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Abstract

Over the past years, synthetic aperture radar (SAR) tomography (TomoSAR) has indicated significant potentials for three-
dimensional (3D) reconstruction of buildings in urban areas. A large number of SAR images are thus required to perform tomographic
inversions in non-parametric spectral estimators. To this end, in the case of a limited choice of SAR acquisitions, the present study aims
to evaluate the capabilities of five non-parametric spectral estimation (SE) techniques, including linear prediction (LP), maximum
entropy (ME), and minimum norm (MN), Capon, and beamforming (BF) in the tomographic reconstruction of urban environments.
The performance analysis is carried out by using both simulated and real SAR datasets. The study results demonstrate that the proposed
efficient LP estimator, minimizing the average output signal power over the antenna array elements, can separate the layover scatterers
along the height direction. This low-computational SE method is thus able to clean side lobes while using a small number of observa-
tions. The proposed algorithms, as applied on TerraSAR-X strip-map images of the city of Tehran, Iran, verify the effectiveness of the
non-parametric LP reconstruction technique for urban buildings. The estimated height of the scatterers also indicates that the LP esti-
mator is similar to the field-based measurements once compared with ME, MN, Capon, and BF reconstruction methods.
� 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, high spatial concentration of scatterers
within a range-azimuth resolution cell due to the interfer-
ence of buildings, houses, roads, bridges, trees, and vegeta-
tion along with analysis of synthetic aperture radar (SAR)
data in urban areas has turned into an active field of
research (Guillaso et al., 2014). Interferometric SAR
(InSAR), as a remote sensing technique, can exploit the
phase difference of coherent radar signals from slightly dif-
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ferent positions, to generate a three-dimensional (3D)
ground surface reconstruction (Fornaro, 2014).

Given the side-looking mode of the SAR system, geo-
metric distortions, including foreshortening and layover
might frequently occur in urban areas (Stilla et al., 2003).
In the presence of steep topography, such as vertical struc-
tures (i.e., buildings), the superposition of multiple scatter-
ing contributions may accordingly take place in SAR
image pixels (Lombardini et al., 2013). Besides, the diffi-
culty of the phase unwrapping operation at the edges of
buildings and other corner-reflectors in imaged scenes can
make the InSAR processing performance less effective
(Schmitt and Stilla, 2014).
e comparative study of three nonparametric methods of SAR tomog-
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To deal with these limitations, SAR tomography
(TomoSAR), as a multi-baseline technique of InSAR con-
figuration, has recently received significant attention in the
case of buildings in urban environments. This modern
method employs a stack of SAR images collected at slightly
different flight tracks to reconstruct the height distribution
of backscattered power (Gini et al., 2002).

A wide variety of spectral estimation (SE) methods can
be thus applied to resolve the inverse problem of the
TomoSAR imaging technique (Stoica and Moses, 2005).
SE algorithms with applications to TomoSAR can be
accordingly grouped into two main categories: single-
looking and multi-looking methods (Zhu, 2011). In this
sense, single-looking algorithms utilize a complex-valued
image stack of single SAR image azimuth-range pixels
and do not care about interrelationships of adjacent pix-
els. For multi-looking algorithms, SAR data can be repre-
sented in a complex covariance matrix form by averaging
backscattered signals of surrounding pixels. In general, by
taking multiple looks of SAR measurements, multi-look
processing enhances signal-to-noise ratio (SNR) in an ele-
vation direction (Zhu, 2011). Accordingly, different SE
techniques have been thus far implemented, including
conventional beamforming (BF), singular value decompo-
sition (SVD), Capon, and multiple signal classification
(MUSIC) (Fornaro et al., 2003; Lombardini and
Reigber, 2003; Stoica and Moses, 1997; Gini and
Lombardini, 2005).

Within another categorization, various SE methods can
be also grouped under three heads: sparsity-based com-
pressive sensing (CS) (Zhu and Bamler, 2010), together
with parametric and non-parametric techniques (Gini
et al., 2002). With regard to the iterative procedure and
the unavailability of adaptive convex optimization algo-
rithms, the main drawback of CS-based TomoSAR imag-
ing techniques is associated with high computational
complexity (Martin Del Campo et al., 2018). Besides, the
parametric SEs are based on prior knowledge about the
statistical model of received signals and the number of
interfering scatterers in an azimuth-range image pixel.
Commonly, parametric estimators may represent better
estimation if the data appear to agree closely with the
assumed model (Wei et al., 2014).

Compared with the first two groups, for non-parametric
SE methods, no assumption about distributional model
parameters within a resolution cell is required. The number
of scatterers and their unknown parameters can be thus
directly estimated from the SAR image data (Wei et al.,
2014). Therefore, the non-parametric SEs become more
applicable to image processing. However, some non-
parametric estimators such as beamforming and Capon
might achieve low height resolution while having high side-
lobe levels. Generally, the non-parametric SEs can work
well if a large number of acquisitions are available. One
problem to be deliberated is that the quality of non-
parametric reconstruction methods is lost once the number
of image data diminishes.
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Primarily, this paper aims to investigate the quality of
TomoSAR reconstruction and to reflect on the accuracy
of building height retrieval, using a limited number of
acquisitions available. To this end, three direction-of-
arrival (DOA) estimation techniques, i.e., linear prediction
(LP), maximum entropy (ME), and minimum norm (MN)
with the TomoSAR application in urban areas are intro-
duced. The evaluation of these new non-parametric SEs
is also conducted in two perspectives: the performance of
each method in the separation of multiple scatterers inside
an azimuth – range resolution cell, as well as the robustness
of the non-parametric SEs, applied to the reduced number
of images. Interestingly, the LP-based SE method minimiz-
ing the average output signal power over the antenna array
elements accounts for the potentialities of TomoSAR pro-
cessing to a dataset of TerraSAR-X stripmap data. The
proposed LP estimator is also endowed with a strong capa-
bility to discriminate layover scatterers located at different
elevation coordinates, suppress the sidelobe effect, and
retain TomoSAR reconstruction quality with respect to
the reduced number of SAR images.
2. Methodology

The implementation workflow of the proposed non-
parametric SE techniques of TomoSAR on TerraSAR-X
stripmap acquisitions is demonstrated in Fig. 1. Upon ful-
filling the necessary preprocessing steps, three novel DOA
estimation methods with applications to TomoSAR are
applied over the urban area. The proposed estimator tech-
niques, namely, LP, ME, and MN, are conducted to eval-
uate the performance quality of the employed methods in
layover separation ability, the sidelobe level reduction in
the tomography reconstruction, the robustness against a
limited number of SAR acquisitions, and the height retrie-
val accuracy of the building case study.
2.1. TomoSAR imaging technique

The scheme of the TomoSAR imaging geometry for
urban areas is shown in Fig. 2. Accordingly, the backscat-
tered signals of the scatterers, located at different heights,
may interfere inside the same SAR resolution cell in the
side-looking geometry of the SAR acquisition. For
complex-built geometry, the TomoSAR technique is cap-
able to discriminate multiple scatterers in each pixel
through the formation of the synthetic aperture principle
along the elevation direction.

In a stack of Nco-registered complex-valued SAR
images, the received signal of the azimuth-range pixel
ðx; rÞat the nthimage from all the scatterers can be expressed
in the form Eq. (1) (Fornaro et al., 2003):

gnðx; rÞ ¼
R
cðsÞexp½�j2pnns�dsþ enðx; rÞ

g ¼ A:cþ e
ð1Þ



Minimum Norm Method

Maximum Entropy Method

Linear Prediction Method

TomoSAR Reconstruction     

using Three Proposed 

Nonparametric SEs

Preprocessing Procedure 

Co-registration

Interferogram Formation

Flat Earth Phase Removal

Atmospheric Phase Screen (APS) Removal

SAR Images

Fig. 1. Proposed SAR tomographic processing framework.
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where nn ¼ 2b?n
kr is spatial frequency along the elevation

direction, the parameterkrepresents wavelength, r is the
measured distance between the radar antenna and target,
b?n is the perpendicular baseline component between each
slave image and master image, and cð:Þis the complex-
valued unknown reflectivity vector along the elevation
direction for each azimuth-range pixel. The noise term en
can be neglected if appropriate pre-processing of the
SAR image stack is performed.

Through uniformly sampling the continuous reflectivity
function along elevation direction with Lsteps, the steering
matrix A ¼ ½a1; a2; � � �; aL� is composed of NL-dimensional
steering vectors as columns. The N dimensional steering
vector al associated with each scatterer in elevation dimen-
sion can be written in the form Eq. (2):

al ¼ e j2pn1slð Þ; e j2pn2slð Þ; � � �; e j2pnN slð Þ� �T
l ¼ 1; 2; � � �; Lð Þ ð2Þ
where sl l ¼ 1; 2; � � �; Lð Þ represents the lth discrete elevation
position and cðslÞ is the reflectivity power of the scatterer at
the elevation position sl. The spectral estimation methods
with application to SAR tomography promise to retrieve
the vertical distribution of the backscattered power for
Ground

Slant Range

Fig. 2. TomoSARacquisition geometry in urban.
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each azimuth-range pixel. In the following, we introduce
three non-parametric spectral estimators for this purpose.
2.2. DOA estimation techniques in SAR tomography

Based on the multiple baseline SAR observations over
the same target, the obtained complex data can be consid-
ered as the received signals by an array of antenna elements
(Kato et al., 2015). Thus, tomographic imaging can be per-
formed by DOA-based estimation methods after the pre-
processing of SAR images, including co-registration,
phase flattening, and atmospheric phase screen (APS)
removal. This study introduces three new non-parametric
DOA algorithms for performance evaluation of the pro-
posed estimators with respect to accurate height recon-
struction of buildings and robustness to the reduced
number of images in 3D SAR imaging.
2.2.1. Linear prediction DOA estimator

The linear prediction method is a potentially valuable
tool in a wide range of applications such as time-series
problems, speech signal analysis, array signal processing,
and spectrum analysis (Makhoul, 1975). The basic concept
of the proposed LP technique for power spectrum estima-
tion is the minimization of the average output signal power
over the array of antenna elements (Gamba, 2020;
Johnson, 1982). Under this constraint, the LP as a noise-
robust non-parametric SE makes it possible to retrieve
the building height from the stack of SAR images.

The estimation of the value of gnin the LP estimator
method is based on a weighted linear combination of the
exp �j2pnnsl½ � with predictive coefficients defined from
cðslÞ. The formulation for LP estimator can be written as
Eq. (3):

gn ¼
XL

l¼1

c slð Þexp �j2pnnsl½ � þ en n ¼ 1; 2; � � �;Nl

¼ 1; 2; � � �; L ð3Þ
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The basic idea of the nonparametric linear prediction
estimation method is the finding of the column vector of

weights c sð Þ ¼ c s1ð Þ; c s2ð Þ; � � �; c sLð Þ½ �T for each row in the
steering matrix to minimize the following criterion in the
form Eq. (4):

E jc sð ÞHgj2
n o

¼ E c sð ÞHggHc sð Þ� � ¼ c sð ÞHCgc sð Þ ð4Þ
The optimal solution of the constrained problem can be

obtained from minimizing the quantity of the objective cri-
terion subject to a unity-based weight vector on the selected
elevation position. The constraint can be defined in the
form Eq. (5) (Johnson, 1982):

c sð ÞHu ¼ 1 ð5Þ
The ith column of an identity matrix IN�N is the column

vector u. In the linear prediction method as a multilooking-
based spectral estimator, the estimation of the covariance
matrix elements is obtained by spatial averaging neighbor-
ing image pixels in both principal SAR imaging directions.
The estimated covariance matrix can be calculated as Eq.
(6):

Cg ¼ E ggH
� � � Cg ¼ 1

M

XM
m¼1

ggH ð6Þ

where �ð ÞH and E �½ � are, respectively, the Hermitian and
Expectation operators. The M refers to the total number
of pixels in the neighborhood that need to be averaged.
In the following, the Lagrange multiplier approach is used
to solve the optimal weight vector of the LP estimator. The
resulting best vector can be represented in the form of Eq.
(7) (Gamba, 2020; Johnson, 1982):

copt sð Þ ¼ C�1
g u

uHC�1
g u

ð7Þ

In the linear prediction method corresponding to the
autoregressive (AR) model, the estimated power spectrum
is obtained based on the mean squared error of the predic-
tion divided by the magnitude squared spectrum of the pre-
diction weights. Thus, the estimated power spectrum can
be defined as Eq. (8) (Gamba, 2020; Johnson, 1982):

PLP sð Þ ¼ uHC�1
g u

juHC�1
g Aj2 ð8Þ

As expressed in Eq. (8), the choice of column u affects
the performance of the LP estimator. Therefore, the maxi-
mum contrast of the reflectivity profile criterion is pro-
posed to achieve the most effective possible column. The
idea behind the selected vector, u, is the reconstructed
reflectivity profile with maximum contrast among all possi-
ble profiles extracted from the identity matrix columns.

2.2.2. Minimum norm DOA estimator

The subspace-based minimum norm method is known
for its high-resolution capability in the DOA estimation
(Ermolaev and Gershman, 1994). In this technique, after
4

the covariance matrix estimation Cg, the singular value
decomposition (SVD) method is applied to decompose it

into the product of three following matrices Cg ¼ USV T .
The columns of the noise subspace are formed by selecting
the subset of the columns of eigenvectors from U , such that
UNoise ¼ U :; qþ 1 : Nð Þ. The parameter of q refers to the
number of the largest eigenvalues of the estimated covari-
ance matrix.

The minimum norm method aims to identify the optimal

weight vector d ¼ d1; d2; � � �; dN½ �T , that is, the weight vec-
tor can be expressed as a linear combination of noise eigen-
vectors. The solution to the optimization problem can be
obtained by the Eq. (9):

min dHd;UH
Signald ¼ 0; dHe1 ¼ 1 ð9Þ

where e1 is the first column vector from an N � N identity
matrix (the vector whose first element is 1 and 0 else-

where).USignal ¼ u1; u2; � � �; uq
� �

as a signal subspace matrix

of the estimated covariance matrix is derived from the
eigenvectors corresponding to the q largest eigenvalues.
In this method, the weight vector is constrained to lie in
the noise subspace and to provide a resulting vector of d
with the minimum norm. A column vector containing zeros
in all elements except one in the first row satisfies this given
condition. The solution of the optimization problem in Eq.
(9) will yield the power spectrum of the MN method. This
estimator can be written as Eq. (10):

PMN sð Þ ¼ 1

jATUNoiseUH
Noisee1j2

ð10Þ
2.2.3. Maximum entropy DOA estimator

In (Makhoul, 1975; Gamba, 2020) it is shown that the
maximum entropy estimator is equivalent to an autoregres-
sive (AR) model, fitting the data by the method of least
squares. The covariance matrix extrapolation is also
assumed as the basis of the ME DOA estimation technique
(Makhoul, 1975). The extrapolation is thus carried out
with the aim of signal entropy maximization, performed
by searching autoregressive (namely, prediction) coeffi-
cients (Gamba, 2020). The coefficients of the optimization
problem can be obtained by minimizing the expected pre-
diction error subject to the condition xe1, where
x ¼ x1;x2; � � �;xN½ �is the vector of AR coefficients and
e1 ¼ 1; 0; � � �; 0½ �is the first column of the identity matrix.
In this method, using the Lagrange multiplier method,
the AR coefficients can be defined as Eq. (11):

x ¼ C�1
g e1

eT1C
�1
g e1

ð11Þ

The output maximum entropy power spectrum is given
by Eq. (12):

PME sð Þ ¼ 1

ATCj

�� ��2 ð12Þ
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Fig. 3. Case study over Third Millennium Tower. (a) The mean amplitude
SAR image. (b) the location of the Tower on Google Earth.
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where Cj is the jth column vector of the inverse of the
covariance matrix. The choice of column Cj has a signifi-
cant effect on the performance of the maximum entropy
spectrum technique. In a similar way, the maximum con-
trast criterion is adapted to select the optimum column of
the matrix.
3. Study area and dataset

In this survey, the study area is the Third Millennium
Tower, covering a region with 74 � 81 pixels in the image
(Fig. 3). The tower, centered at 35� 440 53.00100 N, 51� 230
50.52800 E with a height of 120 m, is known as one of the
tallest buildings in Iran. Fig. 3 shows the mean amplitude
of the SAR image and the location of the Third Millen-
nium Tower on Google Earth.

For this research, a stack of 19 stripmap images is
acquired by the TerraSAR-X sensor, allowing the perfor-
mance assessment of the proposed TomoSAR methods.
The SAR images were taken over the city of Tehran, Iran,
from descending orbit direction between 2012 and 2013.
The polarization mode of the images is HH, and the values
of the slant range and azimuth resolutions are 1.2 m and
3.3 m, respectively. The total spatial baseline span of distri-
bution for the used images is about 414 m, thus, the Ray-
leigh resolution criterion along the vertical direction is
about 21 m. The parameters of the TerraSAR-X SAR sen-
sors are summarized in Table 1.
4. Experiments and results

4.1. Numerical experiments

In this simulated stack of SAR data, to investigate the
robustness of the estimators to reduce the number of
SAR images, the layover scatterers separation and eleva-
tion estimation is evaluated with three different values of
Table 1
Terrasar-X Parameters.

Wavelength (m) Range (km) Incidence Angle

0.031 563 25�
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the number of image acquisitions N ¼ 10, N ¼ 22, and
N ¼ 57. In all scenarios, the total baseline is fixed. Fig. 4
shows the results of the reconstructed reflectivity profiles
using five DOA estimation methods. The results obtained
from the ME, MN, Capon, and BF estimators on simu-
lated data affirm that two discrete scatterers inside per pixel
can be identified and separated if the number of observa-
tions is increased. The findings indicate that the reliable ele-
vation estimation in ME, MN, Capon, and BF estimators
depends on the number of used images. Whiles, the results
confirm that the proposed LP technique can detect two
interfering scatterers located in a pixel with a reduced num-
ber of observations. This method demonstrates robustness
to the number of acquisitions when the total baseline is
kept constant.
4.2. Results of proposed TomoSAR imaging algorithms on

real dataset

As depicted in Fig. 3(a), the top section of the building
from the case study is at the near range and the bottom
appears at the far range in the SAR images due to the
effects of the SAR imaging geometry in the target interac-
tion. The height difference estimations are conducted along
the specified slice marked by the red line.

In the urban environment, at the intersection of the
building facade facing the SAR sensor and the ground,
more than one scatterer is mainly located at the same
SAR image pixel. The TomoSAR imaging technique qual-
ity can be expressed by reducing noise levels in TomoSAR
reconstruction, robustness to the reduced number of acqui-
sitions, and height estimation accuracy, i.e., no difference
between estimated height and ground-truth value. Fig. 5
shows the reconstructed reflectivity profiles with reference
to the LP, ME, MN, Capon, and BF methods in the
height-range plane.

The experimental results of the LP-based SE method for
the Third Millennium Tower indicate the height difference
between the pixel on the top and the one at the bottom sec-
tion is 120 m. This estimated value is the same as the actual
height of the building. In the middle of the tomogram, it is
observed that the LP estimator can resolve the layover
problem by separating the overlaid scatterers within a
pixel. Moreover, this method benefits from the reduction
of the noise level in the reconstructed height-reflectivity
profile.

The study results imply that the other employed Tomo-
SAR methods, namely, ME, MN, Capon, and BF, suffer
from the drawbacks of serious layover problems and poor
sidelobe interference reduction. These methods denote
strong height discontinuities in the reconstructed tomo-
Slant Range Resolution (m) Azimuth Resolution (m)

1.2 3.3
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graphic profiles. The results obtained from the ME, MN,
Capon, and BF estimators, affirm that these are highly
affected by the improper baseline distribution, while LP
shows more robust tomographic reconstruction. There
are also considerable differences in the building height
between the estimated value and the ground-truth data.
The height estimations obtained from different spectral
methods and their differences with the ground-truth are
outlined in Table 2.
4.3. Robustness of the DOA estimation techniques to the
reduced number of SAR images

To achieve a reliable TomoSAR reconstruction, the per-
formance of the non-parametric SE techniques for the
reduction of the required number of baseline acquisitions
need to be studied. To this end, a stack of data containing
half of the SAR acquisitions is employed (i.e., a dataset
comprised of ten images). The reduction of the number
of passes is performed such that the overall baseline distri-
bution of the ten SAR images is similar to the one with the
number of all images. Fig. 6 shows the results of the five
SEs in the building case study. Comparing the LP-based
SE and the four other estimators proves the robustness
of the proposed LP technique in minimizing the number
of SAR images for TomoSAR reconstruction. The LP-
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Fig. 4. Results of the reflectivity profile on the simulated datas

Table 2
Estimated building heights and their differences for third millennium tower.

DOA Method Linear Prediction Maximum Entro

Estimated Height (m) 120 16
Difference (m) 0 104
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based SE method illustrates a much better resistance
against the sidelobe effect in the reconstructed reflectivity
profiles compared with the ME, MN, Capon, and BF tech-
niques, whereas these techniques are highly impaired in the
case of the reduced number of distributed revisits. Com-
pared with the reference height of the building, there are
significant height differences obtained from the ME, MN,
Capon, and BF estimators. Table 3 presents the results of
the employed non-parametric SE methods using the limited
number of acquisitions for the subset area examined in this
study.
4.4. Selecting the best column for linear prediction and

maximum entropy estimators

As mentioned, selecting a specific column vector from
the identity matrix and the inverse of the covariance matrix
can have considerable impacts on the results of the LP and
ME DOA estimation methods, respectively. This part of
the research study aims at proposing a new approach for
selecting the optimal column of the N � N identity matrix
and the inverse of the covariance matrix, using the contrast
criterion. In the proposed method, first, the matrix of the
size N � L consists of NL-dimensional vertical reflectivity
power vectors is formed at each pixel of the SAR image.
For the LP and ME estimators, each column of the
Height (m)
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Fig. 6. Results of DOA estimation techniques over the Third Millennium Tower case study using 10 SAR images. (a) Linear Prediction. (b) Maximum
Entropy. (c) Minimum Norm. (d) Capon. (e) Beamforming.
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Fig. 5. Results of DOA estimation techniques over the Third Millennium Tower case study. (a) Linear Prediction. (b) Maximum Entropy. (c) Minimum
Norm. (d) Capon. (e) Beamforming.
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N � L matrix is initially created via by employing different
columns of the identity matrix and the inverse of the
covariance matrix, respectively. Then, for each pixel, the
optimal vertical reflectivity profile vector is determined
based on the contrast maximization. The contrast criterion
can be described as Eq. (13):
C c sð Þf g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

PL
m¼1

c smð Þ � 1
L

PL
l¼1

c slð Þ2
� 	s

1
L

PL
m¼1c smð Þ ð13Þ
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Figs. 7 and 8 illustrate the results of optimal and
random column selection from the identity matrix
and the inverse of the covariance matrix, respectively,
for both proposed LP and ME DOA estimation
methods. The results show that the proposed
approach can effectively select the best columns for
the two SE techniques. Compared with the randomly
chosen columns, the optimal column selection proce-
dure allows obtaining accurate height-reflectivity profile
reconstruction.



Table 3
Estimated building heights and their differences for third millennium tower using 10 sar images.

DOA Method Linear Prediction Maximum Entropy Minimum Norm Capon Beamforming

Estimated Height (m) 122 8 32 5 90
Difference (m) �2 112 88 115 30
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Fig. 7. Results of LP estimator for Third Millennium Tower. (a)
Choosing the best column from the identity matrix. (b) Randomly select
columns from identity matrix.
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Fig. 8. Results of ME estimator for Third Millennium Tower. (a)
Choosing the best column from the inverse of the covariance matrix. (b)
Randomly select columns from inverse of the covariance matrix.
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5. Conclusion

In this work, the performance of a novel non-parametric
DOA estimation technique to improve the accuracy of
building height estimates in urban areas is evaluated. The
analysis of the proposed TomoSAR methods is based on
the stack of 19 TerraSAR-X stripmap images from
descending orbits in the city of Tehran, Iran. The Third
Millennium Tower case study building is thus selected to
analyze the efficiency of the DOA estimation methods.
The obtained results present the capability of the LP esti-
mator to resolve the layover effect in the urban environ-
ment by separating the single- and double-scattering
mechanisms in the elevation direction. The proposed LP
TomoSAR technique can enhance the reducing sidelobe
interference in the reconstructed height-reflectivity profile.
Compared with other employed SE methods, such as
ME, MN, Capon, and BF, the LP method provides a
non-parametric DOA estimator for accurate estimation
of the height of the buildings. As well, a robust estimate
of building height is achieved while reducing the number
of SAR of images.
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