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Abstract. We study a smart grid with wind power and battery storage.
Traditionally, day-ahead planning aims to balance demand and wind
power, yet actual wind conditions often deviate from forecasts. Short-
term flexibility in storage and generation fills potential gaps, planned on
a minutes time scale for 30–60 min horizons. Finding the optimal flexibil-
ity deployment requires solving a semi-infinite non-convex stochastic pro-
gram, which is generally intractable to do exactly. Previous approaches
rely on sampling, yet such critical problems call for rigorous approaches
with stronger guarantees. Our method employs probabilistic model check-
ing techniques. First, we cast the problem as a continuous-space Markov
decision process with discretized control, for which an optimal deploy-
ment strategy minimizes the expected grid frequency deviation. To mit-
igate state space explosion, we exploit specific structural properties of
the model to implement an iterative exploration method that reuses pre-
computed values as wind data is updated. Our experiments show the
method’s feasibility and versatility across grid configurations and time
scales.

1 Introduction

Electricity grids need to constantly maintain a balance between power supply
and demand; imbalances result in frequency deviations, which ultimately lead to
critical events like blackouts [23]. The increasing deployment of renewable energy
sources such as solar and wind power—which react sharply to hard-to-predict
weather conditions—makes maintaining the balance increasingly difficult. In day-
to-day operation, the balancing is managed at two time scales. One day ahead,
the transmission system operator (TSO) schedules conventional generators to
match the predicted demand minus the expected renewable generation based on
weather forecasts. During the day, the TSO fills potential gaps introduced by any
mismatch between forecast and actual weather conditions by ancillary services,
which run on a short-term schedule that is updated every few minutes.

On the supply side, the most prominent ancillary service are spinning reserves
from generators, which compensate for contingencies (such as generator failures)

This research has been partially funded by NWO grants OCENW.KLEIN.187 and
NWA.1160.18.238, and by NWO VENI grant no. 639.021.754.

c© Springer Nature Switzerland AG 2021
A. Dutle et al. (Eds.): NFM 2021, LNCS 12673, pp. 1–18, 2021.
https://doi.org/10.1007/978-3-030-76384-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76384-8_1&domain=pdf
http://orcid.org/0000-0002-5235-1967
http://orcid.org/0000-0003-3268-8674
https://doi.org/10.1007/978-3-030-76384-8_1


2 T. S. Badings et al.

and deviations from the predicted demand. To free capacity for spinning reserves,
some generators operate below their rated capacity, making them a costly ser-
vice. The TSO’s day-ahead plan thus makes a tradeoff between allocating suffi-
cient reserves to mitigate any potential imbalance and minimizing unused gen-
erator capacity [36]. Demand-side flexibility [3], on the other hand, is provided
by various assets connected to the grid, including batteries [19] and HVAC sys-
tems [12,40]. They can reduce or increase the overall power consumption at some
time point by injecting or withdrawing electricity into or from the grid. Such
flexibility-based services shift power consumption in time rather than changing
the total [22]. Examples today include the ODFM service in the UK [27] and
various applications of demand response worldwide [1]. In this paper, we app-
roach the fundamental challenge of short-term scheduling for flexibility-based
ancillary services:

Given a power grid with significant uncertain wind power generation, opti-
mally schedule the deployment of the available ancillary services over a
finite horizon to minimize the expected total grid frequency deviation with-
out violating any hard constraints on grid stability and operation.

Hard constraints include a maximum frequency deviation (we use ±0.1Hz) as
well as all generation, transmission, battery, and ramping capacities. Repeating
the optimization every few minutes with new wind measurements leads to a
model predictive control (MPC) loop covering a full day of short-term scheduling.

The task can be expressed as a semi-infinite nonconvex stochastic optimiza-
tion problem, with the potential deviation of wind conditions from the forecast
given by some stochastic process. Already a finite version of this problem is
NP-hard and infeasible to solve in practice [8,26]. Previous work instantiated
the stochastic process by a black-box discrete-time Markov chain (DTMC) and
then resorted to a sampling-based scenario optimization approach [24,35], which
linearizes the nonconvex constraints and solves the resulting linear (but still semi-
infinite) stochastic optimization problem up to some statistical confidence and
error. The drawbacks of this approach are the approximation error introduced
by the linearization step and the statistical error due to the use of sampling [10].

Our Contribution. To overcome the need for both sampling and linearization,
we model the problem as a Markov decision process (MDP) [32]. MDPs combine
probabilistic choices, which we use to follow a white-box DTMC for the wind
errors, and nondeterminism, which we use to capture the service deployment
decisions to optimize over. A direct cast of the problem into an MDP would yield
continuous state and action spaces: state variables would represent continuous
quantities (e.g., grid frequency), and control decisions would range over real-
valued intervals (e.g., charge current applied to a battery). We thus (i) discretize
the controllable values into finitely many control actions. Since control decisions
are only made every few minutes, (ii) the model is discrete-time. Further, wind
conditions at the current time are known, so (iii) there is a single initial state for
every (iv) finite horizon. In combination, (i)–(iv) entail that we can only reach
a finite subset of the continuous state space. Thus we can build an MDP with
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finitely many states and actions. We use the original (non-linearized) continuous
dynamics of the power grid to compute the successor state following an action. A
cost function penalizes frequency deviations; violations of hard constraints lead
to absorbing non-goal states. An action selection strategy that minimizes the
expected accumulated cost to reach the time horizon then defines an optimal
deployment of ancillary services. We track the time, making the MDP a directed
acyclic graph in theory and a tree in practice. In the MPC loop, we only need
the action selected in the initial (current) state; when time advances to the next
control decision, we get a new initial state (based on measured wind conditions in
reality and sampled from the wind error DTMC in our experiments) from which
to repeat the procedure. Thus a large part of the new iteration’s MDP can be
reused from the previous iteration; we only need to add one more layer for the
advanced time horizon. We present the continuous-state dynamics of the power
system in Sect. 3, explain the formal and technical details of our MDP-based
approach in Sect. 4, and report on an experimental evaluation in Sect. 5.

Our approach has three key advantages: We (1) obtain a strategy that is
sound w.r.t. the physical constraints, i.e. it is guaranteed to satisfy the battery,
generator, and ramping capacities (but not necessarily the frequency and trans-
mission limits). The same cannot be guaranteed with scenario optimization due
to the linearization and statistical error. We (2) exploit the tree structure of the
MDP to speed up computations in the MPC loop; and (3) by relying on exist-
ing probabilistic model checking technology, the approach is easy to extend, for
example with multiple objectives, unreliable communication, or demand uncer-
tainty. Its main drawbacks are that, while sound and optimal for the discrete
MDP, the computed strategy is sound but may not be optimal for the continu-
ous model : an optimal strategy in the continuous model may require a control
input that lies between the discrete options of the MDP. Moreover, the MDP’s
state space grows exponentially with the time horizon and precision of the dis-
cretization. We investigate the effects of varying degrees of discretization and
time horizons on the quality of the schedule and the tractability of the problem
in our experimental evaluation.

Related Work. Previous studies of demand-side flexibility consider, for example,
vehicle-to-grid [19,42] and buildings-to-grid integration [21,33,34,40]. As renew-
able generation is primarily decentralized, regional congestion is an issue [7,31];
congestion management under uncertain generation was studied in [15,18,28].
The majority of the previously cited works use continuous-state models. Sev-
eral also apply the MPC pattern [20,35,40] and generally state the optimiza-
tion as an optimal power flow problem [23]. As mentioned, scenario optimiza-
tion [9,10,24] is sampling-based; in a different approach to sampling, [2] uses
Monte Carlo tree search for optimal power flow in the presence of many dis-
tributed energy resources.

When it comes to Markov models, [16] uses MDPs for optimal storage schedul-
ing, while [13] computes MDP-based optimal charging strategies for electric vehi-
cles. Probabilistic safety guarantees have been formally verified on DTMC mod-
els [30,38], i.e. MDPs where a fixed control strategy is embedded in the model.
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[17] studies decentralized protocols in solar panels to stabilize grid frequency.
Finally, we mention that our way of deriving the MDP is similar to the app-
roach of the StocHy tool [11] and its predecessor FAUST2 [39], which however
lack support for costs/rewards and do not implement our efficient MPC loop.

2 Preliminaries

A discrete probability distribution over a finite set X is a function μ : X → [0, 1]
with

∑
x∈X μ(x) = 1. The set of all distributions over X is Dist(X ). We write |X|

for the number of elements in X. Notation x1:n introduces a vector [x1, . . . , xn].

Definition 1. A Markov decision process (MDP) is a tuple M = (S,A, sI , T, c)
where S is a finite set of states, A is a finite set of actions, sI ∈ S is the initial
state, T : S × A ⇀ Dist(S ) is the (partial) probabilistic transition function, and
c : S → R is the state-based cost function. We assume deadlock-free MDPs.

A discrete-time Markov chain (DTMC) is an MDP with only one action at
every state. For DTMCs, we omit the set of actions A by simply typing the tran-
sition function T : S → Dist(S ). To define an expected cost measure on MDPs,
the nondeterministic choices of actions are resolved by strategies. A memoryless
deterministic strategy for an MDP is a function σ : S → A. For other types
of strategies, we refer to [6]. Applying strategy σ to an MDP M resolves all
nondeterministic choices and yields an induced DTMC Mσ. The expected cost
of reaching a set of goal states G ⊆ S in this induced DTMC is denoted by
ECMσ

(♦G). The goal is to compute a strategy that minimizes the expected
cost.

3 Continuous-State Power System Modelling

The continuous power system model is a system of nonlinear differential equa-
tions. We explain its setup and components in this section. We then discretize
the model w.r.t. time, obtaining continuous-state dynamics as a set of nonlinear
equations.

3.1 Grid Model Dynamics

We model a power grid as an undirected graph of interconnected nodes, to which
generators and loads are connected. The example grid in Fig. 1 has one generator,
three nodes with connected loads, plus one wind farm and one battery. We adopt
the grid model dynamics proposed in [5,35]. The dynamics in every node are
given by the active power swing equation, which describes the balance between
electrical and kinetic energy at that node in the grid [41]. The state at time t for
node n is determined by the voltage angle and frequency, yielding the dynamics:

mnδ̈n(t) + dnδ̇n(t) = P̄n(t) − ∑
p∈N bn,p sin(δn(t) − δp(t)) (1)
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Fig. 1. 3-node example electricity grid.

where δn(t), δ̇n(t), δ̈n(t) ∈ R are the voltage angle, angular velocity (frequency),
and angular acceleration of node n, and mn and dn are inertia and damping
coefficients, respectively. P̄n(t) ∈ R is the power balance at node n, and is given
by the sum of the generation and loads at that node. The power flow between
node n and all connected nodes p ∈ N is assumed to be purely reactive and
characterized by the line susceptance, bn,p, and the difference in voltage angle
between the connected nodes. A detailed description is available in [3,35].

3.2 Grid Frequency Control

The grid frequency deviation for node n, denoted ωn(t), is the difference between
the absolute frequency, δ̇n(t) in Eq. 1, and the desired frequency (for example,
50Hz in Europe). The value of ωn(t) can be controlled by the injection or con-
sumption of electrical energy; any mismatch between power supply and demand
results in a deviation of the frequency. As shown in Fig. 1, we distinguish five
power generating or consuming assets:

– P gen(t) is the conventional power dispatch. Conventional generators are sub-
ject to ramping limits, so the derivative Ṗ gen(t) is restricted to certain bounds.

– P load(t), the consumer load, represents the known and uncontrollable demand.
We can readily extend the model to controllable or uncertain demand.

– Rgen(t) is the deployment of spinning reserves. It is a control variable in the
optimal power flow problem.

– Pwind(t), the wind power generation, is a random variable [29] due to its
limited predictability. We define Pwind,fc(t) as the forecast wind power at
time t; then the forecast error is ΔPwind(t) = Pwind(t) − Pwind,fc(t).

– A battery is an energy storage buffer whose state of charge (SoC) q(t) fol-
lows the injection or consumption of energy. Pstor(t) is the uncontrollable
power input variable, known from the day-ahead plan, and Rstor(t) is the
demand-side flexibility power rate, which is a control variable in the power
flow problem.

3.3 Ancillary Service Deployment

Ancillary service deployment is subject to two restrictions: reserves and storage
flexibility must be scheduled a day ahead, and the deployment can never exceed
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the scheduled amount. The following constraints ensure these restrictions:

− Rgen
ds (t) ≤ Rgen(t) ≤ Rgen

us (t) (2)

ensures that the deployment of spinning reserves is within the scheduled bounds,
where Rgen

ds (t) ≥ 0 (Rgen
us (t) ≥ 0) is the scheduled amount of down-spinning

(up-spinning) reserves. Similarly we have for flexibility that

− Rstor
dd (t) ≤ Rstor(t) ≤ Rstor

id (t), (3)

where Rstor
dd (k) ≥ 0 and Rstor

id (k) ≥ 0 are the scheduled decreased- and increased-
demand flexibility, respectively.

3.4 Discrete-Time Storage-Integrated Power System Model

We discretize the continuous dynamics with respect to time to render the problem
of optimal frequency control tractable. The resulting model is a set of nonlinear
equations, which albeit discretized w.r.t. time are still defined on continuous
state and control spaces. They describe the transition from one continuous state
and control input to the resulting continuous state one discrete time step later.

Consider a power grid with nt nodes, ng generators, nf wind farms, and ns

batteries for storage. Its continuous dynamics are given as a system of 2nt +ng +
ns first-order differential equations. The features of the continuous state space
are given by the voltage angles δ1:nt

and frequencies ω1:nt
for all nt nodes, the

power generation P gen
1:ng

for all ng generators, and the state of charge q1:ns
of all

ns batteries. The vector of control variables contains the change in generator
dispatch Ṗ gen

1:ng
and the reserve deployment Rgen

1:ng
for all ng generators, plus the

flexibility deployment Rstor
1:ns

for all ns batteries. We discretize w.r.t. time via the
first-order backward Euler implicit method [37] to obtain the nonlinear function

x(k + 1) = f
(
x(k), u(k), v(k), w(k)

)
, (4)

– with f(·) reflecting the dynamics of the considered power system, which are
nonlinear due to the sinusoid, sin(δn(t) − δp(t)), in Eq. 1,

– x(k) = [δ1:nt
, ω1:nt

, P gen
1:ng

, q1:ns
] ∈ R

2nt+ng+ns the state vector,
– u(k) = [Ṗ gen

1:ng
, Rgen

1:ng
, Rstor

1:ns
] ∈ R

2ng+ns the vector of control variables,

– v(k) = [P load
1:nt

, Pwind,fc
1:nf

, P stor
1:ns

]∈R
nt+nf+ns the uncontrollable known

inputs, and
– w(k) = [ΔPwind

1:nf
] ∈ R

nf the vector of uncontrollable random variables.

We omit further details for the sake of brevity and refer the interested reader
to [5] and [40] for the full derivation and discretization of similar grid models.

Power Balance and Control Variables. The day-ahead generator power
dispatch is scheduled such that generation plus wind power forecast matches the
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consumer load pattern. We impose the following constraint at every time point
k: ∑ng

i=1 P gen
i (k) +

∑nf

m=1 Pwind,fc
m (k) =

∑nt

n=1 P load
n (k). (5)

Since Pwind,fc
m and P load

n are known, imposing this equality constraint yields ng−1
independent control variables. Hence, in a single-generator grid, the day-ahead
planning is fixed by the wind forecast and consumer load, while in a grid with
multiple generators, the required total dispatch must be divided between the
different units. In a similar manner, during the day itself, the reserve power and
storage flexibility can be deployed together to restore the mismatch in the power
balance caused by forecast errors at any time point:

∑ng

i=1 Rgen
i (k) +

∑nf

m=1 ΔPwind
m (k) =

∑ns

n=1 Rstor
n (k), (6)

where ΔPwind
m is a random variable, and both Rgen

i and Rstor
n are control variables.

Hence, imposing Eq. 6 yields ng + ns − 1 independent control variables.

Power System Constraints. The discrete-time power system model in Eq. 4
is subject to a number of constraints. First of all, the equality constraints in
Eqs. 5 and 6 are imposed to enforce the balance between power supply and
demand. Second, power lines have limited transmission capacity, and generators
have limited generation capacity and ramping capability. Third, the deployment
of reserve power and storage flexibility is limited by their scheduled values, as
described in Eqs. 2 and 3. Finally, the electrical storage units have a limited
capacity, and can only be charged or discharged at a given maximum rate. For
the explicit formulation of the constraints we refer the interested reader to [35].

4 Discrete-State Receding Horizon Control Problem

Our goal is to overcome the need for sampling and linearization to optimize
ancillary service deployment. Directly using the model presented in Eq. 4 would
require dealing with continuous state and action spaces. Our approach is to
discretize the actions, then explore the resulting finite number of (continuously-
valued) successor states up to a given exploration depth. In this way, we obtain a
finite MDP that can be solved iteratively using a receding horizon principle. This
approach is a discrete-state model predictive control technique. We now present
the wind error DTMC, followed by the details of our exploration procedure and
the formal definition of the finite-horizon MDP.

4.1 Stochastic Wind Power Model

Recall that the wind power forecast error, ΔPwind
m (k) ∈ R, of every individual

wind farm m ∈ {1, . . . , nf} is a continuous random variable in Eq. 4. Exploiting
the time discretization of Sect. 3.4, we construct a DTMC for the forecast error
of every wind farm with time resolution equal to the discretization level of the
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Fig. 2. Transition probability function of the wind error DTMC.

dynamics. For this section, we assume the presence of only one wind farm to
simplify notation. Let S be the finite state space of the DTMC, and let function
M : R → S map the wind power forecast error ΔPwind ∈ R to a state sw ∈ S:
every value of the continuous random variable ΔPwind is approximated by the
value of a discrete state sw ∈ S. The DTMC’s transition function T : S →
Dist(S ) describes the probability that a transition occurs from one state sw at
any time k to another state s′

w at time k + 1 with probability T (sw)(s′
w).

Historical Wind Power Data. We follow the method proposed in [25,29]
to construct the DTMC based on the historical wind power forecast error. The
states S are based on a uniform discretization of the historical forecast error.
The transition probabilities in T are determined using a maximum likelihood
estimation, by counting the number of transitions from one state sw at time k
to a successor state s′

w at time k + 1. We use five years (2015–2019) of on-shore
wind power data measured every 15 min from the TenneT region of the German
transmission grid, obtained from the ENTSO-E Transparency Platform [14]. We
interpolate the data to a 5-min basis, to match the time resolution we employ
in the numerical demonstration in Sect. 5. The data set contains the wind power
forecast, Pwind,fc, and the actual power, Pwind, thus providing a five-year time
series of the observed wind power error, ΔPwind. M then maps every continuous
value of ΔPwind to one of 41 discrete states, i.e. S = {s1w, . . . , s41w }, as in [25].
We show the resulting transition matrices in Fig. 2 for the original 15-min and
the interpolated 5-min data. The matrix is diagonally dominant, reflecting the
strong auto-correlation of the forecast error.

4.2 State Space Exploration Procedure

Next, we present our method to explore the continuous state space of the model
up to a given exploration horizon. We discretize the continuous control variables
such that their potential values define a set of actions for an MDP, then a priori
eliminate those actions that lead to states violating the constraints of Sect. 3.4.
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Let Xk = (x(k), sw) denote the continuous state vector x(k) at time k, and
the DTMC state sw associated with the current wind power forecast error. To
define an initial state, we use a concrete measurement at the first time step.
Then, we use the dynamics in Eq. 4 in combination with transitions of the wind
error DTMC to compute the possible successor states for each time step. At time
step k we select a control input u(k) and, based on the dynamics in Eq. 4, receive
a set of successor states with different x(k + 1)1, . . . , x(k + 1)n, one associated
with every possible wind error successor state, s1w, . . . , sn

w with T (sw)(si
w) > 0

for all 1 ≤ i ≤ n. The features in x(k + 1)i related to power generation (P gen
1:ng

)
and battery SoC (q1:ns

) are equal for all 1 ≤ i ≤ n, while the grid features
(δ1:nt

, ω1:nt
) depend on the wind successor state, si

w. As the probabilities to
reach these successor states depend exclusively on the probabilities defined by
the DTMC, we reach state Xk+1 = (x(k + 1)i, si

w)) with probability T (sw)(si
w).

Feasible Control Space. Under the two balance constraints in Eqs. 5 and 6,
the vector of control variables u(k) in Eq. 4 contains 2ng + ns − 2 independent
variables. Since the dynamics in Eq. 4 and the constraints imposed on the system
are known, we can determine the continuous subset of control inputs u ∈ UXk

⊂
R

2ng+ns−2 that do not lead to a violation of any of the constraints at time k +1.
Note that this set depends on the state Xk at time k. Given the subset of feasible
continuous control inputs, we apply a grid-based discretization in all 2ng +ns −2
dimensions, to obtain a set AXk

of feasible and discrete actions at time k, where
the subscript denotes the dependency on Xk. From this discretization of the
control actions, an important property follows. Given the current state Xk at
time k, every action a ∈ AXk

has a different set of discrete successor states
Xk+1 at time k +1. By only exploring the continuous state-space for the feasible
actions in AXk

, we minimize the size of the resulting finite-state model.
A schematic example of this procedure for two state features (one node fre-

quency and one battery SoC) is shown in Fig. 3. The blue dot corresponds to cur-
rent state Xk at time k, and the straight arrows show the discrete actions a ∈ AXk

.
The curved arrows show the effect of the forecast error to the grid frequency,
which depends directly on the actual successor state in the DTMC. Because all
successor states of a1 violate the maximum SoC constraint (q(k) ≤ qmax), this
action can be eliminated a priori. Similarly, all successors for a5 violate the max-
imum frequency deviation limit (ω(k) ≤ ωmax). Actions a2 and a3 will not lead
to any violation, and are, therefore, included as feasible discrete actions. Action
a4 may or may not violate the constraints depending on the wind power forecast
error. Therefore, this action cannot be eliminated a priori.

Exploration. The finite exploration horizon with starting time k and look-
ahead of Kh steps is the set {k, . . . , k + Kh}. The exploration procedure can
be performed recursively for all discrete actions a ∈ AXk

for every k, until the
desired horizon is reached. We obtain a tree-structured model as in Fig. 4, where
the branching factor depends on the number of actions and possible wind suc-
cessor states, and the depth is given by the horizon length. For brevity, the
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ωmin 0 ωmax

qmax

Xk

a1

a2

a3

a4

a5
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freq. deviation, ω (Hz)

SoC, q (%)

Fig. 3. Discrete actions a1, . . . , a5 and their mapping to two continuous state-space
features: a battery SoC and the frequency in one node. Curved arrows show the effect
of wind successor states, and dashed lines are system constraints.

dependency of the set of discrete actions on the current state is omitted in this
figure.

Recall that we consider only those states Xk = (x(k), sw) of the continuous
state space that are visited during the exploration. We provide the full definition
of the MDP M = (S,A, sI , T, c) with exploration horizon {k, . . . k +Kh}, where

– every state s ∈ S is associated with an Xk from the continuous state space;
– the set of actions A is the union of all feasible action sets AXk

for all Xk;
– the initial state sI is given by a concrete measurement (x0, sw);
– the partial probabilistic transition function T : S × A ⇀ Dist(S ) maps state-

action pairs to the corresponding distributions over successor states according
to the wind error DTMC;

– the cost function c : S → R assigns the immediate cost given by the sum of
the absolute value of the frequency deviation in every grid node.

Finally, we define the set G ⊆ S of goal states as the states that are reached at
the end of the horizon k + Kh and satisfy the constraints.

Receding Horizon and Tree Structure. We compute the strategy σ that
induces the minimal expected cost ECMσ

(♦G) for the MDP with horizon
{k, . . . k + Kh}. Using this strategy, we implement the (first) optimal action
a0 = σ(s0) where s is associated with Xk. Having executed the optimal action
at time k, we then apply the so-called receding horizon principle, meaning that
we shift the exploration horizon one step forward in time. We update the MDP
for the shifted horizon, which is now given as {k + 1, . . . k + Kh + 1}, and again
compute an optimal strategy. Hence, with every shift of the exploration horizon
in time, we reveal small bits of new information near the end of the horizon.

As an example, consider an initial exploration horizon defined as the time
frame between 9:00–9:15 AM. Computing an optimal strategy for the correspond-
ing MDP means that we take all the information within that time frame into
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Xk

. . . ...
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(x(k + 1)1, s1w)

(x(k + 1)n, snw)

(x(k + 1)n, snw)

(x(k + 1)1, s1w)

Time step: k + 1 k + 2 k + Kh − 1 k + Kh

Fig. 4. Visualization of the state-space exploration procedure, with initial measurement
Xk at time k, and finite horizon with end time k + Kh. Solid edges represent discrete
actions, whereas dashed lines reflect different successor states.

account, i.e. we have perfect knowledge within the horizon. However, a possible
change in the power demand (or any other uncontrollable input) that is forecast
at 9:30 AM is not revealed to the model, until the exploration horizon also spans
that time step. Defining an adequate length of the exploration horizon reflects
a trade-off between model size and the optimality of the solution.

When we shift the exploration horizon from {k, . . . , k+Kh} to {k+1, . . . , k+
Kh +1}, another layer is added to the MDP. As the starting time of the horizon
also shifts, we gain new information via a new measurement at k + 1, and then
obtain a single new initial state for the MDP with the new horizon. By exploiting
the tree structure of the MDP, we extend the current MDP with a new layer of
successor states and take the subtree starting at the newly found initial state at
time k + 1. Simultaneously, we shrink the layer at the top, by pruning all states
that cannot be reached anymore from the new initial state.

The approach of iteratively solving and updating the MDP for shifting hori-
zons is similar to a discrete-state model predictive control technique. This iter-
ative method is applied until a desired simulation horizon is reached (such as
24 h).

5 Numerical Study

We demonstrate the performance of our approach on multiple variants of the 3-
node example grid already introduced in Fig. 1. To this end, we simulate the wind
error DTMC, and apply our method to build the MDP using the sampled wind
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Fig. 5. The day-ahead power balance between generator dispatch, wind power forecast,
and the power demand, which is equivalent for all performed simulations.

power forecast error at every time step. As such, every wind power trajectory
sampled from the DTMC results in a (potentially different) run of our approach.
We solve the MDP to obtain the first action in the sequence of optimal decisions
over the exploration horizon, which is then executed to obtain the initial state
at the next time step. By applying the receding horizon principle, we iteratively
follow this procedure, until a final simulation horizon of 24 h is reached.

5.1 Experimental Setup

We consider a simulation time resolution of 5 min, and a full simulation horizon of
24 h. Using the receding horizon exploration procedure, this means that 60

5 ·24 =
288 MDPs are solved to obtain the results over one 24-h run. The same demand
and wind power forecast are used for every simulation, resulting in the day-
ahead power dispatch shown in Fig. 5. This figure shows that under the forecast
conditions, the power supply and demand are perfectly balanced, leading to a
stable grid frequency in the absence of forecast errors. Both the power demand
and wind power forecast are based on historical data obtained from the ENTSO-
E Transparency Platform [14], and are scaled appropriately for the simulation
study. The scheduled flexibility deployment limits per battery are set to ±2 MW,
while the scheduled reserve limits per generator are ±0.25 MW.

Simulation Cases. Simulations are performed on three variants of the exam-
ple grid in Fig. 1. In the simplest case, we aggregate the three nodes into one,
resulting in a grid where all assets are connected to the same node. The second
variant is the exact network shown in Fig. 1. The third variant is an extension
of the second, where a second storage unit is connected to node 1.

Then, we perform simulation studies for different values of: a) the exploration
horizon (300, 600, and 900 s), and b) the levels of discretization for the actions
denoted by λ (with values between 3 and 25 steps). To evaluate the quality of
the solution of our technique, we perform a statistical analysis on every case, by
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repeating every experiment 100 times. Note that this Monte Carlo type simu-
lation is merely used to evaluate the quality of the obtained solutions, and not
required to apply our technique in practice.

Data Availability. The code and data needed to reproduce the results pre-
sented below are archived at DOI 10.4121/14185139 [4]. Our prototype imple-
mentation is written in Python version 3.8.3, and allows the user to run the cases
defined above or simulate with any other parameter setting. Our simulations ran
on a Windows laptop with Intel Core i7-1065G7 CPU (1.3–3.0 GHz) and 16 GB
RAM.

5.2 Results

Run Times. The observed run times are approximately proportional to the
number of MDP states, and grow exponentially with the exploration horizon.
For the 3-node system with 1 battery, an action discretization level of λ = 5
steps, and exploration horizon of 300 s, the average run time per iteration of the
receding horizon (i.e. for solving one MDP) is 0.01 s, resulting in around 3.51
s per 24 h run. For the same case with longer exploration horizons of 600 and
900 s, average run times are 0.14 and 2.09 s, respectively, per receding horizon
iteration.

The strongest increase in run time is observed for the 3-node, 2 battery case,
where the average observed times were 0.03, 1.03, and 223.59 s for exploration
horizons of 300, 600, and 900 s, respectively. This steeper increase is explained by
the exponential growth of the model size with respect to the number of actions,
which is higher for the case with 2 batteries.

Failed Runs. As visualized before in Fig. 3, a discrete action can lead to a
successor state that violates one of the system constraints. In total, 4.2% of the
performed iterations for all cases combined resulted in a violation of either the
frequency limits or the power line transmission capacity. No significant differ-
ences in the percentage of failed runs is observed across the different cases. Since
these runs are incomplete and not representative for the simulated cases, they
are not reported for further analysis. Nevertheless, the number of failed runs
provides an empirical indication of the adequacy of the scheduling limits for
the reserve and flexibility deployment. A high percentage of failed runs means
that the ancillary service scheduling limits might be insufficient, and should be
enlarged.

Solution Quality. The cost function of the MDP penalizes the sum of the
absolute value of the frequency deviations in all grid nodes. Therefore, the quality
of the obtained solution can be evaluated by taking the integral of the total
observed frequency deviation over the simulation horizon:

J =
∫ kend

k0

∣
∣

nt∑

n=1

ωn(k)
∣
∣dk,

https://doi.org/10.4121/14185139
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Fig. 6. Average total frequency deviations for the 3-node case for different λ.

where k0 and kend cover the full 24-h simulation time. The lower the value of J ,
the better the quality of the solution in terms of total frequency deviations.

A comparison of the value for J between multiple cases on the 3-node network
from Fig. 1, with different levels of λ ∈ {3, . . . , 25}, is shown in Fig. 6. Every
bar shows the average results and the 95% confidence interval (CI) of the 100
iterations performed for that case. Due to infeasible run times, simulations for
the cases with exploration horizon of 900 s and λ ≥ 13 were omitted.

We observe that (1) a longer exploration horizon does not improve the qual-
ity of the solution in terms of frequency deviations significantly. On the other
hand, (2) increasing the number of discrete actions in every dimension yields
a significantly better solution quality. This observation suggests that it is more
beneficial to have a more fine-grained discretization of the continuous control
space, than to invest in a longer optimization horizon.

MDP Model Size. In Fig. 7, the average number of states and actions per
MDP are compared for different network configurations, all with λ = 5. All
cases were simulated for 100 runs, except for the case with 2 batteries, which
was only simulated for 1 run, due to a too long run time. We see that the number
of states and actions is independent of the number of grid nodes. The intuition
behind this is that an increased number of state features does not yield a larger
MDP. In fact, the branching factor of the applied exploration procedure only
depends on the number of actions and successor states in the wind error DTMC,
and is independent of the number of state features. As expected, increasing the
number of batteries to 2 yields a significant increase in the number of MDP states
and actions, especially for a longer exploration horizon, due to the additional
dimension of the continuous control space.
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Fig. 7. Average MDP states (left) and actions (right) for cases with λ = 5, and varying
numbers of nodes and batteries (plotted in log scale).

Fig. 8. Results for two runs for the 3-node case with 1 battery, for different λ.
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Frequency Control and Ancillary Service Deployment. Finally, in Fig. 8,
two example runs for the 3-node network with a single battery and exploration
horizon of 600 s are shown. Figure 8a presents the frequency deviations for λ = 3,
while Fig. 8b shows the same for λ = 25. Similarly, Figs. 8c and 8d show the
deployment of reserves and flexibility for both cases. Due to the uncertainty in
the wind power forecast error, the results in Fig. 8 present only two possible
trajectories, and repeating the experiment can lead to different results.

The observed frequency deviations are significantly lower for the case with
more fine-grained discretization of the actions (i.e. λ = 25), thus confirming
the results also shown in Fig. 6. This difference in the control precision is clearly
depicted between Figs. 8c and 8d. The intuition behind this is that a fine-grained
discretization allows for more precise control of the ancillary service deployment,
which results in lower frequency deviations.

6 Concluding Remarks

We presented a novel method to solve the problem of short-term scheduling for
flexibility-based ancillary services in power systems with uncertain wind power
generation. By modelling the problem as an MDP, we overcome the need for both
sampling and linearization, as opposed to the continuous-state approaches used
by most traditional power system analysis methods. Our experiments show that
our approach is feasible for power grids with different levels of complexity and
under realistic operating conditions. Furthermore, our results show it is more
beneficial to have a more fine-grained discretization of the continuous control
space, than to invest in a longer optimization horizon. Since the size of the
MDP grows exponentially with both the number of actions and the exploration
horizon, making a trade-off between the two is necessary.

In the future, we will exploit the flexibility of our model to incorporate alter-
native grid configurations and multiple sources of uncertainty, such as imperfect
communication between assets in the grid, or demand uncertainty. Moreover,
instead of the batteries, other flexible assets can also be modeled, such as flexi-
bility provided by the thermal inertia of large-scale buildings.
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29. Papaefthymiou, G., Klöckl, B.: MCMC for wind power simulation. IEEE Trans.
Energy Convers. 23(1), 234–240 (2008)

30. Peruffo, A., Guiu, E., Panciatici, P., Abate, A.: Safety guarantees for the electricity
grid with significant renewables generation. In: Parker, D., Wolf, V. (eds.) QEST
2019. LNCS, vol. 11785, pp. 332–349. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30281-8 19

31. Pillay, A., Prabhakar Karthikeyan, S., Kothari, D.P.: Congestion management in
power systems - a review. Int. J. Electr. Power Energy Syst. 70, 83–90 (2015)

32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)

33. Razmara, M., Bharati, G.R., Shahbakhti, M., Paudyal, S., Robinett, R.D.: Bilevel
optimization framework for smart building-to-grid systems. IEEE Trans. Smart
Grid 9(2), 582–593 (2018)

34. Rostampour, V., Badings, T.S., Scherpen, J.M.A.: Buildings-to-grid integration
with high wind power penetration. In: CDC, pp. 2976–2981. IEEE (2019)

35. Rostampour, V., Badings, T.S., Scherpen, J.M.A.: Demand flexibility management
for buildings-to-grid integration with uncertain generation. Energies 13(24) (2020)

36. Rostampour, V., Ter Haar, O., Keviczky, T.: Distributed stochastic reserve schedul-
ing in ac power systems with uncertain generation. IEEE Trans. Power Syst. 34(2),
1005–1020 (2018)

37. Sincovec, R.F., Erisman, A.M., Yip, E.L., Epton, M.A.: Analysis of descriptor
systems using numerical algorithms. IEEE Trans. Autom. Control. 26(1), 139–147
(1981)

38. Soudjani, S.E.Z., Abate, A.: Aggregation and control of populations of thermostat-
ically controlled loads by formal abstractions. IEEE Trans. Control. Syst. Technol.
23(3), 975–990 (2015)

39. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-state stochastic processes. In: TACAS. LNCS, vol. 9035, pp. 272–286.
Springer (2015)

40. Taha, A.F., Gatsis, N., Dong, B., Pipri, A., Li, Z.: Buildings-to-grid integration
framework. IEEE Trans. Smart Grid 10(2), 1237–1249 (2019)

41. Trip, S., Bürger, M., Persis, C.D.: An internal model approach to frequency regula-
tion in inverter-based microgrids with time-varying voltages. In: CDC, pp. 223–228.
IEEE (2014)

42. Wang, J., Liu, C., Ton, D., Zhou, Y., Kim, J., Vyas, A.: Impact of plug-in hybrid
electric vehicles on power systems with demand response and wind power. Energy
Policy 39(7), 4016–4021 (2011)

https://doi.org/10.1007/978-3-030-30281-8_19
https://doi.org/10.1007/978-3-030-30281-8_19

	Balancing Wind and Batteries: Towards Predictive Verification of Smart Grids
	1 Introduction
	2 Preliminaries
	3 Continuous-State Power System Modelling
	3.1 Grid Model Dynamics
	3.2 Grid Frequency Control
	3.3 Ancillary Service Deployment
	3.4 Discrete-Time Storage-Integrated Power System Model

	4 Discrete-State Receding Horizon Control Problem
	4.1 Stochastic Wind Power Model
	4.2 State Space Exploration Procedure

	5 Numerical Study
	5.1 Experimental Setup
	5.2 Results

	6 Concluding Remarks
	References




