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Abstract

This report presents the results of a friendly competition for formal verification and
policy synthesis of stochastic models. It also introduces new benchmarks within this
category, and recommends next steps for this category towards next year’s edition of
the competition. The friendly competition took place as part of the workshop Applied
Verification for Continuous and Hybrid Systems (ARCH) in Spring/Summer 2020.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic modelling
group aims at providing a unified point of reference on the current state of the art in the
area of stochastic models together with the currently available tools and framework for
performing formal verification and optimal policy synthesis to such models. We further
provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
https://gitlab.com/goranf/ARCH-COMP.

This friendly competition is organized by Alessandro Abate (alessandro.abate@cs.ox.ac.uk), Stefan
Schupp (stefan.schupp@cs.rwth-aachen.de), and Sadegh Soudjani (sadegh.soudjani@newcastle.ac.uk).
The authors acknowledge the contributions by Henk Blom (H.A.P.Blom@tudelft.nl) in preparing an
overview of the tools, benchmarks, and their properties, which will be used in future editions of the
competition.
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This report presents the results obtained during the ARCH Friendly Competition 2020
in the group stochastic models. The benchmark collection as been extended by 3 interesting
benchmarks which exhibit novel challenges for tools participating in this category.

In this year’s edition overall 9 tools and frameworks participated in the evaluation of
earlier and new benchmarks. This year the following tools and frameworks participate (in
alphabetical order): AMYTISS, FAUST2, hpnmg, Mascot-SDS, modes, ProbReach, SDCPN &
IPS, SReachTools, and StocHy. Following the general tendency of centralized execution, one
additional goal this year was the execution of the tools on centralized cloud services to obtain
comparable results among the participating tools.

Furthermore, all the tools and frameworks have been compiled into Docker format (a container
software), which allows for easier readability evaluation of the generated results together with
the sharing of the tools themselves to both the ARCH and the wider research community.

This report has the following structure. Section 2 provides a short overview of the partici-
pating tools and frameworks. Section 3 presents already established benchmarks and a set of
new benchmark descriptions, which include a discussion of the individual models syntax and
semantics, and a presentation of the specifications of interest is presented in Section 4. Next,
in Section 5 we present the results of the friendly competition where the participating tools or
algorithmic frameworks that are used to solve instances of the collection of benchmarks. We
identify key challenges and discuss future plans in Section 6.

2 Participating Tools & Frameworks

Here we present the tools which participated this year in alphabetical order.

AMYTISS AMYTISS is a software tool, implemented as a kernel on top of the acceleration
ecosystem pFaces [41], for designing correct-by-construction controllers of stochastic discrete-time
systems. It implements parallel algorithms to (1) build finite Markov decision processes (MDPs)
as finite abstractions of given original stochastic discrete-time systems, and (2) synthesize
controllers for the constructed finite MDPs satisfying bounded-time safety specifications and
reach-avoid specifications. The underlying computation parts are similar to the ones used in
FAUST2 and StocHy, and are used for compositional computations [44, 45, 46, 47, 48]. This
tool significantly improves performances w.r.t. the computation time by parallel execution in
different heterogeneous computing platforms including CPUs, GPUs and hardware accelerators
(e.g., FPGA). In addition, AMYTISS proposes a technique to reduce the required memory for
computing finite MDPs as on-the-fly abstractions (OFA). In the OFA technique, computing
and storing the probability transition matrix are skipped. Instead the required entries of the
finite MDP are on-the-fly computed as they are needed for the synthesis part via the standard
dynamic programming. This technique impressively reduces the required memory but at the
cost of repeated computation of their entries in each time step from 1 to a finite-time horizon Td.
This gives the user an additional control over the trade-off between the computation time and
memory usage. The tool is available at https://github.com/mkhaled87/pFaces-AMYTISS.

FAUST2 The tool FAUST2 [69](Formal Abstractions of Uncountable-STate STochastic pro-
cesses) generates formal abstractions of discrete-time Markov processes (dtMP) defined over
continuous state spaces. The dtMP model is abstracted into a finite-state Markov chain or a
Markov decision process. The abstract model is formally put in relationship with the concrete
dtMP via a user-defined maximum threshold on the approximation error introduced by the
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abstraction procedure. FAUST2 allows exporting the abstract model to well-known probabilistic
model checkers, such as PRISM [42] or STORM [19]. Alternatively, it can handle internally
the computation of basic PCTL properties (e.g. safety or reach-avoid) over the abstract model,
and refine the outcomes over the concrete dtMP via a quantified error that depends on the
abstraction procedure and the given formula. The toolbox relies on approaches developed and
adapted to different classes of systems and under different assumptions [62, 64, 66, 67] and is
used in solving various types of verification and synthesis problems [68, 70, 71]. The tool is
available at https://sourceforge.net/projects/faust2/.

hpnmg The tool hpnmg [36] is a model checker for Hybrid Petri nets with an arbitrary but
finite number of general transition firings against specifications formulated in STL [38]. Each
general transition firing results in a random variable which follows a continuous probability
distribution. It efficiently implements and combines algorithms for a symbolic state-space
creation [37], transformation to a geometric representation as convex polytopes [39], model
checking a potentially nested STL formula and integrating over the resulting satisfaction set to
yield the probability that the specification holds at a specific time.

The tool is implemented in C++ and relies on the library HyPro [57] for efficient geometric
operations on convex polytopes, as well as on the GNU Scientific Library (GSL) for multi-
dimensional integration using Monte Carlo integration [49]. It is available at https://zivgitlab.
uni-muenster.de/ag-sks/tools/hpnmg.

HYPEG The Java-based library HYPEG [54] is a dedicated statistical simulator for hybrid
Petri nets with general transitions (HPnGs) [29], which combine discrete and continuous
components with a possibly large number of random variables, whose stochastic behavior
follows arbitrary probability distributions. HYPEG uses time-bounded discrete-event simulation
and well-known statistical model checking techniques to verify complex properties, including
time-bounded reachability [55]. These techniques comprise several hypothesis tests as well as
different approaches for the computation of confidence intervals. In the latest version of HYPEG,
continuous behavior that can be expressed by systems of ordinary differential equations can
be simulated using an approximative approach [53, 51], whereas piecewise-linear continuous
behavior is simulated without approximation.

The tool is available at https://zivgitlab.uni-muenster.de/ag-sks/tools/HYPEG.

Mascot-SDS Newcastle (SS) Mascot-SDS [50] is an open-source tool for synthesizing con-
trollers with formal correctness guarantees for discrete-time dynamical systems in the presence
of stochastic perturbations. The tool that supports infinite-horizon control specifications for
stochastic dynamical systems and computes over- and under-approximations of the winning
domain for the specification. The current version of the tool is developed for the “always
eventually” specification (repeated reachability), but its new version that is scheduled to be
released this year will handle all omega-regular specifications including Linear Temporal Logic
properties. Mascot-SDS is written in C++, and is an extension of Mascot [35]. The suffix SDS
stands for Stochastic Dynamical Systems.

The tool is available at https://gitlab.mpi-sws.org/kmallik/mascot-sds.

The Modest Toolset The Modest Toolset [34] supports the modelling and analysis of hybrid,
real-time, distributed and stochastic systems. At its core is the model of networks of stochastic
hybrid automata (SHA) [33], which combine nondeterministic choices, continuous system
dynamics, stochastic decisions and timing, and real-time behaviour, including nondeterministic
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delays. The Modest Toolset is a modular framework, supporting as input the high-level Modest
modelling language [6, 33] and the Jani specification [9], and providing a variety of analysis
backends for various special cases of SHA. In particular, the modes discrete-event simulator [8]
supports SHA without nondeterminism and linear dynamics. It includes a highly-automated
rare event simulation engine based on importance splitting [7], and provides statistical estimates
with configurable error and confidence levels. The prohver tool [33] model-checks SHA with
linear differential equations and inclusions, combining abstraction of continuous probability
distributions with a non-stochastic hybrid automata reachability analysis (using PHAVer [25] as
backend). It delivers guaranteed upper bounds on (time-bounded) reachability probabilities.

The Modest Toolset can can be obtained from http://www.modestchecker.net/.

ProbReach ProbReach [59] provides a set of algorithms for computing probabilistic bounded
reachability in parametric stochastic hybrid systems (PSHS) with nonlinear continuous dynamics
(i.e., defined by nonlinear ODEs). The parameters can be random (continuous and discrete)
and/or nondeterministic. ProbReach features a formal approach [61] for computing numerically
sound probability intervals that are formally guaranteed to contain the exact value of the
bounded reachability probability. For PSHSs containing random parameters only, the size of
such interval can be made arbitrarily small. Also, ProbReach implements Monte Carlo algorithms
[60] for computing confidence intervals for the bounded reachability probability with rigorous
(i.e., numerically sound) sampling. ProbReach uses the Probabilistic Delta-ReacHability (PDRH)
format for encoding PSHSs, and it is available at https://github.com/dreal/probreach.

SReachTools SReachTools [74] is an open-source, repeatability-evaluated, MATLAB toolbox
for tackling the problem of stochastic reachability of a target tube [78]. This problem subsumes
terminal hitting-time stochastic reach-avoid and stochastic viability problems (guaranteeing
safety in stochastic systems) [72, 3]. SReachTools handles linear, discrete-time, continuous-
state dynamical systems with additive stochastic disturbance. The dynamics and the safety
constraints can be time-varying, and the disturbance may be Gaussian or non-Gaussian. It relies
on approaches drawn from convex optimization, Fourier transforms, scenario-based optimization,
and computational geometry for a grid-free and scalable computation of the stochastic reach
sets as well as controller (open-loop, affine feedback, and set-based) synthesis [28, 75, 76, 79, 56].

SReachTools is available at https://sreachtools.github.io. The code for solving the
benchmarks presented in this report is available as a Code Ocean capsule at https://doi.org/
10.24433/CO.5339956.v1.

StocHy StocHy [13] is a software tool for the quantitative analysis of discrete-time stochastic
hybrid systems (SHS) accepts a high-level description of stochastic models and constructs an
equivalent SHS model. In comparison with the other tools in the stochastic modelling category,
StocHy is the only tool that provides exact (i.e. not via statistical means) errors/guarantees on
the obtained solution [14, 30]. The tool enables users to (i) simulate the SHS evolution over
a given time horizon; and to (ii) to automatically construct formal abstractions of the SHS
using either abstractions taking the form of Markov Decision Processes (MDP) or grounded on
interval MDPs (IMDP) [14]. The abstractions are then employed for (ii) formal verification or
(iii) control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate
simulation, verification and synthesis engines, which are implemented as independent libraries.
The tool is implemented in C++ and employs manipulations based on vector calculus,sparse
matrices, symbolic construction of probabilistic kernels, and multi-threading. The tool can be
obtained from https://github.com/natchi92/stochy.
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2.1 Frameworks

In contrast to complete tools, frameworks usually provide a collection of algorithms and data
structures or collect several tools for different sub-problems into one library.

SDCPN & IPS This is a reach probability modelling and estimation framework that has
been developed for the evaluation of multi-actor air traffic designs on mid-air collision risk.
Because this air traffic application domain is very demanding, the selected mathematical
setting is Generalized Stochastic Hybrid Processes (GSHP) [10]. GSHP incorporates Brownian
motion in continuous-time Piecewise Deterministic Markov Processes [18]. Because a direct
specification of a large GSHP model does not work, Stochastically and Dynamically Coloured
Petri Nets (SDCPN) are used for the compositional modelling of a GSHP [21, 22, 23, 24]. For the
acceleration of MC simulation of rare events, the Interacting Particle Systems (IPS) approach
for GSHP is used [15, 5]. The SDCPN & IPS framework has been applied to the Heated Tank
benchmark.

(ε, δ) Abstraction Based on the papers [30, 32, 58], this software library uses code snippets
and algorithms to compute two precision parameters (ε, δ), which allow bounding the deviations
between models in both the output signals (ε) and the transition probabilities (δ). The obtained
abstract models, either with deterministic continuous states or with stochastic finite states, are
then employed in probabilistic model checking.

3 Established benchmarks, revisited

Benchmarks already established allow to visualise the development progress that a tool makes
during its live-cycle. Therefore, the collection of benchmarks used for evaluation does not
only consider new benchmarks but also re-uses existing benchmarks to allow tool developers
to improve their results from previous years. In this section we give a short description of
established benchmarks that have been used in the evaluation with references to their original
sources (and previous reports in ARCH) for further details.

3.1 Automated Anesthesia benchmark

The automated anesthesia delivery system benchmark, introduced in ARCH 2018 [2], seeks a
safe automated delivery system, with and without the human-in-the-loop (anestheologist). The
safety specification requires the depth of hypnosis of a patient to stay within pre-specified safe
bounds for a given period of time. The continuous-state system model for the patient’s depth of
hypnosis is based on a three-compartment pharmacokinetic system (LTI system). We account for
the variation in the system model for different patients using an additive Gaussian disturbance.
We obtain a stochastic hybrid system model when the inputs from the anestheologist is also
modeled.

3.2 Building Automation Systems benchmark

The Building Automation System (BAS) benchmark, also introduced in ARCH 2018, is built
upon the library of stochastic models presented in [12, 11] and based on earlier work [65, 63].
This library allows us to generate benchmarks with different levels of complexities which can take
the form of the general framework of stochastic hybrid systems. In this instance we construct
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two different benchmarks where the focus is on synthesis and on the number of continuous
dimensions being modeled. For each (i) we provide a high-level description of the models and
the specification of interest:

Thermal model with 4-dimensions: This model is a two zone thermal model consisting
of a single discrete location and 4 continuous variables which evolve according to a stochastic
difference equation. The model details can be found in [2]. We are interested in generating a
control policy which ensures the comfort range of the temperature in each zone is kept within
the range [19.5 20.5] , when using a control input signal which lies within the range of [15 22],
for a specific time horizon for 1.5 hours (i.e. 6 time steps), with a minimum likelihood of 0.8.

Thermal model with 7-dimensions: The model is a discrete-time Gaussian-perturbed
stochastic linear system with 7-dimensional state, 1-dimensional control input, and a 6 -
dimensional Gaussian disturbance vector. The model details can be found in [2]. We would like
to synthesise a policy ensuring that the temperature within zone 1 does not deviate from the set
point by more than 0.5 °C over a time horizon equal to 1.5 hours.

3.3 Heated Tank

The Heated Tank benchmark stems from safety literature, where it is a well-known example of a
Piecewise Deterministic Markov Process (PDMP) [18]. This made the Heated Tank benchmark
a logical candidate for inclusion in the set of ARCH stochastic models [2, 1].

The heated tank system consists of a tank containing liquid whose level is influenced by
two pumps and one valve managed by a controller. The purpose of the liquid in the tank is to
absorb and transport the heat from a heat source; this means that under nominal conditions
one of the pumps produces a constant inflow of cool liquid, and a similar flow of heated liquid
leaves the tank through the valve. The Euclidean valued state components are the height xH,t
and temperature xT,t of the liquid in the tank at moment t. Pumps and Valve may fail, and
a Controller switches Pumps or Valve if the height of the liquid becomes too high or too low.
The rare event probabilities, to be estimated on time interval [t0, tend], are: Dryout probability,
Overflow probability, and Overheating probability. In literature the heated tank benchmark has
five versions: 1) Pumps and Valve have constant failure rates; 2) Pumps and Valve have mode
dependent failure rates; 3) In version 1, Controller may fail to implement its switching decision;
4) In version 1, Pumps and Valve are repaired; and 5) In version 1, failure rates depend on the
liquid temperature.

Of these five versions, version 4 is the only one where the Dryout probability reaches small
values. This makes version 4 (= 4.0) the best choice for a rare event estimation benchmark.
Version 4.0 has been described in words [2], and in a formal way using formal models in
Modest [33] and from SDCPN and HYPEG [1]. In [1] Heated Tank version 4.0 has been enriched
with the following five extensions:

4.I. Discrete-valued process influences repair rates or failure rates (e.g. in version 2).

4.II. Probability of non-communicating a decision made to an applicable entity (e.g. in version
3).

4.III. Continuous-valued process influences repair or failure rates (e.g. in version 5).

4.IV. Non-exponentially distributed duration of working and/or repair of system components.

4.V. Brownian motion in a Euclidean state component, e.g. in the heat source.

In 2018 and 2019, benchmark version 4.0 only has been evaluated.
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Figure 1: Water sewage facility with extensions A and B. The unit of all capacities for the
continuous and overflow places is 106 l and the unit of all continuous transition rates is 106 l/h.

3.4 Water Sewage Facility

The water sewage benchmark models a water sewage treatment plant situated in Enschede as a
hybrid Petri net with general transitions (HPnG). It has been proposed and thoroughly analyzed
in [26] and was already included in ARCH2019 [1].

The model consists of a cleaning street with multiple so-called overflow places, which are
modeled as continuous variables with a predefined upper bound. When the overflow place
reaches its upper bound it releases the excess fluid to another place via a designated transition.
The model makes excessive use of rate adaptation, which is a control mechanism unique to
hybrid Petri nets and ensures that the inflow / outflow of a place that is at either capacity is
adapted in order to prevent over- or underflow. This leads to a large number of state changes
when executing the benchmark.

The report from 2019 already featured two different failure scenarios for the water sewage
facility. Here, we want to formalize these scenarios A and B and introduce properties for model
checking the survivability of the system [27]. Note that, survivability evaluation is a measure
of dependability, which quantifies the ability of a system to recover after the occurrence of a
disaster to a predefined level of service in a timely manner [16].

Figure 1 gives an illustration of the hybrid Petri net model for the water sewage with
extensions A and B. Initially, all finite places of the water sewage facility are considered to be
full except for the community buffer Pc.

Extension A initializes place Pr with one token, modeling heavy rain. The duration of
this heavy rain is modeled by general transition Ga, which moves the token to place Pn and
hence disables the continuous transition Tr with rate 12.2 · 106 liters per hour and enables the
continuous transition with rate 3.3 · 106 liters per hour, effectively decreasing the input to the
system. The general transition Ga follows a folded normal distribution Nf with mean µ and
standard deviation σ = 1 h. For the analysis, µ as well as the capacity of the community buffer
Pc, are parametrized.

Extension B models the failure of the input transition Tz to the water sewage facility, which
forms the bottleneck of the system. After a deterministic time delay α, the pump fails, after which
repair is initiated. The delay for that is modeled with a random variable which is exponentially
distributed with rate λ = 2 per hour. For the analysis of the system, the deterministic time
delay α, as well as the rate of rainfall to the water sewage facility are parametrized.
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For each extension dedicated properties have been formulated in STL. Both properties ensure
that the community buffer is not exceeded and have been discussed in [1].

Overflow initiated by heavy rain (ϕA) This property ensures that the community buffer
Pc does not overflow before heavy rain stops. Hence, property ϕA states that the overflow of
the community buffer Pc is below a predefined small value until the goal state is reached after
at most 30 hours and the token has moved to place Pn:

ϕA := xP0
≤ 0.1 U[0,30] mPn

= 1.

Overflow initiated by pump failure (ϕB) This property states that the overflow of the
community buffer is below a given threshold until the input transition is repaired. The interval
of the until operator starts with α, which indicates the time point of the failure of the input
transition. The system is then required to become operational again within 30 hours without
spilling fluid from the community buffer. This is formalized as ϕB :

ϕB := xP0
≤ 0.01 U[α,α+30] mPon

= 1.

Transformation To make the benchmark accessible for tools that operate on stochastic hybrid
automata, e.g. modes and prohver, the HPnG has been transformed into a hybrid automaton
with stochastic resets, according to the transformation proposed in [52]. This transformation
constructs a hybrid automaton building on the symbolic state space, which is represented as a
finite parametric location tree [37]. The parametric location tree, which also forms the basis for
the analytical model checker hpnmg, is constructed up to a certain time t. Note that, for this
model depending on the parameter setting, the state space is finite as after a certain time, no
state changes occur. We have chosen the time t for each parameter setting, such that the full
state space is included in the transformation.

Figure 2 shows an example for the transformed automaton for extension A with a specific
parameter setting. Property ϕA is fulfilled as soon as location l2 is reached. However, if too
much time is spent in location l5, the property is violated.

4 New Benchmarks

Tool development strongly profits from large sets of benchmarks for evaluation of the implemented
approach. Additionally to the already existing benchmarks which have been proposed in the last
years [1, 2], in this section we present new benchmarks (in alphabetical order) which have been
proposed this year for evaluation and introduce new challenges that are not currently handled
by existing benchmarks.

4.1 Stochastic Van der Pol Oscillator

The state evolution of the oscillator is given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)2)x2(k))τ + w2(k), (1)

where the sampling time τ is set to 0.1s and (w1(k), w2(k)) is a pair of stochastic noise signals
at time k drawn from a uniform density function with a compact support D = [−0.02, 0.02]×
[−0.02, 0.02].
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ẋPdt = 0.2
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Figure 2: Transformed automaton for the water sewage facility with extension A and µ = 1.5h
and a capacity of 30 · 106l for the community buffer Pc. The random variable that describes the
duration of the heavy rain is represented by the stochastic clock ga. Note that all values not
shown in the figure are zero.

Consider a safety specification �A for staying within the working area A = [−5, 5]× [−5, 5],
as well as a Büchi specification �♦B for repeatedly reaching the target set B = [−1.2,−0.9]×
[−2.9,−2].

Problem 1 (Qualitative Verification). Compute the set of initial states from which the probability
of satisfying the specification �A ∧�♦B under dynamics (1) is equal to one.

Problem 2 (Quantitative Verification). Compute the probability of satisfying the specification
�A ∧�♦B under dynamics (1) as a function of initial state.

Since some of the tools are not able to handle �♦B, the following modified dynamical system
can be used together with a reachability specification that gives an upper-bound for probability
of satisfying �A ∧�♦B. Let us denote the right-hand side of (1) by f(x(k)) + w(k). Define a
new dynamical system with state space A ∪ {ϕ1, ϕ2} such that ϕ1 and ϕ2 are sink states and

x(k + 1) =



f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) 6∈ B
ϕ1 if w(k) 6∈ A\f(x(k)) and x(k) 6∈ B
f(x(k)) + w(k) if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

ϕ1 if w(k) 6∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 0

ϕ2 if w(k) ∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1

ϕ2 if w(k) 6∈ A\f(x(k)) and x(k) ∈ B and ν(k) = 1,

(2)
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where ν(k) are independent and identically distributed Bernoulli random variables with success
probability (1− ζ).

Problem 3 (Quantitative Reachability). Compute the probability ♦ϕ2 under dynamics (2).

The solution of Problem 3 is an upper bound for Problem 2. Moreover, it converges to the
solution of Problem 2 when ζ → 1−.

The dynamics in (1) can be extended to include inputs for shaping the limiting behaviour of
the system. Consider the non-autonomous version of the oscillator dynamics given by:

x1(k + 1) = x1(k) + x2(k)τ + w1(k)

x2(k + 1) = x2(k) + (−x1(k) + (1− x1(k)2)x2(k))τ + u(k)w2(k). (3)

Problem 4 (Quantitative Synthesis). Compute a policy for dynamical system (3) that maximises
the probability of satisfying �A ∧�♦B.

4.2 Integrator-Chain (for scalability comparison)

Consider a chain of integrators,

xk+1 =


1 Ns

N2
s

2 · · · Nn−1
s

(n−1)!

0 1 Ns · · ·
...

. . .
...

0 0 0 · · · 1

xk +


Nn

s

n!
Nn−1

s

(n−1)!

...
Ns

uk + wk (4)

with state xk ∈ Rn, input uk ∈ U = [−1, 1], a Gaussian disturbance wk ∼ N (02, 0.01I2),
sampling time Ns = 0.1, and time horizon N = 5. Here, In refers to the n-dimensional identity
matrix and 0n is the n-dimensional zero vector. Denote the set of Markov policies as M. For
any policy π ∈ M and an initial state x0 ∈ Rn, Pπ,x0

X denotes the probability measure of the
resulting trajectory (random) vector X = [x1 x2 . . . xN ] ∈ RNn of the system (4).

We wish to solve the stochastic reach-avoid problem for the system (4) with safe set
S = [−10, 10]

n
and target set T = [−8, 8]

n
. Specifically, we compute the stochastic reach-avoid

set L(α) ⊆ S for some α ∈ [0, 1],

L(α) = {x0 ∈ S : ∃π ∈M,Pπ,x0

X {x1 ∈ S, . . . , xN−1 ∈ S, xN ∈ T } ≥ α}. (5)

4.3 7-Dimensional BMW 320i

We consider a vehicle described by the following hybrid 7-dimensional nonlinear single track
(ST) model of a BMW 320i car [4, Section 5.1] by including the stochasticity inside the dynamics
as the additive noise:

For |x4(k)| < 0.1:

xi(k + 1) = xi(k) + τai(k) +Riςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(ν1) + 0.2ς3(k),

x4(k + 1) = x4(k) + τSat2(ν2) + 0.1ς4(k),
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for |x4(k)| ≥ 0.1:

xi(k + 1) = xi(k) + τbi(k) +Riςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(ν1) + 0.2ς3(k),

x4(k + 1) = x4(k) + τSat2(ν2) + 0.1ς4(k),

where,

R1 = R2 = 0.25, R5 = R6 = R7 = 0.2, a1 = x4cos(x5(k)), a2 = x4sin(x5(k)),

a5 =
x4

lwb
tan(x3(k)), a6 =

ν2(k)

lwb
tan(x3(k)) +

x4

lwbcos2(x3(k))
ν1(k), a7 = 0,

b1 = x4(k)cos(x5(k) + x7(k)), b2 = x4(k)sin(x5(k) + x7(k)), b5 = x6(k),

b6 =
µ̄m

Iz(lr + lf )
(lfCS,f (glr − ν2(k)hcg)x3(k) + (lrCS,r(glf + ν2(k)hcg)− lfCS,f (glr

− ν2(k)hcg))x7(k)− (l2fCS,f (glr − ν2(k)hcg) + l2rCS,r(glf + ν2(k)hcg))
x6(k)

x4(k)
),

b7 =
µ̄f

x4(k)(lr + lf )
(CS,f (glr − ν2(k)hcg)x3(k) + (CS,r(glf + ν2(k)hcg) + CS,f (glr

− ν2(k)hcg))x7(k)− (lfCS,f (glr − ν2(k)hcg)− lrCS,r(glf + ν2(k)hcg))
x6(k)

x4(k)
)− x6(k).

Here, Sat1(·) and Sat2(·) are input saturation functions introduced in [4, Section 5.1], x1 and
x2 are the position coordinates, x3 is the steering angle, x4 is the heading velocity, x5 is the
yaw angle, x6 is the yaw rate, and x7 is the slip angle. Variables ν1 and ν2 are inputs and they
control the steering angle and heading velocity, respectively.

The model takes into account the tire slip making it a good candidate for studies that
consider planning of evasive maneuvers that are very close to physical limits. We consider an
update period τ = 0.1 seconds and the following parameters for a BMW 320i car: lwb = 2.5789
as the wheelbase, m = 1093.3 [kg] as the total mass of the vehicle, µ̄ = 1.0489 as the friction
coefficient, lf = 1.156 [m] as the distance from the front axle to the center of gravity (CoG),
lr = 1.422 [m] as the distance from the rear axle to CoG, hcg = 0.6137 [m] as the height of
CoG, Iz = 1791.6 [kg m2] as the moment of inertia for entire mass around z axis, CS,f = 20.89
[1/rad] as the front cornering stiffness coefficient, and CS,r = 20.89 [1/rad] as the rear cornering
stiffness coefficient.

To construct a finite MDP Σ̂, we consider a bounded version of the state set X := [−10.0, 10.0]
×[−10.0, 10.0]×[−0.40, 0.40]×[−2, 2]×[−0.3, 0.3]×[−0.4, 0.4]×[−0.04, 0.04], a state discretization
vector [4.0; 4.0; 0.2; 1.0; 0.1; 0.2; 0.02], an input set U := [−0.4, 0.4] × [−4, 4], and an input
discretization vector [0.2; 2.0].

We are interested in an autonomous operation of the vehicle. The vehicle should park itself
automatically in the parking lot located in the projected set [−1.5, 0.0]× [0.0, 1.5] within 32 time
steps. The vehicle should avoid hitting a barrier represented by the set [−1.5, 0.0]× [−0.5, 0.0].

5 Friendly Competition – Setup and Outcomes

The results observed from the execution of the previously described benchmarks with the
participating tools are presented in this section, an overview on which tool was used on which
benchmark is given in Table 1.
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Table 1: Tool-benchmark matrix: We indicate the year a tool was first applied to a given
benchmark. Shortkeys: automated anesthesia (AS), building automation (BA), heated tank
(HT), water sewage (WS), stochastic Van der Pol (VP), integrator chain (IC), and autonomous
vehicle (AV).

Tool
Benchmarks

AS BA HT WS VP IC AV

FAUST2 2018 2018 2020
StocHy 2019 2019 2020
SReachTools 2018 2018 2020
AMYTISS 2020 2020 2020 2020 2020
hpnmg 2020
HYPEG 2019 2020
Mascot-SDS 2020
modes 2018 2020
ProbReach 2020
prohver 2020 2020
SDCPN&IPS 2019
(ε, δ) Abstraction 2019 2019

Since the start of the ARCH stochastic modelling group in 2017, relevant benchmarks have
slowly but steadily been developed, as the stochastic model area is very large the variation in
benchmarks also is broad. In order to get grip on this, in Table 2 we have given an overview of
the different aspects that are addressed by the set of established benchmarks that have been
evaluated within the group (indicated in Table 1).

As we aimed for a centralized evaluation, the used machines for evaluation are described in
Section 5.1 followed by detailed results for each benchmark.

5.1 Platforms

In contrast to previous years, this year we targeted a centralized execution of the benchmarks to
obtain comparable results. This development follows the general tendency of the ARCH-COMP
where centralized execution via Docker-Containers is used this year.

To allow comprehensive comparison of results which also allow tools designed for multi-core
architectures to highlight their capabilities, we were provided three machines from the Amazon
Web Services (AWS) cloud. We are grateful that the repeatability experiment was
funded by Amazon Web Services with a donation of $5000 provided as computing
time on the AWS machines described below.

All participants were provided with access to three machines from Amazon AWS where
each of the used machines belongs to a different computing class. The first machine (labeled
CPU 1 in the tables) belongs to the so-called class M4, which provides a balance of compute,
memory, and network resources, and it is a good choice for many small-sized applications. The
used machine has an Intel CPU E5-2686 v4 processor with 8 CPU cores running on a frequency
of 2.30 GHz, and 32 GB memory. The second machine (labeled CPU 2 in the tables) belongs
to the class C5, which delivers high performance computing (HPC) for applications running
advanced compute-intensive workloads. The machine has an Intel Xeon Platinum 8000 processor
with 72 CPU cores running on a frequency of 3.60 GHz, and 144 GB memory. The last machine
(labeled GPU 1 in the tables) belongs to class P3, which is based on NVIDIA Tesla GPUs
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Table 2: Overview of benchmark properties. Shortkeys: Time horizon: Finite (F) or Infinite
(I); Type of control: Switching (S), Drift (Dr), or Multiple (M); Time line: Discrete (D) or
Continuous (C); State space: Continuous (C) or Hybrid (H); Drift in ODE/SDE: Linear (L),
Piecewise Linear (pL), or Nonlinear (NL); Noise : Brownian motion (BM) or independently and
identically distributed (iid)

Aspect
Benchmarks

AS BA HT WS VP IC AV

Liveness/deadlock X
Prob. reachability X X X X X X
Control synthesis X X X X
Min-max X X
Time horizon F F I F F
Type of control S M Dr Dr M
Time line D D C C D D D
State space C H H H C C C
Drift in ODE/SDE pL NL NL pL NL L NL
Noise in SDE Fixed Fixed Fixed Fixed Fixed
Noise: BM or i.i.d. iid iid iid iid iid
Guards X X X X
Rate spontaneous jumps Fixed Fixed Fixed Fixed
Size spontaneous jumps Fixed Fixed Fixed Fixed
Environment X X X
Subsystems X X X
Concurrency X X
Synchronization X X
Shared variables X X
# discrete states 5 576 35
# continuous variables 3 7 2 11 2 50 7
# model parameters 24 19 15 36 3 8 11

and can deliver up to one petaflop of mixed-precision performance to significantly accelerate
massively-parallelized HPC applications. This machine has one NVIDIA Tesla V100 GPU with
5120 CUDA cores, and 61 GB memory. To manage the selected machines, we developed a
custom web-based interface that uses the Amazon AWS API to interact with the selected three
machines (start, stop, or read status), while providing a level of user-access control in form
of a pairs of user names and passwords, that are distributed to all participants of the ARCH
competition. The web-based interface is developed using ASP.NET, a programming language
for web applications, and hosted on a separate AWS machine that is continuously running.

Independent from the AWS-based evaluation, tool developers could provide repeatability
evaluation packages in form of Docker containers and Code Ocean capsules to the repeatability
committee of ARCH. See https://gitlab.com/goranf/ARCH-COMP/tree/master/2020/SM for
more details on the repeatabilty evaluation.

5.2 Anesthesia benchmark results

Table 3 compares the performance of the tools based on their run time and the highest maximum
stochastic reach probability starting from any state in the initial safe set for the Anesthesia
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benchmark. Anesthesia benchmark defines a stochastic viability problem for a three-dimensional
Gaussian-perturbed LTI system model.

Table 3: Run times and maximum reach probability on the Anesthesia benchmark.

Property FAUST2 StocHy SReachTools AMYTISS

Run time on CPU 2 (sec) 1484 74.6 7.87 < 1
Run time on GPU 1 (sec) Did not run the benchmark < 1

Maximum reach probability ≈ 0.93 ≥ 0.99± 0.02 ≥ 0.99 ≈ 0.99

AMYTISS has the fastest run time, while producing among the highest stochastic reach
probability along with StocHy and SReachTools.

SReachTools computes a three-dimensional convex polytope, which is a strict subset of the
initial safe set, from which there is an open-loop controller that can satisfy the specification. We
found the ratio of the volume of the underapproximative 0.99-stochastic reach set to the volume
of the safe initial set to be 0.7. This indicates that the controller synthesized by SReachTools
can keep the system safe with 0.99 probability, when starting from a significantly large subset of
the state space.

StocHy computes the optimal control policy which maximises the probability of satisfaction
given any initial condition within the input set and provides exact guarantees on the resulting
solution. For this case study, we see that StocHy can keep the system safe with 0.99 probability
with a maximum abstraction error of 0.02.

5.3 Building automation benchmark results

Table 4 compares the performance of the tools based on their run time and the highest stochastic
reach probability starting from any state in the initial safe set for the building automation
benchmark. The benchmark defines a stochastic viability problem for a four-dimensional and
seven-dimensional Gaussian-perturbed LTI system model (see Section 3.2).

Table 4: Run times on the Building Automation System.

Property FAUST2 StocHy SReachTools AMYTISS

Case 1, 4-dimensional system
Run time on CPU 2 (sec) 2689 111.13 2.44 < 1
Run time on GPU 1 (sec) Did not run the bencmark < 1

Maximum reach probability ≈ 0.80 ≥ 0.99± 0.05 ≥ 0.99 ≈ 0.99

Case 2, 7-dimensional system
Run time on CPU 2 (sec) - 3910.41 1.33 2.9
Run time on GPU 1 (sec) Did not run the bencmark < 1

Maximum reach probability - ≥ 0.8± 0.23 ≥ 0.99 ≈ 0.8

AMYTISS has the fastest run time for Case 1, while SReachTools has the fastest run time
for Case 2 on CPU 2. AMYTISS also took less than a second to run this benchmark on GPU 2.

SReachTools reports the highest maximum stochastic reach probability of 0.99 for both of
the cases. It also computed a two-dimensional and one-dimensional convex, polytopic slices of
the 0.8-stochastic viability set for Cases 1 and 2 respectively. The ratio of the volume of the
underapproximative reach sets to the volume of the safe initial set was 0.97 (Case 1) and 0.87
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(Case 2). This indicates that the controller synthesized by SReachTools can keep the system
safe with 0.8 probability, when starting from a significantly large subset of the state space.

StocHy computes the control policy with the second highest probability of satisfaction for
Case 1 with 0.99 probability with a maximum abstraction error of 0.05. However, for Case
2, the underlying abstraction for tight exact error bounds required finer gridding, and hence
required more states and computational time.

FAUST2 did not finish running Case 2.

5.4 Heated Tank benchmark results

Both in ARCH2018 and ARCH2019 the focus has been on the estimation of the dryout
probability for Heated Tank version 4.0 [2, 1]. In addition to results from literature, the modes
and HYPEG tools have been applied, as well as the framework SDCPN&IPS. Table 5 shows the
PDryout estimation results obtained by the different methods; i.e. SAN&MC, Restart, modes,
SDCPN&MC, HYPEG and SDCPN&IPS respectively. Of these methods, Restart, modes and
SDCPN&IPS have in common of using splitting techniques in MC simulation of rare events.
The importance functions that are used by Restart and modes count the number of component
failures that are relevant for dry-out. The importance function that is used by SDCPN&IPS is
the distance between liquid height xH,t and HDryout.

Table 5: PDryout for version 4.0: estimated by two methods from safety literature (SAN&MC
and Restart), and by four ARCH2018/2019 methods (modes, SDCPN&MC, HYPEG and
SDCPN&IPS).

Method
SAN&MC[17] Restart[73] modes SDCPN&MC HYPEG SDCPN&IPS

Measure

Importance
splitting

No Yes Yes No No Yes

Estimated
PDryout

5.1 × 10−4 5.4 × 10−4 5.09 × 10−4 5.3 × 10−4 4.84 × 10−4 5.27 × 10−4

Simulation
effort

100,000
MC runs

- -
100,000

MC runs
183,773

MC runs
100,000
particles

95%
confidence

interval
±1.4 × 10−4 ±3.4 × 10−4 ±0.26 × 10−4 ±1.4 × 10−4 ±1.0 × 10−4 ±0.24 × 10−4

For ARCH2020 the selected objective was to apply novel tools prohver as well as Formal-
verifier of ProbReach to the Heated Tank benchmark version 4.0. In contrast to the statistical
methods that are shown in Table 5, these novel tools do not make use of statistical methods.
Both prohver and ProbReach ran into difficulties in handling Heated Tank version 4.0. A common
problem for both tools is the repeated occurrence of transitions’ resets (e.g., unit failure →
unit repair → unit failure → unit repair) during the benchmark time period of 500 hours
(tend = 500 h). Although component failures are moderately rare, during the 500 hour period
the tank level oscillates between the lower and upper control thresholds, and in rare cases even
reach Dryout. By shortening the time period to 20 hours (tend = 20 h) the need to consider
repeating of transition resets is much reduced. We refer to the corresponding Dryout probability
as P≤20

Dryout . In combination with some further model adaptations (which are described below),

prohver was able to compute the results for P≤20
Dryout that are presented in Table 6. Table 6 also

presents results obtained by modes via simulation on the same models for comparison.

Applying prohver to the Heated Tank benchmark. The prohver safety model checker
for stochastic hybrid automata (SHA) can compute a guaranteed upper bound on the maximum
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Table 6: prohver and modes estimated P≤20
Dryout for Heated Tank version 4.0 during 20 hours

instead of the 500 hours in Table 5

Tool
prohver modes

pI = 0.5 pI = 0.3̄ pI = 0.25 SMC RES/count RES/level

P≤20
Dryout ,

race
model

0.0266
upper bound

77k states

43 m

(timeout) (timeout)

1.95 · 10−7

95% in±10%
4.3G runs

2 h

1.98 · 10−7

≈ 95% in±10%
823k×64 runs

5 min

1.84 · 10−7

≈ 95% in±10%
3.5M×64 runs

22 min

P≤20
Dryout ,

combined
model

0.0098
upper bound

4169 states

24 s

0.0044
upper bound

35k states

10 min

0.0024
upper bound

175k states

5 h

1.93 · 10−7

95% in±10%

4.3G runs

1 h

1.97 · 10−7

≈ 95% in±10%

214k×64 runs

1 min

1.99 · 10−7

≈ 95% in±10%

3.2M×64 runs

10 min

probability of reaching a set of (unsafe) goal states. Its input is a parallel composition of multiple
symbolic stochastic hybrid automata, i.e. with discrete variables in guards and updates, in the
Modest [33] or Jani [9] formats. prohver works in four steps (see [33, Fig. 9]):

1. Syntactically abstract continuous probability distributions into discrete distributions over
intervals that cover the distribution’s support. The result is a parallel composition of
probabilistic hybrid automata (PHA) with discrete variables.

2. Compute the “discretely-reachable” discrete locations (by, starting from the initial state,
following transitions and executing updates assuming that the continuous variables can
always take any possible value) to obtain one flat PHA.

3. Remove probabilities from the PHA and use the non-stochastic PHAVer [25] reachability
tool to compute the labelled transition system (LTS) of reachable concrete state sets.

4. Reintroduce the probabilities into the LTS to obtain a Markov decision process; use value
iteration to compute the maximum probability to reach a goal state.

There are two sources of overapproximation error in this process: the abstraction of continuous
distributions, and the reachability computation by PHAVer in case of non-linear dynamics. For
assessing Dryout probability for Heated Tank version 4.0 the latter does not apply.

The first attempt was to run prohver on a minimally updated version of the existing Modest
heated tank model first used in [2] and included in [1]. It gave rise to a PHA with 5440 locations
in step 2, on which PHAVer did not manage to terminate within 24 h of computation time for
PDryout . For the second attempt prohver was run on a new model that pays attention to avoid
any unnecessary intermediate transitions that would give rise to extra locations. For this model
the SDCPN description of the heated tank benchmark 4.0 [1, Fig. 22] was closely followed. As a
result, the PHA had only 82 discretely-reachable locations. This already sped up simulations
using modes significantly. Using two intervals of equal probability pI = 0.5 in step 1, we were
able to obtain a first upper bound of 0.0266 for P≤20

Dryout after 43 minutes of computation time1.
As soon as we used more intervals, or PDryout , PHAVer still timed out.

The system is always in a race between three exponentially-distributed events: either failure
or repair of pump 1, pump 2, or the valve, each at a specific rate. Each of these gives rise to

1All experiments using modes and prohver on the Heated Tank benchmark were performed on a 64-bit Ubuntu
18.04 system with an Intel Core i7-4790 CPU (3.6-4.0 GHz, 4 physical and 8 logical cores) and 8 GB of RAM.
prohver uses a single core only, while modes employs 7 parallel simulation threads on this machine.
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a continuous variable representing the countdown timer until the event occurs in the PHAVer
evaluation. Therefore in a third attempt, a further reduced “combined” Modest model has been
identified by exploiting the special properties of the exponential distribution to replace the three
concurrent events by a single one distributed exponentially with the sum of the rates of the
individual events. This reduces the continuous dimensions from 4 (three countdown timers plus
tank level) to 2. On this model, PHAVer and prohver finally manage to compute upper bounds

for P≤20
Dryout using two, three, and four intervals as shown in Table 6. With 2 intervals, both

overapproximation error and runtime are significantly lower than for the “racing” model. We
see that the error decreases somewhat whereas computation time explodes as we increase the
number of intervals. More intervals lead to a finer partitioning of the continuous state space,
and consequently abstraction LTS (from step 3) with more states (the number of states being
listed with each prohver result in Table 6). PDryout , however, still remains out of reach.

For comparison, we also ran modes using standard Monte Carlo simulation (SMC) and rare
event simulation (RES) using two different importance functions for fixed-effort splitting (with

64 child runs on each importance level) to estimate P≤20
Dryout . The results are also part of Table 6).

Column “RES/count” shows the results with the importance function counting the number of
stuck (failed) components, which was also used in the evaluation for Table 5; “RES/level” uses
a discretisation with intervals of width up to 1 of the tank level for the importance function.
modes consistently estimates the actual value to be around 1.94 · 10−7 with an error of ±10 %
and 95 % confidence on the same hardware. Using SMC requires 4.3 billion individual simulation
runs and at least one hour of computation time; rare event simulation brings significant speedup,
with the “count” importance function working best here. The modes-estimated probability
reflects that it is extremely rare that Dryout happens during the first 20 hours of the Heated
Tank version 4.0. This confirms that the best prohver-estimated probability of 2.4 · 10−3 is a
significant overapproximation of P≤20

Dryout .

5.5 Water sewage facility benchmark results

Within the competition, the water sewage facility benchmark has been evaluated by the analytical
model checkers hpnmg, ProbReach and prohver and the statistical model checkers HYPEG and
modes. The property ϕA has been model checked for the water sewage facility with extension
A and accordingly property ϕB has been model checked for extension B. The model has been
parametrized for the evaluation. From the results, a selection of parameter sets are presented in
this report.

Setup For extension A, the mean of the random variable modeling the duration of heavy rain
takes values between 1.5h and 4h and the capacity of the community buffer Pc is varied between
5 and 30 (in 106 liters). For extension B and formula ϕB, the time of failure α takes values
between 1h and 5h, and the rate of rainfall modeled by transition Tr is parametrized between 6
and 10 (in 106l/h). These parameter combinations have been chosen in order to illustrate the
full range of probabilities for each variant.

For hpnmg, the errors are caused by numerical methods used for multi-dimensional integration.
Using the Monte Carlo Vegas integration method [49] with default settings leads to estimated
errors smaller than 10−6.

The requested precision (size of the probability interval) of 10−12 was not met by ProbReach
due to a bug in the software. Nevertheless, the probability intervals (presented in the form of
the intervals’ mid points and the intervals’ sizes) reported in Tables 7 and 8 are numerically
sound, in the sense that they are guaranteed to contain the true probability value.
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We configured the Monte Carlo simulation-based tools—HYPEG and modes—to sample
a number of runs sufficient to obtain a confidence level of 99 % with a confidence interval
half-width of 0.0025. In prohver, error is introduced by abstracting continuous distributions into
discrete intervals, and by overapproximation of reachable state sets in the non-stochastic hybrid
reachability computation. Since all derivatives are constant per location, the latter can actually
be performed without errors. We abstracted the continuous distributions into intervals of width
at most 0.0025; since the model is acyclic and only samples a continuous probability distribution
once, this should lead to results at most 0.0025 higher than the true values.

Results Table 7 presents the results for extension A. The combination of a large mean and a
small community buffer results in a very low probability of survivability, whereas a small mean
and a large community buffer result in almost sure survivability. Results for extension B are
summarized in Table 8. Early failure times increase the probability of survivability, whereas
later failure times in combination with high rates of rainfall decrease the survivability.

The hpnmg tool and HYPEG take the original hybrid Petri net model of this benchmark
as input, whereas modes, ProbReach and prohver operate on the transformed stochastic hybrid
automata (SHA).

Table 9 contains the computation times required for the construction of the parametric
location tree as well as for the transformation into a SHA. The resulting computation times are
considerably slower for extension B than for extension A. This is due to the size of the underlying
state space which directly influences the size of the resulting automaton. For extension A the
SHA has 8 locations, depending on the chosen parameter setting. For extension B the resulting
automata have between 32 and 35 locations.

The tools operating on the transformed SHA, hence have an advantage over the tools which
operate on the hybrid Petri net model, as they do not need to construct the full state-space
anymore. This could explain the difference between the computation times, especially between
the two statistical model checkers HYPEG and modes: while HYPEG needs to compute the
specific next states and events, modes can mainly rely on the state-space information included
in the transformed automaton model. Note that, the computation times of hpnmg include the
construction of the state space (as parametric location tree).

Outlook We see that, in variant A, the complement of the property we check (in the first three
parameter valuations) describes a moderately rare event. Variant B shows a similar tendency.
Accordingly, it is possible to formulate properties which focus on the evaluation of safety and
describe rare events. Also, performing the analysis with a relative-error criterion—instead of the
absolute error of 0.0025—may thus deliver more precise results. However, currently only modes
supports statistical evaluation methods for relative errors; we thus plan such a comparison
as future work. For sufficiently low probabilities, we may then need rare event simulation
techniques—such as the importance splitting implemented in modes [7]—to achieve acceptable
computation times. Note that hpnmg already delivers absolute errors that correspond to very
small relative errors for the current probabilities; here, obtaining even more precise results
simply requires performing the Monte Carlo integration with higher precision.

Platforms Note, that the water sewage facility has not been executed on the AWS cloud.
Instead, local machines have been used. HYPEG has been executed on a machine with an Intel
i5-5257U processor with 2 CPU cores running on a frequency of 2.70 GHz, and 8 GB memory.
hpnmg was executed on a Intel i5-7200U processor with 2 CPU cores running on a frequency
of 2.712 GHz and 16 GB memory. modes and prohver ran on a machine with an Intel i5-6600T
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Table 7: Probabilities for ϕA = xP0
≤ 0.1 U[0,30] mPn

= 1, error resp. confidence interval and
run time for the given parameters µ and the capacity of the community buffer Pc for the water
sewage facility benchmark with extension A. Note, that the values for µ are given in hours and
the capacity of the community buffer Pc is given in 106 liters.

Param. Tools
µ Pc hpnmg HYPEG modes prohver ProbReach

1.5 30
0.9975730
5.56 · 10−7

0.183s

0.9972000
99% in ± 0.0025

21.526s

0.99794
99% in ± 0.0025

0.1s

1.00000
−0.0025

15.5s

0.9976793
2.75 · 10−5

188.731s

2 25
0.9448810
5.08 · 10−7

0.226s

0.9447855
99% in ± 0.0025

16.322s

0.94692
99% in ± 0.0025

0.2s

0.94750
−0.0025

14.5s

0.9464662
2.75 · 10−5

173.262s

2.5 30
0.9653570
7.2 · 10−7

0.253s

0.9668666
99% in ± 0.0025

182.707s

0.96734
99% in ± 0.0025

0.2s

0.96750
−0.0025

14.6s

0.9664448
2.75 · 10−5

182.653s

3 10
0.0592395
3.46 · 10−8

0.240s

0.0602694
99% in ± 0.0025

273.123s

0.06067
99% in ± 0.0025

0.2s

0.06250
−0.0025

13.7s

0.0609557
2.75 · 10−5

184.924s

3.5 10
0.0196439
1.36 · 10−8

0.240s

0.0217189
99% in ± 0.0025

106.062s

0.02069
99% in ± 0.0025

0.1s

0.02250
−0.0025

14.1s

0.0203402
2.75 · 10−5

186.299s

4 5
0.0005168
2.47 · 10−10

0.198s

0.0012000
99% in ± 0.0025

20.782s

0.00030
99% in ± 0.0025

0.1s

0.00250
−0.0025

14.2s

0.0005439
2.75 · 10−5

176.875s

processor with 4 physical CPU cores running at a frequency of 2.7–3.5 GHz, and 16 GB memory.
ProbReach was executed on a machine with a 2.2 GHz Intel i7-4702MQ processor with 8 logical
CPU cores (4 physical CPU cores), and 8 GB of RAM.

5.6 Van der Pol Oscillator benchmark results

We have applied Mascot-SDS on this benchmark for solving Problem 1. An over- and under-
approximation of the winning region is computed and plotted in Figure 3. Note that when the
noise is treated as worst case, then there exists a deterministic value of the noise for which the
oscillator trajectory never reaches the target B from all the initial states inside the domain, thus
violating the specification. So the winning region is empty if the noise is treated as worst case.
A trajectory with a fixed deterministic perturbation that misses the target all the time is shown
in black in Figure 3. On the other hand, when the noise is treated as stochastic, then there are
initial states from where the perturbed trajectory visits the target set B repeatedly. A trajectory
with stochastic perturbation and the initial state I is also shown in the figure. The computation
times are 417 sec for the over-approximation and 15 415 sec for the under-approximation.

Tool AMYTISS was also applied to Problem 3. It solves the problem in around 416 sec using
CPU 1, 58 sec using CPU 1 and 4.7 sec using GPU 1.
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Table 8: Probabilities for ϕB = xP0
≤ 0.01 U[α,α+30] mPon

= 1, error resp. confidence interval
and run time for the given parameters for the water sewage facility benchmark with extension B.
Note that the formula has been modified to be model checked with hpnmg, prohver and modes
(to ϕB = xP0 ≤ 0.01 U[0,30] (xPtime > α ∧mPon = 1) with an additional continuous place/clock
to model the time). Here, the values for the parameter α modelling the repair time are given in
hours and the rate of the continuous transition Tr is given in 106 liters per hour.

Param. Tools
Tr α hpnmg HYPEG modes prohver ProbReach

6 1
0.998367
9.56 · 10−7

1.047s

0.9988000
99% in ± 0.0025

55.806s

0.99908
99% in ± 0.0025

0.1s

1.00000
−0.0025

8.5s

0.9983796
6.6 · 10−3

296.559s

7 5
0.959817
6.63 · 10−7

0.782s

0.9591547
99% in ± 0.0025

554.432s

0.96061
99% in ± 0.0025

0.3s

0.96000
−0.0025

8.7s

0.9602791
6.6 · 10−3

275.235s

8 4
0.894601
4.73 · 10−7

0.642s

0.8955851
99% in ± 0.0025

1283.087s

0.89538
99% in ± 0.0025

0.6s

0.89500
−0.0025

7.7s

0.8948937
6.6 · 10−3

272.095s

9 4
0.670807
1.88 · 10−7

0.579s

0.6721797
99% in ± 0.0025

394.829s

0.67174
99% in ± 0.0025

0.9s

0.67250
−0.0025

7.5s

0.6715376
6.6 · 10−3

339.147s

10 4
0.181269
9.39 · 10−9

0.802s

0.1823443
99% in ± 0.0025

2253.333s

0.18367
99% in ± 0.0025

0.6s

0.18500
−0.0025

7.0s

0.1866682
6.6 · 10−3

224.552s

Table 9: Computation times for (i) the construction of the state space (as parametric location
tree), denoted as plt, and (ii) the transformation of the hybrid Petri net into a stochastic hybrid
automaton, denoted as transf., for the water sewage facility with extensions A and B.

(a) Extension A.

Parameters computation time
µ (h) Pc (106 l) plt transf.

1.5 30 34ms 3ms
2 25 84ms 6ms

2.5 30 35ms 3ms
3 10 60ms 3ms

3.5 10 41ms 4ms
4 5 40ms 3ms

(b) Extension B.

Parameters computation time
Tr (106 l/h) α (h) plt transf.

6 1 199ms 210ms
7 5 203ms 99ms
8 4 104ms 126ms
9 4 109ms 113ms
10 4 126ms 217ms

5.7 Integrator-chain benchmark results

Figure 4 describes the results of the scalability comparison of the participating tools on a
n-dimensional integrator chain. SReachTools is the most scalable tool, with the ability to analyze
100-dimensional system in less than 5 minutes, while FAUST2, StocHy, and AMYTISS can solve
the benchmark up to dimensions 3, 10, and 20 respectively. AMYTISS based on GPU and
coarse-gridding was the fastest approach for low-dimensional systems n ≤ 10.

SReachTools, FAUST2, and AMYTISS successfully identified a safe initial state with reach
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Figure 3: The Van der Pol oscillator example: The set B (green box) is the target that should
be visited infinitely often. The under-approximation of the winning region is in grey. The
over-approximation of the winning region is the union of blue and grey areas. I is the initial state
for simulation. The trajectory with stochastic perturbation is shown in red, and the trajectory
with a fixed deterministic perturbation that always misses the target is shown in black.

probability ≈ 1 for n ≤ 8, while StocHy returned initial states with decreasing reach probability
with increasing problem dimension.

SReachTools consistently generated non-trivial underapproximation of 0.8-stochastic reach set
sets compared to FAUST2 and AMYTISS even for high dimensional problems. This observation
may be attributed to the fact that SReachTools is abstraction-free. We report the volumes for
2D slices with x3 = . . . = xn = 0, to facilitate the computation of the volumes for large n.

Figure 4: Integrator-chain benchmark for scalability comparison. (left) SReachTools can analyze
the highest dimensional system (n = 100), while AMYTISS is the fastest tool for low-dimensional
problems. (right, top) FAUST2 (for n ≤ 3), AMYTISS, and SReachTools computes maximum
stochastic reach probability of ≈ 1, while StocHy returns lower maximum reach probability
as dimension increases. (right, bottom) SReachTools provides non-trivial underapproximative
stochastic reach sets even for high-dimensional problems.
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5.8 7-Dimensional BMW 320i benchmark results

In this benchmark, we are interested in an autonomous operation of the vehicle to satisfy a
reach-avoid property. In particular, the vehicle should park itself automatically in a parking lot
located in the projected set [−1.5, 0.0]× [0.0, 1.5] within 32 time steps, while avoids hitting a
barrier represented by the set [−1.5, 0.0]× [−0.5, 0.0]. AMYTISS is the only tool presented in
this report capable of handling this benchmark, and solved the problem in 825 sec. Since the
dimension of the system is seven and relatively large for discretization-based techniques (the
number of transitions in MDPs |X̂ × Û | is 3,937,500), the required memory for constructing the
finite MDP would be very huge (and it is impossible in practice to construct such an abstraction
due to the memory limitation). In order to handle this benchmark, we employ the on-the-fly
abstraction technique as described in Section 2 to significantly reduce the required memory for
constructing our finite MDP. We refer the interested reader to [43] for more details on the OFA
technique.

6 Conclusions

The achieved results this year are manifold. Three novel benchmarks with interesting properties
and challenges were added to the collection of benchmarks for stochastic hybrid models. Eleven
tools were successfully evaluated on subsets of those collected benchmarks. Additionally, a
first-time attempt to classify benchmarks according to relevant properties has been made with
interesting results.

Based on these results we develop two types of conclusions. The first is what the tool set
owners learned from the benchmarking regarding their future tool development; this is addressed
in Section 6.1. The second conclusion concerns identification of possible directions for further
benchmark development; this is addressed in Section 6.2.

6.1 Further tool development

While part of the future work of this group may focus on the further development of novel
benchmarks, it is of primary importance to learn from the results obtained by the various tools
on the current benchmarks, and to use this for the further development of the tools.

6.1.1 Further development of FAUST2

FAUST2 is the first tool developed for performing automated verification and synthesis of
discrete-time stochastic systems with guaranteed error bounds, and is used as the basis for
comparison by other tools handling the same class of models and problems. The capabilities
of FAUST2 can be extended in the following directions: i) a better tradeoff between sequential
and parallel computations; ii) handling continuous-time stochastic systems; iii) handling game
settings with multiple players; and iv) implementing randomised methods for computation of
quantities of interest.

6.1.2 Further development of StocHy

StocHy provides exact errors/guarantees on the obtained solution and while it performed well in
this category further work is needed to reduce the trade-off between the computational time
to obtain the solution and the number of states generated for the underlying abstraction. We
will further extend StocHy to also (i) parallelise the abstraction process as much as possible,
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(ii) generate tighter bounds with smaller number of states and (iii) handle continuous-time
continuous state SHS.

6.1.3 Further development of SReachTools

We will develop SReachTools further to provide abstraction-free, convex-optimization-based (un-
derapproximative) verification of discrete-time stochastic switched systems. We will incorporate
recent results in efficient, abstraction-free, forward stochastic reachability analysis of Markov
jump affine systems using Fourier transformations and convex optimization [77]. We will also
extend SReachTools to admit correct-by-construction interpolation of stochastic reach sets [78].

6.1.4 Further development of AMYTISS

AMYTISS provides a cutting probability threshold γ ∈ [0, 1] to control how many partition
elements around the mean value µ should be stored. For a given mean value µ, a covariance
matrix Σ and a cutting probability threshold γ, x ∈ X is called a PDF (probability density
function) cutting point if γ = PDF(x|µ,Σ). Since Gaussian PDFs are symmetric, by repeating
this cutting process dimension-wise, we end up with a set of points forming a hyper-rectangle
in X, which is called the cutting region. Any partition element outside the cutting region is
considered to have zero probability of being reached. Such approximation allows controlling
the sparsity of the columns of the finite MDP matrix. At the moment, this feature is available
only for systems with additive noises. We plan to include this feature for also multiplicative
noises in a future update of AMYTISS. In addition, AMYTISS provides automated verification
and synthesis for large-scale discrete-time stochastic systems. Providing a similar tool but in
the continuous-time setting is under investigation as a future development.

6.1.5 Further development of modes and prohver

The modes simulator has worked very well—delivering results with good precision quickly—for
both the Heated Tank and the water sewage benchmarks. To estimate the probabilities of rare
events, its importance sampling techniques for rare event simulation speed up the analysis for
the Heated Tank, and quick tests showed them to also work for some of the water sewage models.
As future extensions, we would like to add support for non-linear continuous dynamics in a way
that properly tracks any numerical errors.

For fully stochastic models like these two benchmarks, an overapproximating model checker
may not be the best choice, which is clearly evident in the Heated Tank results for prohver. On
the water sewage case, it worked well enough, due to the simplicity of the continuous dynamics
coupled with having only a single stochastic event in every system execution. The bottleneck
in prohver’s analysis is the non-stochastic hybrid reachability step currently implemented by
calling an external tool, PHAVer. It caused timeouts (more than 24 h of computation time) for
the Heated Tank benchmark that currently prevent the analysis of realistic properties with
useful overapproximation errors. Our first priority in the future development of prohver will be
to replace PHAVer either by an up-to-date tool such as SpaceEx (which we however may need to
modify to deliver a reachability graph with appropriate labelling to be able to reintroduce the
probabilities), or by a custom implementation of hybrid reachability based on HyPro.

6.1.6 Further development of HYPEG and hpnmg

Both tools are dedicated to the efficient evaluation of hybrid Petri nets with general transitions
with respect to potentially nested timed properties. As a result of the underlying model checking
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procedure a probability is returned which quantifies the probability that the specific property
holds at a certain point in time.

The analytical tool hpnmg relies on a multidimensional representation of the underlying
statespace as convex polytopes and is currently limited by the number of random variables
present in the system. In the future we aim at relieving this restriction by improving the
geometric representation of the convex polytopes and geometric operations thereon.

HYPEG uses discrete-event simulation for the evaluation of the same class of hybrid Petri
nets and as such does not suffer from the number of random variables in the system. However, it
needs to explore different evolutions of the hybrid Petri net in different simulation runs in order
to compute results with a reasonably low statistical error. To further improve the computation
times of HYPEG, the tool will be parallelised in the future.

6.1.7 Further development of Mascot-SDS

Despite being powerful in approximating the solution of infinite-horizon specifications, the
current implementation of Mascot-SDS can handle only specifications in the form of repeated
reachability and it only computes approximately the set of initial states from which the system
can satisfy the specification with probability one (qualitative satisfaction). Future extension
of this tool includes handling all linear temporal logic or omega-regular specifications, and
performing computations for the quantitative satisfaction (computing probability of satisfaction
for any initial state).

6.1.8 Further development of ProbReach

During the application of ProbReach to the version 4.0 of the Heated Tank benchmark, it ran
into difficulties due to the the repeated occurrence of transitions’ resets. Further extension of
the tool includes adapting the computations to the case of varying number of jumps.

6.1.9 Development and implementation of new approaches

We welcome new tools that implement recently developed innovative approaches. In particular,
the recent efforts on using Barrier Certificates for formal verification and synthesis of stochastic
systems [40] has not been included in this edition of the ARCH competition. The notion of
approximate similarity relation based on coupling stochastic processes [31, 32] is able to handle
systems with partial state observations but is not used by any of the tools in this year. We also
welcome tools that are developed for specific sub-classes of stochastic systems having a particular
property, e.g., mixed-monotonicity [20]. It is also of interest to explore analytic approaches (as
opposed to those based on simulations) on version 1.0 of the Heated Tank benchmark.

6.2 Further benchmark development

Based on Table 2, we have identified three types of benchmark objectives:

i) To synthesize control policies that increase the probability of remaining in a given safe set;

ii) To assess Probabilistic Reachability, i.e. to assess the probability for remaining in a given
safe set during a finite time period; and

iii) To assess if a given model satisfies the Liveness/Deadlock property.
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At this moment there are four benchmarks of type i): the Anesthesia model, the Chain of
Integrators, the Building Automation System, and the BMW model. From the application of
various methods it has become clear that these benchmarks are at the edge of what current
methods and tools can handle. There also are various directions for further development:

• Control synthesis for infinite horizon. The problem is that for infinite-horizon safety, the
probability of reaching the unsafe set will typically go to one. In order to avoid this, the
optimization objective could for example be formulated in terms of the allowed probability
to reach the set of unsafe states per unit of time (the latter is the way it is typically done
in safety critical operations). There is room to develop such a benchmark. For other
infinite-horizon specifications that may result in non-trivial satisfaction probabilities (e.g.,
liveness), the controlled version of the Van der Pol Oscillator is a good benchmark, but
there is room for developing a more complex benchmark.

• Continuous time line. Current type i) benchmarks consider discrete time only. There is
room to define a type i) stochastic hybrid system benchmark on continuous time.

• Spontaneous jumps. Currently type i) benchmarks hardly involve spontaneous jumps, e.g.,
sudden failures. There is room to define a type i) stochastic hybrid system benchmark on
continuous time.

• Including differential algebraic equations. Currently type i) benchmarks do not include
differential algebraic equations. There is room for the development of a type i) benchmark
that incorporates differential algebraic equations.

At this moment there are two benchmarks of type ii): the Heated Tank and the Water Sewage
models. From the application of various methods it has become clear that these benchmarks
are at the edge of what current methods and tools can handle. There are various directions for
further development:

• Unambiguous specification of a stochastic hybrid system. The key problem is currently
each participant uses its own specification language. Transformations between these
specification languages and formal mathematical models of generalised stochastic hybrid
automata are needed. Because a similar problem has emerged in the recent past for
(non-stochastic) hybrid benchmarks: we should learn from lessons learnt in that domain.
In addition, we should take the broader spectrum of stochastic models into account. Maybe
it is an idea to introduce a benchmark that can stimulate this development. Because such
benchmark should include the full spectrum of behaviours of generalised stochastic hybrid
automata, part of this benchmark development would be to define this full spectrum.

• Making the connection with safety risk analysis. From a mathematical perspective the
probability that a stochastic system remains in the set of safe states during a given period,
is the complement from the probability that a stochastic system enters the set of unsafe
states. From a safety-risk perspective the common approach is to assess the latter only.
Therefore it is recommended that the objective of safety risk directed type ii) benchmarks
are formulated in terms of the probability of entering the set of unsafe states.

• Dependability analysis. More complex properties are used to quantify the probability
that a system is dependable at a specific time or up to a point in time. These are often
formulated using linear-time or branching time logics. Suitable properties should be
formulated for benchmarks of type ii) and evaluated using probabilistic model checking.
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• Sensitivity analysis and uncertainty quantification. Each benchmark involves multiple
model parameters the setting of which may have significant influence on the assessed reach
probabilities. Currently, the benchmarks of type ii) are defined in terms of assessing a
point estimate of the reach probability for one or multiple sets of given model parameter
values. Because the number of model parameters is typically large, this straightforward
approach leads to a combinatorial explosion. To avoid the latter, advanced methods
from sensitivity analysis and uncertainty quantification have to be integrated in the tools.
In order to promote this type of tool development, it could be a good idea to include
sensitivity analysis and/or uncertainty quantification questions in type ii) benchmarks.

• Including differential algebraic equations. Currently type ii) benchmarks do not include
differential algebraic equations. There is room for the development of a type ii) benchmark
that incorporates differential algebraic equations.

• Including Brownian Motion. Currently type ii) benchmarks do not include Brownian
motion terms in differential equations. There is room to define a type ii) benchmark that
includes Brownian motion.

• The rate of spontaneous jumps depends on the continuous-valued state. In the current type
ii) benchmarks, the rates of spontaneous jumps depend on the discrete state components,
but not on the continuous valued state components. It is recommended to define a type ii)
benchmark for this phenomenon.

• In reality, safety critical operations are under the influence of environment and involve
multiple agents that collaborate on the basis of partial observations and rely on different
information patters. Even in a perfect safety-critical system this forces each of these agents
to make decisions under uncertainty. In order to capture this effect there is room for a
benchmark that include multiple agents and influences from environment uncertainties.

• Including nondeterminism. The current type ii) benchmarks are fully stochastic, i.e. all
decisions are resolved in a probabilistic manner. The control actions in type i) benchmarks
are fully synthesised and result in systems without any nondeterminism. When aiming to
synthesise a control strategy, considering adversarial environments, modelling parameter
ranges, or in case of absence of knowledge on event frequencies, we need to include
continuous or discrete nondeterministic choices in our models in addition to quantified
random uncertainties. Currently the prohver tool can verify the safety of nondeterministic
and stochastic continuous-time hybrid models by upper-bounding the maximal probability
to reach an unsafe state.

At this moment one benchmark is of type iii), namely the Van der Pol Oscillator. Because
liveness/deadlock is a basic property, there seems to be room for novel benchmarks of this
type. For models with purely discrete states, methods for the evaluation of liveness/deadlock
property have been well developed, e.g. in case of Zeno-behaviour. However, for stochastic
hybrid systems these challenges are of a more involved nature. Therefore, there is room for the
further development of benchmarks that have as objective to assess liveness/deadlock property.

Observing the work of last years, the progress made on certain aspects within this research
community is promising. The active participation makes us hope to welcome even more
participants for the next years to contribute their views and expertise. We also wish to
strengthen the link to other communities and especially groups within ARCH to establish
valuable exchange, for instance on variations of benchmarks which can be shared. Furthermore,
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we are convinced that a lively exchange within the groups will improve the quality and analytical
capabilities of tools and approaches.
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[37] Jannik Hüls, Carina Pilch, Patricia Schinke, Joanna Delicaris, and Anne Remke. State-Space
Construction of Hybrid Petri Nets with Multiple Stochastic Firings. In 16th International Conference
on Quantitative Evaluation of Systems, QEST 2019, volume 11785 of LNCS, pages 182–199. Springer,
2019.
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