
Symblicit Exploration and Elimination
for Probabilistic Model Checking

Ernst Moritz Hahn
University of Twente

Enschede, The Netherlands
e.m.hahn@utwente.nl

Arnd Hartmanns
University of Twente

Enschede, The Netherlands
a.hartmanns@utwente.nl

ABSTRACT
Binary decision diagrams can compactly represent vast sets of states,
mitigating the state space explosion problem in model checking.
Probabilistic systems, however, require multi-terminal diagrams
storing rational numbers. They are inefficient for models with many
distinct probabilities and for iterative numeric algorithms like value
iteration. In this paper, we present a new “symblicit” approach to
checking Markov chains and related probabilistic models: We first
generate a decision diagram that symbolically collects all reachable
states and their predecessors. We then concretise states one-by-one
into an explicit partial state space representation. Whenever all
predecessors of a state have been concretised, we eliminate it from
the explicit state space in a way that preserves all relevant probab-
ilities and rewards. We thus keep few explicit states in memory at
any time. Experiments show that very large models can be model-
checked in this way with very low memory consumption.

ACM Reference Format:
Ernst Moritz Hahn and Arnd Hartmanns. 2021. Symblicit Exploration and
Elimination for Probabilistic Model Checking. In The 36th ACM/SIGAPP
Symposium on Applied Computing (SAC ’21), March 22–26, 2021, Virtual
Event, Republic of Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3412841.3442052

1 INTRODUCTION
Many of the complex systems that we are surrounded by, rely on,
and use every day are inherently probabilistic: The Internet is built
on randomised algorithms such as the collision avoidance schemes
in Ethernet and wireless protocols, with the latter additionally
being subject to random message loss. Hard- and software in cars,
trains, and aeroplanes is designed to be fault-tolerant based on
mean-time-to-failure statistics and stochastic wearmodels. Machine
learning algorithms give recommendations based on estimates of
the likelihoods of possible outcomes, which in turn may be learned
from randomly sampled data.

Given a formal mathematical model of such a system, e.g. in the
form of (a high-level description of) a discrete- or continuous-time
Markov chain (DTMC or CTMC), probabilistic model checking can
automatically compute (an approximation of) the value of a quantity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3442052

of interest. Such quantities include the probability to finally reach an
unsafe state (a measure of reliability), the steady-state probability to
be in a failure state (determining availability), the long-run average
reward (measuring e.g. throughput or energy consumption), or
the accumulated cost up to a certain set of states (e.g. until a job
is complete). The standard approach is to proceed in two phases:
First, explore the state space, building a representation of the set of
reachable states and the transitions connecting them. Transitions
are annotated with rational values for probabilities and rewards,
which are usually represented as floating-point numbers. Second,
use an iterative numeric algorithm such as value iteration [36] or
one of its sound variants [5, 21, 30, 37] to compute the quantity of
interest. These algorithms in fact compute a value for every state
that approximates the quantity starting from that state up to a
prescribed error 𝜖 . In contrast to classic functional model checking,
which admits on-the-fly algorithms for e.g. reachability or LTL
properties, probabilistic model checking is thus doubly affected by
the state space explosion problem: First, the entire state space must
be stored in memory, including many numeric values. Second, the
numeric computation requires multiple values to be stored, and
updates to be performed on them, for all states.

Current approaches to mitigate the state space explosion prob-
lem in probabilistic model checking include the use of partial ex-
ploration and learning algorithms, bisimulation minimisation, and
compact representations of the state space or value vectors by bin-
ary decision diagrams (BDDs). They exploit different structural
properties that only sometimes overlap. The learning-based ap-
proaches [1, 8] for reachability probabilities work well for models
where a small initial subset of the state space determines most of
the probability mass. In such cases, which are not abundant among
existing case studies [24], they complete in a few seconds while
exhaustive approaches run out of time or memory [11, Table 1].
Bisimulation minimisation reduces the state space to a quotient
according to a probabilistic bisimulation relation; see [3, Sect. 5.1]
for an overview. It has been implemented in Storm [15] and al-
lows certain very large models to be checked efficiently; in general,
its impact depends on the amount of bisimilar states in the given
system. Finally, BDDs [9, 34] have a long history of use in (discrete-
state) model checking [12] to compactly represent state spaces,
in good cases reducing memory usage by orders of magnitude.
They work well when the state space is structured and exhibits
symmetry, which is often the case for real-life case studies mod-
elled by humans (as opposed to randomly generated examples). In
probabilistic model checking, however, numeric values from con-
tinuous domains are part of state spaces and must be encoded in
the decision diagrams. A binary encoding of their floating-point
representation does not usually result in compact diagrams; instead,

1798

https://doi.org/10.1145/3412841.3442052
https://doi.org/10.1145/3412841.3442052
https://doi.org/10.1145/3412841.3442052

multi-terminal BDDs (MTBDDs), where each of the (unbounded
number of) leaves represents one number, have been applied with
some success, notably in the probabilistic model checker Prism [33].
They however do not provide much compaction for models with
many distinct probabilities or reward values due to the large num-
ber of leaves. They also do not work well to represent the large
vectors of values used in iterative numeric algorithms such as value
iteration, which progress through many very different intermediate
values for each state before converging to, but often not reaching, a
fixpoint. For this reason, Prism defaults to its hybrid engine, which
uses MTBDDs for the state space but arrays of double-precision
values for iteration. Its fully symbolic mtbdd engine only solves
specific large structured models in reasonable runtime.

Our contribution is a new approach that combines (MT)BDDs,
explicit state representations, and state elimination to tackle the
problem of model-checking large probabilistic specifications. Its
novelty lies in (1) using BDDs precisely for those tasks that they
work well for, and (2) using state elimination instead of the stand-
ard iterative algorithms in the computation phase. We work with
discrete-state probabilistic systems; in this paper, we use DTMC
to explain our approach, but the same techniques apply directly
to CTMC, too, and may be extended to Markov decision processes
(MDP) [36] and Markov automata (MA) [16] using the extension of
state elimination to MDP presented in [22].

Our state space exploration performs a standard breadth-first
search, but we use a decision diagram instead of the standard hash
set to store the set of visited states. We do not store transitions,
thus no continuous numeric values blow up the diagram. How-
ever, we count the number of predecessors of each state—thus we
use an MTBDD. Since this number is a discrete quantity with low
variation in most models, the diagrams usually remain compact.
For the computation phase, we explore the state space again, this
time creating a representation that includes transitions, but that
is explicit. During this exploration, we keep track of the number
of explored predecessors of each state. Whenever, for some fully-
explored state 𝑠 , this number reaches the predecessor count given
by the MTBDD, we apply state elimination: we remove 𝑠 from the
(yet incomplete) explicit state space representation, and replace
all of its incoming and outgoing transitions by direct transitions
between the predecessors and successors of 𝑠 . By redistributing the
original transitions’ probabilities and rewards in the right way, the
quantity of interest remains unaffected. This method of computa-
tion simultaneously avoids the iterative algorithms’ convergence
and precision issues [20] and keeps memory usage due to the expli-
cit representation low: on many models, most states are eliminated
soon after they have been fully explored, thus only few need to
be kept in memory at any time. Upon termination, only the initial
state and goal state(s) remain, and the value for the quantity of
interest can be read off the transitions connecting them.

Two technical insights make our computation phase work well:
First, we use an explicit representation not only to avoid storing
probabilities and rewards in an MTBDD, but also because state elim-
ination tends to create unstructured intermediate state spaces that
would blow up any BDD representation. Second, the precomputed
predecessor count allows us to eliminate a state at precisely the

moment after which we will not encounter it again in our search,
avoiding costly re-explorations and re-eliminations.

Related work. State elimination stems from the classic algorithm
to convert a finite automaton into a regular expression [10]. It
was introduced to probabilistic model checking to solve paramet-
ric Markov chains [13] and forms the core of the Param [26] and
Prophesy [14] tools. For non-parametric models, it enables efficient
computation of reward-bounded reachability probabilities [22]. In
this paper, we use it for non-parametric Markov chains and un-
bounded (infinite-horizon) properties. In all of these settings, its
effectiveness crucially depends on the order in which states are elim-
inated, which is determined by (configurable) heuristics. Symblicit
techniques have previously been used for long-run average proper-
ties [39], based on bisimulation minimisation, and later expanded
in related settings [7]. A different form of elimination on strongly-
connected components was used by Gui et al. [19] to accelerate
(explicit-state) value iteration.

2 BACKGROUND
R+0 and R+ are the sets of all non-negative and positive real num-
bers, respectively. We write { 𝑥1 ↦→ 𝑦1, . . . } to denote the function
that maps all 𝑥𝑖 to 𝑦𝑖 , and if necessary in the respective context,
implicitly maps to 0 all 𝑥 for which no explicit mapping is specified.
A (discrete) probability distribution over 𝑆 is a function

𝜇 : 𝑆 → [0, 1]
such that

∑
𝑠∈spt (𝜇) 𝜇 (𝑠) = 1 where the support spt (𝜇) is defined as

spt (𝜇) def
= { 𝑠 ∈ 𝑆 | 𝜇 (𝑠) > 0 }.

We write Dist (𝑆) for the set of all probability distributions over 𝑆 .

2.1 Discrete-Time Markov Chains
Definition 2.1. A discrete-time Markov chain (DTMC) is a tuple

𝑀 = ⟨𝑆, 𝑠𝐼 , 𝑃, 𝑅⟩
of a finite set of states 𝑆 , an initial state 𝑠𝐼 ∈ 𝑆 , a transition function
𝑃 : S→Dist (𝑆), and a reward function 𝑅 : 𝑆→R+0 .

We also write a transition as 𝑠 𝑝−→ 𝑠 ′ if 𝑝 = 𝑃 (𝑠) (𝑠 ′) > 0. A
transition is uniquely identified by the two states it connects. When
in state 𝑠 of a DTMC, we delay for one time unit before jumping
to the next state. Continuous-time Markov chains (CTMC) extend
DTMC by additionally assigning a rate 𝑄 (𝑠) ∈ R+ to every state.
Then the probability to delay for at most 𝑡 time units is

1 − e−𝑄 (𝑠) ·𝑡 ,

i.e. the residence time follows the exponential distribution with
rate 𝑄 (𝑠). In both models, the probability to then move to state
𝑠 ′ is given by 𝑃 (𝑠). When staying for 𝑡 time units in state 𝑠 , we
incur a reward of 𝑅(𝑠) · 𝑡 . To simplify the presentation, we use
DTMC throughout this paper, but mention the changes needed in
definitions or algorithms to use CTMC where appropriate.

Example 2.2. As a running example, we use a very abstract model
of the Zeroconf protocol [6], shown as DTMC𝑀𝑧 in Fig. 1 (adap-
ted from [18]). We draw transitions as arrows labelled with their
probability. Non-zero rewards are given next to the states.𝑀𝑧 has
7 states and 12 transitions. The protocol is used by hosts joining a
network to auto-configure a unique IP address. A new host joining
the network of ℎ = 32 hosts starts in state i. It selects an address

1799

i

+1

ok 4 3 2 1 ⊥
0.875 0.125 0.2 0.2 0.2 0.2

11
0.8

0.8
0.8

0.8

Figure 1: DTMC𝑀𝑧 for Zeroconf (ℎ = 32, 𝑎 = 28, 𝑝 = 0.2, 𝑛 = 4)

uniformly at random from the space of 𝑎 = 28 addresses. The prob-
ability that the address is already in use is ℎ

𝑎 = 1
8 . The host checks

𝑛 = 4 times whether its address is already in use. If it is not, all
checks will succeed, modelled by state ok, to which we moved
with probability 1 − ℎ

𝑎 . If it is, then states 𝑛 down to 1 model the
checks. Each check can fail to give the correct negative result due
to message loss with probability 𝑝 = 0.2. If all tests do so, then the
host incorrectly believes that it has a unique address, in state ⊥.
Otherwise, it retries with a newly chosen address from state i. We
incur a reward of 1 in state i, i.e. for every IP address we try. The
size of the DTMC can be blown up arbitrarily via parameter 𝑛.

In practice, higher-level modelling languages like Modest [25]
or the Prism language [33] are used to specify larger DTMC. The
semantics of a DTMC is formally captured by its paths. A path
represents a concrete resolution of both nondeterministic and prob-
abilistic choices:

Definition 2.3. Given a DTMC 𝑀 as above, a finite path is a se-
quence 𝜋fin = 𝑠0 𝑡0 𝑠1 𝑡1 . . . 𝑠𝑛
of states 𝑠𝑖 ∈ 𝑆 and delays 𝑡𝑖 ∈ R+ where 𝑃 (𝑠𝑖) (𝑠𝑖+1) > 0 and 𝑡𝑖 = 1
for all 𝑖 ∈ { 0, . . . , 𝑛 − 1 }. Let |𝜋fin |

def
= 𝑛, last(𝜋fin)

def
= 𝑠𝑛 ,

dur(𝜋fin)
def
=
∑𝑛−1
𝑖=0 𝑡𝑖 , and rew(𝜋fin)

def
=
∑𝑛−1
𝑖=0 𝑡𝑖 · 𝑅(𝑠𝑖) .

Πfin is the set of all finite paths starting in 𝑠𝐼 . A path is an analogous
infinite sequence 𝜋 , and Π are all paths starting in 𝑠𝐼 . We define

𝑠 ∈ 𝜋 ⇔ ∃ 𝑖 : 𝑠 = 𝑠𝑖 .

Let 𝜋→𝑚 for𝑚 ∈ N be the prefix of 𝜋 of length𝑚, i.e. |𝜋→𝑚 | =𝑚,
and let 𝜋→𝐺 be the shortest prefix of 𝜋 that contains a state in
𝐺 ⊆ 𝑆 , or ⊥ if 𝜋 contains no such state. Let rew(⊥) def

= ∞.

In CTMC, the 𝑡𝑖 can be arbitrary numbers in R+0 . For𝑀 as above,
following the rules described below Definition 2.1 and the standard
cylinder set construction [4], we obtain a probability measure P𝑀
on measurable sets of paths starting in 𝑠𝐼 . We can then define the
following properties of interest:

Definition 2.4. Given a set of goal states 𝐺 ⊆ 𝑆 , the reachability
probability with respect to 𝐺 is

P(⋄𝐺) def
= P𝑀 (𝜋 ∈ Π | ∃𝑔 ∈ 𝐺 : 𝑔 ∈ 𝜋) .

Let 𝑟𝐺 : Π → R+0 be the random variable defined by
𝑟𝐺 (𝜋) = rew(𝜋→𝐺) .

Then the expected reward to reach 𝐺 is the expected value of 𝑟𝐺
under P𝑀 , written as E(■𝐺). Let 𝑟lra : Π → R+0 be defined by

𝑟lra (𝜋) = lim inf𝑖→∞
rew(𝜋→𝑖)
dur(𝜋→𝑖)

.

Then the long-run average reward is the expectation of 𝑟lra under
P𝑀 , written as L.

bit 0

bit 1

bit 1

bit 2

bit 2

1

4

⊥

Figure 2: MTBDD for the predecessor count of𝑀𝑧 ’s states

The steady-state probability S(𝑆 ′) of residing in a state in 𝑆 ′ ⊆ 𝑆

is a special case of the long-run average reward where 𝑅(𝑠) = 1 if
𝑠 ∈ 𝑆 ′ and 0 otherwise. Whenever we consider a DTMC with a set
of goal states 𝐺 , we assume that they have been made absorbing,
i.e. that for all 𝑔 ∈ 𝐺 we have 𝑃 (𝑔) (𝑔) = 1. Given a CTMC, reach-
ability probabilities and expected rewards can be computed on its
embedded DTMC, obtained by dividing all rewards by𝑄 (𝑠); only for
long-run averages do we need a dedicated treatment of the rates
resp. residence times.

Example 2.5. For our Zeroconf example DTMC𝑀𝑧 from Fig. 1,
we may want to compute the probability to eventually pick a unique
address P(⋄ { ok }), which will be just below 1, and the expec-
ted number of addresses that we ever try E(■ { ok,⊥ }). Note that
E(■ { ok }) is∞ by definition since the set of paths that never reach
state ok has positive probability.

2.2 Binary Decision Diagrams
Binary decision diagrams (BDDs) [9, 34] represent Boolean functions
as rooted directed acyclic graphs. They have two leaf nodes, true
and false. Every inner node is associated to one input bit, and has
two children: the high (solid line) and low (dotted line) child. On
a path from the root to a leaf, every bit must occur at most once.
Such a path corresponds to the inputs in which bit 𝑏𝑖 is assigned to
true (false) if we go from a node for 𝑏𝑖 to its high (low) child. We
typically order the bits on all paths, merge isomorphic subgraphs,
and remove redundant nodes. Then a BDD can represent many
functions with few nodes.

In model checking, BDDs are used to represent sets of states (by
assigning true to the binary encoding of a state1 iff it is in the set)
as well as the transition relation (by assigning true to the binary
encoding of a pair of states if they are connected by a transition). In
probabilistic model checking, however, we need to encode functions
that map to rational numbers to encode transition probabilities,
rewards, and the value vectors in value iteration. Most tools rep-
resent them as 64-bit floating-point values, but the corresponding
binary representation does not typically allow good compression
with BDDs. Symbolic probabilistic model checkers such as Prism
thus use multi-terminal BDDs (MTBDDs) with one leaf node per
number. Since a finite model only contains finitely many probabil-
ities, or values for states, this approach is effective, but often not
efficient: for example, when performing value iteration on our ex-
ample DTMC𝑀𝑧 for P(⋄ { ok }), we have to encode the following
function after 5 iterations:

{ i ↦→ 0.99225, 4 ↦→ 0.9716, 3 ↦→ 0.966,
2 ↦→ 0.938, 1 ↦→ 0.784, ok ↦→ 1,⊥ ↦→ 0 }

1For models given in higher-level modelling languages, a state’s binary encoding
results from concatenating the binary values of all (finite-domain) variables in the
model; thus themodel’s structure and symmetry can be exploited by the BDD encoding.

1800

𝑠 𝑡

𝑢1

.
.
.

𝑢𝑛

⇒

𝑟𝑠 𝑟𝑡

𝑟𝑢1

𝑟𝑢𝑛

𝑠

𝑢1

.
.
.

𝑢𝑛𝑟𝑠 + 𝑝𝑎 (𝑟𝑡 + 𝑟𝑡 ·𝑝𝑐
1−𝑝𝑐)

𝑟𝑢1

𝑟𝑢𝑛

𝑝𝑑 𝑝𝑑

𝑝𝑎

𝑝𝑐
𝑝𝑏1

𝑝𝑏𝑛

𝑝𝑎 ·
𝑝𝑏1
1−𝑝𝑐

𝑝𝑎 ·
𝑝𝑏𝑛
1−𝑝𝑐

Figure 3: DTMC state elimination

Observe that every state has a distinct value, thus the MTBDD
offers no compression. In practice, they only work well for very
specific models with few distinct transition probabilities and re-
wards, and where the iterative numeric algorithms assign the same
(intermediate) values to many states.

Example 2.6. Fig. 2 shows an MTBDD mapping every state of
𝑀𝑧 to its number of predecessor states. We have 7 states, thus use
3 bits for their encoding. States 1 through 4 are encoded as that
number, i is 5 (1012), ok is 6 (1102), and ⊥ is 7 (1112). There is
no (reachable) state encoded as 0, thus we map 0 to the extra ⊥
leaf node—in this way, such an MTBDD can indicate that certain
states are unreachable, or have not been explored yet. Observe
that the MTBDD representation achieves some compression by
excluding two redundant nodes for bit 2. If we scale the model up
by increasing 𝑛, the compression increases.

2.3 State Elimination
State elimination is a process by which a state of a DTMC is re-
moved, i.e. transitions are modified such that it is no longer reach-
able from the initial state and it is removed from the state set 𝑆 ,
in a way that preserves the values of all properties of interest. We
show the schematic of state elimination in Fig. 3: we eliminate a
state 𝑡 by redistributing the probability to enter a self-loop onto its
other outgoing transitions, then combine its incoming and outgoing
transitions. It is easy to see that this preserves the probabilities of
all measurable sets of paths that pass through 𝑡 when projecting
𝑡 out from every path. In particular, the paths that forever take
the self-loop have probability mass zero, which is why we could
eliminate the loop. For rewards, the transformation only preserves
the expected reward values of sets of paths:
(1) In 𝑡 , the expected number of times we take the self-loop is

𝑝𝑐/(1 − 𝑝𝑐), so the expected reward from passing through 𝑡 is
𝑟𝑡 · 𝑝𝑐
1 − 𝑝𝑐

(for the loop) plus 𝑟𝑡 (incurred when taking one of the other
outgoing transitions).

(2) Out of 𝑠 , the probability to enter 𝑡 next is 𝑝𝑎 , thus we multiply
the expected reward of passing through 𝑡 by 𝑝𝑎 and add this to
the reward of 𝑠 .

Alg. 1 shows the pseudocode to perform state elimination on a
DTMC stored in explicit data structures (i.e. hash sets for states,
lists of transitions, etc.).

3 A SYMBLICIT APPROACH
As we explained in Sect. 1 and illustrated in Sect. 2.2, many prob-
abilistic models do not give rise to a compact BDD-based repres-
entation if the numeric values—probabilities, rewards, rates for

1 function Elim(⟨𝑆, 𝑠𝐼 , 𝑃, 𝑅⟩, 𝑠 ∈ 𝑆 , 𝑆keep ⊆ 𝑆) // all explicit
2 if 𝑠 ∈ spt (𝑃 (𝑠)) ∧ 𝑃 (𝑠) (𝑠) < 1 then
3 foreach 𝑠 ′ ∈ spt (𝑃 (𝑠)) \ { 𝑠 } do // redistribute the
4 𝑃 (𝑠) (𝑠 ′) := 𝑃 (𝑠) (𝑠 ′)/(1 − 𝑃 (𝑠) (𝑠)) // self-loop prob.
5 𝑅(𝑠) := 𝑅(𝑠) +𝑅(𝑠)·𝑃 (𝑠) (𝑠)/(1 − 𝑃 (𝑠) (𝑠)) // add reward
6 𝑃 (𝑠) (𝑠) := 0 // remove self-loop

7 foreach 𝑠pre ∈ { 𝑠 ′′ | 𝑠 ∈ spt (𝑃 (𝑠 ′′)) } \ { 𝑠 } do
8 𝑝 := 𝑃 (𝑠pre) (𝑠), 𝑃 (𝑠pre) (𝑠) := 0 // remove 𝑠pre

𝑝−→ 𝑠

9 foreach 𝑠 ′ ∈ spt (𝑃 (𝑠)) do // merge trans. of 𝑠 into
10 𝑃 (𝑠pre) (𝑠 ′) := 𝑃 (𝑠pre) (𝑠 ′) + 𝑝 · 𝑃 (𝑠) (𝑠 ′) // tr. of 𝑠pre
11 𝑅(𝑠pre) := 𝑅(𝑠pre) + 𝑝 · 𝑅(𝑠) // add reward of 𝑠 to 𝑠pre
12 if 𝑠 ∉ 𝑆keep ∧ 𝑃 (𝑠) (𝑠) = 0 then // remove 𝑠 if not needed
13 𝑃 := 𝑃 \ { 𝑠 ↦→ 𝑃 (𝑠) }, 𝑅 := 𝑅 \ { 𝑠 ↦→ 𝑅(𝑠) }
14 𝑆 := 𝑆 \ { 𝑠 }

Alg. 1: State elimination for probabilities and exp. rewards

CTMC—are included. Furthermore, the standard iterative numeric
algorithms like value iteration usually produce data that is hardly
BDD-compressible. In this section, we present a combined symbolic-
explicit approach that uses MTBDDs in a way that usually avoids
such problems, and that uses state elimination to calculate P, E, and
L values without having to keep (values for all states of) the entire
state space in memory.

The pseudocode of our approach is shown as function ExplElim
in Alg. 2. It uses functions Explore of Alg. 3 and Elim of Alg. 1. We
typeset values that represent executable code in monospace font:
compact specifications in high-level modelling languages are typic-
ally compiled to or interpreted as functions that, given an explicit
(bit string) representation of a state, enumerate its transitions (P),
compute its reward (R), and return true iff it is a goal state (G). We
mark variables storing symbolic data (i.e. BDDs or MTBDDs) with
a ĥat. All other values typeset in italics use explicit data structures
such as bit strings for states, hash sets or queues of such bit strings,
lists of transitions, etc.

Our first step, in line 2, is to symbolically explore the set of reach-
able states by calling function Explore. This function performs a
standard breadth-first search, using a BDD for the set of visited
states, and additionally constructs an MTBDD that counts the num-
ber of predecessors of each state like the one shown in Fig. 2 for
𝑀𝑧 . In our implementation, seen and pre are actually managed in a
single MTBDD as explained in Example 2.6.

We then, starting from line 3, perform another exploration of
the state space. This time, however, we use explicit data structures,
and we track the number of fully explored predecessors for every
state in hash table pre′. A state is fully explored if its reward, all
of its transitions, and all successor states, have been added to the
explicit representations for 𝑆 , 𝑅, and 𝑃 . We track the set of fully
explored states in hash set done. Whenever we are done visiting
a state 𝑠 in this second exploration (i.e. in line 13 and below), it
has just become fully explored, and the fully-explored-predecessor
count of its successors has changed. We then check which of these
changed states fulfils the criteria for being eliminated: It must be

1801

1 function ExplElim(𝑠𝐼 , P, R, G) // explicit 𝑠𝐼 , executable P, R, G
2 p̂re := Expl(𝑠𝐼 , P) // get predecessor count MTBDD
3 done := ∅, agenda := { 𝑠𝐼 } // done: hash set, agenda: queue
4 𝑆 := { 𝑠𝐼 }, 𝑃 := ∅, 𝑅 := ∅, pre′ := { 𝑠𝐼 ↦→ 0 } // all explicit
5 while agenda ≠ ∅ do
6 𝑠 := next element of agenda, agenda := agenda \ { 𝑠 }
7 foreach 𝑠 ′ ∈ spt (P(𝑠)) do // explore state 𝑠
8 𝑃 (𝑠) (𝑠 ′) := P(𝑠) (𝑠 ′), 𝑅(𝑠) := R(𝑠)
9 if 𝑠 ′ ∉ 𝑆 then

10 𝑆 := 𝑆 ∪ { 𝑠 }, agenda := agenda ∪ { 𝑠 }
11 pre′ := pre′ ∪ { 𝑠 ′ ↦→ 0 }
12 if 𝑠 ′ ≠ 𝑠 then pre′(𝑠 ′) := pre′(𝑠 ′) + 1
13 done := done ∪ { 𝑠 } // 𝑠 is now fully explored
14 𝐸 := { 𝑠𝑒 | 𝑠𝑒 ∈ {𝑠} ∪ spt (𝑃 (𝑠)) ∩ done } // just modified,
15 𝐸 := { 𝑠𝑒 | 𝑠𝑒 ∈ 𝐸 ∧ p̂re(𝑠𝑒) = pre′(𝑠) } // pred. explored:
16 foreach 𝑠elim ∈ 𝐸 do // eliminate these states
17 Elim(⟨𝑆, 𝑠𝐼 , 𝑃, 𝑅⟩, 𝑠elim, { 𝑠𝐼 })
18 if 𝑠elim ∉ 𝑆 then // cleanup
19 pre′ := pre′ \ { 𝑠elim ↦→ pre′(𝑠elim) }
20 done := done \ { 𝑠elim }

21 if compute reachability prob. then return
∑
𝑔∈G 𝑃 (𝑠𝐼) (𝑔)

22 else if compute expected reward then
23 if spt (𝑃 (𝑠𝐼)) \ G ≠ ∅ then return ∞ // case P(⋄G)<1
24 else return 𝑅(𝑠𝑖) +

∑
𝑔∈G 𝑃 (𝑠𝐼) (𝑔) · 𝑅(𝑔)

Alg. 2: Symblicit explore-eliminate algorithm

fully explored (which only 𝑠 is for certain), and all of its predecessors
must be fully explored (which we determine by comparing pre′ and
p̂re). We call Elim on these states in line 17. In this way, if we
indeed manage to eliminate most states soon after they have been
explored, the explicit data structures—𝑆 , 𝑃 , 𝑅, pre′, done, etc.—only
track few states at any time and thus consume little memory. The
predecessor count in p̂re is crucial for being able to perform efficient
elimination; without it, we would have to apply heuristics that
could lead to states being eliminated that would later be explored
as successors of other states again, leading to costly re-exploration
and re-eliminations.

In Elim, if a state is part of the set 𝑆keep , we still modify and
“redirect” the transitions of its predecessors to go around this state,
but we do not remove it from the state space. We use this to avoid
eliminating the initial state 𝑠𝐼 . We also do not eliminate states whose
only transition is a self-loop: they do not have successors to which
transitions could be redirected. Elimination will thus eventually
reduce each bottom strongly connected component (BSCC) of the
DTMC to one such self-loop state. Since we assume all goal states to
only have a self-loop, each of them is a BSCC. Once the outer loop
of line 5 in ExplElim finishes, Elim has been called for all states.
Every surviving state at this point is thus the result of eliminating
a number of transient states plus a non-goal BSCC or a goal state,
and has become a direct successor of the initial state. We can then
directly read the value of P(⋄ G) from the transitions to the goal

1 function Expl(𝑠𝐼 , P) // explicit 𝑠𝐼 , executable P
2 ŝeen := { 𝑠𝐼 }, agenda := { 𝑠𝐼 } // seen: BDD, agenda: queue
3 p̂re := { 𝑠𝐼 ↦→ 0 } // predecessor count MTBDD
4 while agenda ≠ ∅ do
5 𝑠 := next element of agenda, agenda := agenda \ { 𝑠 }
6 foreach 𝑠 ′ ∈ spt (P(𝑠)) \ { 𝑠 } do
7 if 𝑠 ′ ∉ ŝeen then
8 ŝeen := ŝeen ∪ { 𝑠 ′ }, agenda := agenda ∪ { 𝑠 ′ }
9 p̂re := p̂re ∪ { 𝑠 ′ ↦→ 0 }

10 p̂re(𝑠 ′) := p̂re(𝑠 ′) + 1 // 𝑠 is a new predecessor

11 return p̂re

Alg. 3: Exploration with symbolic predecessor counting

states (line 21). Similarly, the value of E(■ G) can be derived directly
from the remaining rewards, if it is not∞ by definition (lines 23-24).

Example 3.1. For our example DTMC 𝑀𝑧 of Fig. 1, we have
already shown the predecessor count MTBDD computed by Expl
in Fig. 2. Let us now step through the rest of ExplElim on this
model. The partial state spaces that we consider in each step are
shown in Fig. 4. Fully explored states are drawn with solid outlines,
all other states (i.e. those in 𝑆 but not in done) with dashed outlines.
In step (1), we have just fully explored state i, i.e. we executed
line 13 in the first iteration of the outer loop. Since p̂re tells us that
i still has unexplored predecessors, we cannot eliminate, and next
explore ok in step (2). We then eliminate ok—its only predecessor
i is fully explored—but since ok has just a single self-loop, the
elimination has no effect. In step (3), we have just explored state
4, which can now be eliminated. The result is shown as step (4).
We proceed in the same pattern in steps (5) through (8). Then, in
step (9), we fully explore state 1. Now all predecessors of i are
fully explored, and we can eliminate both 1 and i. For the sake of
illustration, let us pick the more complicated ordering and eliminate
i first. The result is shown as step (10). Since i is the initial state,
we keep it, but redirect all incoming transitions. We also merge its
rewards, which is why 1 now has a non-zero reward. Note that we
show rationals in Fig. 4, but our implementation uses floating-point
numbers. Remember that, without p̂re, we might have eliminated i
too early; after any subsequent exploration of a state in { 1, . . . , 𝑛 },
we would then have to re-eliminate i. We finally eliminate 1 in
step (11) and explore state ⊥ in step (12). At this point, the outer
loop terminates; we read

P(⋄ { ok }) = 4375
4376

≈ 0.999771

and E(■ { ok,⊥ }) = 1 + 119918
119793

≈ 2.001043.

Observe that, at any time, we kept at most 4 explicit states in
memory. We can arbitrarily increase the size of this model by in-
creasing 𝑛, but will only ever need at most 4 explicit states in
memory.

Long-run average rewards. The algorithm we presented so far
computed reachability probabilities and expected rewards. For long-
run average reward properties, there are no goal states. In such
a case, our state elimination procedure computes the recurrence

1802

i

+1

ok

(1)

4
0.875 0.125

i

+1

ok

(2)

4
0.875 0.125

1

i

+1

ok

(3)

4 3
0.875 0.125 0.2

1

0.8

i

+1

ok

(4)

3
0.875 0.025

1

0.1

i
+1

ok

(5)

3 2
0.875 0.025 0.2

1

0.8
0.1

i

+1

ok

(6)

2
0.875 0.005

1

0.12

. . .

i
+1

ok

(9)

1 ⊥
0.875 0.001 0.2

1

0.8
0.124

i
+1

ok

(10)

1

+ 200
219

⊥
875
876

1
876 0.2

1

175
219 1

1095

i

+1+ 119918
119793

ok

(11)

⊥
4375
4376

1
4376

1

i

+1+ 119918
119793

ok

(12)

⊥
4375
4376

1
4376

1 1

Figure 4: Exploration-elimination applied to𝑀𝑧

reward for each BSCC [17]. To obtain the long-run average reward,
we need to divide the recurrence reward for the rewards as given
in the DTMC by the recurrence reward that we would obtain if all
states had reward 1.We can do so by extending Algs. 1 and 2 to work
on two reward structures 𝑟𝑢 and 𝑟𝑙 in parallel. Upon termination of
the outer loop in ExplElim, we then have one of the two situations
described at the end of Sect. 4 in [17], and can again directly read off
the value for our (L-)property. Consider Fig. 5: In the simpler case,
the remaining model consists of the initial state 𝑠 with a self-loop
with probability one and 𝑟𝑢 = 𝑢𝑠 , 𝑟𝑙 = 𝑙𝑠 . In this case, the average
value is 𝑢𝑠

𝑙𝑠
.

· · ·
𝑝1

𝑝𝑛

1, 𝑟𝑢 = 𝑢𝑠 , 𝑟𝑙 = 𝑙𝑠

1, 𝑟𝑢 = 𝑢1, 𝑟𝑙 = 𝑙1

1, 𝑟𝑢 = 𝑢𝑛 , 𝑟𝑙 = 𝑙𝑛

Figure 5: Computation of long-run averages

In the other case, the remaining model consists of the initial state 𝑠
which has a probability of 𝑝𝑖 to move to one of the other𝑛 remaining
states 𝑠𝑖 , 𝑖 = 1, . . . , 𝑛, which all have a self-loop with probability
one and 𝑟𝑢 (𝑠𝑖) = 𝑢𝑖 , 𝑟𝑙 (𝑠𝑖) = 𝑙𝑖 . In this case, the average value is∑

𝑖=1,...,𝑛
𝑝𝑖
𝑢𝑖

𝑙𝑖
.

When computing long-run average rewards, the final value for L
may be small, but the two recurrence rewards that we need to divide
are often extremely large numbers beyond what can usefully be
represented as 64-bit (i.e. double-precision) floating point numbers.
We thus implemented a variant of our algorithm that uses the GNU
MPFR library (see mpfr.org) for arbitrary-precision floating-point
arithmetic, allowing us to use more than 64 bits. We did not find
this to significantly affect the performance of the overall approach.

Alternatives and optimisations. So far, we have assumed that we
compute successors for each state explicitly and individually. For
the state elimination phase, doing so is indeed necessary. However,
for just exploring the states we could also compute the transition
relation as a BDD, and then use the transition relation to sym-
bolically explore the set of reachable states. This is the standard
approach in model checkers such as Prism and potentially faster
than the semi-symbolic approach we have discussed. Also, using
the transition relation and according MTBDD operations (in par-
ticular sum abstraction), the number of predecessors of each state
can be computed symbolically as well.

We also assumed that the reachable states and the number of
predecessors are stored as (MT)BDDs. An alternative is to store
these numbers on secondary storage (e.g. on a hard disk) similar
to [29]. Such an approach would be useful for models with state
spaces unsuitable to be stored as BDDs. This might be the case
because of lack of implicit symmetries or because the size of the
representation of each state is not constant.

4 EXPERIMENTAL EVALUATION
We have implemented a preliminary version of our method as
a plugin for the probabilistic model checker ePMC [27]. For the
analysis, we transform the model and property into C++ code to
quickly compute successors of states, similar to the approach used
in SPIN [32]. This C++ file is then extended with code to achieve
the following: In the first phase, we explore the state space breadth-
first, exploring each state explicitly but storing sets of states as
BDDs, using the BDD package CUDD [2]. In the second phase,
we generate an MTBDD mapping all states to value 0. Then, we
iterate over all reachable states, recompute their successors, and
increment the value of these successors in the MTBDD by 1 each

1803

https://www.mpfr.org/

Table 1: Simple Molecular Reactions performance results

params |𝑆 | result time states trans mem

101 11 2.2623e+01 8 5 5 22
102 101 2.3894e+01 8 5 5 22
103 1000 2.4012e+01 7 5 5 22
104 10.0 k 2.4024e+01 7 5 5 25
105 100 k 2.4025e+01 10 5 5 28
106 1.00M 2.4025e+01 32 5 5 27
107 10.0M 2.4025e+01 258 5 5 31
108 100M 2.4025e+01 2609 5 5 29
109 1000M 2.4025e+01 18807 5 5 25

time. In the third phase, we execute the state elimination algorithm
as discussed. This C++ code is then compiled and run in a process
separate from ePMC, of which we measure the memory usage. (The
memory usage of ePMC itself is not of much interest, because it is
rather small and about the same for any analysis.)

In the following, we apply our tool to several case studies from
the Prism website. All experiments were performed on a MacBook
Pro with a 2.7 GHz Quad-Core Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 RAM. In the tables, |𝑆 | is the total number of
states the model has for the given parameters, “result” is the value
of the property computed, “time” is the total runtime of the analysis
in seconds, and “states” (“trans”) is the maximum number of states
(transitions) stored explicitly at any time. By “mem” we denote the
peak memory usage of the analysis process in megabytes.

Simple Molecular Reactions2 is a CTMC model of the chemical
reaction Na+Cl ↔ Na++Cl−. The parameters of this case study are
N1 and N2, the initial numbers of Na and Cl molecules, respectively.
In Table 1, we show the performance figures for the analysis of
R=? [S], i.e. the expected long-run average number of Na mo-
lecules. We consider a starting configuration in which the number
of Na and Cl is the same, that is, N1 = N2.

We see that our method scales well for large numbers of mo-
lecules and accordingly large state spaces. Thememory usage grows
only slowly with increasing model parameters, and the number of
states and transitions that need to be stored explicitly is constant.
The runtime does increase significantly, though, since the symbolic
exploration phase as well as the state elimination need to process
exponentially more states as the parameter values increase.

The Bounded Retransmission Protocol3 [31] transmits files di-
vided into 𝑁 packets. Data and acknowledgement packets are sent
over unreliable channels; each can be retransmitted at most MAX
times. Table 2, provides performance figures for the analysis of
P=?[F s=5], i.e. the probability that the sender does not eventu-
ally report a successful transmission, for different values of paramet-
ers 𝑁 and MAX . Compared to the instances on the Prism website,
we user higher values for 𝑁 and MAX because our focus is on the
scalability of our method. Our first table entry uses the same values
as the largest instance considered on the Prism website.

Our method handles instances with several million states with
low memory usage. Even for higher parameter values for which
2https://www.prismmodelchecker.org/casestudies/molecules.php
3https://www.prismmodelchecker.org/casestudies/brp.php

Table 2: Bounded Retransmission Protocol performance

params |𝑆 | result time states trans mem

26-5 4936 4.48e-08 9 12 29 25
26-10 9101 1.05e-15 9 20 53 25
26-100 84.1 k 5.03e-153 9 140 517 25
26-1000 834 k 3.14e-1526 25 258 986 33
27-10 18.2 k 2.11e-15 9 20 53 25
27-100 168 k 1.01e-152 10 140 517 32
27-1000 1.67M 6.28e-1526 38 514 1978 36
28-10 36.4 k 4.21e-15 9 20 53 27
28-100 336 k 2.01e-152 15 150 517 28
28-1000 3.33M 1.26e-1525 72 1026 3962 39
29-10 72.7 k 8.42e-15 9 20 53 29
29-100 672 k 4.03e-152 18 140 517 32
29-1000 6.66M 2.51e-1525 140 1340 5167 42
210-10 145 k 1.69e-14 10 20 53 29
210-100 1.26M 8.06e-152 29 140 517 30
210-1000 13.3M 5.02e-1525 280 1340 5167 43
211-10 291 k 3.37e-14 12 20 53 27
211-100 2.69M 1.61e-151 50 140 517 30
211-1000 26.6M 1.00e-1524 552 1340 5167 41
212-10 582 k 6.74e-14 17 20 53 27
212-100 5.37M 3.22e-151 95 140 517 28
212-1000 53.3M 2.01e-1524 1151 1340 5004 39
213-10 1.16M 1.35e-13 26 20 53 28
213-100 10.7M 6.45e-151 187 140 517 27
213-1000 107M 4.02e-1524 2385 1340 5004 40
214-10 2.33M 2.67e-13 48 20 53 27
214-100 21.5M 1.29e-150 392 140 517 28
214-1000 213M 8.03e-1524 4534 1340 5004 40
215-10 4.65M 5.39e-13 91 20 53 26
215-100 43.0M 2.58e-150 781 140 517 27
215-1000 426M 1.61e-1523 9039 1340 5004 41
216-10 9.31M 1.08e-12 20 54 156 25
216-100 86.0M 5.16e-150 140 503 1362 29
217-10 18.6M 2.1572e-12 312 20 54 26
217-100 172M 1.03e-149 2847 140 503 29

the number of total states |𝑆 | is in the millions, we never use more
than a few thousand explicit states and transitions and less than
100MB of memory.

TheWireless Communication Cell4 case study is a performance
model of wireless communication cells [28]. Parameter 𝑁 describes
the number of channels in a cell. We compute R{"calls"}=? [S],
i.e. the average number of calls in the cell on the long run. We
provide performance figures in Table 3. Also for this case study, our
approach works fine in that the number of states and transitions to
be stored is constant and peak memory usage remains very low.

The Crowds Protocol5 [38] allows anonymous web browsing.
To do so, messages are not directly sent, but forwarded to other
users, who might either forward them again or send them to the

4https://www.prismmodelchecker.org/casestudies/cell.php
5https://www.prismmodelchecker.org/casestudies/crowds.php

1804

Table 3: Wireless Communication Cell performance results

params |𝑆 | result time states trans mem

10000 10.0 k 7.00e+01 7 5 5 24
100000 100 k 7.00e+01 9 5 5 24
1000000 1.00M 7.00e+01 24 5 5 25
10000000 10.0M 7.00e+01 183 5 5 26
100000000 100M 7.00e+01 1731 5 5 25

Table 4: Crowds Protocol performance results

params |𝑆 | result time states trans mem

5-5 8653 2.7884e-01 9 289 1278 77
5-6 18.8 k 2.9791e-01 9 510 2236 77
5-7 37.3 k 3.1812e-01 9 823 3898 164
10-5 111 k 2.1662e-01 19 6604 33513 2487
10-6 353 k 2.3162e-01 106 17824 89120 10698
15-5 592 k 1.9674e-01 676 44104 356143 9240

destination. By doing so, it is hard for attackers to decide whether
the sender of a message is the original sender or is just forwarding
the message. The model we consider has two parameters: TotalRuns
is the number of routing paths of the model instance, and CrowdSize
is the number of honest participants of the protocol.We consider the
property Pmax=? [F (new & runCount=0 & observe0 > observe1
& ... & observe0 > observe19)], i.e. the probability that an
attacker can eventually observe the true sender of a message more
often than participants just forwarding the message and is thus able
to guess the original sender. In Table 4, we provide performance
figures. For this model the current implementation of our method
does not perform well. The reason is that too many states and
transitions have to be stored explicitly at the same time, leading to
a large memory overhead.

The Embedded Control System6 [35] features a cyclic polling
process. If a certain component detects that more than a given
number MAX_COUNT of cycles have been skipped due to issues,
the system is shut down for safety reasons.We consider the property
R{"danger"}=? [F "down"], i.e. the expected time the system is
in an endangered state before it eventually has to be shut down. We
provide performance figures in Table 5. Here, our method works
fine again as the number of states and transitions stored explicitly
is limited.

5 CONCLUSION AND FUTURE WORK
In this paper, we have presented a new memory-efficient analysis
method for properties of stochastic models. For conciseness of
presentation, we have focused on DTMCs (with some of the case
studies being CTMCs), but the method should in principle also
work for more expressive formalisms like MDP (using the MDP
state elimination idea of [22]). Our experiments show that it can
analyse models with millions of states in just a few megabytes of
memory. Its efficiency depends on how amenable a model is to BDD

6https://www.prismmodelchecker.org/casestudies/embedded.php

Table 5: Embedded Control System performance results

params |𝑆 | result time states trans mem

512 320 k 3.3454e-01 56 267 11938 80
1024 639 k 3.3731e-01 107 267 11938 80
2048 1.28M 3.4283e-01 201 267 11938 80
4096 2,56M 3.5371e-01 400 267 11938 80
8192 5,11M 3.7485e-01 794 267 11938 80
16384 10.2M 4.1469e-01 1579 267 11938 80
32768 20.4M 7.6563e-01 2914 284 10513 72

compression (like any symbolic method), and also on how well-
suited the graph structure of the state space is for state elimination.
The Crowds Protocol case study shows that some models do not
allow states to be eliminated soon enough when exploring in a
breadth-first order for the memory savings to materialise. As we
have seen, runtime also still increases with state space size, although
part of that effect is due to the simple symbolic exploration engine of
our prototype tool. All in all, our method thus complements existing
techniques such as Prism’s mtbdd engine, Storm’s bisimulation
minimisation, and the learning-based approaches [1, 8]. Where it
works, however, our method can offer unprecedented scalability in
probabilistic model checking.

An incidental advantage of our method is that it can directly
obtain an exact result: Our current implementation uses (variable-
precision) floating-point numbers, with computation precision lim-
ited by the properties of this representation. Yet we could as well
use rational arithmetic to obtain exact values without any change
in the core algorithms, since all intermediate and final values are
rational—though at an increase in computation time and memory
usage. Alternatively, we could use interval arithmetic to obtain
precise upper and lower bounds, again without any change in the
algorithms, and with only moderate overhead. This is in contrast
to methods based on value iteration or state space abstraction, for
which special precaution is required to obtain sound results.

As future work, we plan to turn our prototype implementation
into a full-fledged tool, compare its performance to the various
approaches implemented in other tools, add support for MDP, and
provide exact or interval arithmetic-based computations. Motivated
by the problematic performance of the Crowds protocol case study,
we also want to consider different search orders so as to improve
the behaviour for models for which the currently implemented
strict breadth-first search order does not perform well.

DATA AVAILABILITY
The tools used and data generated in our experimental evaluation
as well as instructions to replicate the experiments are archived
and available at DOI 10.4121/13379135 [23].

ACKNOWLEDGMENTS
This work was supported by the EU under project 864075 CAESAR,
and by NWO VENI grant no. 639.021.754.

1805

https://doi.org/10.4121/13379135

REFERENCES
[1] Pranav Ashok, Yuliya Butkova, Holger Hermanns, and Jan Kretínský. 2018.

Continuous-Time Markov Decisions Based on Partial Exploration. In ATVA
(Lecture Notes in Computer Science), Vol. 11138. Springer, 317–334. https:
//doi.org/10.1007/978-3-030-01090-4_19

[2] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. 1997. Algebraic Decision Diagrams and
Their Applications. Formal Methods in System Design 10, 2/3 (1997), 171–206.
https://doi.org/10.1023/A:1008699807402

[3] Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. 2019. The 10,000
Facets of MDP Model Checking. In Computing and Software Science - State of the
Art and Perspectives. Lecture Notes in Computer Science, Vol. 10000. Springer,
420–451. https://doi.org/10.1007/978-3-319-91908-9_21

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT
Press.

[5] Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wun-
derlich. 2017. Ensuring the Reliability of Your Model Checker: Interval Iteration
for Markov Decision Processes. In CAV (Lecture Notes in Computer Science),
Vol. 10426. Springer, 160–180. https://doi.org/10.1007/978-3-319-63387-9_8

[6] Henrik C. Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits W.
Vaandrager. 2003. Cost-Optimization of the IPv4 Zeroconf Protocol. In DSN. IEEE
Computer Society, 531–540. https://doi.org/10.1109/DSN.2003.1209963

[7] Aaron Bohy, Véronique Bruyère, Jean-François Raskin, and Nathalie Bertrand.
2017. Symblicit algorithms for mean-payoff and shortest path in monotonic
Markov decision processes. Acta Inf. 54, 6 (2017), 545–587. https://doi.org/10.
1007/s00236-016-0255-4

[8] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretín-
ský, Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. 2014. Verification
of Markov Decision Processes Using Learning Algorithms. In ATVA (Lecture
Notes in Computer Science), Vol. 8837. Springer, 98–114. https://doi.org/10.1007/
978-3-319-11936-6_8

[9] Randal E. Bryant. 2018. Binary Decision Diagrams. In Handbook of Model
Checking. Springer, 191–217. https://doi.org/10.1007/978-3-319-10575-8_7

[10] Janusz A. Brzozowski and Edward J. McCluskey. 1963. Signal Flow Graph Tech-
niques for Sequential Circuit State Diagrams. IEEE Trans. Electronic Computers
12, 2 (1963), 67–76. https://doi.org/10.1109/PGEC.1963.263416

[11] Yuliya Butkova, Arnd Hartmanns, and Holger Hermanns. 2019. A Modest Ap-
proach to Modelling and Checking Markov Automata. In QEST (Lecture Notes
in Computer Science), Vol. 11785. Springer, 52–69. https://doi.org/10.1007/
978-3-030-30281-8_4

[12] Sagar Chaki and Arie Gurfinkel. 2018. BDD-Based Symbolic Model Checking.
In Handbook of Model Checking. Springer, 219–245. https://doi.org/10.1007/
978-3-319-10575-8_8

[13] Conrado Daws. 2004. Symbolic and Parametric Model Checking of Discrete-Time
Markov Chains. In ICTAC (Lecture Notes in Computer Science), Vol. 3407. Springer,
280–294. https://doi.org/10.1007/978-3-540-31862-0_21

[14] Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk,
Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. 2015. PROPhESY: A
PRObabilistic ParamEter SYnthesis Tool. In CAV (Lecture Notes in Computer Sci-
ence), Vol. 9206. Springer, 214–231. https://doi.org/10.1007/978-3-319-21690-4_13

[15] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, andMatthias Volk. 2017.
A Storm is Coming: A Modern Probabilistic Model Checker. In CAV (Lecture
Notes in Computer Science), Vol. 10427. Springer, 592–600. https://doi.org/10.
1007/978-3-319-63390-9_31

[16] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. 2010. On Probabilistic
Automata in Continuous Time. In LICS. IEEE Computer Society, 342–351. https:
//doi.org/10.1109/LICS.2010.41

[17] Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. 2018. Accelerated Model
Checking of Parametric Markov Chains. In ATVA (Lecture Notes in Computer Sci-
ence), Vol. 11138. Springer, 300–316. https://doi.org/10.1007/978-3-030-01090-4_
18

[18] Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. 2018. Incremental Verifica-
tion of Parametric and Reconfigurable Markov Chains. In QEST (Lecture Notes
in Computer Science), Vol. 11024. Springer, 140–156. https://doi.org/10.1007/
978-3-319-99154-2_9

[19] Lin Gui, Jun Sun, Songzheng Song, Yang Liu, and Jin Song Dong. 2014. SCC-
Based Improved Reachability Analysis for Markov Decision Processes. In ICFEM
(Lecture Notes in Computer Science), Vol. 8829. Springer, 171–186. https://doi.org/
10.1007/978-3-319-11737-9_12

[20] Serge Haddad and Benjamin Monmege. 2014. Reachability in MDPs: Refin-
ing Convergence of Value Iteration. In RP (Lecture Notes in Computer Science),
Vol. 8762. Springer, 125–137. https://doi.org/10.1007/978-3-319-11439-2_10

[21] Serge Haddad and Benjamin Monmege. 2018. Interval iteration algorithm for
MDPs and IMDPs. Theor. Comput. Sci. 735 (2018), 111–131. https://doi.org/10.
1016/j.tcs.2016.12.003

[22] Ernst Moritz Hahn and Arnd Hartmanns. 2016. A Comparison of Time- and
Reward-Bounded Probabilistic Model Checking Techniques. In SETTA (Lec-
ture Notes in Computer Science), Vol. 9984. 85–100. https://doi.org/10.1007/
978-3-319-47677-3_6

[23] Ernst Moritz Hahn and Arnd Hartmanns. 2021. Symblicit Exploration and
Elimination for Probabilistic Model Checking (Artifact). 4TU.ResearchData.
https://doi.org/10.4121/13379135

[24] Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck, Joachim
Klein, Jan Kretínský, David Parker, Tim Quatmann, Enno Ruijters, and Marcel
Steinmetz. 2019. The 2019 Comparison of Tools for the Analysis of Quantitat-
ive Formal Models (QComp 2019 Competition Report). In 25 Years of TACAS:
TOOLympics (Lecture Notes in Computer Science), Vol. 11429. Springer, 69–92.
https://doi.org/10.1007/978-3-030-17502-3_5

[25] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen.
2013. A compositional modelling and analysis framework for stochastic hybrid
systems. Formal Methods in System Design 43, 2 (2013), 191–232. https://doi.org/
10.1007/s10703-012-0167-z

[26] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. 2010.
PARAM: A Model Checker for Parametric Markov Models. In CAV (Lecture
Notes in Computer Science), Vol. 6174. Springer, 660–664. https://doi.org/10.1007/
978-3-642-14295-6_56

[27] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. 2014.
iscasMc: A Web-Based Probabilistic Model Checker. In FM. 312–317. https:
//doi.org/10.1007/978-3-319-06410-9_22

[28] Guenter Harine, Raymond A. Marie, Ramón Puigjaner, and Kishor S. Trivedi.
2001. Loss formulas and their application to optimization for cellular networks.
IEEE Trans. Veh. Technol. 50, 3 (2001), 664–673. https://doi.org/10.1109/25.933303

[29] Arnd Hartmanns and Holger Hermanns. 2015. Explicit Model Checking of Very
Large MDP Using Partitioning and Secondary Storage. In ATVA (Lecture Notes in
Computer Science). 131–147. https://doi.org/10.1007/978-3-319-24953-7_10

[30] ArndHartmanns and Benjamin Lucien Kaminski. 2020. Optimistic Value Iteration.
In CAV (Lecture Notes in Computer Science), Vol. 12225. Springer, 488–511. https:
//doi.org/10.1007/978-3-030-53291-8_26

[31] Leen Helmink, M. P. A. Sellink, and Frits W. Vaandrager. 1993. Proof-Checking
a Data Link Protocol. In TYPES (Lecture Notes in Computer Science), Vol. 806.
Springer, 127–165. https://doi.org/10.1007/3-540-58085-9_75

[32] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Software Eng.
23, 5 (1997), 279–295. https://doi.org/10.1109/32.588521

[33] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veri-
fication of Probabilistic Real-Time Systems. In CAV (Lecture Notes in Computer Sci-
ence), Vol. 6806. Springer, 585–591. https://doi.org/10.1007/978-3-642-22110-1_47

[34] C. Y. Lee. 1959. Representation of switching circuits by binary-decision programs.
The Bell System Technical Journal 38, 4 (1959), 985–999. https://doi.org/10.1002/j.
1538-7305.1959.tb01585.x

[35] J. Muppala, G. Ciardo, and K. Trivedi. 1994. Stochastic reward nets for reliability
prediction. Communications in Reliability, Maintainability and Serviceability 1, 2
(1994), 9–20.

[36] M. L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons Inc., New York.

[37] Tim Quatmann and Joost-Pieter Katoen. 2018. Sound Value Iteration. In CAV
(Lecture Notes in Computer Science), Vol. 10981. Springer, 643–661. https://doi.
org/10.1007/978-3-319-96145-3_37

[38] Michael K. Reiter and Aviel D. Rubin. 1998. Crowds: Anonymity for Web Trans-
actions. ACM Trans. Inf. Syst. Secur. 1, 1 (1998), 66–92. https://doi.org/10.1145/
290163.290168

[39] RalfWimmer, Bettina Braitling, Bernd Becker, ErnstMoritz Hahn, Pepijn Crouzen,
Holger Hermanns, Abhishek Dhama, and Oliver E. Theel. 2010. Symblicit Cal-
culation of Long-Run Averages for Concurrent Probabilistic Systems. In QEST.
IEEE Computer Society, 27–36. https://doi.org/10.1109/QEST.2010.12

1806

https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1007/978-3-030-01090-4_19
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1109/DSN.2003.1209963
https://doi.org/10.1007/s00236-016-0255-4
https://doi.org/10.1007/s00236-016-0255-4
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1109/PGEC.1963.263416
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-319-99154-2_9
https://doi.org/10.1007/978-3-319-99154-2_9
https://doi.org/10.1007/978-3-319-11737-9_12
https://doi.org/10.1007/978-3-319-11737-9_12
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.4121/13379135
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-642-14295-6_56
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1109/25.933303
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/290163.290168
https://doi.org/10.1145/290163.290168
https://doi.org/10.1109/QEST.2010.12

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

