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1  | INTRODUC TION

Tree architecture, for example, the stem form, branching pattern, and 
spatial distribution of leaves, directly influences tree photosynthesis 

and evapotranspiration and ultimately affects carbon and water stor-
age in forests (Lau et al., 2018). It is important to quantify the variation 
in tree architecture among species to understand how tree architec-
ture relates to the physiological function of trees (Disney et al., 2018). 
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Abstract
1.	 With the increasing use of terrestrial laser scanning (TLS) technology in the field 

of forest ecology, a large number of studies have been carried out on the separa-
tion of wood and leaves based on TLS point cloud data. However, most wood–leaf 
separation methods adopt the point-wise classification strategy, which is not ef-
ficient for processing large-volume TLS datasets acquired at the forest plot level.

2.	 In this study, we proposed a segment-wise classification strategy to improve the 
efficiency of the wood–leaf separation from large-volume TLS point cloud data-
sets collected at the forest plot. The proposed method first decomposes the point 
cloud into three parts based on the threshold values of its local curvature. Then, 
the first two parts with lower local curvatures were segmented respectively by 
a connected component labelling algorithm. Finally, the segmented point clouds 
were classified into wood or leaf segments according to the segment-wise geo-
metric features of each segment. We tested our method on both needleleaf and 
broadleaf forest plots in temperate and tropical forests. We also compared our 
method with two other state-of-the-art wood–leaf separation methods, that is, 
the CANUPO and LeWoS.

3.	 The results showed that our method was more than 10 times faster than the com-
pared methods while maintaining comparable and even higher accuracy.

4.	 Our study demonstrates that the segment-wise classification strategy applies to 
the large-volume TLS datasets and can greatly improve the efficiency of the clas-
sification. The proposed method is simple, fast and universally applicable to the 
TLS data from various tree species and forest types at the plot level, which may 
facilitate the adoption of TLS technology by forest ecologists in their studies.
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However, accurate quantification of the tree architecture using manual 
measurements is challenging and time-consuming (Quammen, 2012).

Terrestrial laser scanning (TLS) is an effective technology for 
collecting dense and highly detailed three-dimensional (3D) point 
clouds of trees. Point clouds can be used for the quantitative analy-
sis of tree architecture characteristics, such as branching structures 
(Pyörälä et al., 2018) and stem curves (Liang et al., 2013). Wood–leaf 
separation is a prerequisite step to reconstructing the quantitative 
tree models from TLS data (Raumonen et  al.,  2013) and estimat-
ing the canopy gap fraction and leaf area index (Chen et al., 2018). 
However, accurate and efficient separation of wood and leaf points 
from TLS data remains a challenging task. Over the last decade, var-
ious types of methods have been proposed to address this issue, 
which has become a hot topic of research in recent years.

In general, the types of classification features used in wood–leaf 
separation include radiometric features, waveform features and geo-
metric features. Radiometric features refer to the intensity and re-
flectivity of laser returns at specific wavelengths. Côté et al. (2009) 
differentiated wood and leaf points based on the intensity of laser 
returns. The point intensity threshold values for distinguishing wood 
and leaves were chosen manually. It is known that the intensity of 
laser returns is related not only to the spectral properties of the 
target but also to the incidence angle, the travelling distance of the 
laser beam (Kukko et al., 2008) and the roughness of the reflecting 
surface (Pesci & Teza, 2008). Hence, radiometric calibration of point 
intensity is also a complex issue. In the last few years, some state-
of-the-art TLS equipment has been developed. Yao et al. (2011) and 
Yang et al. (2013) used the relative widths of the returned waveform 
to separate the wood and leaf points. Danson et al. (2014) tested a 
dual-wavelength full-waveform TLS, and Li et al. (2013) explored the 
feasibility of a multi-wavelength laser scanner for wood–leaf separa-
tion. However, the use of dual-wavelength and full-waveform infor-
mation is limited by the availability of the equipment.

The most recently developed methods are dependent on geomet-
ric features. Geometric features are the size, shape, location, density, 
roughness, curvature and other characteristics of a point set, which 
calculated from the 3D coordinates of the points. Unlike radiometric 
features, the geometric feature uses information about the position of 
the laser points. Some methods dependent on geometric features have 
been proposed for individual trees and others have been developed for 
forest plots. For individual trees, Tao et al. (2015) developed a method 
based on the circular detection in point slices and the algorithm of the 
shortest path. Tao's method applies only to individual trees due to the 
limitation of the shortest-path algorithm. Similarly, the shortest-path 
algorithm has also been used for wood–leaf separation in the methods 
proposed by Xu et al. (2007), Livny et al. (2010) and Vicari et al. (2019). 
Raumonen et al. (2013) proposed a wood–leaf separation method that 
the point cloud was first segmented into small non-overlapping cover 
sets, and then the cover sets were classified based on their geometric 
features. Wang et al. (2017) compared four machine learning classifiers 
for the wood–leaf separation of individual trees based on both geo-
metric and radiometric features. The results showed that the machine 
learning classifiers can achieve high accuracy for wood–leaf separation 

on individual trees. Furthermore, Wang et al. (2020) proposed an un-
supervised classification method (i.e. LeWoS) for the wood–leaf sepa-
ration using a graph-based segmentation technique with point cloud 
density and point-wise geometric features. They tested the LeWoS 
on 61 individual large tropical trees and reached an average value of 
91.59% of classification accuracy.

For forest plots, methods based on machine learning algorithms 
are more frequently used. Lalonde et al.  (2006) introduced a point 
cloud classification method by fitting a Gaussian mixture model to 
manually labelled training data. Ma et al. (2016) improved Lalonde's 
method by adding two additional filters based on geometric informa-
tion. Brodu and Lague (2012) proposed the CANUPO method, which 
extends local geometric features to multiple scales. Zhu et al. (2018) 
combined various local geometric features and radiometric features 
to separate foliar and woody materials by using a random forest clas-
sifier. In addition, the deep learning method was also introduced for 
wood–leaf separation (Xi et al., 2018). Table 1 shows a summary of 
the abovementioned methods.

Although some methods based on geometric features and ma-
chine learning have achieved good accuracy on wood–leaf sepa-
ration, the main drawbacks of this type of methods are their high 
computational demands for processing TLS datasets at the forest 
plot level (Liang et al., 2012). Here, we aim to propose a segment-
wise classification method for the accurate and efficient separation 
of wood and leaves from TLS data at the plot level. We test our 
method on both needleleaf and broadleaf forest plots in temperate 
and tropical forests. We also compare our method with two other 
state-of-the-art methods, that is, the CANUPO and LeWoS.

2  | MATERIAL S AND METHODS

2.1 | Forest plots

We tested the proposed method on the TLS datasets collected from 
three forest plots of different stem density, topography and tree spe-
cies, that is, a white birch Betula papyrifera plot, a Dahurian larch (DL) 
Larix gmelinii plot and a Chinese scholar tree (CST) Styphnolobium 
japonicum plot. The white birch plot (WB) includes 21 white birches 
on a slope of approximately 22 degrees, the size of the WB plot is 
15 m × 30 m. The DL plot includes 15 trees on flat terrain, the size 
of the DL plot is 15 m × 15 m. The CST plot includes 37 trees on flat 
terrain, the size of the CST plot is 30 m × 30 m. Figure 1 shows the 
actual condition of each sample forest plot when the TLS datasets 
were collected. The mean diameter at breast height and tree height, 
stem density and the density of understory vegetation of each sam-
ple plot are summarized in Table 2.

2.2 | TLS datasets

The TLS datasets were collected in July 2018 by using a Riegl 
VZ-1000 (Riegl GmbH) terrestrial laser scanner. The scan angle 
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resolution was 0.03 degrees, and the vertical and horizontal scan-
ning ranges were 30–130 degrees and 0–360 degrees, respectively. 
In each sample forest plot, five to seven scans were implemented at 
the centre and the periphery of the plots. All scans were registered 
together using the RiSCAN Pro software package (Riegl GmbH). The 
registered point clouds were clipped manually to exclude trees out-
side each plot (Figure 2).

The proposed method was also tested on an open-access TLS 
dataset, which downloaded from the Dryad Digital Repository 
https://doi.org/10.5061/dryad.np5hq​bzp6 (Di Wang et  al.,  2020). 
The open-access TLS dataset was collected from a tropical for-
est in Eastern Cameroon, which includes 106 tropical trees within 
a 110  m  ×  90  m plot and over 180 million points. The wood and 
leaf points were manually labelled, and the ground points and 

TA B L E  1   List of published methods for wood–leaf separation from terrestrial laser scanning data

Authors (published year) Applicable scenarios Method categories Reported mean accuracies

Wang et al. (2020) Individual trees or forest plots # Point-wise segmentation
# Geometric features
# Segment-wise classification

91%

Vicari et al. (2019) Individual trees # Shortest-path analysis
# Geometric features
# Point-wise classification

Simulated data: 83%
Field data: 89%

Xi et al. (2018) Forest plots # Deep 3D FCN*

# Point-wise classification
94%

Ferrara et al. (2018) Individual trees # Unsupervised
# Geometric feature
# Point-wise classification

96%
(Cork oak) trees

Zhu et al. (2018) Forest plots # Random forest
# Radiometric and Geometric features
# Point-wise classification

84.40%
4 beech broadleaf
2 spruce coniferous
Four mixed

Wang et al. (2017) Individual trees # Machine learning methods
# Radiometric and geometric features
# Point-wise classification

Support vector machine: 
93.5%

Naïve Bayes: 89%
Random forest: 96%
Gauss mixture model: 91%

Ma et al. (2016) Forest plots # Gauss mixture model
and six additional filters
# Geometric features
# Point-wise classification

94%
Douglas fir

Tao et al. (2015) Individual trees # Shortest-path analysis
# Geometric features
# Point-wise classification

84%
Camphor tree
Magnolia tree

Li et al. (2013);
Danson et al. (2014)

Forest plots # Multi-wavelength intensity
# Point-wise classification

No reports

Côté et al. (2009);
Wu et al. (2013)

Individual trees # Intensity
# Point-wise classification

No reports

Yao et al. (2011);
Zhao et al. (2011);
Yang et al. (2013)

Forest plots # Return waveforms
# Point-wise classification

No reports

Brodu and Lague (2012) River bed # Support vector machine
# Multi-scales geometric features
# Point-wise classification

98%

Raumonen et al. (2013) Individual trees # Unsupervised
# Geometric features
# Segment-wise classification

No reports

Xu et al. (2007);
Livny et al. (2010)

Individual trees # Shortest-path analysis
# Geometric features
# Point-wise classification

No reports

Lalonde et al. (2006) Forest plots # Gauss mixture model
# Geometric features
# Point-wise classification

83%~93%

Note: FCN refers to the Fully Convolutional Network.

https://doi.org/10.5061/dryad.np5hqbzp6
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understory vegetation points were already removed by the data 
provider (Figure 3).

2.3 | Wood–leaf separation

2.3.1 | Overview of the proposed method

The proposed method adopted a segment-wise classification 
strategy. The point clouds were segmented by using a connected 

component segmentation algorithm, then were classified into wood 
or leaf segment-by-segment based on their geometric features. 
However, for the raw point clouds, it is not possible to obtain an 
effective segmentation result only by a connected component seg-
mentation algorithm because of the very high density of the TLS 
point clouds and the tight connections between wood and leaf 
points. An effective segmentation for the classification purpose is 
that the point cloud was segmented into pure segments, which con-
sist of a single classification target, that is, the wood and leaf point. 
Therefore, we introduced a point cloud decomposing step before 

F I G U R E  1   The forest condition of 
each sample forest plot. (a) The white 
birch plot. (b) The Dahurian larch plot. (c) 
The Chinese scholar tree plot

Forest plot
Stem density 
(stems/ha)

Mean diameter at 
breast height (cm)

Mean tree 
height (m)

Understory 
vegetation

White birch 467 19.34 13.38 Dense

Dahurian larch 667 28.33 14.23 Moderate

Chinese scholar tree 411 24.2 10.66 Sparse

TA B L E  2   The characteristic of the 
sample forest plots

F I G U R E  2   Three field-collected 
terrestrial laser scanning datasets. (a) 
White birch plot. (b) Dahurian larch plot. 
(c) Chinese scholar tree plot
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segmentation to divide the point cloud into two or three parts to 
reduce the point density and break the connections between wood 
and leaf points. Figure 4 shows the overall workflow of the proposed 
method.

The following subsections detailed methods used in the main 
steps shown in the flowchart.

2.3.2 | Ground filtering

Ground filtering was a prerequisite step in the proposed method 
for reducing the data volume and breaking the ground connection 
between stems. In this study, we adopted an open-source ground 
filtering algorithm (Zhang et al., 2016), cloth simulation filtering, for 
its fast processing speed and reliable results.

2.3.3 | Point cloud decomposing

The method of point cloud decomposing was based on the local 
curvature calculated from a point and the points around it within 
a certain neighbourhood. After traversing all the points, each point 
was assigned a local curvature value, which essentially represents 
the curvature characteristics of a point set within a sphere centred 
on a point. Local curvature can be used to roughly separate tree 
components (Zhang et al., 2019). The points on stems and boughs 
usually have the smallest local curvatures due to their large diam-
eters and regular point distribution. The branches and twigs, which 
have smaller diameters and are surrounded by leaves, usually have 
moderate local curvatures. The leaf points usually have the largest 
local curvatures because of their scattered distribution pattern and 
canopy gaps. In this study, the surface variation (SV) was adopted as 
a curvature feature to divide the point cloud into three parts. The 
SV was proposed by Pauly et  al.  (2002) to quantitatively describe 
the variation along the surface normal, that is, estimates how much 
the points deviate from the tangent plane. It should be noted that 
the SV is not an estimation of surface curvature based on function 
fitting, but a simplification index of the surface curvature. The SV 
is defined by Equation (1). For a point pn = (xn, yn, zn) and the points 
around it within a neighbourhood pi = (xi , yi , zi)

n
i=1

, the calculation of 
the SV was based on the eigenvalues of principal component analy-
sis, which was defined as

(1)SV(pn) =
�2

�0 + �1 + �2

,

F I G U R E  3   The manually labelled open-access terrestrial laser 
scanning dataset. The red points refer to wood points and the blue 
points refer to leaf points

F I G U R E  4   The overall workflow of the 
proposed method. The left column shows 
the steps of the method, and the right 
column shows the annotation of each 
main step. The numbers in the bracket 
are the parameters set in this study. 
The SoD(L) refers to the significance of 
the difference of linear salient feature 
(Equation 4)
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where �k (k = 0, 1, 2) are the eigenvalues of a covariance matrix C 
sorted in descending order as �0 ≥ �1 ≥ �2. The covariance matrix C 
is defined as

where 
‼
p = (1∕n)

∑n

i=1
(pxi, pyi, pzi) is the geometric centre of P. n is the 

number of points within a neighbourhood of an arbitrary reference 
point. The neighbourhood size was set as 5 cm in this study.

The SV has a limited range from 0 to 1/3 for any point. To divide 
the point cloud into three parts, two thresholds (T1, T2) of the SV 
were chosen according to experiments in previous studies (Zhang 
et al., 2019), that is, T1 was set to 0.1, and T2 was set to 0.2. The 
same set of thresholds was adopted for all sample plots. For exam-
ple, Figure  5 shows the three parts of the divided point cloud of 
an individual tree. The first part, in which the SV of points ranged 
from 0 to 0.1, comprised almost all the stem points, most of the 
branch points and nearly half of the leaf points. The second part, in 
which the SV ranged from 0.1 to 0.2, was mainly composed of leaf 
points and a fraction of branch points. The third part, in which the SV 
ranged from 0.2 to 1/3, was composed of leaf points. The first and 
second parts that contained wood points were used in the next step 
for segmentation.

2.3.4 | Segmentation of connected components

After decomposing the point cloud into three parts, the first two 
parts, which have smaller local curvature were segmented sepa-
rately. We used a connected component segmentation algorithm 
to segment the point cloud into segments. Connected compo-
nent segmentation is a simple and fast algorithm based on the 
proximity of points. As shown in Figure 6, the point clouds were 
first voxelized using 3D grids by building an octree. Then, the 3D 
grids that contained at least one point were assigned a value of 
1. The vacant 3D grids were assigned a value of 0. Finally, the 
points in adjacent grids with a value of 1 were merged into the 
same segment. The vacant grids with a value of 0 became the 
gaps between the segments. The size of the 3D grids determined 
how many segments were produced and how small the segments 
were. Smaller grids make it easier to identify the gaps between 
leaves and branches and separate them. However, reducing the 
grid size by every two times leads to an increase in the number 
of segments by approximately eight times and will significantly 
increasing the calculation time. We set the grid size to a compro-
mise value (0.01  m) in this study, which is just small enough to 
separate the leaves from the branches. The optimum grid size is 
related to the density of the point cloud and the tree species, it 
is difficult to find a suitable grid size based on the average spac-
ing between leaves and branches just by theoretical analysis. The 
grid size used in this study is the optimum value obtained through 
several tests.

In addition, the minimum number of points within per segment 
(Min. NoP) is a parameter that should be set in the connected com-
ponent segmentation. We set the Min. NoP as 1,000 in this study. 
The segments containing <1,000 points will be classified as leaf seg-
ments directly. Similar to the grid size, Min. NoP is also an empirical 
threshold derived from several tests. Increasing the value of Min. 
NoP will cause more branches to be classified into leaves, and con-
versely, more leaves will be classified into branches.

2.3.5 | Geometric features

We introduced two geometric features to identify the wood seg-
ments, that is, the salient features and the distance between the 
geometric centre of each segment and the ground. The salient fea-
tures were the main features used for the wood–leaf separation, and 
the distance feature was used to remove the understory vegetation.

Salient features
The salient features are a set of geometric features based on principal 
component analysis. Similar to the calculation of SV, it also requires 
that the eigenvalues of a covariance matrix of a point set (�0, �1, �2
) are first obtained. The salient features quantitatively describe the 
dominant distribution pattern of a point set as linear, planar and scat-
tered. The scattered points will be indicated as �0 ≈ �1 ≈ �2; The lin-
early distributed points will be indicated as 𝜆0 ≫ 𝜆1 ≈ 𝜆2; The points 
distributed on a plane will be indicated as 𝜆0 ≈ 𝜆1 ≫ 𝜆2 (Figure 7).

The salient features have been used in most wood–leaf separa-
tion algorithms for TLS data. However, their calculation in existing 
algorithms is point-wise and based on neighbouring points. This has 
caused problems with a large amount of computation and inconsis-
tency in the salient features of a point when using different neigh-
bourhood sizes. In our method, we calculated the salient features 
of each segment rather than each point to significantly reduce the 
computation amount and avoided the setting of neighbourhood size. 
The salient features of the points within a segment will be consistent 
and stable. For the points pi = (xi , yi , zi)

m
i=1

 in each segment, we first 
calculated their covariance matrix C by using Formula 2. Then, the 
eigenvalues �k (k = 0, 1, 2) of C were obtained by singular value de-
composition and sorted in descending order as �0 ≥ �1 ≥ �2. Based 
on the eigenvalues, the salient features of a segment can be defined 
as (Demantke et al., 2011)

where L, P and S refer to the linear feature, planar feature and scat-
tered feature, respectively, and L + P + S = 1. �0, �1, �2 are the covari-
ance matrix of a segment.

Figure 8 shows an example of connected component segmen-
tation and the salient features of the segments. It can be found that 
the stem segment and branch segment were all dominated by the 
linear feature, which has significantly higher values than the other 

(2)C3×3 =
1

n

n
∑

i=1

(pi−
‼
p )(pi−

‼
p )T,

(3)L =

√

�0 −
√

�1
√

�0

; P =

√

�1 −
√

�2
√

�0

; S =

√

�2
√

�0

,
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two features. In contrast, the leaf segment has no dominant feature. 
Therefore, the segments dominated by the linear feature can be la-
belled as wood segments. In this study, we introduced an index, that 
is, the Significance of Difference (SoD), to evaluate the significance 
of the linear/planar/scattered features among the three salient fea-
tures. In general, the most straightforward way to evaluate the sig-
nificance of a feature is by using the value of that salient feature. 
However, even if that feature has the same value, there may be dif-
ferences in the level of significance between features. For example, 
when we look for linear features, the following two cases may arise: 
(a) L  =  0.50, P  =  0.45, S  =  0.05; (b) L  =  0.50, P  =  0.25, S  =  0.25. 
Although the value of the linear salient feature (L) is the same in 
both cases, it is clear that the latter linear feature is more signifi-
cant because it is easier to distinguish. So, to address the issue of 
assessing relative significance levels, we constructed the index SoD. 
Specifically, the SoD of the linear feature was defined as

where L, P and S refer to the Linear feature, Planar feature and 
Scattered feature, respectively.

The SoD(L) is an index ranging from −1 to 1. When its value is 
<0, it means that one of the other two salient features is more sig-
nificant, and when its value is greater than 0, it means that the lin-
ear salient feature is more significant. The larger the value of the 
SoD(L), the more likely it is that a segment is dominated by a linear 
feature. The user can set its value more intuitively by analogizing it 
to a confidence level or probability. In this study, segments with the 
SoD(L) > 0.7 were considered as wood segments. The setting of 0.7 
was a conservative threshold for retaining the wood segments as 
much as possible.

The distance between the geometric centre of each segment and 
the ground
Understory vegetation, such as grass and small shrubs, is hard to remove 
from a point cloud based on geometric features. This is because some ground 
vegetation also has stems that may be wrongly recognized as tree branches. (4)SoD(L) = L + (1 − L) × [L − max (P, S)],

F I G U R E  5   An example of the 
decomposed point cloud. T1 and T2 refer 
to the thresholds of the surface variation 
(SV). In this example, T1 equals 0.1, T2 
equals 0.2. The wood and leaf points were 
labelled manually

F I G U R E  6   Schematic diagram of the 
connected component segmentation. 
Here, a point cloud was segmented into 
two segments

F I G U R E  7   Diagram to illustrate the 
salient features of three different spatial 
distribution patterns. �0, �1, �2 are the 
covariance matrix of a point set. (a), (b) 
and (c) illustrate the spatial distribution 
pattern of a point set as scattered, linear 
and planar, respectively
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Although ground vegetation can be entirely removed by setting a threshold 
of distance to the DTM, the true stem points on tree stumps may also be 
wrongly removed in this procedure. For point-wise wood–leaf separation al-
gorithms, it is difficult to solve this problem. However, for the segment-wise 
classification method, we can easily recognize segments as ground vegeta-
tion based on the geometric centre of the segments. The geometric centre 
of the segments of trees would possess larger distances from the ground 
surface. For example, points near the ground surface would be classified as 
wood points if they belong to a segment that has a higher geometric centre. 
The distance to the ground surface is an input threshold of the proposed 
method and was set to 1 m in this study. The geometric centre of the seg-
ments can be calculated by using the formulas shown in Section 2.3.3.

2.3.6 | Merging the wood segments

Following the procedures shown in Figure 2, we identified the wood 
segments by their geometric features. The input parameters have 

been introduced in the sections above. As mentioned in Section 2.3.3, 
the point cloud was decomposed into three parts, and the third part 
was composed of leaf points. We used the proposed wood–leaf 
separation algorithm separately to the first and second parts of the 
point cloud. After connected component segmentation, the seg-
ments identified in the first and second parts were in separate seg-
ment groups, that is, segments 1 and segments 2. Then, we merged 
the extracted wood segments from the two groups of segments.

2.4 | Performance evaluation

2.4.1 | Classification accuracy and processing time

The accuracy of the wood–leaf separation method was evalu-
ated by the percentage of error-classifying points against the ref-
erenced classification results. The references were acquired by 
visual inspection. Three types of error (type I error, type II error 

F I G U R E  8   An example of the 
connected component segmentation 
and the salient features of the segments. 
The different colours were drawn for the 
different segments. L, P, S and NoP refer 
to the attribute value of the linear feature, 
planar feature, scattered feature and 
the number of points of each segment. 
�k (k = 0, 1, 2) are the eigenvalues of 
each segment. (a), (b), and (c) illustrate 
the connected component segmentation 
results of the leaf, branch, and stem, 
respectively

Reference

Result

Error (%)Wood Leaf

Wood a b f = (a + b)/n Type I error: b/(a + b)

Leaf c d g = (c + d)/n Type II error: c/(c + d)

h = (a + c)/n a_i = (b + d)/n

n = (a + b + c + d) Total error: (b + c)/n

pra = (a + d)/n; 
pre = f × h + g × a_i

Kappa: (pra − pre)/(1 − pre)

Note: The a, b, c and d refer to the number of points.

TA B L E  3   The calculation of accuracy 
evaluation indexes



     |  9Methods in Ecology and Evolu
onWAN et al.

and total error) and the kappa coefficient were quantified. The 
type I error, also known as the omission error, was defined as the 
number of wood points that were wrongly classified as leaf points 
divided by the number of referenced wood points. The type II 
error, also known as commission error, was the number of leaf 
points that were wrongly classified as wood points divided by the 
number of referenced leaf points. The total error was the number 
of wrongly classified points divided by the total number of points. 
The Kappa coefficient was calculated from the statistics of the 
wrongly classified points. The calculation of accuracy indexes is 
shown in Table 3.

In addition, the processing times were recorded to assess the 
time efficiency of the wood–leaf separation algorithms. All tests 
were conducted on a typical desktop computer with an Intel Core 
i7-6700 CPU (3.40 GHz) and 16 GB of RAM.

2.4.2 | Method comparison

To compare the difference in performance between the proposed 
method and the point-wise classification methods, we processed 
all the field-collected sample datasets using a point-based method 
proposed by Brodu and Lague  (2012), CANUPO. The reason for 
adopting Brodu's method for the comparison is that (a) it is a point-
based method using only geometric features that have reported 
good classification accuracy (98%) in the literature; (b) it adopts 
multi-scale geometric features to improve the results, which were 
more robust than the algorithms using single-scale and double-
scale geometric features; (c) it is based on machine learning clas-
sification algorithms and thus is representative of many supervised 
classification methods and (d) it has free and open-source codes 
which are easy to access. Therefore, the CANUPO was very 

Datasets Methods
Type I 
error (%)

Type II 
error (%)

Total 
error (%)

Kappa 
(%)

White birch CANUPO 14.77 8.08 8.89 64.93

Our method 10.02 4.75 5.39 77.11

Dahurian larch CANUPO 16.07 7.54 9.32 73.02

Our method 8.85 3.66 4.74 85.90

Chinese scholar tree CANUPO 18.41 8.99 10.50 65.02

Our method 21.46 2.98 5.93 77.38

TA B L E  4   Comparison of accuracy 
between the CANUPO and the proposed 
method

F I G U R E  9   Visualization of the 
extracted wood points of the CANUPO 
(point-wise) and our method (segment-
wise). WB, DL and CST represent the 
datasets of white birch, Dahurian larch 
and the Chinese scholar tree, respectively. 
The red points refer to the wood points, 
which correctly classified, the blue points 
refer to the leaf points, which incorrectly 
classified into wood points. (a), (b) and 
(c) shows the classification results of the 
datasets of WD, DL and CST, respectively, 
from our method. (d), (e) and (f) shows the 
classification results of the datasets of 
WD, DL and CST, respectively, from the 
CANUPO method
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suitable for the performance evaluation of the proposed method 
in this study.

We also compared the proposed method to the LeWoS, a 
wood–leaf separation method proposed by Wang et  al.  (2020) on 
the open-access TLS dataset. The LeWoS first adopt a graph-based 
point cloud segmentation technique and exercise it iteratively and 
classify the segmented point cloud using a class probability estima-
tion. Finally, they apply graph-structured class regularization that 
operates on the class probability to achieve a spatially smooth clas-
sification result. The reason for adopting the LeWoS for comparison 
is that (a) it is a newly proposed state-of-method and (b) the LeWoS 
used a segmentation-based classification strategy, which is similar to 
the basic idea of our proposed method.

3  | RESULTS

3.1 | Classification accuracy

Table 4 shows the comparison of the accuracy of the CANUPO and 
our method on the three field sample plots. The results show that the 
classification accuracy of the proposed method was higher than that 
of the point-wise method in all sample plots. The total errors of the 
proposed method in the three sample plots were 5.39%, 4.74% and 
5.93%, respectively, while they were 8.89%, 9.32% and 10.05% in 
the CANUPO, respectively. On average, the errors of the CANUPO 
were 1.76 times greater than those for the proposed method. The 
Kappa coefficients showed a similar trend, that is, the classification 
accuracy derived from our method was consistently higher than that 
obtained from the CANUPO method.

Figure 9 shows the results of the CANUPO and our method on 
the three field-collected sample plots. It is easy to see that fewer leaf 
points were wrongly classified as wood points using the proposed 
method compared with the CANUPO. There were some differences 
between the two methods in the spatial distribution of the classifica-
tion errors. The residual leaf points were distributed mainly around 
the branches in the results of the proposed method; however, the 
residual leaf points were uniformly distributed in CANUPO's results.

It should be noted that the ground points have been removed 
during the ground filtering step, thus the blue points under canopies 
showed in Figure 8 stand for the points on understory vegetation, 
such as glass and shrub. The CANUPO method cannot separate 
the understory vegetation points from leaf points. In contrast, the 
proposed method can filter out the understory vegetation points 
according to the distance between the geometric centre of the seg-
ment and the ground, so there were seldom residual understory veg-
etation points in the wood points.

For the open-access TLS dataset provided by Wang et al. (2020), 
our method achieved a classification accuracy with 16.69% type I 
error, 3.89% type II error, 7.76% total error and 81.19% kappa coef-
ficient, which means that 92.24% points were being correctly clas-
sified (Figure 10). In contrast, the LeWoS achieved a classification 
accuracy of 91.59% on the same TLS data (Di Wang et al., 2020).

3.2 | Time efficiency

In this study, all methods were run on the same desktop computer. 
The processing time of the CANUPO and LeWoS and our method 
is shown in Table 6. The processing time does not include the time 
spent on data reading and writing or parameter tuning, or time 
spent on sample selection and training in the point-wise method. 
Table 5 shows a substantial difference in processing time between 
the methods. Our method required only 2.57 to 18.85 min, whereas 
the CANUPO required 28.67 to 235.67 min, and the LeWoS was re-
ported 1.5 min for 1 million points, which equivalent to 281.36 min 
for the entire points of the open-access TLS dataset. The proposed 
method had a time efficiency of more than 10 times faster than the 
CANUPO and LeWoS.

4  | DISCUSSION

4.1 | Classification accuracy

In terms of overall classification accuracy, the proposed method 
achieved better results compared with the CANUPO and LeWoS 
for all tested datasets in this research, the average classification ac-
curacy of the proposed method reached 94.05%. In reviewing the 
existing literature, the classification accuracy of wood–leaf separa-
tion ranged from 83% to 96% (Table 1), which indicated that the pro-
posed method can provide comparable classification results to the 
state-of-the-art methods and the segment-wise classification strat-
egy works well with the large-volume TLS data. On the individual 
tree level, the best classification accuracy was up to 96% (Ferrara 
et al., 2018; Wang et al., 2017). On the forest plot level, this study 
reported the highest average classification accuracy to date.

It can be inferred from the results of this study that general-
purpose algorithms for point cloud classification face challenges 
when performing plot level wood–leaf separation. The CANUPO 
can separate rocks and vegetation with 98% classification accuracy 
in the riverbed scenes (Brodu & Lague, 2012), however, when faced 

F I G U R E  1 0   Visualization of the extracted wood points of our 
method processed on the open-access terrestrial laser scanning 
dataset. The red points refer to the wood points which correctly 
classified, the blue points refer to the leaf points, which incorrectly 
classified into wood points
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with wood–leaf separation of forest plots, its classification error 
reached 10% to 20% (Table  4). The difficulty in separating wood 
components and leaves lies in two main points. First, thin branches, 
twigs and leaves in the canopy are mixed that even the human eye 
has difficulty in distinguishing them. Second, as TLS can only scan 
trees from the outside of the canopy, branches can be heavily ob-
scured by foliage or by each other, resulting in discontinuous and 
missing branches in the point cloud. Therefore, this study proposed 
a method that specifically designed to solve the wood–leaf separa-
tion problem of point clouds. Although it is not as applicable to mul-
tiple classification problems as the general-purpose algorithm, the 
segment-wise classification strategy can be adopted by other classi-
fication problems, such as tree trunk extraction (Zhang et al., 2019).

An issue that is easily neglected in the study of wood–leaf sep-
aration algorithms is the extraction or filtering of understory veg-
etation. The inevitable presence of understory vegetation in the 
point clouds acquired in the forest can result in many understory 
vegetation points remaining in the extracted wood points, which are 
difficult to filter out. The point-wise classification methods have dif-
ficulty in dealing with this problem because they cannot distinguish 
between trees and understory vegetation (Figure 8). However, the 
proposed method was able to remove the points of understory vege-
tation thoroughly. This is because the segment-wise approach allows 
the height of the centre of the segments to be used as a classification 
feature.

For a wood–leaf separation method, it is a challenge to balance 
omission and commission errors. Therefore, when simply evaluat-
ing the accuracy of the method, we were concerned with the total 
error and the Kappa coefficient. However, if specific applications 
are targeted, we are more concerned with the level of omission 
and commission errors. For example, when we need wood compo-
nent volumes, a large number of commission errors can lead to a 

significant overestimation of wood component volumes (Raumonen 
et al., 2013), whereas the effect of omission errors is relatively small 
because the volume of twigs is not large (Dassot et al., 2012). In con-
trast, when we need the fine structure of tree branches, we need to 
select the results with a small omission error (Lau et al., 2018). In our 
experimental results (Tables 4 and 5), two scenarios had relatively 
small omission errors (type I error, the wood points were wrongly 
classified as leaf points) and the other two had relatively large omis-
sion errors. In terms of the commission errors (type II error, the 
leaf points were wrongly classified as wood points), the proposed 
method achieves good results in all four scenarios.

4.2 | Time efficiency

The innovation of this study is to propose a segment-wise classifica-
tion strategy for the wood–leaf separation of a point cloud, under 
the premise of ensuring the classification accuracy, the classifica-
tion speed was significantly improved. Generally, comparing the 
time efficiency of the wood–leaf separation methods is difficult and 
therefore few studies have reported on the time spent by the algo-
rithm. Some studies have only given rough processing times, with 
no detailed data (Brodu & Lague, 2012; Wang et al., 2020). This is 
mainly because the time efficiency of an algorithm is influenced 
by the method of programming and the platform on which it runs. 
This makes the various methods comparable only if the program-
ming methods and running platforms are consistent. In this study, 
both our method and the CANUPO were implemented based on 
CloudCompare (Girardeau-Montaut, 2018), and the results were ob-
tained on the same computer. The LeWoS is an algorithm developed 
using MATLAB, and we used the test results given by the authors of 
the LeWoS for comparison. Based on the results of the test (Table 6), 

TA B L E  5   Comparison of accuracy between the LeWoS and the proposed method

Datasets Methods Type I error (%) Type II error (%)
Total error 
(%)

Kappa 
(%)

Open-access terrestrial laser scanning dataset LeWoS 10.51 7.51 8.41 80.43

Our method 16.69 3.89 7.76 81.19

Datasets
Total number 
of points Methods

Time cost 
(min)

White birch 44,205,362 CANUPO 146.22

Our method 3.5

Dahurian larch 65,209,008 CANUPO 235.67

Our method 14.41

Chinese scholar tree 25,311,712 CANUPO 28.67

Our method 2.57

Open-access terrestrial laser scanning 
dataset

187,571,510 LeWoS 281.36

Our method 18.85

TA B L E  6   Comparison of the time spent 
between wood–leaf separation methods
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our method has improved the time efficiency more than 10 times 
compared with other methods. This was a significant difference that 
can only be explained by the method itself. In our method, after the 
point cloud has been segmented, the number of objects to be clas-
sified was greatly reduced, as it changes from points to segments.

In the field of forest ecology research, there is an increasing 
emphasis on obtaining the 3D structure of each tree in large forest 
areas (Calders et al., 2020; Xi et al., 2020), which will result in a huge 
volume of ground-based laser scanning data (Wilkes et  al.,  2017). 
This study provides an idea for the wood–leaf separation of large-
volume point clouds.

From an ecologist's point of view, the time efficiency may be 
more important than the accuracy of classification in practice, as the 
perfect method for 100% correct classification does not yet exist, 
further manual classification is still necessary. Improving the effi-
ciency of the automatic classification stage is useful for ecologists' 
work.

4.3 | Further requirements

One of the difficulties faced by the research of the wood–leaf sepa-
ration algorithm is the acquisition of reference data. It is difficult and 
time-consuming to separate branches and leaves manually, and it 
is difficult to guarantee classification accuracy. Some studies have 
used sampling methods to evaluate classification accuracy (Zhu 
et al., 2018). This method requires a high level of representation in 
sample selection, which is often difficult to meet and causes statisti-
cal bias. Therefore, opening the reference data of manual classifica-
tion to the community can promote the research of branch and leaf 
separation algorithm. We shared our field-collected and manually 
classified TLS datasets to the public on the Dryad Digital Repository 
(https://doi.org/10.5061/dryad.rfj6q​5799, Wan et al., 2021).

Another way to obtain accurate reference data is to simulate 
the TLS data on a virtual forest plot. The 3D tree models and vir-
tual forest plot can be built with modelling software for vegetation, 
such as OnxyTree (http://onyxt​ree.com/). TLS data simulation can 
be achieved with data simulation software, such as DART (Gastellu-
Etchegorry et al., 2016), LESS (Qi et al., 2019), and HELIOS (Bechtold 
& Höfle, 2016).

Comprehensive testing of more wood–leaf separation meth-
ods based on benchmark datasets and simulated TLS data is the 
further requirements, which requires the joint efforts of the entire 
community.

5  | CONCLUSIONS

In this study, we proposed a wood–leaf separation method for TLS 
point clouds based on the segment-wise classification strategy and 
compared it with two state-of-the-art methods, that is, the CANUPO 
and LeWoS. We tested our method using the field-collected TLS 
datasets in three types of forest plots with different species, as well 

as an open-access TLS dataset provided by the author of the LeWoS. 
We compared the methods in terms of accuracy and time efficiency. 
The results showed that the method proposed in this study achieved 
the best classification accuracy on average at the forest plot level 
and improved the time efficiency more than 10 times compared with 
the point-wise classification methods. This study demonstrates that 
the segment-wise classification method can greatly improve the ef-
ficiency of wood–leaf separation and thus facilitate the application 
of TLS in the field of forest ecology.
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