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ABSTRACT

Hybrid automata are an emerging formalism used to model
sampled-data control Cyber-Physical Systems (CPS), and
analyze their behavior using reachability analysis. This is
because hybrid automata provide a richer and more flexible
modeling framework, compared to traditional approaches.
However, modern state-of-the-art tools struggle to analyze
such systems, due to the computational complexity of the
reachability algorithm, and due to the introduced overapprox-
imation error. These shortcomings are largely attributed (but
not limited) to the aggregation of sets.

In this paper we propose a subspace identification approach
for decomposed aggregation in the reachability analysis of
hybrid automata with linear dynamics. Our key contribution
is the observation that the choice of a good subspace basis
does not only depend on the sets being aggregated, but also
on the continuous-time dynamics of an automaton. With
this observation in mind, we present a dynamics-aware sub-
space identification algorithm that we use to construct tight
decomposed convex hulls for the aggregated sets.

Our approach is evaluated on two practically relevant
hybrid automata models of sampled-data CPS that have
been shown to be difficult to analyze by modern state-of-
the-art tools. Specifically, we show that for these models
our approach can improve the accuracy of the reachable set
by up-to 10 times when compared to standard Principal
Component Analysis (PCA), for which finding a fixed point
is not guaranteed. We also show that while the computational
complexity is increased, a fixed-point is found earlier.

CCS CONCEPTS

• Computer systems organization → Embedded and
cyber-physical systems; • Theory of computation →
Formal languages and automata theory; • Mathematics
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of computing → Numerical analysis; Mathematical op-
timization; • Hardware → Functional verification; •
Software and its engineering → Formal methods.
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1 INTRODUCTION

In reachability problems of hybrid automata the growth of
disjoint sets is a frequently encountered issue. This growth
increases the complexity of the reachability algorithm expo-
nentially for generic hybrid automata, thus preventing any
use of a reachability tool within a reasonable amount of time.

Figure 1: A flowpipe (blue) generated from the
set 𝑋0, and its overapproximation using seg-
ments (green).

The first reason for this exponential growth is due to the
computation of the so-called flowpipe. Because the continuous-
time trajectories are dense in time, an image of the flowpipe
from an initial set of states cannot be computed exactly.
Thus, during the flowpipe construction phase, it is overap-
proximated as a union of a set of segments, each generated
for a fixed time-step, such that it covers a portion of the
true flowpipe, see Figure 1. The smaller the time-step, the
tighter each segment becomes at the cost of a larger number
of segments.
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Figure 2: A mode with two incoming transitions (2a),
and two sets of flowpipe segments from each transi-
tion, 𝑋1

1,2,3 and 𝑋2
1,2,3, respectively, aggregated using

a box (2b).

The second reason is due to the accumulation of segments
in a mode from incoming transitions. During the discrete
transition phase, the flowpipe in each discrete state (mode)
is intersected with a guard, and an image of the intersected
segments under a so-called jump transformation is computed
for each outgoing transition. On the receiving end, a mode
with incoming transitions uses these as initial sets to compute
a new flowpipe in the next iteration, see Figure 2 for a basic
idea.

To prevent this exponential growth of segments, reachability
algorithms typically utilize aggregation techniques, which de-
rive significantly smaller numbers of set representations (ag-
gregates) that tightly contain the segments, with the most
popular representations being template polyhedra. However,
these representations are based on fixed, manually selected
templates and typically introduce a large overapproximation
error, as shown in Figure 2b. This error propagates through
each iteration of the algorithm, and can severely compromise
its reliability by bloating the reachable set to the point where
a fixed-point cannot be determined. This is particularly prob-
lematic for the verification of liveness properties, such as
stability. On the other hand, convex hulls can be used to
compute an exact aggregate of a union of disjoint sets, but
the computational complexity is exponential with respect
to the dimensionality of the sets. In such cases decomposed
aggregation via subspace projections can decrease this com-
plexity at the expense of overapproximation error. This error
greatly depends on the selected subspaces.

In this paper we present a subspace identification approach
for decomposed convex hull aggregation. The key contribu-
tion is the important observation that the choice of subspace
basis for decomposed aggregation highly depends on the con-
tinuous dynamics. To be more precise, depending on the flow
equation of the continuous-time state variables, an aggregate
may contract faster, even if it is not tight with respect to
the set it overapproximates. Subsequently we develop an
optimization algorithm, which derives an orthogonal basis
for the subspaces, such that the aggregate contracts faster.

Specifically, given a set of sets, our approach finds a box ag-
gregate, such that the overapproximated flowpipe generated
from this aggregate converges faster to the exact flowpipe
with respect to a set measure. Convex hulls are then com-
puted of the projections of the sets onto the subspaces, and
the decomposed sets are composed back using the Cartesian
product. This decomposed style of aggregation in lower di-
mensional subspaces, brings a fair balance between accuracy
and algorithmic complexity to the reachability algorithm.
Our approach is applied to the class of hybrid automata with
linear dynamics, where the flow and jump functions are linear
with respect to the state variables.

In our case study we apply our technique to the reachability
analysis of sampled-data control CPS [1, 2, 4, 10, 20, 24, 25,
29]. Specifically, we evaluate our approach on two practically
relevant hybrid automata models where we consider full-state
feedback control of the plant. We show that a good subspace
basis in decomposed aggregation significantly improves the
accuracy of the reachability algorithm by up-to a factor of
10.

The rest of this paper is organized as follows. In Section 2
we review related work. Section 3 gives a basic overview of
our approach. Section 4 describes the reachability algorithm
of hybrid automata with linear dynamics, and decomposed
convex hull aggregation. In Section 5 we describe our sub-
space identification algorihtm. Our case study and results
are presented in Section 6. Our conclusions are presented in
Section 7.

2 RELATED WORK

In this section we discuss approaches that are closely related
to our work and outline the differences.

A recently proposed method [6] uses PCA to determine
the directions of template polyhedra overapproximations of
the flowpipe segments. First, PCA is used to determine the
directions of the template approximating the initial segment
of a flowpipe. Subsequently, PCA is used to determine an
oriented box template of the complete flowpipe, or partitions
of it, because the size of the exact convex hull of the seg-
ments may grow large. However, the key difference with our
work is that their subspace identification approach via PCA
does not consider the continuous dynamics of the automa-
ton. Furthermore, decomposed subspace based aggregation
is not considered. Finally, in their approach aggregation is
performed on individual flowpipes and their segments, rather
than sets of unrelated flowpipe segments from different modes.

In the tool SpaceEx [12, 14] they use support function
representations of the flowpipes, and a combination of tem-
plate polyhedra and convex hulls are used for aggregation.
Their aggregation and clustering strategy on the flowpipe
level, which is referred to as the STC scenario in the tool, de-
termines the time-step dynamically for each of the segments.
As demonstrated by the authors, this can significantly reduce
the number of segments, with a slightly increased overapprox-
imation error. However, in contrast to our approach SpaceEx
does not allow automatic selection of the template directions
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for aggregation. Instead, they are fixed and manually selected
by the user. Additionally, the clustering technique presented
in [14] is applied to segments during flow-pipe construction.
Finally, decomposed aggregation is not used in the tool.

In [27] the authors propose an efficient Counterexample-
Guided Abstraction Refinement (CEGAR) based approach
to dynamically reduce overapproximation error. The idea,
albeit similar to ours, is to automatically select suitable pa-
rameters of the reachability algorithm, so that verification
can be performed more efficiently and accurately. The pa-
rameters considered are the state set representations, their
spatial and algorithmic complexity, the time-step, the aggre-
gation strategy and others. Then the reachability algorithm
is executed repeatedly, starting with an initial configuration
of parameters, and are refined with each execution until
the verification process is complete, or the search space is
exhausted. However, their approach is different from ours
because the refinement of parameters occurs on each com-
plete execution of the algorithm. In contrast, our subspace
identification approach is applied on each iteration of the
reachability algorithm. Additionally, they do not consider
decomposed aggregation in their approach. As such, an op-
timal subspace basis for aggregation is not included in the
parameter search space.

In [3, 9] the authors propose an aggregation and a de-
aggregation technique to reduce the number of segments,
such that a low overapproximation error is maintained. More
precisely, the technique identifies spuriously aggregated sets,
which are then de-aggregated so that the error is reduced. The
set representations of the segments that are considered are
generalized stars, while aggregation is performed by a combi-
nation of template polyhedra and convex hulls. However, the
key difference with our approach is that they do not provide
a method to automatically determine template directions.
Additionally, while they utilize symbolic orthogonal projec-
tions [18], their aggregation approach is not decomposed
using subspaces. Thus, a subspace identification technique is
not considered.

3 BASIC IDEA

In this section we provide a basic overview of aggregation
methods and our approach.

3.1 Aggregation using template polyhedra

Template polyhedra is a very popular way to aggregate sets
and have been extensively used in state-of-the-art reachability
tools, such as HyLaa [3, 9], SpaceEx [12] and Flow* [6, 7],
due to their simplicity. The basic idea is to find support
hyperplanes to the aggregated set, and form a convex poly-
hedron from their intersection, see Figure 2b. First an ag-
gregated set 𝑋 ⊂ R𝑛 is projected onto a set of normal vec-
tors {𝑢1, . . . 𝑢𝑁}, called directions, and subsequently upper
bounds, {𝑏1, . . . , 𝑏𝑁}, are derived of the projections, i.e. 𝑏𝑖 =
max𝑥∈𝑋⟨𝑢𝑖, 𝑥⟩. Here ⟨·, ·⟩ is the inner product of two vectors.
The pairs (𝑢𝑖, 𝑏𝑖) then define the hyperplanes.

The box template is particularly useful, because its set
of directions, {±𝑢1, . . . ,±𝑢𝑛}, are orthogonal, and therefore
form an orthogonal subspace basis for R𝑛. Thus, when a
set 𝑋 is projected onto the subspaces spanned by the direc-
tions, the template can be incrementally refined to produce a
tighter polyhedron, by adding more directions in the respec-
tive subspaces. This incremental approach has been used in
SpaceEx [12], however here they use the standard basis.

However, the choice of directions heavily influences how
well the reachability algorithm performs, because of overap-
proximation error. This choice is left to the user in state-of-
the-art tools, and thus it often leads to very poor results.
While PCA-based approaches have been used to dynamically
determine directions [6], we show in our case study that PCA
is not sufficiently accurate for practical applications.

3.2 Aggregation using convex hulls

Another approach for set aggregation is to compute convex
hulls of sets. A big advantage over template polyhedra, is that
convex hulls are the tightest possible aggregates of sets, since a
convex hull consists of all the possible convex combinations of
the sets’ points. Unfortunately the computational complexity
of the convex hull algorithm depends on the representation
used for the aggregated sets, and their dimensionality. The
algorithm has been shown to be most efficient for point sets,
and 𝒱-representations of polyhedra [5], however even then
the complexity is exponential with respect to dimension.

3.3 Decomposed aggregation

An emerging approach that exploits the complexity/accuracy
trade-off in aggregation using convex hulls, template poly-
hedra, etc, is decomposed aggregation, which we apply in
this paper. The basic idea is to project the set onto lower
dimensional subspaces of the parent space, perform the ag-
gregation on the projections for each subspace, and compose
the aggregated projections back into the original space using
the Cartesian product. More formally, suppose that 𝑋 ⊂ R𝑛

is a set to aggregate, and let 𝒲1, . . . ,𝒲𝑝 be orthogonal sub-
spaces of R𝑛, such that R𝑛 =𝒲1 ⊕ · · · ⊕𝒲𝑝. Then 𝑃𝒲𝑖(𝑋)
is a projection of 𝑋 onto 𝒲𝑖. Now let Aggr(𝑃𝒲1(𝑋)) be the
new aggregate (box, convex hull, etc) of the projection of 𝑋
onto subspace 𝒲𝑖. The decomposed aggregate of 𝑋 is then
Aggr(𝑃𝒲1(𝑋))× · · · ×Aggr(𝑃𝒲𝑝(𝑋)).

The main advantage of decomposed aggregation is that
the complexity to compute lower-dimensional aggregates is
much lower at the expense of increased overapproximation
error. The trade-off is controlled by selecting the size of the
subspace partition.

3.4 Indentifying subspaces

Besides selecting the subspace partion, overapproximation
error can be further reduced by correctly selecting the sub-
spaces. As such, the identification of a suitable basis for
the subspaces is crucial for the accurate performance of the
reachability algorithm, and is usually done using PCA. A key
observation that we have made, is that the choice of a good
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Figure 3: Contraction of two box aggregates.

basis required to derive a tight decomposed aggregate does
not only depend on the sets being aggregated, but also on
the continuous dynamics. Specifically, how fast the aggregate
contracts depends also on the flow functions that govern the
evolution of the state variables. This contraction of the aggre-
gate directly affects how its approximated flowpipe converges
to the exact flowpipe. We observe that if it contracts faster,
then the propagated overapproximation error due to succes-
sive aggregations is reduced. We demonstrate this observation
with the following example.

Consider a 2-dimensional state-space with the variable
𝑥 ∈ R𝑛 evolving according to the flow equation 𝑥̇ = 𝐴𝑥,𝐴 ∈
R𝑛×𝑛, see Figure 3. Here are shown the vector field of 𝐴, an
arbitrary compact set 𝑋0, and two box aggregates, Box 1
and 2, of 𝑋0 with respect to two orthogonal subspace bases.
Thus the orthogonal vectors that span the subspaces are
normal to the faces of the respective box aggregates. Box
2 specifically is derived using PCA. Additionally we show
several contracting trajectory “snapshots” of the boxes at
discrete moments in time. Note that a trajectory is generated
by taking a point as initial state in the flow equation and
simulating the system. What is observed, is that the points of
Box 1 are approaching the origin faster than the ones of Box 2,
despite that Box 2 seems tighter than the first one. Another
interesting observation, is that Box 1 contracts along the
flow field. As we show later in the paper the most important
consequence is that the flowpipe of Box 1 converges faster to
the flowpipe of 𝑋0 than Box 2, and as such the cumulative
overapproximation error is reduced.

By taking this important observation into account, our
approach attempts to find a subspace basis which produces
the tightest box aggregate that also contracts faster. The
template is refined further via a decomposed convex hull,
described later in the paper. Our approach thus has a clear
advantage over standard PCA, since PCA does not use a
contraction measure/metric in its optimization problem. As a

result, PCA cannot guarantee that the reachable set contracts
faster, or at all, an effect observed in our case study.

4 REACHABILITY OF HYBRID
AUTOMATA WITH LINEAR
DYNAMICS

In this section we provide a basic introduction to hybrid
automata with linear dynamics and their reachability. We
also define the decomposed convex hull operator.

4.1 Definition

We adopt a similar definition of a hybrid automaton with
linear dynamics from [28]:

Definition 4.1 (Syntax of hybrid automata with linear dy-
namics). A hybrid automaton with linear dynamics is the
tuple ℋ = (𝒬, 𝑞0,𝒳 , 𝑋0, 𝐸, ℐ,𝒢, 𝑓, 𝑅), where 𝒬 = {𝑞1 . . . 𝑞𝑙}
is a finite set of modes, with initial mode 𝑞0; 𝒳 ⊆ R𝑛 is a
continuous-time state-space with a state variable 𝑥(𝑡) ∈ R𝑛 (𝑡
is omitted throughout the paper for clarity), and initial
set 𝑋0 ⊆ 𝒳 ; 𝐸 ⊆ 𝒬 × 𝒬 is a set of discrete transitions;
ℐ : 𝒬 → 2𝒳 assigns a polyhedral invariant set ℐ(𝑞) = {𝑥 ∈
𝒳 | 𝐶𝑞𝑥 ≤ 𝑐𝑞} for each mode 𝑞 ∈ 𝒬; similarly, 𝒢 : 𝐸 → 2𝒳

assigns a guard set 𝒢(𝑒) = {𝑥 ∈ 𝒳 | 𝐺𝑒𝑥 ≤ 𝑔𝑒} for each
transition 𝑒 ∈ 𝐸; 𝑓 : 𝒬×𝒳 → 𝒳 , 𝑓(𝑞, 𝑥) = 𝐴𝑞𝑥,𝐴𝑞 ∈ R𝑛×𝑛,
is a vector field assigned for each mode, such that if 𝑥 ∈ ℐ(𝑞)
for the active mode 𝑞 ∈ 𝒬, then 𝑥̇ = 𝑓(𝑞, 𝑥); 𝑅 : 𝐸 × 𝒳 →
𝒳 , 𝑅(𝑒, 𝑥) = 𝐽𝑒𝑥+ 𝑗𝑒, 𝐽𝑒 ∈ R𝑛×𝑛, 𝑗𝑒 ∈ R𝑛, is an affine jump
transformation for an enabled transition 𝑒 = (𝑞, 𝑞′), such
that if 𝑥 ∈ 𝒢(𝑒), then the new state is 𝑥′ = 𝑅(𝑒, 𝑥) if the
transition occurs.

We do not provide a description of the formal semantics
for hybrid automata, such as their execution, since this falls
out of the scope of the paper, and instead refer the reader
to [3, 12, 28].

4.2 Reachability of hybrid automata

A standard reachability algorithm of hybrid automata can
be summarized with the following steps:

(1) Compute an invariant-satisfying flowpipe from the cur-
rent initial set for each mode.

(2) For each mode and each outgoing transition, intersect
the flowpipe with a guard, and apply the jump trans-
formation to the intersection. The result is used as
initial set in the next iteration per destination mode.

(3) For each mode, apply aggregation to its union of new
initial sets.

(4) Repeat steps 1-4 until a fixed point condition is satis-
fied.

A more detailed description of the algorithm is provided in
Algorithm 1.

4.3 Flowpipe computation

Because understanding how a flowpipe is computed is im-
portant for our approach, we briefly describe the standard
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Algorithm 1 Reachability of hybrid automata

1: function (𝑄,𝑋)← Reachability(ℋ, 𝑇, 𝑘)
2: 𝑄0 ← {𝑞0} ◁ Initialization
3: 𝑋𝑞0

0 ← 𝑋0

4: ∀𝑞 ∈ 𝒬 ∖ {𝑞0} : 𝑋𝑞
0 ← ∅

5: for 𝑘 = 1, . . . , 𝑘 do
6: for 𝑞 ∈ 𝑄𝑘−1 do ◁ Flowpipe computation
7: Ψ𝑞

𝑘 ← flowpipe(𝑋𝑞
𝑘−1, 𝑇 ) ∩ ℐ(𝑞)

8: end for
9: 𝑄𝑘 ← 𝑄𝑘−1

10: ∀𝑞 ∈ 𝒬 : 𝑋𝑞
𝑘 ← ∅

11: for 𝑒 = (𝑞, 𝑞′) ∈ 𝐸, 𝑞 ∈ 𝑄𝑘−1 do ◁ Transitions

12: 𝑋𝑞′

𝑘 ← 𝑋𝑞′

𝑘 ∪𝑅(𝑒,Ψ𝑞
𝑘 ∩ 𝒢(𝑒))

13: 𝑄𝑘 ← 𝑄𝑘 ∪ {𝑞′}.
14: end for
15: for 𝑞 ∈ 𝑄𝑘 do ◁ Aggregation
16: 𝑋𝑞

𝑘 ← aggregate(𝑋𝑞
𝑘)

17: end for
18: 𝑋𝑘 ←

⋃︀
𝑞∈𝑄𝑘

𝑋𝑞
𝑘

19: if (𝑄𝑘, 𝑋𝑘) = (𝑄𝑘−1, 𝑋𝑘−1) then ◁ Fixed point
20: return (𝑄𝑘, 𝑋𝑘).
21: end if
22: end for
23: return (𝑄𝑘̂, 𝑋𝑘̂).
24: end function

computation process here. For each reachable mode 𝑞 ∈ 𝒬
in the current iteration 𝑘, the reachable set of the contin-
uous time variables at 𝑞, say 𝑋𝑞

𝑘 ⊆ 𝒳 , is taken as initial
set. This initial set is then used to derive the set of all of
the possible forward reachable trajectories from 𝑋𝑞

𝑘 up-to
some time 𝑡 ∈ R+, which is the exact flowpipe. Here we
remind that a trajectory, 𝜉 : R×𝒳 → 𝒳 , is a function that
satisfies the differential equation 𝑥̇ = 𝐴𝑞𝑥|𝑥=𝜉, with initial
state 𝑥(0) = 𝑥0 ∈ 𝑋𝑞

𝑘 . For clarity, we will refer to the initial
set as 𝑋0 instead of 𝑋𝑞

𝑘 , and let 𝐴 = 𝐴𝑞 for the rest of this
section. Because the flow function is linear, this trajectory is
exactly derived as 𝜉(𝑡, 𝑥0) = 𝑒𝐴𝑡𝑥0. Thus, with a little abuse
of notation, the exact flowpipe from the set 𝑋0 at any time
𝑡 is:

Ψ(𝑡,𝑋0) = 𝑒𝐴𝑡𝑋0.

Because this set is dense in time it cannot be computed
exactly, and instead it is overapproximated by a set of seg-
ments. First, the trajectory is discretized using a time step
𝛿 ∈ R+. Then an initial segment Ω0 is computed, such that
∀𝑡 ∈ [0, 𝛿] : Ψ(𝑡,𝑋0) ⊆ Ω0. The most common approach is by
bloating, where:

Ω0 = conv(𝑋0 ∪ 𝑒𝐴𝛿𝑋0)⊕ ℬ𝛼,

where 𝛼 ∈ R+ is a bloating constant, ⊕ is the Minkowski
sum, conv(·) is the convex hull of a set and ℬ𝑟 is a ball with
radius 𝑟 > 0, see [15]. Then each segment for any 𝑁 ∈ N is
recursively computed as:

Ω𝑖 = 𝑒𝐴𝛿Ω𝑖−1, 𝑖 = 1, . . . , 𝑁. (1)

As shown in [15, 16], ∀𝑡 ∈ [0, 𝑁𝛿] : Ψ(𝑡,𝑋0) ⊆
⋃︀𝑁

𝑖=0 Ω𝑖. We
note that even though making 𝛿 smaller results into tighter

segments, there is a saturation point beyond which the over-
approximation error is not significantly reduced, while the
number of segments increases substantially. Most importantly,
this tightening of the flowpipes does not improve their sub-
space identification and aggregation, since their topology and
structure remain unchanged.

4.4 Decomposed convex hull aggregation

As discussed earlier, aggregation is applied to the flowpipe
segments by grouping them with a new set representation.
Since in this paper we use the so called decomposed con-
vex hull to derive this representation, we provide a formal
definition below.

Definition 4.2 (Decomposed convex hull). Let 𝒥 = {𝐽1, . . . ,
𝐽𝑚} be a partition of {1, . . . , 𝑛}, such that 𝑖 ̸= 𝑗 =⇒ 𝐽𝑖 ∩
𝐽𝑗 = ∅ and

⋃︀
𝑖 𝐽𝑖 = {1, . . . , 𝑛}. Furthermore, let 𝑈 ∈ R𝑛×𝑛

be an orthogonal matrix, then for each 𝐽𝑖 = {𝑗1, . . . , 𝑗𝑝} ∈
𝒥 we construct a matrix 𝑈𝐽𝑖 ∈ R𝑛×𝑝, such that 𝑈𝐽𝑖 =(︀
𝑢𝑗1 · · · 𝑢𝑗𝑝

)︀
, where 𝑢𝑗 ∈ R𝑛×1 is the 𝑗-th column of 𝑈 .

Then the decomposed convex hull of a set 𝑋 ⊂ R𝑛, is the
Cartesian product:

dconv(𝑋,𝑈,𝒥 ) =
𝑚

×
𝑖=1

𝑈𝐽𝑖 conv(𝑈
⊤
𝐽𝑖
𝑋). (2)

We call the set 𝒥 a subspace partition, and use it to select
the projections of 𝑋 onto the subspaces spanned by 𝑈 , that
are individually aggregated using the convex hull. The result
is a set of convex hulls in each subspace, that are composed
back in the original space using the Cartesian product. For
example, when 𝒥 = {{1}, {2}, . . . , {𝑛}}, dconv(𝑋, 𝐼,𝒥 ) is
the standard basis bounding box of 𝑋, where 𝐼 is the identity
matrix.

5 SUBSPACE IDENTIFICATION

In this section we present our subspace identification ap-
proach.

5.1 Notation and definitions

We assume that R𝑛 is equipped with the infinity vector norm
‖𝑥‖ = max𝑖|𝑥𝑖|, 𝑥 ∈ R𝑛, and define the norm of a compact
subset 𝐴 ⊂ R𝑛 induced by ‖·‖ as ‖𝐴‖ = max𝑎∈𝐴∪{0}‖𝑎‖.
We denote with O(n) = {𝑆 ∈ R𝑛×𝑛 | 𝑆⊤𝑆 = 𝑆𝑆⊤ = 𝐼} the
set of orthogonal matrices, where ·⊤ is the transpose of a
matrix, and with SO(𝑛) = {𝑆 ∈ O(n) | det(𝑆) = 1} the set
of rotation matrices. Given a 𝑈 ∈ O(n) with columns 𝑢𝑖, and
a set 𝑋 ⊆ R𝑛, then:

Box𝑈 (𝑋) = {𝑥′ ∈ R𝑛 | ∀𝑖 ∈ {1, . . . , 𝑛} :
⟨𝑢𝑖, 𝑥

′⟩ ≤ max
𝑥∈𝑋
⟨𝑢𝑖, 𝑥⟩ and ⟨𝑢𝑖, 𝑥

′⟩ ≥ min
𝑥∈𝑋
⟨𝑢𝑖, 𝑥⟩}, (3)

is the bounding box of 𝑋 with respect to 𝑈 , with ±𝑢𝑖 normal
to its facets. The matrix-valued function skew : R𝑛(𝑛−1)/2 →
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Figure 4: Convergence error for the example in Fig-
ure 3.

R𝑛×𝑛 is defined as:

skew(𝑣) =

⎛⎜⎜⎜⎜⎝
0 𝑣1 · · · 𝑣𝑛−1

−𝑣1 0
. . .

...
...

. . .
. . . 𝑣𝑛(𝑛−1)/2

−𝑣𝑛−1 · · · −𝑣𝑛(𝑛−1)/2 0

⎞⎟⎟⎟⎟⎠ ,

and it constructs a skew-symmetric matrix from a 𝑛(𝑛−1)/2-
dimensional vector.

5.2 Identification using PCA

PCA is the most popular dimensionality reduction and sub-
space identification approach, used also in reachability al-
gorithms [6, 28]. For the sake of completeness, we give a
minimal definition of the method here.

Given a finite set of points, {𝑥1, . . . , 𝑥𝑁} ⊂ R𝑛, represented
by a matrix 𝑋 =

(︀
𝑥1 · · · 𝑥𝑁

)︀
∈ R𝑛×𝑁 , then the standard

2-norm PCA optimization problem is:

argmax
𝑈
{1
2
tr(𝑈⊤𝑋𝑋⊤𝑈) | 𝑈 ∈ O(n)}, (4)

where tr(·) is the trace of a matrix. The columns of opti-
mal matrix 𝑈 span 1-dimensional subspaces, such that the
variance of the points’ projections onto the subspaces is max-
imized. Equivalently, 𝑈 forms a basis for aff(𝑋) − 𝑥𝑖, 𝑖 =
1, . . . , 𝑁 , where aff(·) is the affine hull of a set. The opti-
mization problem is efficiently solved with the singular value
decomposition:

𝑋 = 𝑈Σ𝑉 ⊤. (5)

An issue with the standard 2-norm PCA is its sensitivity to
outliers [23], and thus a key reason for its poor performance
in aggregation due to the possible existence of spread out
disjoint sets.

5.3 Dynamics-aware identification

Earlier in the paper, we argued that a good subspace basis
is very beneficial for the selection of directions of template
polyhedra, and for computing decomposed convex hulls. The
initial intuition is to choose a basis, such that the aggregate

tightly contains the aggregated set. This is usually formulated
as the problem of finding a minimum volume bounding aggre-
gate, such as an ellipsoid or box. However, we observed that
the continuous dynamics of the automaton also influence the
choice of optimal basis, and demonstrated that counter to the
initial intuition, a tighter template is not necessarily better
in terms of convergence. We also highlighted the significance
of the bounding box template as a building block for more
refined aggregates. Most importantly, its directions form an
orthogonal subspace basis. For these reasons, our dynamics-
aware subspace identification approach uses bounding boxes
to derive an orthogonal basis. We now formulate and define
the optimization problem of our approach.

We start first by defining a contraction measure of a set.
Let 𝑋 ⊂ R𝑛 be a set, 𝑈 ∈ O(n) an orthogonal basis ma-
trix and Φ ∈ R𝑛×𝑛 a discrete-time state-transition matrix.
Then by (1), the discrete-time flowpipe of 𝑋 as initial set
is 𝑋𝑘+1 = Φ𝑋𝑘, 𝑘 = 0, 1, . . ., with 𝑋0 = 𝑋. A similar rela-
tion holds for the bounding box 𝑋𝑈 = Box𝑈 (𝑋). We then
construct standard basis boxes Box𝐼(𝑋) and Box𝐼(𝑋𝑈 ), and
use them to measure the contraction of the flowpipe. We call
the sequence (Err𝑘(𝑋,𝑈))𝐿𝑘=1, 𝐿 ∈ N, where:

Err𝑘(𝑋,𝑈) = vol(Box𝐼(Φ
𝑘𝑋𝑈 ))− vol(Box𝐼(Φ

𝑘𝑋)), (6)

the contraction error between the discrete flow-pipe of 𝑋
and its box template 𝑋𝑈 with respect to 𝑈 , where vol(𝑋)
is the 𝑚-dimensional volume of a set, 𝑚 = dimaff(𝑋). The
reason we define the error this way, is because vol(Φ𝑘𝑋𝑈 ) =
det(Φ)𝑘 vol(𝑋𝑈 ). Thus in this case our problem would be
reduced to just finding the minimum volume bounding box,
which is independent of the matrix Φ. On the other hand
measuring the volume difference with respect to the standard
basis also allows measuring the contraction due to Φ. We also
note that this is one of many estimates of the contraction
error. However this error estimate is easy to compute for box
templates, as we show later, compared to others.

Two error sequences for the box example in Figure 3
are shown in Figure 4, given matrices 𝑈1 and 𝑈2. The plot
indicates that the sequence of errors indeed converges to
zero faster for the first box, compared to the second. More
importantly, each value of the first sequence is smaller than
each value of the second sequence, which indicates that 𝑈1 is a
desirable basis matrix. This is despite that vol(Box𝑈1(𝑋)) >
vol(Box𝑈2(𝑋)). We can thus give a formal definition to the
subspace identification problem.

Definition 5.1 (Dynamics aware subspace identification).
A subspace basis represented by a matrix 𝑈* ∈ O(n) is
optimal for a set 𝑋 ⊂ R𝑛 in the sense of the contraction
error, if ∀𝑈 ∈ O(n) :

∑︀𝐿
𝑘=1 Err𝑘(𝑋,𝑈*) ≤

∑︀𝐿
𝑘=1 Err𝑘(𝑋,𝑈)

for some 𝐿 ∈ N.

More informally want to find a matrix 𝑈*, such that this
error is minimized for every segment in the flowpipe over a
finite discrete time interval [1, 𝐿]. This is a scalarized multi-
objective optimization problem with equal weighting for each
objective. In this case the initial box template represented by
𝑈* converges the fastest to the set 𝑋. This can be formulated
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as the following optimization problem:

argmin
𝑈
{

𝐿∑︁
𝑘=0

vol(Box𝐼(ΓΦ
𝑘𝑋𝑈 )) | 𝑈 ∈ O(n)}, (7)

where we additionally introduce a scaling matrix Γ ∈ R𝑛×𝑛,
and thus summation is done over 𝑘 ∈ {0, . . . , 𝐿}.

5.4 Simplification using zonotopes

Here we derive an analytical expression for the objective
function of (7) by using a zonotope representation of Φ𝑘𝑋𝑈 ,
for which the error sequence is easy to compute.

Given a matrix 𝑉 ∈ R𝑛×𝑚 and a point 𝑐 ∈ R𝑛, then a
zonotope is the set:

𝑍(𝑐, 𝑉 ) = {𝑐+ 𝑉 𝑧 | 𝑧 ∈ [−1, 1]𝑚}, (8)

which is the image of the m-dimensional unit hypercube
under 𝑉 , with center 𝑐. Note that Φ𝑍(𝑐, 𝑉 ) = 𝑍(Φ𝑐,Φ𝑉 ).
Additionally Box𝐼(𝑍(𝑐, 𝑉 )) = [𝑚1,𝑀1] × · · · × [𝑚𝑛,𝑀𝑛],
where for all 𝑖 ∈ {1, . . . , 𝑛} : 𝑚𝑖 = |𝑐𝑖| −

∑︀𝑚
𝑗=1|𝑉𝑖𝑗 |, and

𝑀𝑖 = |𝑐𝑖|+
∑︀𝑚

𝑗=1|𝑉𝑖𝑗 |. Thus:

vol(Box𝐼(𝑍(𝑐, 𝑉 ))) =

𝑛∏︁
𝑖=1

(𝑀𝑖 −𝑚𝑖) = 2𝑛
𝑛∏︁

𝑖=1

𝑚∑︁
𝑗=1

|𝑉𝑖𝑗 |. (9)

We can thus represent Φ𝑘𝑋𝑈 for all 𝑘 ∈ {0, . . . , 𝐿} as:

Φ𝑘𝑋𝑈 =
1

2
𝑍(Φ𝑘𝑈𝑑+𝑋 ,Φ𝑘𝑈 diag(𝑑−𝑋)), (10)

where for all 𝑖 ∈ {1, . . . , 𝑛}:
𝑑±𝑋𝑖 = max

𝑥∈𝑋
{⟨𝑢𝑖, 𝑥⟩} ±min

𝑥∈𝑋
{⟨𝑢𝑖, 𝑥⟩}. (11)

This makes sense, because a box is simply a zonotope with 𝑉
being an orthogonal matrix. Then for any matrix 𝐺 ∈ R𝑛×𝑛,
vol(Box𝐼(𝐺𝑋𝑈 )) can be derived using equations (9), (10),
and (11) as the function:

𝑔(𝑈,𝐺,𝑋) = prod(abs(𝐺𝑈) abs(𝑑−𝑋)), (12)

where abs(·) is the element-wise or component-wise absolute
value function of a matrix or vector, respectively, and prod(·)
is the product of components of a vector. Thus the optimiza-
tion problem (7) is reformulated to the equivalent simplified
problem:

argmin
𝑈
{𝑓(𝑈) =

𝐿∑︁
𝑘=0

𝑔(𝑈,ΓΦ𝑘, 𝑋) | 𝑈 ∈ O(n)} (13)

5.5 Optimization using Sequential Monte
Carlo

The optimization problem is non-linear and non-convex, while
the objective function of (13), 𝑓(𝑈), is non-differentiable. Ad-
ditionally, standard gradient methods are not easily applied
here due to the orthogonality constraint. For this reason, we
use an evolutionary algorithm to derive sub-optimal solutions
of the problem using Sequential Monte Carlo (SMC) [8]. The
algorithm can be summarized in the following steps:

(1) Generate a set of 𝑁 candidate solutions (particles)
{𝑈1, . . . , 𝑈𝑁}.

(2) Evaluate the objective function and compute a weight
for each candidate, i.e. 𝑤𝑖 = 𝑓(𝑈𝑖), 𝑖 ∈ {1, . . . , 𝑁}.

Algorithm 2 Dynamics-aware subspace identification

1: function 𝑈 ← optimBasis(𝑋,Φ,Γ, 𝐿,𝑁, 𝜌, 𝑟)
2: 𝑈𝑃 ← PCA(𝑋) ◁ Using equation (5)
3: 𝑋 ′ ← 𝑈⊤

𝑃 𝑋.
4: for 𝑖 ∈ {1, . . . , 𝑁} do ◁ Initialize particles

5: 𝜃 ∼ U(−𝑟𝜋/2, 𝑟𝜋/)𝑛(𝑛−1)/2

6: 𝑈𝑖 ← exp(skew(𝜃))
7: end for
8: 𝑣 ←∞, 𝑈 ← 𝐼
9: loop

10: for 𝑖 ∈ {1, . . . , 𝑁} do ◁ Compute weights

11: 𝑤𝑖 ←
∑︀𝐿

𝑘=0 𝑔(𝑈𝑃𝑈𝑖,ΓΦ
𝑘, 𝑋 ′)

12: end for
13: if min𝑖{𝑤𝑖} ≥ 𝑣 then
14: return 𝑈𝑝𝑈
15: end if
16: 𝑣 ← min𝑖{𝑤𝑖} ◁ Update objective value
17: 𝑗 = argmin𝑖{𝑤𝑖}
18: 𝑈 ← 𝑈𝑗

19: for 𝑖 ∈ {1, . . . , 𝑁} do ◁ Construct pdf
20: Map 𝑤𝑖 to the interval [0, 1]
21: 𝑤𝑖 ← 𝑒−𝜌𝑤𝑖

22: end for

23: ∀𝑖 ∈ {1, . . . , 𝑁} : 𝑐𝑖 ←
∑︀𝑖

𝑗=1 𝑤𝑗∑︀𝑁
𝑗=1 𝑤𝑗

◁ Construct cdf

24: 𝑡 ∼ U(0, 1
𝑁
)

25: for 𝑖 ∈ {1, . . . , 𝑁} do ◁ Resample (Systematic)
26: 𝑗 ← argmin𝑘{𝑐𝑘 − 𝑡 | 𝑐𝑘 − 𝑡 ≥ 0}
27: 𝑡← 𝑡+ 1

𝑁

28: 𝑈*
𝑖 ← 𝑈𝑗

29: end for
30: for 𝑖 ∈ {1, . . . , 𝑁} do ◁ Perturb particles

31: 𝜃 ∼ U(−𝑟𝜋/2, 𝑟𝜋/2)𝑛(𝑛−1)/2

32: 𝑈𝑖 ← exp(skew(𝜃))𝑈*
𝑖

33: end for
34: end loop
35: end function

(3) Construct a discrete Probability Density Function (PDF)
from the weights, and use it to resample the particle
set.

(4) Perturb the particles in order to avoid sample impov-
erishment.

(5) Repeat steps 2-4 until the objective function stops
decreasing for all of the particles.

The algorithm is also known as the Particle Filter (PF), and
it is a widely used method in signal processing due to its
effectiveness for estimating the state of non-linear and non-
Gaussian systems. Unfortunately, it has a high computational
cost and may suffer from the curse of dimensionality.

Fortunately 𝑓(𝑈) is relatively cheap to evaluate, and “pe-
riodic” with respect to 𝑈 . Specifically, for any n-dimensional
rotation 𝑅 around a (𝑛 − 2)-dimensional subspace of R𝑛

by 𝜋 it holds that 𝑓(𝑈) = 𝑓(𝑅𝑈), due to the symmetry of
the box template. This property considerably reduces the
search space of the algorithm. In our experiments, we observe
that a very small number of particles is required to reach
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Figure 5: Hybrid automaton of a sampled-data CPS
with information loss.

a good solution. The complete algorithm is summarized in
Algorithm 2.

Here we would like to point out that an important com-
ponent of the algorithm is the perturbation of the particle
matrices, such that they remain orthogonal. Perturbation is
required in order to ensure that the algorithm is not “stuck”
in a local a minimum, and is achieved by generating random-
ized rotation matrices 𝑅𝑖 ∈ SO(n), 𝑖 ∈ {1, . . . , 𝑁} [17]. We
use a very simple method to generate random rotations: first
a sample is drawn from the multivariate uniform distribution,
i.e. 𝜃 ∼ U(−𝑟𝜋/2, 𝑟𝜋/2)𝑛(𝑛−1)/2, where 0 < 𝑟 ≤ 1; next we
construct the skew symmetric matrix 𝑆 = skew(𝜃); finally
the rotation matrix is 𝑅 = exp(𝑆), where exp(·) is the matrix
exponential, and is used to perturb a given particle.

Second, while we try to improve over the standard PCA,
we still use it in our algorithm to initialize the particle set.
This is done for the following reasons: 1) an initial basis
matrix 𝑈𝑃 is fast to compute; 2) it reduces the search space
considerably.

6 CASE STUDY

In this section we present our case study, where we evaluate
and compare our approach with PCA on the reachability
of two types of sampled-data control CPS, modeled using
hybrid automata.

6.1 Motivation

Sampled-data control CPS [1, 2, 4, 10, 20, 24, 25, 29] are
systems where the controller is implemented digitally on a
computer, and is typically executed on a networked multi-
processor architecture. As such, the sampling and actuation
moments are determined by the control software and tem-
poral disturbances, such as varying processing latency, pro-
cessor workload, task scheduling, etc. Traditionally, during
the design and analysis of sampled-data control CPS, tem-
poral bounds and workload characterizations of the system
are derived first using well known real-time analysis tech-
niques, and are used afterwards to design and analyze the
controller separately. This in turn is done using classical tech-
niques from control theory, such as Common Quadratic Lya-
punov Function (CQLF), Linear Matrix Inequalities (LMIs),
etc [20, 25, 29]. However, these techniques are quite limiting
when considering a system involving complex interactions.
For example, in a networked control system [25, 29], a timed
change in the network topology affects the transmission delay,
packet loss and the sampling period. Such effects cannot be

Figure 6: Hybrid automaton of a sampled-data CPS
with uncertain sampling rate.

described and analyzed easily using traditional design meth-
ods. Hybrid automata however provide a more compatible
modeling framework for sampled-data CPS, such that they
can be analyzed using reachability [1, 4, 10, 13].

Unfortunately, the reachability problem for Hybrid Au-
tomata (HA) is in general undecidable and properties such as
asymptotic stability can be verified only for a certain subset
of models [10]. The subset of such models that we consider
in this case study are timed models, where the switching be-
tween modes is entirely time-driven. Many practical system
archetypes exist that can be modeled and analyzed using
such models, a few of which we consider in this paper and
describe below. We believe that these models demonstrate
the importance of good aggregation in reachability, since it
can greatly affect the accuracy of the reachability algorithm,
an observation we demonstrate in our results. In fact, as
shown in [4, 10, 11], state-of-the-art tools such as SpaceEx
and Flow* consistently fail to analyze such models.

6.2 Control with uncertain sampling rate

For our first case, we consider a cyber-physical control system
with uncertainty in the sampling and actuation times. The
following assumptions are made for the model: 1) upper and
lower bounds on the difference between the sampling moments
are known; 2) the bounds are allowed to switch to different
values. Such a model can be used to describe and analyze
a multiprocessor based computer-controlled system with a
switching workload characterization. To be more precise, the
sampling moments are determined by the execution time
of the control algorithm. On the other hand the difference
between the bounds is dictated by the processors’ workloads.
For example, one may assume that the difference is large
when the workload on the processors is high, and small
otherwise. Such characterizations have been shown to be
more accurate approximations for analysis, than the single
upper and lower bound characterization on the execution
time, i.e. the so-called Worst-Case Execution Time (WCET)
characterization [19].

The hybrid automaton for this system is shown in Figure 6.
Here we use a so-called “clock” variable 𝑡 that progresses
linearly in time to model the sampling and switching be-
havior of the controller. Two modes are used to represent
two workloads of the processor, low and high load, with

sampling bounds 𝑇1 < 𝑇1 and 𝑇2 < 𝑇2, respectively, with
the first assumed the normal mode of operation. Thus if
the ideal sampling period of the controller is 𝑇 , then we let
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Figure 7: Reachable set of the first hybrid automa-
ton from run 1 for variables 𝑥1,2 at iteration 𝑘 =
1, . . . , 15 (blue to red).

𝑇1 ≤ 𝑡 ≤ 𝑇1 = 𝑇 in the first mode and 𝑇2 = 𝑇 ≤ 𝑡 ≤ 𝑇2 in
the second. The controller may switch to the high load mode
at any time, as is usually the case for real-time multiprocessor
based control systems [26]. The variable 𝑥 is the state of the
plant, and we consider full-state feedback control via the
piece-wise constant actuation 𝑢 (Zero-Order Hold (ZOH)).

6.3 Periodic control with sample loss

In the second case we consider a networked control system
with periodic sampling and actuation. The model is very sim-
ilar to the first case. However, here we assume that sampling
data may be lost during transmission, due to packet drop.
For example in the case of a full-state feedback control, only
a subset of the state-variables may be received. A packet may
be lost at any time, but to keep the model realistic, we also
assume that no-more than 𝑚 consecutive packet drops can
occur. A similar system was studied in [20].

The hybrid automaton of this model is shown in Figure 5,
and is very similar to the one discussed previously. However,
the key difference is that we add an additional clock variable
𝑡2 to monitor the number of packet losses. The variable 𝑡1
models the sampling and actuation times of the controller,
as usual. The first mode is the standard, periodic mode of
operation. In the second mode, the complete sensor data
packet is lost, and no actuation is applied to the plant, i.e.
𝑢 = 0.

6.4 Evaluation method

To evaluate our approach, we use the implementation of the
reachability algorithm as described in [11], because it allows
computing the reachable set of clock and other variables inde-
pendently. Thus it is suitable for the analysis of our models.
However instead of the standard convex hull algorithm used
in their implementation, we use our own decomposed convex
hull and subspace identification algorithm. Specifically, at
line 12 of Algorithm 2 in [11], the operation Conv is replaced
by dconv(·) in equation (2), and preceded by optimBasis
from Algorithm 2, or by PCA as defined in equation (5),
to derive the projection matrix. Note that aggregation in

Parameter Aut 1 Aut2

𝑁 100 100

𝜌 40 40

𝑟 1/30 1/30

𝐿 5 10

Γ 𝑒𝐴(7×𝛿) 𝑒𝐴(7×𝛿)

Φ 𝑒𝐴𝛿 𝑒𝐴𝛿

Table 1: Parameters used for Algorithm 2.

this case is only applied to non-clock variables. Algorithm 2
and [11] are implemented using MATLAB, and are executed
on a computer with 16GB RAM and a quadcore Intel™ pro-
cessor. We use a time step 𝛿 = 0.01 for all of the evaluation
runs of the models. The parameters used for our algorithm
are summarized in Table 1, and are selected heuristically.
To demonstrate the effect of the overapproximation error on
the reachable set 𝑋𝑘 of continuous variables (excluding the
clocks), we compute the set norm 𝑒𝑘 = ‖𝑋𝑘‖ (see Section 5)
on each iteration of the algorithm, with 𝑋0 = [−1, 1]𝑛.

The plant model used for both hybrid automata is de-
scribed by the following matrices:

𝐴 =

⎛⎝ 19.24 10.72 −5.67
−84.95 −13.56 18.53
50.7 11.53 −13.68

⎞⎠ , 𝐵 =

⎛⎝−30.5
1

⎞⎠ .

A discrete time full-state feedback control matrix has been
designed using MATLAB’s command dlqr for the plant, given
a sampling time 𝑇 = 0.1𝑠, as𝐾 =

(︀
−1.39 −0.463 1.0446

)︀
.

Additionally for the first hybrid automaton, 𝑇1 = 0.06𝑠 and

𝑇2 = 0.15𝑠, while for the second 𝑚 = 2.

6.5 Results

Run Time (PCA) Time (our) 𝒥
Aut 1 Aut 2 Aut 1 Aut 2

1 0.31s 0.59s 2.02s 5.57s {{1}, {2}, {3}, {4}}
2 0.8s 0.81s 6.18s 9.16s {{1, 2}, 3, 4}
3 0.43s 0.77s 6.42s 9.81s {1, {2, 3}, 4}
4 0.3s 0.6s 1.75s 5.16s {1, 2, {3, 4}}
5 0.86s 1.04s 7.6s 9.92s {{1, 3}, 2, 4}
6 5.72s 2.88s 66.3s 26.77s {{1, 2, 3}, 4}

Table 2: Evaluation run times.

A total of six runs are performed for each hybrid automaton
using standard PCA and our approach for subspace identifi-
cation prior to aggregation. The plots of the set norm of the
reachable set for each automaton are shown in Figure 8 and
Figure 9, respectively. The run times, as well as the subspace
partitions used for each run, are summarized in Table 2. The
reachable set of the first automaton from run 1 is shown
in Figure 7. From the figure it is clear that our subspace
identification algorithm outperforms the standard PCA with
respect to the norm of the reachable set, which can be seen to
expand indefinitely in e.g. run 1. An exception to this is run
6, where both methods perform equally well. This is because
in this case the convex hull is used on all 3 dimensions of the
state variables of the plant, and aggregation does not benefit
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Figure 8: Results for the first hybrid automaton.
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Figure 9: Results for the second hybrid automaton.

from decomposition. What this shows is that the reachability
algorithm greatly benefits from decomposed aggregation if a
good subspace basis is used. Additionally, one can see that
the convergence rate is also determined by the subspace par-
tition 𝒥 . Thus, as a future consideration, it is beneficial to
understand how to select the correct partition automatically,
instead of manually.

However, our method is greatly outperformed by PCA
in terms of run-time. Indeed, a drawback of our method
is its computational complexity, as observed from the run-
times of the reachability algorithm. While the implementation
of Algorithm 2 may not be optimal, we believe that the
key reason for this shortcoming is because of the point set
representation used in [11]. We observe that the number
of points can grow quite large, such that even for a small
number of particles, our algorithm slows down considerably.

The decomposed convex hull also slows down due to the
number of points. We thus consider the following future
improvements:

(1) Use a different set representation, such as zonotopes [15,
16] or ellipsoids [22].

(2) Instead of using all of the points, one can consider the
so-called core set [21], which a subset of the original
set that is sufficient to find an optimal solution.

(3) Use a combination of convex hulls and template poly-
hedra.

Additionally, the rate of convergence of our algorithm can
be improved, while reducing the number of particles, by
considering gradient approximations since we observe that
for a large number of points, the objective function of (13)
is relatively smooth.

Finally, we observed that the manual selection of parame-
ters for the algorithm is difficult and greatly influences the
accuracy of the reachable set. The most important parame-
ters are the scaling matrix Γ, and the number of discrete-time
iterations 𝐿.

7 CONCLUSION

In this paper, we presented an approach for identifying sub-
spaces for accurate decomposed set aggregation in reachability
analysis of hybrid automata. Specifically, our approach al-
lows applying decomposed aggregation of the sets in the
identified subspaces using convex hulls, such that the over-
approximating aggregate contracts faster. While identifying a
good subspace basis using our approach comes with a larger
computational cost, it is compensated by the fact that a
fixed point is found earlier. We demonstrated this in our case
study by applying our approach on two practical sampled-
data control CPS models, and making a direct comparison
with PCA. In particular, we showed that with our approach
the reachability algorithm achieves up-to 10-times tighter
reachable sets, and that with PCA a fixed-point is not guar-
anteed to be found.

The key observation that we have made in our work, is
that the choice of subspace basis used to derive a template
aggregate is dependent on the continuous dynamics of the au-
tomaton. More precisely, when an initial set is aggregated for
a mode using the box template, then its points contract faster
or slower towards the origin, depending on the orientation
of the box. We exploit this observation in our approach, and
developed an algorithm to determine a suitable orthogonal
basis, such that the flowpipe of the box template converges
faster to the flowpipe of the aggregated set. The algorithm is
based on the SMC optimization technique, because the ob-
jective value of the optimization problem is highly non-linear
and non-convex.

For future work, we would like to improve the implemen-
tation of our optimization algorithm to solve the dynamics-
aware subspace identification problem more efficiently. Addi-
tionally, we would like to evaluate our approach on more set
representations. Finally, we want to investigate how to select
the correct parameters of the algorithm automatically.
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