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Abstract—With the progress in deductive program verification
research, new tools and techniques have become available to
support design-by-contract reasoning about non-trivial programs
written in widely-used programming languages. However, deduc-
tive program verification remains an activity for experts, with
ample experience in programming, specification and verification.
We would like to change this situation, by developing program
verification techniques that are available to a larger audience.
In this paper, we present how we developed prototypal program
verification support for Snap!. Snap! is a visual programming
language, aiming in particular at high school students. We
added specification language constructs in a similar visual style,
designed to make the intended semantics clear from the look
and feel of the specification constructs. We provide support both
for static and dynamic verification of Snap! programs. Special
attention is given to the error messaging, to make this as intuitive
as possible.

Index Terms—verification, software, education

I. INTRODUCTION

Research in deductive program verification has made sub-

stantial progress over the last years: tools and technique have

been developed to reason about non-trivial programs written in

widely-used programming languages, the level of automation

has substantially increased, and bugs in widely-used libraries

have been found [1], [2], [3]. However, the use of deductive

verification techniques remains the field of expert users, and

substantial programming knowledge is necessary to appreciate

the benefits of these techniques.

We believe that it is important to make deductive program

verification techniques accessible also to novice programmers.

Therefore, we have to teach the Design-by-Contract [4] (DbC)

approach, which requires the programmer to explicitly specify

the assumptions and responsibilities of code in a modular

way, in parallel with actually teaching programming, i.e. DbC

should be taught as an integral part of the process leading

from design to implementation. In this paper, we make the

Design-by-Contract idea accessible to high school students, in

combination with appropriate tool support, which is currently

unavailable.

Concretely, this paper presents a Design-by-Contract ap-

proach for Snap! [5]. Snap! is a visual programming lan-

guage targeting high school students. The design of Snap!
is inspired by Scratch, another widely-used visual program-

ming language. Compared to Scratch, Snap! has some more

advanced programming features. In particular, Snap! provides

the possibility to create parametrised reusable blocks, basically

modelling user-defined functions. Also the look and feel of

Snap! targets high school students, whereas Scratch aims

at an even younger age group. Snap! has been successfully

integrated in high school curricula, by its integration in the

Beauty and Joy of Computing course [6]. This course combines

programming skills with a training in abstract computational

thinking.

The first step to support Design-by-Contract for Snap!
is to define a suitable specification language. The visual

specification language that we propose in this paper is built as

a seamless extension of Snap!, i.e. we propose a number of

new specification blocks and natural modifications of existing

ones. These variations capture the main ingredients for the

Design-by-Contract approach, such as pre- and postconditions.

Moreover, we also provide blocks to add assertions and loop

invariants in a program and we extend the standard expression

pallets of Snap! with some common expressions to ease spec-

ifications. The choice of specification constructs is inspired by

existing specification languages for Design-by-Contract, such

as JML [7], choosing the most frequently used constructs with

a clear and intuitive meaning. Moreover, all verification blocks

are carefully designed to reflect the intended semantics of the

specifications in a visual way.

A main concern for a programmer, after writing the spec-

ification of the intended behaviour of their programs, should

be to validate that these programs behave according to their

specification. Therefore, we provide two kinds of tool support:

(i) runtime assertion checking [8], which checks whether

specifications are not violated during a particular program ex-

ecution, and (ii) static checking (or deductive verification) [9],

which verifies that all possible program executions respect

its specifications. The runtime assertion checker is built as

an extension of the standard Snap! execution mechanism.

The deductive verification support is built by providing a

translation from a Snap! program into Boogie [10].

Another important aspect to take into account for a good

learning experience are the error messages that indicate that

a specification is violated. We have integrated these messages

in Snap!’s standard error reporting system, again sticking to

the look and feel of standard Snap!. Moreover, we have put

in effort to make the error messages as clear as possible, so

that also a relatively novice programmer can understand why

the implementation deviates from the specification.
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II. BACKGROUND

A. Snap!

Snap! is a visual programming language. It has been de-

signed to introduce children (but also adults) to programming

in an intuitive way. At the same time, it is also a platform

for serious study of computer science[11]. Snap! actually re-

implements and extends Scratch [12]. Programming in Snap!
is done by dragging and dropping blocks into the coding area.

Blocks represent common program constructs such as variable

declarations, control flow statements (branching and loops),

function calls and assignments. Snapping blocks together, the

user builds a script and visualises its behaviour by means of

turtle graphics visualisations, called sprites. Sprites can change

shape, move, show bubbled text, play music, etc. For all these

effects, dedicated blocks are available.

Figure 1: The Snap! working area.

The Snap! interface divides the working area into three

parts: the pallet area, the scripting area, and the stage area,

indicated by labels 1, 2 and 3, respectively, in Fig. 1. On the

left, the various programming blocks are organised into pallets

that describe their natural use. For instance, the Variables pal-

let contains blocks for declaring and manipulating variables.

In Snap!, variables are dynamically typed. Blocks are dragged

and dropped from the pallets into the scripting area, located

at the centre of the working area where the Snap! program

is constructed. Blocks can be arranged by snapping them

together, or by inserting them as arguments of other blocks.

Blocks can only be used as arguments if their shapes match

with the shape of the argument slots in the target block. These

shapes actually provide a hint on the expected evaluation type

of a block, for instance, rounded slots for numbers

and diamond slots for booleans .

The behaviour of the script is shown with turtle graphics

drawings in the stage area located in the rightmost part of the

screen.

In addition, at the bottom of the pallet area, there is a “Make

a block” button. This allows the user to define his or her Build
Your Own Block (BYOB) blocks. When pressed, a new floating

“Block Editor” window pops out with a new coding area, in

which the behaviour of the personalised block can be defined

(similar to how a script is made in the scripting area). Label 4
in Fig. 1 shows a BYOB block being edited. Once defined, the

BYOB block becomes available to be used just as any other

predefined block.

B. Program Verification

The basis of the Design-by-Contract approach [13] is that

the behaviour of all program components is defined as a con-

tract. For example, a function contract specifies the conditions

under which a function may be called (the function’s precondi-
tion), and it specifies the guarantees that the function provides

to its caller (the function’s postcondition). There exist several

specification languages that have their roots in this Design-
by-Contract approach. For example the Eiffel programming

language has built-in support for pre- and postconditions [14],

and for Java, the behavioural interface language JML [15] is

widely used. As is common for such languages, we use the

keyword requires to indicate a precondition, and the keyword

ensures to indicate a postcondition.

If a program behaviour is specified using contracts, various

techniques can be used to validate whether an implementation

respects the contract.

Dynamic verification validates an implementation w.r.t. a

specification at runtime. This means that, whenever during

program execution a specification is reached, it will be checked

for this particular execution that the property specified indeed

holds. In particular, this means that whenever a function will

be called, its precondition will be checked, and whenever

the function returns, its postcondition will be checked. An

advantage of this approach is that it is easy and fast to use

it: one just runs a program and checks if the execution does

not violate the specifications. A disadvantage is that it only

provides guarantees about a concrete execution.

In contrast, static verification aims at verifying that all pos-

sible behaviours of a function respect its contract. This is done

by applying Hoare logic proof rules [16] or using Dijkstra’s

predicate transformer semantics [17]. Applying these rules

results in a set of first-order proof obligations; if these proof

obligations can be proven it means that the code satisfies its

specification. Advantage of this approach is that it guarantees

correctness of all possible behaviours. Disadvantage is that it is

often labour-intensive, and often many additional annotations,

such as for example loop invariants, are needed to guide the

prover.

III. VISUAL PROGRAM SPECIFICATIONS

This section discusses how to add visual specification con-

structs to Snap!. Our goal was to do this in such a way that

(1) the intended semantics of the specification construct is

clear from the way it is visualised, and (2) that it smoothly

integrates with the existing programming constructs in Snap!
Often, Design-by-Contract specifications are added as spe-

cial comments in the code. For example, in JML a function

contract is written in a special comment, tagged with an

@-symbol, immediately preceding the function declaration.

The tag ensures that the comment can be recognised as part
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of the specification. There also exist languages where for

example pre- and postconditions are part of the language

(e.g., Eiffel [18], Spec# [19]). We felt that for our goal,

specifications should be integrated in a natural way in the

language, rather than using comments. Therefore, we introduce

variations of the existing block structures, in which we added

suitable slots for the specifications. This section discusses how

we added pre- and postconditions, and in-code specifications

such as asserts and loop invariants to Snap!. In addition, to

have a sufficiently expressive property specification language,

we also propose an extension of the expression constructs.

A. Visual Pre- and Postconditions

To specify pre- and postconditions for a BYOB script, we

provide a variation of the initial hat block with a slot for

a precondition at the start of the block, and a slot for a

postcondition at the end of the block (Fig. 2).

This shape is inspired by the c-shaped style of other Snap!
blocks, such as blocks for loops. The main advantage is that

it visualises at which points in the execution, the pre- and the

postconditions are expected to hold. In addition, it also graph-

ically identifies which code is actually verified. Moreover, the

shapes are already familiar to the Snap! programmer. If the

slots are not filled, default pre- and postcondition true can

be used. Notice that the pre- and postcondition slots consist of

multiple boolean-argument slots, and we define the property

to be the conjunction of the evaluation of each of these slots.

This is similar to how Snap! extends a list or adds arguments

to the header of a BYOB.

Figure 2: Hat block extended with contracts

B. Visual Assertions and Loop Invariants

For static verification, pre- and postconditions are often not

sufficient, and we need additional in-code specifications to

guide the prover, such as assertions, which specify properties

that should hold at a particular point in the program, and loop

invariants. Moreover, assertions can also be convenient for run-

time assertion checking to make it explicit that a property

holds at a particular point in the program.
a) Visual Assertions: To specify assertions, both the

property specified and the location within the code are rele-

vant. To allow the specification of assertions at arbitrary places

in a script, we define a special assertion block

similar to all other control blocks.

b) Visual Loop Invariants: Loop invariants are necessary

for static verification [20]. A loop invariant should hold at the

beginning and end of every loop iteration. To account for this,

we provide a (multi-argument boolean) slot to specify the loop

invariant in the traditional Snap! c-shaped loop block. This slot

is located just after the header where the loop conditions are

defined. In addition, the c-shaped loop block repeats the word

invariant at the bottom of the block (see Figure 3) to visually

indicate that the invariant is checked after each iteration.

Figure 3: Visual loop invariants.

C. Visual Expressions

In addition, we have introduced some specification-only

keywords, as commonly found in Design-by-Contract lan-

guages.

• An old expression is used in postconditions to indicate

that a variable/expression should be evaluated in the pre-

state of the function. To support this, we introduced an

operator block with a slot for a variable name.

• A result expression refers to the return value of a function

inside its postcondition. We support this by introducing

a constant operator, that allows to specify a

property about the result value of a reporter BYOB.

We also introduce syntax to ease the definition of com-

plex Boolean expressions, by means of the operator blocks

, , and , as

well as syntax to write more advanced Boolean expressions,

introducing support for quantified expressions (See Fig.4).

Figure 4: A global quantification expression block

IV. GRAPHICAL APPROACH TO VERIFICATION RESULT

REPORTING

Another important point to consider is how to report on

the outcome of the verification: (1) presenting the verdict of a

passed verification, and (2) in case of failure, giving a concrete

and understandable explanation for the failure. The latter is

especially important in our case, as we are using the technique

with inexperienced users.

In order to signal a contract violation, or any assertion

invalidated during dynamic verification, we use Snap!’s pop-

up notification windows. These windows have the advantage

that a failing block can be printed inside them even when the

failing script is not currently visible to the user. This allows

to be very precise about the error, even when the BYOB body

is not currently visible.
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Figure 5: Static verification compilation notification.

In order to signal errors while compiling to Boogie, such as

making use of dynamic typing or nested lists in your Snap!
BYOB code, we use Snap!’s speech bubbles that can emerge

at specific points in the script while describing the cause of

failure. This has the advantage that the failing block can easily

be singled out by the location of the bubble, while the cause

of failure is described by the text inside the bubble. We find

this option less invasive than a pop-up window but still as

precise, and we can be sure that the blocks involved will be

visible since static verification is triggered from the BYOB

editor window (See Fig.5). Notice that currently we do not

report the results of static verification within Snap!, since our

extension only returns a compiled Boogie code which has to

be verified with Boogie separately.

V. TOOL SUPPORT

We have developed our ideas into a prototypal extension to

Snap! which can be found at https://git.snt.utwente.nl/montire/

verifiedsnap/. This repository also contains a set of running ex-

amples to showcase the new support for verification. These are

available in the lessons folder under the root directory along

with an exercise sheet named exercises.pdf. The extension uses

the same technology as the original Snap! and can be run by

just opening the snap.html file in most common web-browsers

that support java-script.

Our extension supports both dynamic and static verifica-

tion of BYOB blocks. Dynamic verification is automatically

triggered when executing BYOB blocks in the usual way.

For static verification, a dedicated button located at the top

right corner of the BYOB editor window allows to trigger the

compilation of the BYOB code into an intended equivalent

Boogie code. The compiled code can be then downloaded and

verified with Boogie. Boogie can be run locally or on the

cloud at https://rise4fun.com/Boogie/. Dynamic verification
has been fully integrated into the normal execution flow of

a Snap! program, and thus there is no real restrictions on the

characteristics of the BYOB that can be dynamically verified.

For Static verification, we have restricted data types to be

Integers, Booleans and List of Integers. Moreover, we do not

support dynamic typing of variables. Finally, we only focus on

compiling an interesting subset of Snap! blocks for the sake

of teaching Design-by-Contract.

VI. CONCLUSIONS

This paper presented a prototypal program verification ex-

tension to Snap!. The extension is intended to support the

teaching of Design-by-Contract in the later years of high

schools. We paid considerable attention to the didactic aspects

of our tool: the looks and feel of the extension should remain

familiar to Snap! users, the syntax and structure of the new

blocks should give a clear intuition about their semantics, and

the error reporting should be precise and expressive.

Our extension allows to analyse BYOB blocks both by

runtime assertion checking and static verification. Runtime

assertion checking is fully integrated into Snap! and there is

no limitation on the kind of blocks that can be analysed. Static

verification compiles the Snap! code into a Boogie equivalent

code and the verification needs to be run outside of Snap!.
Moreover, we make some restrictions on the kind of BYOB

blocks we can compile, in order to keep the complexity of

the prototype low. As future work we would like to lift these

restrictions as much as possible by integrating the remaining

Snap! blocks into the compilation and by allowing other

data types to be used. Also, we would like to integrate the

verification into Snap!, translating Boogie messages back to

the Snap! world, to help student to interpret them.

We would like to carry out an empirical study on our

proposed approach. This will require the development of a

concrete study plan and its evaluation in a Dutch classroom.

Computer science curricula that uses blocks programming

is widely and freely available [21], [22], [23], [24], [25].

Nevertheless, it is hardly spotted that they include topics

around design and verification of code. The words ‘test’

or ‘testing’ are also rare around the curricula and, where

mentioned, they are not sufficiently motivated. The drawbacks

of teaching coding with blocks without paying attention to

design nor correctness has already been analysed [26], [27].

We have not found any work on teaching these concepts

in schools, nor implementations on block programming that

support teaching them.
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