high accelerations can be realised
by feedforward control using the inverse dynamics model. A
variable payload mass can be handled by adaptive feedforward
control (AFFC) [3]. It has been shown experimentally that
AFFC improves the tracking of PKMs [4]. A complication in
the application of feedforward control and real-time adaptation
is the complex kinematics of PKMs; the use of multiple kine-
matic chains results in complex, or even absent, closed form
kinematic expressions. Oftentimes, the required modelling
effort is avoided by residing to non-physics based models
for AFFC [5]. Nonetheless, a physics based model typically
requires fewer parameters to model the 6DoF dynamics and
thereby it is less prone to overfitting and better capable to
extrapolate training data. Several examples of model-based
real time AFFC applied to PKMs are available [4], [6], [7].
However, in these applications real time computation of the in-
verse dynamics typically requires significant simplifications of
the actuator dynamics or neglecting dynamics of intermediate
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bodies. For a manipulator with highly reapeatable behaviour,
such as the T-flex, these simplifications or neglected dynam-
ics significantly limit the accuracy of the inverse dynamics
and thereby limit the achievable tracking error. Moreover, in
aforementioned publications systems with only 3 to 4 DoFs
are considered. No applications of AFFC to 6DoF PKMs have
been found in literature.

In this paper we present an efficient formulation of the
hexapod kinematics, without simplification or neglected dy-
namics, which is used in a real-time adaptive feedforward
control implementation for the T-flex manipulator. The dynam-
ics of the manipulator are modelled using a rigid multibody
approach, which employs Euler parameters (quaternions) [§]
and solves the kinematics of each arm analytically, while the
kinematic loop closure is solved numerically. This formulation
allows computation of the kinematics at a high sampling rate,
where the numerical correction step for loop closure provides
accurate results with one iteration only. Multi-rate parallel
computing is used to separate the feedback, feedforward and
adaptive controllers and run each at the highest possible
sample rate. The feedback controller and feedforward run at
high sampling rates for stability and tracking purposes, while
slow-parameter changes allow running the computationally
heavy adaptation at lower sampling rate.

The use of very accurate absolute encoders in the T-
Flex allows a simple filtering step to estimate the velocities
and accelerations, allowing straightforward application of the
classical version of adaptive feedforward control [3]. Although
the T-Flex has no friction due to its flexure joints, they do
introduce stiffness in the dynamics. Furthermore the actuators
suffer from cogging and hysteresis. All these parameters and
the relevant inertial parameters of each arm are estimated
simultaneously.

After this introduction, the paper starts with the kine-
matic modelling in section II, which is used to formulate
the parameter linear inverse dynamics in section III. In the
subsequent section I'V the multi-rate implementation, including
the numerical solution of the kinematics, is described. Section
V presents and discusses the experimental results. The paper
ends with the conclusions in section VI
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Fig. 1. Kinematic diagram of the T-flex manipulator. The reference frames B;
and Q; are attached to the upper and lower arm respectively. The end-effector
E is attached to the lower arms in the points P,.

II. MANIPULATOR KINEMATICS

In this section the formulation of the kinematics of the
hexapod-like PKM is discussed. Using the kinematic structure
of the manipulator, several explicit and implicit constraints
are introduced. Solving all constraint equations numerically
requires large numerical inverses making it computationally
expensive. A full symbolic solution either does not exist or
is untractable. We propose a novel hybrid approach, where
the explicit constraints are used to obtain a reduced set
of coordinates, reducing the numerical effort to solve the
remaining implicit constraints.

A. Manipulator kinematic structure

Figure 1 shows the kinematic diagram of the utilised ma-
nipulator. The manipulator consists of a base platform O, an
end-effector platform E, the upper arms B; and lower arm
Q;, with i being an index associated with each of the six
arms. O an B; are connected by an actuated revolute joint
with associated coordinate 6;. B; and Q; are connected by a
universal joint and Q; and E are connected at point P; by
a spherical joint. Since the position of B; is fixed and the
orientation is fully determined by 6;, this coordinate suffices
to describe the configuration of the upper arm bodies. These
angles and all coordinates associated with each of the other
bodies define the coordinate set

Ao, X0, Ao, x Az]T, (D)

where @ € R® contains all 6;, Xg, € R3 denotes the position
of coordinate frame Q; and Ay, € R* denote the Euler
parameters associated with the orientation of Q.

x=1[0 xp

B. Explicit constraints

The position of the lower arm, xp,, can be expressed in
terms of 6; as

xg, = X, + R(6:)r30;, @)

where R(6;) denotes the rotation matrix associated with 6; and
rpo, denotes the vector from B; to Q; expressed in B;. Eq. (2)

can be used to express the total set of coordinates x in terms
of a reduced set of coordinates X

x=7(%), 3)
where X no longer contains the coordinates xg,.

x=[0 2, Ao, xx A )

C. Implicit constraints

Three so-called deformation coordinates &,(X) € R3, as-
sociated with the bending and twist deformations of the
universal joint, can be defined [9]. The full formulation of
these deformations is not repeated here for the sake of brevity.
The universal joint constraint is then simply expressed by con-
sidering a zero twist rotation, resulting in the third deformation
coordinate being zero

£3(X) =0. (5a)

The constraint introduced by the spherical joint at P, can be
expressed as

XE +R(A.E)r5pi =x3i+R(9,-)rBQ +R(A.Q’,)TQP. (5b)

Finally the redundancy constraints in the definition of the Euler
parameters are

Agl=0, [Ag|=o0. (50)

Equations (5) are contained in the set of constraint equations
2(%)=0. (6)
D. Solving for the coordinates X

As explained in the next section, there is no need to
explicitly compute the full set of coordinates x. Furthermore,
since the actuator angles @ are measured, only the dependent
coordinates, defined as the set difference between the reduced
set of coordinates and the actuator coordinates d =X\ 0, have
to be computed. Noting that d contains only 31 coordinates
and since a good estimate of d is available from the previous
time step, a Newton Raphson procedure can be used to solve
the dependent coordinates in one iteration in real time (see
subsection IV-E).

I1I. MANIPULATOR DYNAMICS

Using the manipulator kinematics, the equations of motion
(EOM) can be formulated and projected onto the permissible
degrees of freedom. Furthermore, the elastic joint forces
as well as the actuator-induced cogging and hysteresis are
included in the dynamics in this section.

A. Explicit projection

The equations for the inertial dynamics of a rigid body
are obtained from [1], [8]. Stacking these equations for all
bodies, yields the unconstrained inertial dynamics, which are
expressed in terms of the full set of coordinates x as

M(x)%+ h(x,x) = f(x,x), @)
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where M(x) contains the inertial terms of all bodies, h(x,x)
represents the gyroscopic terms and f(x,x) represents the
gravitational forces. In section III-C and III-D the additional
terms g and ), representing the joint reaction forces and
actuator induced forces will be introduced.

Using d’Alembert’s principle, the EOM of one arm can be
projected on the reduced set of coordinates as

TiM(Fek+7)+F{h=F]f, (8)
where F; = a{;‘f is the Jacobian matrix and Y can be computed
using

s 9
Z 8x18xk ©)

Since the formulation of the constraints is explicit, this pro-
jection can be performed symbolically. Together with the
following derivatives the projected equations of motion can
be rewritten as a function of the reduced set of coordinates
only

x:%}ic (10)
X=Zk+7, (11)
M (%)% +h(x,%) = f(x,%), (12)

where [J refers to the projection.

B. Implicit projection

The implicit projection of the EOM is given analogous to
the explicit projection as

JIME+JTh=JTF, (13)
1= _ghg): (14)
x=J0, (15)
x=J0+% (16)
] 0,

Y= 1ijax axk"‘J'k] (17)

with Z; = %—?. The implicit nature of 2 makes the symbolic
computation of @‘;1 untractable and therefore the implicit
projection has to be computed in real time.

C. Elastic joint forces

The joints of the manipulator are realised using flexures, re-
sulting in elastic force under bending. Similar to the universal
joint constraint, these joint forces are best expressed in terms
of the twist and bending of the spherical and universal joints
[9]. The deformations of all joints are collected in the vector

£=£(%). (18)
The bending forces are then given by
o =—Ke. (19)
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Fig. 2. Actuator torque T plotted against the actuator angle 6. The data has
been generated using a slow reference trajectory and has been compensated
for linear stiffness and a constant offset. The model includes 9 cogging
frequencies and a Dahl hysteresis model.

The joint reaction forces dual to X, denoted as g, can be
computed using the coordinate transformation

g=-6K& (). (20)
& can be added to the equations of motion similar to f as they
both represent forces dual to X

JT (M (%)% + h(x (21)

D. Actuator dynamics

The manipulator is driven by Tecnotion ironcore motors
powered by Kollmorgen drives, which do not provide ideal
torque sources, since they introduce hysteresis and cogging.
This is clearly visible by plotting the actual actuator torque T
versus the actuator angle 8 for slow motions. Fig. 2 shows that
the torque is position dependent and an offset between forward
and backward movement exists. The actuator behaviour is
described using

Xi(0i,2i) =0i +ki0; +d;i6; + cizit

2 . (22)
Z ajncos(nwb) + by, sin(nwoh),

where o; compensates for offset, k; for the flexure stiffness,
d; for damping, a;, and b;, for the cogging and c¢; for the
hysteresis. z; a Dahl state given by [10]
.6 L
i=_ (1 — s1gn(9)z) , (23)
with ¢ being 1.5-1072rad. The model torque prediction is
visualised by the dashed lines in Fig. 2.
Since x(0,z) is already dual to the independent coordinates
0, it can simply be added to the EOM as

J'(Mi+h-f-g)+x=1. (24)

This is the final formulation of the equations of motion.
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E. Parameter linear form

It can be shown that the inertial part of the equations of
motion (7) is linear in 10 inertial parameters per body [8]. The
stiffness relations in (19) are linear in the stiffness parameters.
Similarly, the actuator dynamics in (22) is linear in the
parameters o;,k;,d;, c;,ai,,bin. The projection does not change
this parameter linearity, making the equations of motion (24)
linear in the parameters.

Since the equations of motion are linear in the parameters,
they can be rewritten into a parameter linear form

dp =1, (25)
where @ is defined as
OM;; oh; dfi 9g; ax
Dy = Jf( "'<+—‘——’—7’) 5 26
lk ,Z,: P\ op M opc dpe om) T Imk (20)

After excluding parameters that have become redundant due
to the projections, 162 parameters remain.

IV. IMPLEMENTATION

AFFC has been implemented for the manipulator in
Simulink Real-Time. The processes are executed on a Speed-
goat Baseline real-time target machine which supports multi-
core and multi-rate processing. Hereafter, the overall control
structure is discussed first and followed by a discussion of the
computational routines used for the AFFC scheme.

A. Control structure

An overview of the AFFC control structure, as implemented
in Simulink, is shown in Fig. 3. P is the interface to the
actuators, which outputs the measured torques Z(¢) € R® and
actuator angles 0(¢) € R®. The input torque of P, 7(¢) € R®,
is computed by the feedback controller C and the feedforward
controller F. The actuator angles 0(z) are controlled by the
feedback controller C and feedforward controller F to the
reference signal, denoted by r(¢) € R®. First and second
derivatives are denoted as #(¢) and #(r). The Kalman filter
K estimates the parameter set p(t) € R'%? for the feedforward
controller. E computes the parameter linear form of the EOM,
which is used by K. Since E and F are functions of the
dependent coordinates, the Newton Raphson procedures Np
and Ng are used to determine the dependent coordinates. The
filter and derivative estimator W provides the time derivatives
of the actuator angles for Ng.

As can be seen in Fig. 3, the computational routines are
grouped into 3 different processes and executed at different
execution rates.

B. Plant communication (P)

In P the bidirectional EtherCAT communication with the
Kollmorgen AKP-P00309 servo drives is implemented. The
Kollmorgen drives run in current control mode and interface
with the Tecnotion QTR-A-133-60-N motors as well as the
Heidenhain LIC 4007-411 encoders.

Lo Xg, %9, Xg,
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NF Xy, Z F w

\ A
7,0
r e TrB T 7}
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Fig. 3. An overview of all the compuational processes. P is the interface to the
T-flex drives, which outputs the measured torques 7 and angles 6. C represents
the feedback controller. Nr and Ng are Newton-Raphson procedures used to
determine the dependent coordinates. F computes the feedforward signal.
W filters the incoming signals and estimates derivatives. E computes the
regression matrix. K is a Kalman filter that estimates p. z~® is a delay of
1.5ms used to synchronise the feedback and feedforward reference signals.

C. Feedback controller (C)

The 6 PID controllers, one independent controller for each
actuator, are used for disturbance suppression, The PID con-
trollers have a gain cross over frequency and phase margin of
10 Hz and 45 degrees respectively.

D. Filtering and derivative estimation (W)

In order to reduce noise, the measured 6 and T are first
filtered by a 101 point Hann-window based FIR filter.

27)

The derivatives @ and  are computed using the central differ-
ence stencil [—1,0,1]/(2¢) and the 3 point second derivative
stencil [—1,2,—1]/2, with sample time .

E. Newton Raphson (Nr and Ng)

The dependent coordinates d can be solved using the given
0 in real time using a Newton-Raphson (NR) procedure. The
procedure starts with a time update of the dependent variables
d.

- )
d=d'+d 1At+§dt ' (Ar)? (28)
After the time update, a correction step is performed such that
the equations satisfy the implicit constraint equations (6).

d«—d-72;'9 (29)
Where < is the assignment operator. The time derivatives ¥
and ¥ are then computed using (15) and (17). The correction
step (29) can be repeated to reach better accuracy, however
this comes with an greater computational cost. For the utilised
reference trajectory, using only one correction step yields
[|2|| < 1079 V¢, which is sufficiently small.
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For implementation convenience the Dahl states z are also
tracked by the NR procedure. The state is approximated using
the following numerical approximation of (23).

-1

gogp A0
1

! s (1 fsign(ef—ef_l)zt_l)

(30)

F. Feedforward and regressor computation (F and E)

The equations of motion in the regular and parameter linear
form have been derived in terms of a set of elementary
functions, being

W p), FE5p). hEdp). (). ), @), &), @)
Y(E2), 2(0,2,p), F1(3.5), I8 (x,%), (%), $2(%), J4(%.2)

These functions have been precomputed and simplified using
the Matlab symbolic toolbox. Using these functions, the rou-
tines ' and E have been written to evaluate the feedforward
torque and the parameter linear form:

€2y
(32)

TrF = F(i,i,i,z)
®=E(%,%,%,X,2)

G. Kalman Filter (K)

Since the EOM are linear in the parameters, the estimation
problem is convex. A Kalman filter is used for real time
estimation of the parameters and implemented as in [11]. The
adaptive algorithm is used to track short timescale variations,
caused by changing end-effector mass, and long timescale
variations, for example due to changing temperature. The
parameters are normalised by values obtained from an initial
least squares estimation procedure. Thereafter, the normalised
parameter drift R; is taken to be a diagonal matrix with 107>
at the entries corresponding the inertial properties of the end-
effector and 10~ at the other entries. The measurement noise
covariance is set at Ry = 107*] (Nm)?, with I being the
identity matrix. This covariance corresponds to the observed
flat and equal torque measurement noise for each of the
actuators.

H. Execution Rates

The time to calculate the feedforward (F, Ny and Ng) is
0.49ms at most, therefore an execution rate of 2kHz can be
chosen. The majority of this time is used by the Newton-
Raphson procedures Ng and Nr. Updating all 162 variables (£
and K) takes 11 ms. An execution rate of 33.33Hz is chosen,
which is sufficiently fast to track the expected parameter
changes. The computation of the parameter linear form E takes
less that 1ms and the majority of the computation time is
required for the Kalman filter.

V. EXPERIMENTAL RESULTS

The performance of the implemented AFFC scheme is
evaluated on the T-flex manipulator [2]. This section presents
the procedure, the results and a discussion of the experiments
that show AFFC performance without changing end-effector
mass. In the last section V-C the ability to adapt to changing
end-effector mass is considered.

A. Experimental procedure

A 50s trajectory is used. A new setpoint r € R® is generated
every second by a seeded random number generator. The
setpoints are connected using a 0.6s transition trajectory with
piecewise linear acceleration. The trajectory is repeated three
times, such that the non-repeatable behaviour of the manipula-
tor can be determined. The tracking error and feedback torque
will be determined for the following cases:

1) Feedback control only.

2) Feedback and feedforward control with a predetermined

parameter set p. This parameter set was generated from
a linear least squares fit to a previous dataset.
3) Feedback and adaptive feedforward control. The Kalman
filter is initialised using the same p.
4) The non-repeatable part of the manipulator behavior,
determined from the data obtained in case 2).
Furthermore, in order to evaluate the performance of the
actuator model separately, the experiments are performed
twice. Once with and once without the the upper part of the
manipulator, consisting of the bodies Q; and E.

B. Results and discussion

Table I shows the RMS tracking error and feedback torque
of the experiments. The RMS tracking error at the joints has
been translated to the end-effector tracking error using the
nominal kinematic model.

From these results it can be seen that feedforward control
yields a reduction of 96.4% of the tracking error when com-
pared to using feedback control only and a reduction of 97.9%
of the feedback torque. Note, perfect feedforward yields zero
feedback torque. Introducing the adaptive estimation leads
to an additional decrease in tracking error of 33.2% and
an additional decrease of 26.8% in feedback torque. Fig. 5
shows the resulting feedforward and feedback torque. Further
improvement is still possible, as 86.3% of the remaining
feedback torque is still repeatable and could thus in principle
be compensated if the feedforward model is properly extended.

The tracking error obtained with only the upper arms
is similar to the tracking error for the total manipulator.
This indicates that the actuator model is the limiting factor.
Furthermore, it has been observed that the contribution to the
RMS tracking error of frequencies higher than the feedback
bandwidth is only marginal. This indicates that the rigid body
approximation of the manipulator dynamics suffices for the
utilised reference trajectory.

C. Adaptive performance

The tracking performance under changing end-effector in-
ertial load is tested using the same random setpoint trajectory.
However in this case the end-effector mass is varied with
time, as shown in Fig. 4. Only the parameters associated
with end-effector are estimated online. The adaptive algorithm
maintains a similar performance when the end-effector mass
is changed, whereas the performance of the non-adaptive
algorithm becomes visibly worse, particularly for the highest
change in mass.
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TABLE I
THE RMS TRACKING ERRORS AND FEEDBACK TORQUE FOR THE EXPERIMENTS WITHOUT CHANGING END-EFFECTOR MASS.

Total Manipulator

Actuators only

RMS values ‘ e(urad)  tpp(Nm)  Ax(um)  Ay(um)  Az(um)  A¢(urad)  AB(urad) Ay (urad) ‘ e(urad)  tpp(Nm)
Feedback only 1325 0.8767 197.3 166.2 137.8 1439.7 1816.4 316.5 565 0.9608
Non-adaptive 47.6 0.0185 8.5 10.1 8.0 43.0 53.7 22.7 34.6 0.0131
Adaptive 31.8 0.0117 5.2 54 4.7 24.7 26.0 13.4 27.5 0.0097
Repeatability 6.5 0.0016 0.9 1.0 0.9 4.7 5.0 2.7 6.4 0.0019
— «107%
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Fig. 4. The moving window RMS tracking error and estimated mass parameter. The utilised moving window is a Hann window with a width of 0.25s. The
test has been performed using a non-adaptive feedforward and an adaptive feedforward.
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Fig. 5. Feedforward (FF), feedback (FB) and total torque of actuator 1 for
the random setpoint trajectory when using adaptive feedforward control for
the total manipulator.

VI. CONCLUSIONS

The compact kinematic formulation, the parametric ap-
proach and the parallel multi-rate processing resulted in a
feedforward model for the T-flex PKM that can be computed
within 0.5ms. An estimation update is realised every 30ms.
For the utilised random setpoint trajectory the feedback current
can be reduced to less than 1.4% and the tracking error to
below 2.5% of the system without feedforward. When the
actuators are tested separately, only a slightly better tracking
error is obtained. This gives confidence in the accuracy of
the derived kinematic model. Further improvement for the
utilised reference trajectory should be achievable using a better
actuator model.

The adaptive processing results in the manipulator being
able to maintain its performance under changing end-effector
mass. Further research is required to investigate the long term
variations of the other parameters. Tests with faster and more
exiting reference trajectories can also be performed, further
utilising the fast execution rates of the implemented AFFC
scheme.
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