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Abstract: Semi-continuous emulsion copolymerization (SCEP) is one of the major processes 
for the production of polymer latexes. For tailor-made copolymers, SCEP is employed 
because better control of polymer quality is possible compared to batch operation. To 
efficiently produce high quality polymers, recipe optimization and good feedback process 
control is required. For optimization or control purposes it is necessary to measure important 
product qualities such as the composition of the copolymer or the average chain length of the 
macromolecules. Measurements of these properties for this multi-phase process are expensive 
and usually not available online. State estimation and reaction calorimetry are possibilities 
to overcome this problem. Starting from a complex model for the considered process we 
develop a simplified model which enables us to estimate the concentrations of the monomers 
in the particle phase and thus the composition of the copolymer using a Constrained Extended 
Kalman Filter (CEKF). We compare this to earlier approaches based on simple feed-forward 
calorimetry and show that it is more robust to modelling errors and to the choice of initial 
value. Copyright © 2001 [FAC 
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I. INTRODUCTION 

l.l General 

as important product qualities are not measureable on­
line. Quality measurements are necessary for control 
or optimization purposes. 

Semi-continuous emulsion polymerization (SCEP) is 
a very versatile polymerization technique for making 
polymer latexes, applicable to many monomer types 
in batch, semi-batch and continuous processes. Its 
products are used as paints, adhesives, coatings and 
binders. 
Due to the multiphase and compartmentalized nature 
of the process, polymers with unique properties and 
a small width of chain length distribution can be pre­
pared, and the heat is removed fast and efficiently. 
Software sensors are often applied to SCEP processes 
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In SCEP, the product quality is determined by the 
stochastic distribution of the different monomers in the 
polymer chain. As the reaction rates of the monomers, 
in our case Vinyl acetate (A or 1) and Butylacrylate (B 
or 2), differ extremely, this goal cannot be achieved 
without control if short batch times are to be real­
ized. Without control, the process has to be run un­
der starved conditions where the feed rate is always 
considerably smaller than the slowest reaction rate. 
For composition control it is necessary to measure the 
concentrations of the monomers in the particle phase, 
as the particles are the main reaction loci. This concen­
tration cannot be measured online. 



1.2 Earlier research 

In (Dimitratos, 1989) the measurement of the reactor 
concentration of the monomers was realized by gas 
chromatography, subject to a time delay larger than 
10 minutes, which poses problems for on-line control. 
From these measurements, an EKF estimates the par­
ticle phase concentrations. 
Reaction calorimetry, on the other hand, is a well 
established technique for on-line measurement of re­
action rates. The measurement is noninvasive, rapid, 
and robust, being based only on temperature and flow 
measurements. 
(Urretabizkaiaet al., 1993) and (Gugliotta et al., 1995) 
developed a calorimetry based approach to estimate 
conversion and copolymer composition in emulsion 
copolymerization systems. Rather than giving direct 
measurements of either the rate of polymerization or 
of the polymer composition, the heat of reaction is 
calculated by calorimetry and used as a parameter in 
the reaction term of the monomer material balances. 
The material balances are integrated without feedback 
using this additional information. This approach (from 
now on simply called calorimetry) produces good re­
sults for precisely known initial conditions and the 
absence of disturbances. 
However, as feed-forward approaches as a rule can­
not reject disturbances and are sensitive to plant­
model mismatch, state estimation based on calorimet­
ric data seems to be an alternative to the mentioned 
approaches. 

1.3 Research in this paper 

We consider an SCEP-process which is run in a pilot 
plant. Because the reactor is not constructed as a 
calorimeter, heat balances for the cooling jacket and 
reactor medium are used in the model. We first give an 
overview about the general model which is based on 
(Dimitratos, 1989; Urretabizkaia et al., 1994). Because 
of the bad observability properties of the full model 
the model is simplified. The resulting model is of 
third order and describes the reaction temperature and 
the concentrations of butyl acrylate and vinyl acetate in 
the particle phase. Based on this simplified model a 
Constrained Extended Kalman Filter is designed and 
is compared with results from calorimetry. 
We investigate the differences of the two approaches 
for both parameter uncertainties and initial condition 
errors and show that the CEKF still gives good re­
sults when the calorimetry cannot estimate the process 
states correctly. 

2. MODEL OF THE SCEP 

The process model consists of six differential equa­
tions and one algebraic equation to determine the av­
erage number of radicals per particle n and is based on 
the following assumptions: 
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• there is no reaction in the water phase; 
• the number of particle is assumed to be constant; 
• there is no gel effect. 

2.1 Phase distribution 

The monomers are distributed in all three phases of 
the system. To determine the concentrations of the 
monomers in the phases, the phase distribution al­
gorithm used by (Urretabizkaia and Asua, 1994) is 
used. It employs constant phase partition coefficients 
for the equilibrium between the phases K{, where 
j defines the considered monomer, j the phase (P­
Particle, M-Droplet). The phase distribution algorithm 
calculates the volumes of the monomers in the phases 
and the total volume of each monomer in the reactor. 
The interested reader is referred to (Urretabizkaia and 
Asua, 1994) for a detailed description of the algo­
rithm. This approach gives good results and converges 
quickly. 

2.2 Reaction model and heat balances 

The dynamic model is determined by mass and heat 
balances. The mass balances for the monomers are: 

(1) 

with 

(2) 

The reaction rate constants are assumed to be temper­
ature dependent: 

k(T)=ko..exp(_EA (.!.-~)). (3) 
Ro T To 

The parameters le... and EA were calculated from liter­
ature data (Dimitratos, 1989; Urretabizkaia and Asua, 
1994) by regression. 
Ignoring the gel effect and radical desorption, Smith 
and Ewart (Smith and Ewart, 1948) derived the fol­
lowing equation for the average number of radicals per 
particle n: 

(4) 

As RI depends on the concentration of the initiator, the 
concerning dynamic equation has to be considered. 

(5) 

The time dependence of the volume is determined by 
the monomer feed nA, nB and the volume contraction 
by reaction: 
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Fig. 1. Reactor concentration of monomer A and B 

dV
R 

_ (1 1 ) - == Ln;V; + LR;M; - - - . 
dt; ; PPol P; 

(6) 

Finally dynamic equations for the temperatures in the 
reactor and the jacket were derived: 

dTR 1 (2 2 . d == C LR;(-Mf;) + Ln;M;cp; 
t S ;=1 ~I 

X (TRin - TR) + kA(1J - TR)) (7) 

dTJ 1 (. dt == CJ mOelcpM(TJin -1J) 

- kA(TJ - TR)) . (8) 

CJ decribes the combined heat capacity of the liquid in 
the jacket. The heat capacity of the liquid in the reactor 
and the reactor, Cs, and the heat transfer area A are 
algebraic functions of the liquid volume in the reactor. 
As shown in figure 1 this model fits experimental 
data from literature (Dimitratos, 1989) well. The full 
model is used to generate sampled process data, and 
the concentrations of the full model are compared with 
the estimations by the CEKF and the calorimetry. The 
simulated temperatures are passed to the estimation as 
measurements. 

3. CALORIMETRY 

Following (Gugliotta et al., 1995) and combining the 
equations (7) and (8), the overall heat of reaction is 
calculated as follows: 

. dTR ~ 
QR == CR-

d 
- ~ cp;n;M;(TR;n - TR) 

t ;=1 

+ d:: cpcMmcM - mCMCPOel (1J;n - TJ). (9) 

!!ff and % are estimated using a backwards differ­
ence method. 
The heat of reaction is given as 

2 

OR == LR;( -Mf;). (10) 
;=1 

Using equation (2), in equation (10) ~ (the amount 
of radicals in mol) can be calculated: 
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TiNT -OR 
NA. == i±kj;Pi(itMfi 

(11) 

;=lj=1 

The product on the right hand side of equation (11) 
is used as a parameter in the material and volume 
balances (eqns. 1 and 6). When the model is integrated, 
equation (4) is not necessary as ~ is computed 
directly from calorimetry. 

4. MODEL REDUCTION 

For control purposes it is necessary to know the con­
centrations of the monomers in the particle phase as 
they determine the reaction rate and thus the composi­
tion of the polymer. The dynamic equations (1) depend 
on the concentrations in the reactor as well as on the 
concentrations in the particle phase. In order to derive 
differential equations for the monomer concentrations 
in the particle phase, it is assumed that no droplet 
phase occurs. Using 

[i]RVR == (vp + ~) [it (12) 

the concentration of monomer i in the particle phase 
can be described by 

d[ijP _ 1 (n.-R- (13) 
dt - (Vp + rJ;.) I I 

K; 

- [it (d~P (1 -~f ) + ~f d~R) ) . 
The volume of the particle phase is also time depen­
dent. If an equilibrium of the phase distribution is 
assumed, it follows that the added monomer is dis­
tributed in the water and in the particle phase as 

.p n;Kf 
n · == -- (14) 

I Kf+l · 
The volume of the particle phase is additionally ef­
fected by contraction due to chemical reaction: 

dVP 
k n /ViK

P 
k (I 1 ) 

- == L ----i> + L RjMj - - - .(15) 
dt i=1 I +Ki i=1 PPol Pi 

In equation (13) the time derivative of vP can be 
replaced by this expression. 
For the observer design the model has to be reduced 
as the observability is bad if the derived equations 
for TR, TJ, [At, [Bt, VP, VR and [l]R are considered. 
The distance to unobservability (DUO) (Eising, 1984; 
Rajamani and Cho, 1998) is used as a quantitative 
description of the observability of the system. It has 
to be noted, however, that the absolute values of this 
measure have to be compared to a reference point, e. g. 
a complex model. If the DUO for a reduced model 
derived from the complex one is larger, an observer 
based on the reduced model will perform better apart 
from the model mismatch of course. 



Definition 1. The distance to unobservability (DUO) 
of (A, C) is the magnitude of the smallest pertubation 
(S , T) E (;" xn x (;" xm , that makes the pair (A+ S,C + 
T) unobservable: 

8(A,C) = inf II[S,TjI12 ' (16) 
(A+S,C+ T)not observable 

Using Eising's relationship (Eising, 1984) 

. [jWI -A] O(A,C) = m~ncrmin C ' (17) 

the DUO can be calculated easily. As the process 
dynamics and the absolute values of the states change 
strongly with time, it is sensible to investigate the DUO 
dependent on the state variables. 
If the differential equations of all states are considered, 
the distance to unobservability is always smaller than 
10-4 . 

For small sampling intervals of the measurements the 
jacket temperature can be assumed to be constant over 
the sampling period. Furthermore it is obvious that 
the differential equation for the initiator is stable and 
the differential equation for the reactor and polymer 
volume are unstable but controlled only by n and can 
thus be simulated with sufficient accuracy. They can 
be regarded as a non observable subsystem (Lopez­
Arenas et al., 1997). Hence the observer is based on 
the following reduced model : 

dTR 1 (~ ~. Tt = eR ~Ri( -filii) + ~niMiCp; 
I I 

X (TRin - TR) +kA(1J - TR)) (18) 

d[it = 1 (n . _ R _ (it 
dt P VW I I KP V+? I 

I 

(
(K; -1) ± njVjKt + ± njvj) 

j=l 1 +Kj j=l 

-(it±RjMj (_1 _~)). 
j=1 PPol Pj 

(19) 

For the same process conditions the distance to unob­
servability is improved, it is one order of magnitude 
larger than before. Figure 2 shows the dependency of 
the distance to unobservability (DUO) on the concen­
trations of monomer A and B in the particle phase. 
From this figure it follows that it is not possible to 
observe every copolymerization process. There is a 
region where the total gross heat of reaction of both 
monomer reactions are similar. The lines hand k mark 
the edges of that region. The application of estimation 
techniques based on calorimetric data in this region 
is impossible, as the DUO decreases strongly and 
becomes zero when the relation (21) holds exactly, 
which means the process is unobservable. Hence state 
estimation cannot be used if 
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Fig. 2. Dependency of the distance to unobservability 
on the concentrations of the monomers in the 
particle phase 

rA(-filiA) ~rB(-filiB) (20) 

rA (-filiB) 
<:}-~ . 

rB (-filiA) 
(21) 

Equations (18) and (19) and the measurement equation 
are summarized as 

x=f(x,u) 

y=Cx. 

(22) 

(23) 

Here x = [TR, [At, [Bty is the state vector and u = 
[nA ,nB,1JY the vector of control inputs. The only 
available measurement is the reactor temperature, thus 
C = [1,O,Oj. The above description shows that when 
certain restriction are considered the process is ob­
servable from temperature measurements only. A state 
estimation technique can be applied for estimating the 
concentrations on the particle phase phase from tem­
perature measurements. 

5. ESTIMATOR DESIGN 

The EKF is one of the most widely applied state 
estimation techniques in chemical engineering. In this 
approach zero mean random processes ~ and <p are 
introduced to the system and measurement equations: 

x=f(x,u)+~ 

y= Cx+<p. 

(24) 

(25) 

In our work we consider sampled data systems. Hence 
the ordinary differential equations have to be trans­
formed to difference equations by integration over one 
sampling interval (Robertson et al., 1996): 

(26) 

Due to the increase in computational speed and soft­
ware improvements for solving optimization problems 
in the last decades, optimization based approaches 
have been developed (Jang et al. , 1986; Robertson et 



al., 1996; Rao, 2000). If the sampling time is small it 
is difficult to apply optimization based state estimators 
which require the solution of a nonlinear dynamic pro­
gram as computation time is limited. The Constrained 
Extended Kalman Filter (CEKF) is a special case of 
the Moving Horizon Estimator formulated by (Muske 
and Rawlings, 1994). If the measurement equation 
is linear, the following quadratic program has to be 
solved 

. ~T -I ~ AT _l A 
mm 'I' k = ~k- t ,kP k,k-I ~-I ,k + q>k,kR q>k,k 

!;,t-I,.t.CPk,k 

s.t. : Xk,k = Xk,k-I + ~-I,k 
<Pk,k = Yk - Ik,k 

~mjn :s ~k-I,k :s ~ 
q>mjn :s <Pk-I,k :s q>max 

Xmjn :s Ik,k :s Xmax· 

(27) 

IjJ describes the estimated state at time t = tj based 
on the measurements up to time t = ti' The weighting 
matrices Pk,k-I, Q and R are chosen similar to the 
weighting matrices of the EKF. Pk is thus calculated 
by the algebraic matrix Riccati equation. 

Pk+t,k = Ak,k (Pk,k-I - Pk,k-I C
T (28) 

(CPk,k_IC
T +R)-ICPk,k-t) Af,k+Q· 

afl with Ak,k = ox . 
"k,k 

(29) 

The prediction of the states is calculated by Xk+l,k = 
F(Xk,k, Uk). The following constraints are taken into 
account: 

• the concentrations of monomer A and B in the 
particle phase and the reactor temperature are 
larger than or equal to zero, 

• the maximum reactor temperature is 100°C, 
• the maximum concentrations of the monomers 

are calculated from the feed time, the feed rate 
and the initial volume of the particle phase: 

10' njdt 
[it = 0 (30) 

max Vpol ,O+ ± f' nidt 
i=l}o 

with i ,j =A,B. 

6. RESULTS 

In the following we discuss the estimation results for 
Calorimetry and for the CEKF. The simulated data 
were computed with the complete model while the 
estimator and calorimetry are based on the simplified 
model. The filter parameters Po, Q and R were chosen 
by simulations. The initial states of the simulation and 
of the estimator are given in the figure captions. 
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Fig. 3. Calorimetry and CEKF-estimation for given 
initial errors ([Al~ = 0.05, [Bl~ = 0.005) 

Figure 3 shows the difference between the calorimetry 
and the CEKF for wrong initial conditions. 
It is clearly shown, that the CEKF can correct the error 
and reproduces the simulation data closely. Calorime­
try, in contrast, diverges considerably. However, the 
initial values in seeded emulsion polymerization are 
normally well known, and mismatch between model 
and real parameters poses more serious problems. 
Figures 4 and 5 show that the CEKF can cope well with 
deviations in !:J{j and n, while the calorimetry shows 
a serious deviation, which would prohibite its use in 
on-line control. 
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Fig. 4. Calorimetry and CEKF-estimation for plant 
model mismatch, 10% deviation in !:J{j 

The CEKF is generally robust due to the considered 
constraints. In figure 6, the estimation results of the 
CEKF for a combined parameter uncertainty are given. 
It is assumed that the reaction heat of each monomer 
and the efficiency factor for the decomposition of the 
initiator are not known exactly (a deviation of 10% 
is assumed). From figure 6 it can be seen that the 
estimation results are are still satisfactory and that the 
CEKF can thus be used to estimate the states of this 
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Fig. 5. Calorimetry and CEKF-estimation for plant 
model mismatch, 10% deviation in ri, realized 
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Fig. 6. CEKF-estimation, initial values [Alg = 0.05, 
[Blg = 0.005, TRo = 63°, deviations in the param­
eters Mli and in the efficiency factor f 

process. 

7. SUMMARY 

We have shown that the CEKF approach is a suitable 
tool for the robust state estimation in an SCEP pro­
cess using temperature data only. This is in contrast to 
feed-forward calorimetry, which only works well for 
precisely known initial conditions and parameters. Ex­
perimental data was simulated using a monodisperse 
model which describes all phases of the three-phase 
SCEP-process. 
A simplified model was employed in the estimation. 
Due to to the use of feedback this simplified model 
serves well for state estimation and corrects initial 
condition errors as well as plant-model mismatch. 
Despite its robustness, however, it was shown that the 
CEKF cannot be applied for all possible copolymeriza­
tions. The process is not observable when the product 
of polymerization rate and heat of reaction of the two 
monomers approaches equality. 
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We believe the described CEKF can be applied for 
real SCEP-processes and is a major step on the path 
to optimization and feedback control of SCEP, solely 
based on calorimetric data. 
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