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Executive Summary 

In computerized adaptive testing, the responses of test takers to test questions (items) are used to select subsequent 
items for administration that are tailored to the test taker’s ability level. A mathematical model called item response 
theory (IRT) is commonly used to estimate both the characteristics of the items and the ability level of the test takers. 
Data from computerized adaptive tests can be used to evaluate hypotheses about student proficiency, such as hypotheses 
about subgroup differences (gender, racial/ethnic group, previous education, preparatory training) or the development of 
their proficiencies. The hypotheses can be evaluated by adding a structural model for test taker ability to the IRT model. 
Typical examples of such structural models are (linear) analysis of variance and regression models. 

The goal of this study is to compare the power of several common but complex methods for such extended models 
(i.e., marginal maximum or Bayesian methods) to a simpler alternative (i.e., plausible value imputation). The power of 
the methods is evaluated for IRT models for dichotomously and polytomously scored items, and for a model for 
responses to dichotomous items combined with response times. Simulation studies show that a relatively simple version 
of the plausible value imputation method does not perform worse than more advanced methods. 

 
Abstract 

Data from computerized adaptive tests can be used to evaluate hypotheses about student proficiency, such as 
hypotheses about differences between groups of students (e.g., gender, racial/ethnic group, previous education, 
preparatory training) and hypotheses concerning the development of proficiency. Such hypotheses can be evaluated by 
analysis of variance and regression models for item response theory (IRT) proficiency parameters. Several methods for 
the estimation of such models are compared with respect to their power for the detection of effects: methods based on 
plausible value imputation and methods based on marginal maximum likelihood estimation. The power of the methods is 
evaluated for models for dichotomously scored items, polytomously scored items, and an IRT model for responses to 
dichotomous items combined with the RTs. Simulation studies show that a relatively simple plausible value imputation 
method that ignores the covariance between measurement occasions does not perform worse than more advanced 
methods. 

 
Introduction 

Data obtained using a computerized adaptive test (CAT) can be used to evaluate hypotheses about student 
proficiency, such as hypotheses about differences between groups of students (e.g., gender, racial/ethnic group, previous 
education, preparatory training) and hypotheses concerning the development of proficiency. Such hypotheses can be 
tested using analysis of variance and regression models for item response theory (IRT) proficiency parameters. Several 
methods are available to estimate the parameters of these models. The parameters of the IRT measurement model (item 
parameters) and the structural model (regression parameters) can be estimated concurrently using marginal maximum 
likelihood (MML, Mislevy & Bock, 1989). This estimation procedure can also be divided into two separate steps, where 
the parameters of the measurement model are estimated first, followed by MML estimation of the structural parameters 
treating the estimated item parameters as known constants. This procedure will be labeled two-step MML (MML2). As 
an alternative, Fox and Glas (2001, 2002, 2003) considered concurrent estimation in a fully Bayesian framework where 
they made computations using the Gibbs sampler. The advantage of MML and Bayesian methods is that they are based 
on a well-founded statistical framework. Disadvantages are the numerical complexity of the methods, the need to use 
specialized and not readily available software, and possible confounding of the fit of the measurement model and the 
structural model. A much used alternative is a method using multiple imputations, generally known as plausible value 
imputation (Mislevy, 1991). The method consists of three steps: 

 
1. The IRT model is estimated and validated. 

2. Values of the student parameters are drawn from their posterior distribution or their sample distribution. 

3. These so-called plausible values are imputed into the structural model (e.g., analysis of variance model). 

Plausible values rather than maximum likelihood estimates or Bayesian estimates are imputed to account for the 
estimation error of these parameters. An advantage of the method is that the last step can be performed using standard 
user-software, such as SPSS, SAS, or STATA. 

The methods and simulation studies presented here are an extension of the work by Holman, Glas, and de Haan 
(2003). These authors examined the power of the MML2 method in a two-legged trial with the two-parameter logistic 
(2PL) model as measurement model. They concluded that the number of respondents in each arm of a randomized trial 
varies with the number of items used. They also concluded that as long as 20 dichotomously scored items are used, the  
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number of items barely affects the number of respondents needed to detect effect sizes of 0.5 and 0.8 with a power of 
80%. 

In the present paper, their research is generalized in several directions. With respect to estimation methods, 
concurrent MML estimation and two versions of plausible value imputation are considered. The design is generalized to 
a two-way longitudinal design. Further, three models for polytomously scored items (the generalized partial credit 
model, the sequential model, and the graded response model) and a combined IRT model for accuracy and speed are 
considered. 

This report is organized as follows. First, the IRT models are presented and the estimation methods outlined. Then, 
the simulation studies are presented and some conclusions drawn. 

 
Item Response Theory 

Item Response Models for Dichotomously Scored Response Data 

IRT models relate discrete dichotomously or polytomously scored responses to latent respondent variables. The 
family of IRT models is by now quite big (for an overview, see de Boeck & Wilson, 2004; Skrondal & Rabe-Hesketh, 
2004; van der Linden & Hambleton, 1997). We will first focus here on the basic IRT model most used in CAT, the 2PL 
model (Birnbaum, 1968). The model pertains to dichotomously scored responses to items that will be indexed 

 The respondents will be indexed  The responses are coded  and  and are 
modeled by a unidimensional latent variable  Using the abbreviation for the logistic function given by 
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in the 2PL model, the probability of a correct response on item  is given by i
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where  is the parameter representing the trait level of the respondent and  and  
represent the location and the discriminating power of item  respectively. 
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Item Response Models for Polytomously Scored Response Data 

Consider a test with polytomously scored items labeled  Every item has response categories labeled 
 Item responses will be coded by stochastic variables nij  (   ; in the 

sequel the index  of i  is dropped for convenience) with realizations .nij  Assume that  if a response was 
given in category  and zero otherwise. It will be assumed that the response categories are ordered, and that there exists 
a latent ability variable nq  such that a response in a higher category reflects a higher ability level than a response in a 
lower category. The probability of scoring in a response category  on item  is given by a response function 

ij n nij n  In many measurement situations, such as in measurement of abilities, it is reasonable to 
assume that the response function of the category  decreases as a function of ability, the response function for 

 increases as a function of ability, and the response functions of the intermediate categories are single peaked. 
Mellenbergh (1995) showed that IRT models with such response functions can be divided into three classes. Though the 
rationales underlying the models in these classes are very different, their response functions appear to be very close 
(Verhelst, Glas, & de Vries, 1997), so the models might be hard to distinguish on the basis of empirical data. We will 
now introduce three models from the three classes distinguished by Mellenbergh (1995). 
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The Graded Response Model 

In the graded response model (GRM), the probability of a response in category  of item   is 
given by 

j ,i ( 1 |nij nP u q=

  

  

(3)
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(Samejima, 1969). To ensure that the probabilities  are positive, the restriction  for 0  is 
imposed. 
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The Sequential Model 

In the sequential model (SEQM, Tutz, 1990, 1997) the probability of a response in category  of item i  is given by j

  

  

(4)
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Verhelst, Glas, and de Vries (1997) noted that in the SEQM, every polytomously scored item can be viewed as a 
sequence of virtual dichotomously scored items. These virtual items are considered to be presented to the respondent as 
long as a correct response is given, and the presentation stops when an incorrect response is given. An important 
consequence of this conceptualization of the response process is that estimation and testing procedures for the 2PL 
model with incomplete data can be directly applied to the SEQM. 
 
The Generalized Partial Credit Model 

In the generalized partial credit model (GPCM, Muraki, 1992) the probability of a response in category  of item  
is given by 

j i
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The partial credit model (PCM, Masters, 1982) is the special case where  for all items .  The item parameters are 
usually reparameterized as 1hb =  In that case,  can be interpreted as a so-called boundary parameter:  is 
the position on the latent q -scale where  

1ia = i
.j

ij ihh= å ijh
(ijP Pq q

ijh
( 1) ( ) ).i j n n- =

 
Multidimensional Generalizations 

In many situations, the assumption that an individual’s response behavior can be explained by a unidimensional 
student parameter  does not hold. In that case the assumption of a unidimensional student parameter can be replaced 

by the assumption of a multidimensional student parameter . The multidimensional versions of the 

models given by (3)–(5) are defined by replacing  by 

nq
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b
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iq nq
q

a q
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Further, it is usually assumed that the parameters  have a joint Q -variate normal distribution 
(McDonald, 1997; Reckase, 1997). 

1, … , , … ,n nqq q q

 
A Combined Model for Responses and Response Times 

The model for accuracy and speed used in this report was developed by van der Linden (2005, 2006). It is a 
hierarchical model consisting of four different components on two levels. The first-level models are for the distributions 
of the responses and the response times (RTs) for a fixed student on a fixed item. The second-level models are for the 
joint distribution of the student parameters in the two first-level models in some student population and the distribution 
of the item parameters and the item domain. 

On the first level, the probability of a correct response from student  on item  is given by the three-parameter 
logistic (3PL) model (Birnbaum, 1968; Lord, 1980); that is, 

n i

  
(6)

   
where 1n  is the ability of student  and  and  are the difficulty, discrimination, and 
guessing parameter, respectively, for item  
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For the distribution of RT  of student  on item  we use the lognormal model niT n ,i
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where 2n  is the speed at which student  operates on the test, ie  is the time intensity of item  and i  
is its discrimination parameter. The model is equivalent to that of a normal distribution for the logarithm of the RT, 

 

q  

.

n   ,i d + 

logTni
On the second level, it is assumed that the first-level student parameters are independent and identically distributed 

(i.i.d.) samples from a bivariate normal distribution, that is, 

  
(8)

   
and the first-level item parameters are i.i.d. samples from a multivariate normal distribution 

1 2( , ) MVN( , ),n n nq q=   

  

 

(9)
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The model is identified by setting the mean of the distribution of the latent trait variables equal to zero—that is, 

using —and the diagonal of the covariance matrix equal to one—that is, 0= ( )diag = 1 . So becomes a 
correlation matrix. Note that the latent variables are independent between respondents but dependent within 
respondents. 


n

 
Linear Models on the Latent Variables 

Longitudinal data can be analyzed in the framework of multilevel models (Bryke & Raudenbush, 1992, Goldstein, 
1987; Longford, 1993) where occasions are nested within respondents. Examples of applications of the multilevel 
paradigm in the field of IRT can be found in Mislevy and Bock (1989) and Fox and Glas (2001, 2002, 2003). Assume 
that nt  are latent variables of students  related to measures  The measures may, for example, 
relate to different time points, or different ability dimensions, or to a combination of the two. We impose a regression 
model on the latent variables given by 
 

q 1, … ,n = N T

P

1, … , .t =

1
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xq b e
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where ntpx  are observations on  covariates. In matrix notation we have, 
 

P

.n n= +X n    

The error terms have a multivariate normal distribution, that is, 
 

( , ).n N 0   

The covariance matrix  need not be diagonal; for instance, in longitudinal designs it is usually assumed that the errors 
are autocorrelated. 



 
Estimation Methods 

Marginal Maximum Likelihood 

MML estimation is a much used technique for item calibration. For the 2PL and 3PL models, the theory was 
developed by Bock and Aitkin (1981). Under the label “Full Information Factor Analysis,” a multidimensional version 
of the 2PL model and 3PL model was developed by Bock, Gibbons, and Muraki (1988). (See also Ackerman, 1996a, 
1996b; and Reckase, 1985, 1997.) Glas and van der Linden (2006) presented an MML estimation procedure for the 
hierarchical model for accuracy and speed. Further, for this model, they developed Lagrange multiplier tests to test three 
different assumptions of conditional independence in the model (Glas & van der Linden, 2006; van der Linden & Glas, 
2006). 
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MML estimates of the regression coefficients   and the covariance matrix   can be obtained either concurrently 

with the item parameters or by treating the item parameters as known constants. Both approaches are based on the 
following. In general, let  be the vector of the item responses and RTs of student  that is,   

Using the assumption of local independence, the probability of a response pattern  is given 

by 
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where   and i  are vectors of item parameters. 
The parameters   and  can be estimated using an alternating generalized least-squares algorithm with the steps 
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where we estimate the covariance matrix of the residuals as 
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for  where  is the posterior distribution of 1, … , ,n = N ( | , , , , , )n np u b a X   n  given by 
 

( | , , , , ) ( | , ) ( | , )n n n n np P pµu X u .          

In MML, the item parameters   are imputed as constants in the estimation equations for the regression coefficients 
 and the covariance matrix  For concurrent MML estimation, the estimation equations for the regression coefficients 
 and the covariance matrix  are solved concurrently with the MML estimation equations for the item parameters .




.
   

For solving the estimation equations, the expectation-maximization (EM) algorithm by Dempster, Laird, and Rubin 
(1977) can be used. The E-step consists of computing n  and nH  for  and the M-step consists of solving 
the equations for  and  . These new estimates are then inserted in the E-step and the whole process is iterated until 
convergence is achieved. The multiple integrals that appear above can be evaluated using adaptive Gauss-Hermite 
quadrature (Schilling & Bock, 2005). A critical point related to using Gauss-Hermite quadrature is the dimensionality of 
the latent space, that is, the number of latent variables that can be analyzed simultaneously. Wood et al. (2002) indicated 
that the maximum number of factors is 10 with adaptive quadrature, 5 with nonadaptive quadrature, and 15 with Monte 
Carlo integration. Recently, alternative procedures based on Monte Carlo integration and importance sampling were 
suggested by Fox (2003) and van Davier and Sinharay (2007). 

1, … , ,n = N

.X




 
Plausible Value Imputation 

The use of the methods described in the previous section depends on specialized software that is not readily 
available to the practitioner. However, most data analysts only have standard software, such as SPSS, SAS, and STATA 
available. The problem is solved by using an alternative approach that is known as multiple imputation or plausible value 
imputation (Mislevy, 1991). Plausible values are random draws from a student’s posterior distribution, 

 Usually, three to five draws are taken from the posterior distribution for each student, and the 
regression model  is estimated for each of the draws. The variance in the estimates of the regression 
parameters   gives an indication of the uncertainty attributable to the uncertainty of the estimates of 

( | , , , , )n np u   
= +X 

.  If an explicit 
estimate of this uncertainty is not needed, but the uncertainty only has to be taken into account in the estimation of   
one draw for every student is sufficient. This approach is, for instance, used in the analyses in the National Assessment 
of Educational Progress (NAEP, Mislevy, Johnson, & Muraki, 1992). 
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In the case of between-items multidimensionality, the drawing of plausible values can be done using two methods. 
In the first method, the item and population parameters are estimated for each dimension separately, and the plausible 
values for every student and for every dimension are drawn separately. In the second method, the values of the item and 
population parameters are estimated concurrently under the assumption that the students’ ability parameters are 
multivariate normally distributed, and the plausible values for every student are drawn concurrently for all dimensions, 
thereby taking the covariance between the dimensions into account. The plausible values can be drawn with a sampling-
importance-resampling (SIR) algorithm (Thomas & Gan, 1997; also see Gelfan & Smith, 1990; and Tanner, 1993). 

 
Simulation Studies 

Dichotomously Scored Items, Two Groups 

The first set of simulations pertains to replication of some of the simulations done by Holman, Glas, and de Haan 
(2003). These authors used the MML2 method, in which item parameters are fixed. In the present report, concurrent 
MML estimation and plausible value imputation are also considered. Holman et al. considered a design with 30, 40, 50, 
100, 200, 300, 500, or 1,000 simulees in each of two groups and test lengths of 5, 10, 15, 20, 30, 50, 70, or 100 
dichotomously scored items. It is beyond the scope of the present report to evaluate all these conditions, so here we 
restrict ourselves to 5, 10, 20, and 50 items, and sample sizes of 30, 50, 100, and 500 respondents in each group. Other 
aspects of the present study were analogous to the study by Holman et al. That is, the ability parameters for both groups 
were sampled from normal distributions with standard deviations equal to one. The means were equal to zero for the first 
group and equal to some effect size for the second group. These effect sizes were equal to 0.0, 0.2, and 0.5. Cohen 
(1988) labeled the latter two effects as a small and moderate effect, respectively. 
 
TABLE 1 
Type I error rate and power of a test for the difference between the means of two ability distributions for a test length of 5 and 10 
items 

 True Theta Plausible Value MML Estimate 
Significance Level: 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

          
 K

 
N  

 
Effect Size          

  5   30 0.0 0.11 0.05 0.01 0.11 0.07 0.01 0.10 0.06 0.01 
  0.2 0.30 0.21 0.10 0.23 0.15 0.06 0.32 0.23 0.11 
  0.5 0.85 0.78 0.57 0.68 0.58 0.37 0.87 0.81 0.57 
            
   50 0.0 0.11 0.05 0.02 0.13 0.05 0.02 0.11 0.07 0.02 
  0.2 0.42 0.31 0.14 0.30 0.23 0.11 0.44 0.31 0.14 
  0.5 0.98 0.96 0.84 0.83 0.74 0.56 0.96 0.93 0.82 
            
 100 0.0 0.10 0.06 0.02 0.13 0.06 0.01 0.09 0.05 0.01 
  0.2 0.64 0.50 0.28 0.48 0.37 0.15 0.63 0.50 0.29 
  0.5 1.00 1.00 0.99 0.98 0.94 0.87 1.00 1.00 0.99 
            
 500 0.0 0.11 0.07 0.02 0.19 0.13 0.06 0.14 0.06 0.01 
  0.2 1.00 0.99 0.96 0.91 0.86 0.73 1.00 1.00 0.98 
  0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
            

10   30 0.0 0.11 0.06 0.02 0.11 0.05 0.01 0.10 0.06 0.01 
  0.2 0.32 0.22 0.10 0.27 0.20 0.09 0.32 0.23 0.10 
  0.5 0.86 0.80 0.57 0.77 0.67 0.46 0.87 0.79 0.57 
            
   50 0.0 0.11 0.04 0.01 0.11 0.06 0.02 0.10 0.06 0.02 
  0.2 0.48 0.37 0.19 0.40 0.30 0.14 0.47 0.36 0.18 
  0.5 0.99 0.97 0.85 0.94 0.89 0.72 0.99 0.97 0.86 
            
 100 0.0 0.10 0.04 0.01 0.12 0.06 0.01 0.13 0.07 0.01 
  0.2 0.67 0.55 0.29 0.53 0.43 0.24 0.64 0.52 0.30 
  0.5 1.00 1.00 1.00 1.00 0.99 0.95 1.00 1.00 0.99 
            
 500 0.0 0.12 0.05 0.02 0.15 0.09 0.03 0.10 0.05 0.01 
  0.2 1.00 1.00 0.95 0.99 0.95 0.87 1.00 0.99 0.98 
  0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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TABLE 2 
Type I error rate and power of a test for the difference between the means of two ability distributions for a test length of 20 and 50 
items 

 True Theta Plausible Value MML Estimate 
Significance Level: 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

          
 K

 
N  

 
Effect Size          

20   30 0.0 0.11 0.07 0.02 0.12 0.07 0.01 0.12 0.06 0.02 
  0.2 0.32 0.22 0.09 0.30 0.20 0.09 0.31 0.20 0.09 
  0.5 0.88 0.79 0.58 0.81 0.73 0.50 0.89 0.81 0.58 
            
   50 0.0 0.10 0.04 0.01 0.09 0.04 0.01 0.09 0.04 0.01 
  0.2 0.42 0.31 0.13 0.40 0.28 0.10 0.46 0.31 0.15 
  0.5 0.97 0.95 0.85 0.95 0.91 0.77 0.98 0.95 0.85 
            
 100 0.0 0.12 0.07 0.02 0.12 0.06 0.02 0.12 0.07 0.02 
  0.2 0.67 0.55 0.32 0.62 0.51 0.28 0.67 0.55 0.34 
  0.5 1.00 1.00 0.99 1.00 1.00 0.97 1.00 1.00 0.99 
            
 500 0.0 0.11 0.05 0.01 0.10 0.06 0.02 0.10 0.05 0.01 
  0.2 1.00 1.00 0.98 0.99 0.99 0.95 1.00 1.00 0.98 
  0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
            

50   30 0.0 0.11 0.06 0.02 0.11 0.06 0.02 0.11 0.06 0.01 
  0.2 0.33 0.22 0.08 0.31 0.21 0.08 0.33 0.23 0.08 
  0.5 0.88 0.80 0.60 0.87 0.77 0.56 0.88 0.80 0.61 
            
   50 0.0 0.10 0.06 0.02 0.10 0.06 0.01 0.09 0.06 0.01 
  0.2 0.43 0.28 0.14 0.41 0.26 0.11 0.42 0.28 0.13 
  0.5 0.98 0.96 0.84 0.97 0.94 0.81 0.98 0.95 0.85 
            
 100 0.0 0.10 0.04 0.01 0.12 0.06 0.02 0.11 0.06 0.01 
  0.2 0.61 0.49 0.27 0.59 0.45 0.24 0.62 0.50 0.27 
  0.5 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 
            
 500 0.0 0.10 0.05 0.01 0.10 0.05 0.01 0.08 0.04 0.01 
  0.2 1.00 1.00 0.97 1.00 0.99 0.96 1.00 1.00 0.97 
  0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 
The responses were generated according to the 2PL model. In each replication, the item difficulty parameters were 

drawn from a standard normal distribution, and the item discrimination parameters were drawn from a lognormal 
distribution with a mean of 0.2 and a variance of 1.0. 

The results obtained using 1,000 replications are given in Tables 1 and 2. These results can be compared with the 
results obtained using MML2 reported by Holman et al. (2003) in their Table 3. The first three columns give the test 
length, sample sizes in each group, and effect sizes, respectively. The other columns give the proportion of replications 
in the 1,000 replications where the test statistic was significant at 10%, 5%, and 1% using a two-sided test. The statistic 
was the estimated difference of the means divided by the standard deviation of this difference. The significance 
probability was computed assuming that the statistic had a normal distribution. For the columns under the heading “True 
Theta,” the true generating values of the abilities were used to compute least-squares estimates of the mean of the 
abilities of the second group and the standard deviations of the abilities of the two groups. The mean of the first group 
was fixed to zero to identify the model. For the next three columns, the same was done using plausible values. Finally, 
the three last columns give the significance proportions obtained using concurrent MML estimates. 

In the rows for an effect size equal to 0.0, it can be seen that the control of Type I error rate was excellent for all 
conditions. Further, with respect to the power, there were the usual main effects of the effect size, the sample size, and 
the number of items. The power was highest when the true theta values were used as input for the estimation of the 
difference between the two means, followed by the power of the MML method and the power of the plausible value 
method. Note, however, that the differences in power were very small. On the other hand, the reader can verify in the 
article by Holman et al. that the powers obtained using the MML2 method (i.e., the two-step method, in which the item 
parameters are treated as fixed constants) were substantially lower. Some examples of the differences are displayed in 
Table 3. 
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TABLE 3 
The difference in power between two versions of MML and plausible 
value imputation for an effect size of 0.2 

 
 K

 
N  

Plausible 
Values 

 
MML 

 
MML2 

5   50 0.23 0.31 0.08 
 100 0.37 0.50 0.14 
     

10   50 0.30 0.36 0.11 
 100 0.43 0.52 0.17 
     

20   50 0.28 0.31 0.13 
 100 0.51 0.55 0.22 
     

50 50 0.36 0.28 0.13 
 100 0.45 0.50 0.23 

 
The reason for this difference may have to do with the following. Holman et al. note that the estimate of the 

difference between the means and its standard error are complex functions of the item and population parameters. 
Treating the item parameters as fixed rather than using MML estimates of these parameters obviously leads to loss of 
power. 

 
Dichotomously Scored Items, Two Groups and Two Time Points 

In the next set of simulation studies, the design was expanded to two groups measured at two time points using the 
same set of items. Other features of the simulation design were analogous to the set-up in the previous paragraph. Table 
4 shows the results for a model with a main group effect equal to 0.2 or 0.5 and a zero time effect, Table 5 shows the 
results for a model with a main time effect equal to 0.2 or 0.5 and a zero group effect, and in Table 6 both main effects 
are either equal to 0.2 or 0.5. The significance level of the two-sided test was 5%. Besides the usual effects of test length, 
sample size, and effect size, the following effects are of interest. First, the power of all three methods was very close, but 
the power of MML was slightly lower than the power for the two methods based on plausible values. Second, the control 
of the Type I error rate for the zero effect, that is, the time effect in Table 4 and the group effect in Table 5, was 
excellent: The proportions of significant tests in the replications were very close to the nominal significance level of 5%. 
Finally, overall, the power of the test for the time effect increased as the correlation between the two time points 
increased from 0.2 to 0.4. 
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TABLE 4 
Type I error rate for time effect and power for group effect for different test lengths, sample sizes, effect sizes, autocorrelations, and 
estimation methods 

Plausible Value  
Unidimensional 

Plausible Value  
Multidimensional 

 
MML Estimate 

 
 

 K

 
 

N  

 
 

Effect Size 

 
 

Autocorr. Time Effect Group Effect Time Effect Group Effect Time Effect Group Effect 
10   50 0.2 0.2 0.06 0.41 0.06 0.37 0.07 0.32 
   0.4 0.06 0.37 0.06 0.37 0.06 0.30 
  0.5 0.2 0.06 0.98 0.06 0.97 0.06 0.93 
   0.4 0.05 0.98 0.05 0.96 0.04 0.92 
 100 0.2 0.2 0.06 0.64 0.06 0.63 0.06 0.46 
   0.4 0.06 0.64 0.06 0.64 0.04 0.47 
  0.5 0.2 0.06 1.00 0.05 1.00 0.04 1.00 
   0.4 0.07 1.00 0.06 1.00 0.04 1.00 
 200 0.2 0.2 0.05 0.93 0.06 0.90 0.05 0.81 
   0.4 0.05 0.92 0.05 0.89 0.04 0.77 
  0.5 0.2 0.05 1.00 0.05 1.00 0.04 1.00 
   0.4 0.06 1.00 0.05 1.00 0.05 1.00 

20   50 0.2 0.2 0.05 0.36 0.05 0.35 0.05 0.35 
   0.4 0.06 0.37 0.07 0.36 0.04 0.29 
  0.5 0.2 0.04 0.98 0.05 0.98 0.07 0.97 
   0.4 0.06 0.97 0.05 0.97 0.06 0.96 
 100 0.2 0.2 0.07 0.68 0.05 0.65 0.07 0.57 
   0.4 0.04 0.64 0.05 0.62 0.06 0.52 
  0.5 0.2 0.05 1.00 0.04 1.00 0.07 1.00 
   0.4 0.06 1.00 0.05 1.00 0.05 1.00 
 200 0.2 0.2 0.05 0.91 0.05 0.88 0.05 0.83 
   0.4 0.04 0.89 0.05 0.85 0.05 0.82 
  0.5 0.2 0.05 1.00 0.05 1.00 0.05 1.00 
   0.4 0.06 1.00 0.05 1.00 0.05 1.00 

40   50 0.2 0.2 0.06 0.39 0.05 0.37 0.04 0.36 
   0.4 0.05 0.36 0.05 0.34 0.05 0.33 
  0.5 0.2 0.06 0.99 0.06 0.98 0.04 0.98 
   0.4 0.05 0.98 0.04 0.98 0.05 0.98 
 100 0.2 0.2 0.07 0.64 0.05 0.65 0.04 0.59 
   0.4 0.06 0.61 0.06 0.59 0.04 0.54 
  0.5 0.2 0.06 1.00 0.05 1.00 0.04 1.00 
   0.4 0.06 1.00 0.06 1.00 0.06 1.00 
 200 0.2 0.2 0.05 0.90 0.05 0.89 0.04 0.88 
   0.4 0.04 0.90 0.05 0.88 0.02 0.82 
  0.5 0.2 0.05 1.00 0.04 1.00 0.03 1.00 
   0.4 0.05 1.00 0.06 1.00 0.03 1.00 
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TABLE 5 
Type I error rate for group effect and power for time effect for different test lengths, sample sizes, effect sizes, autocorrelations, and 
estimation methods 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
MML Estimate 

 
 

 K

 
 

N  

 
 

Effect Size 

 
 

Autocorr. Time Effect Group Effect Time Effect Group Effect Time Effect Group Effect 
10   50 0.2 0.2 0.42 0.05 0.46 0.06 0.34 0.06 
   0.4 0.45 0.06 0.54 0.05 0.36 0.07 
  0.5 0.2 0.99 0.05 0.99 0.07 0.96 0.06 
   0.4 0.99 0.06 1.00 0.05 0.98 0.05 
 100 0.2 0.2 0.70 0.04 0.73 0.06 0.62 0.05 
   0.4 0.74 0.05 0.80 0.04 0.62 0.04 
  0.5 0.2 1.00 0.04 1.00 0.04 1.00 0.06 
   0.4 1.00 0.04 1.00 0.04 1.00 0.04 
 200 0.2 0.2 0.94 0.05 0.95 0.05 0.93 0.04 
   0.4 0.95 0.06 0.98 0.06 0.90 0.05 
  0.5 0.2 1.00 0.05 1.00 0.07 1.00 0.04 
   0.4 1.00 0.05 1.00 0.05 1.00 0.05 

20   50 0.2 0.2 0.50 0.06 0.50 0.07 0.32 0.06 
   0.4 0.51 0.06 0.57 0.06 0.43 0.06 
  0.5 0.2 0.99 0.06 1.00 0.06 0.99 0.04 
   0.4 1.00 0.05 1.00 0.06 0.99 0.05 
 100 0.2 0.2 0.73 0.07 0.75 0.06 0.61 0.07 
   0.4 0.78 0.05 0.82 0.05 0.71 0.06 
  0.5 0.2 1.00 0.05 1.00 0.05 1.00 0.05 
   0.4 1.00 0.04 1.00 0.05 1.00 0.04 
 200 0.2 0.2 0.96 0.05 0.96 0.04 0.92 0.05 
   0.4 0.97 0.04 0.98 0.04 0.97 0.05 
  0.5 0.2 1.00 0.05 1.00 0.05 1.00 0.05 
   0.4 1.00 0.05 1.00 0.06 1.00 0.07 

40   50 0.2 0.2 0.42 0.06 0.43 0.06 0.40 0.05 
   0.4 0.48 0.07 0.54 0.05 0.51 0.04 
  0.5 0.2 0.99 0.06 1.00 0.06 1.00 0.05 
   0.4 1.00 0.06 1.00 0.06 1.00 0.04 
 100 0.2 0.2 0.72 0.05 0.74 0.05 0.72 0.06 
   0.4 0.77 0.04 0.80 0.06 0.81 0.05 
  0.5 0.2 1.00 0.05 1.00 0.05 1.00 0.04 
   0.4 1.00 0.04 1.00 0.05 1.00 0.04 
 200 0.2 0.2 0.96 0.05 0.96 0.05 0.94 0.06 
   0.4 0.98 0.06 0.99 0.05 0.97 0.04 
  0.5 0.2 1.00 0.05 1.00 0.04 1.00 0.05 
   0.4 1.00 0.05 1.00 0.05 1.00 0.06 
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TABLE 6 
Power for time effect and group effect for different test lengths, sample sizes, effect sizes, autocorrelations, and estimation methods 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
MML Estimate 

 
 

 
 

 NK  

 
 

Effect Size 

 
 

Autocorr. Time Effect Group Effect Time Effect Group Effect Time Effect Group Effect 

10   50 0.2 0.2 0.43 0.38 0.45 0.38 0.35 0.29 
   0.4 0.44 0.39 0.52 0.38 0.35 0.26 
  0.5 0.2 0.99 0.99 1.00 0.98 0.96 0.94 
   0.4 0.99 0.97 1.00 0.95 0.98 0.93 
 100 0.2 0.2 0.74 0.66 0.75 0.64 0.57 0.49 
   0.4 0.71 0.65 0.79 0.63 0.68 0.43 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.93 0.94 0.95 0.91 0.90 0.81 
   0.4 0.95 0.91 0.98 0.90 0.94 0.79 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 

20   50 0.2 0.2 0.46 0.38 0.46 0.38 0.39 0.28 
   0.4 0.50 0.37 0.54 0.37 0.45 0.28 
  0.5 0.2 0.99 0.98 1.00 0.98 0.99 0.96 
   0.4 1.00 0.97 1.00 0.97 0.99 0.95 
 100 0.2 0.2 0.72 0.67 0.74 0.63 0.68 0.57 
   0.4 0.77 0.63 0.83 0.60 0.73 0.51 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.96 0.90 0.96 0.89 0.91 0.84 
   0.4 0.97 0.91 0.98 0.89 0.93 0.83 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 

40   50 0.2 0.2 0.41 0.40 0.41 0.40 0.40 0.40 
   0.4 0.50 0.36 0.55 0.38 0.51 0.33 
  0.5 0.2 0.99 0.98 1.00 0.98 1.00 0.99 
   0.4 1.00 0.97 1.00 0.97 1.00 0.97 
 100 0.2 0.2 0.72 0.64 0.75 0.61 0.69 0.58 
   0.4 0.79 0.61 0.84 0.58 0.80 0.51 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.96 0.91 0.96 0.90 0.93 0.88 
   0.4 0.98 0.90 0.98 0.89 0.97 0.86 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 
To verify this phenomenon further, a set of simulations was run with the same setup, only the autocorrelations were 

varied as 0.2, 0.4, 0.6, and 0.8. Table 7 gives the results for a one-sided test at a 5% significance level for the two 
plausible value methods. The test length was equal to 5. Note that the power increased as a function of the 
autocorrelation, and the power of the test for the group effect actually decreased as a function of the autocorrelation. The 
explanation for the first phenomenon is that the variance of the difference of the latent student parameters decreases as 
the correlation goes up. The second phenomenon is due to the fact that within students, the variance of the ability 
estimates increases as the autocorrelation goes up, because of the increasing dependence between the responses. That is, 
the reliabilities of the estimates are highest when all responses are locally independent, and the reliability decreases when 
dependence due to the autocorrelation increases. 
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TABLE 7 
Power for time and group effect for different sample sizes and estimation 
methods as a function of autocorrelation 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
 

 N

 
 

Autocorr. Time Effect Group Effect Time Effect Group Effect 

  20 0.2 0.33 0.26 0.34 0.27 
 0.4 0.35 0.27 0.38 0.26 
 0.6 0.46 0.26 0.47 0.26 
 0.8 0.67 0.22 0.68 0.23 
      

  50 0.2 0.57 0.49 0.58 0.52 
 0.4 0.67 0.45 0.68 0.44 
 0.6 0.76 0.46 0.76 0.46 
 0.8 0.95 0.47 0.95 0.48 
      

100 0.2 0.83 0.76 0.84 0.78 
 0.4 0.89 0.74 0.88 0.73 
 0.6 0.96 0.66 0.96 0.68 
 0.8 1.00 0.63 1.00 0.64 

 
Polytomously Scored Items, Two Groups and Two Time Points 

The next set of simulation studies pertained to polytomously scored items, and it did generally have the same setup 
as the previous study. However, a different approach was chosen for the choice of the item parameters. The approach 
was analogous to the approach used in Glas and Dagohoy (in press). For the GPCM, the parameters i  were drawn from 
a lognormal distribution with a mean equal to zero and a standard deviation of 0.25. Drawing the item parameters ij  
( ) was not considered, because the interrelation of these parameters may result in very unfavorable values 
with the consequence that some item categories may be without responses. Therefore the values of ijh  were fixed. The 
values chosen for Items 1–5 are given in Table 8. Note that the parameters of Item 3 are located in such a way that the 
category bounds are located symmetric with respect to the standard normal ability distribution. The first two items are 
shifted to the left on the latent scale; the last two items are shifted to the right. For simulation studies with 10 items, the 
item parameters were repeated for the second part of the test. 

a
h

1, … , ij = m

 
TABLE 8 
Item parameter values for the generalized partial 
credit model (GPCM) 

 Category 
Item 1 2 3 4 

1 −2.0 −1.5 −0.5 0.0 
2 −1.5 −1.0 0.0 0.5 
3 −1.0 −0.5 0.5 1.0 
4 −0.5   0.0 1.0 1.5 
5   0.0   0.5 1.5 2.0 

 
The item parameters for the SEQM and GRM were chosen in such a way that the item-category response functions were 
close to the response functions under the GPCM. To achieve this, data were generated under the GPCM, and using these 
data, the item parameters of the SEQM and GRM were estimated using MML. These estimated values were then used as 
generating values for the simulation of data following SEQM and GRM. 

First, the Type I error rate for the two methods using plausible values (unidimensional and multidimensional) and 
the two MML methods (concurrent and MML2 [i.e., two-step MML]) were assessed for tests with a one-sided 
significance level of 5%. One of the questions addressed here is the robustness of the tests when the wrong model is 
used. So, for instance, the Type I error rate and power are assessed when the data are generated using the GPCM, after 
which the test statistic is computed using plausible values or MML estimates obtained under the SEQM or the GRM. 

The results for the Type I error rate using concurrent MML estimates are displayed in Table 9. In all cases, the 
observed proportion of significant tests was close to the nominal significance level. The results for the other methods 
were similar. 
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TABLE 9 
Type I error rate for group effect and time effect for different models, test lengths, sample sizes, and autocorrelations obtained using 
concurrent MML estimates of item and population parameters 

 Computation Model: GPCM SEQM GRM 
Generating 

Model 
 

K  
 

N  
 

Autocorr. 
 

Time Effect
 

Group Effect
 

Time Effect
 

Group Effect 
 

Time Effect
 

Group Effect 
GPCM   5   50 0.2 0.058 0.055 0.062 0.057 0.061 0.057 

   0.4 0.060 0.063 0.052 0.068 0.053 0.064 
  100 0.2 0.059 0.044 0.052 0.050 0.050 0.050 
   0.4 0.055 0.040 0.057 0.040 0.057 0.053 
 10   50 0.2 0.039 0.043 0.034 0.042 0.038 0.058 
   0.4 0.049 0.051 0.049 0.042 0.045 0.039 
  100 0.2 0.044 0.043 0.050 0.051 0.050 0.042 
   0.4 0.037 0.052 0.043 0.053 0.033 0.048 
          

SEQM   5   50 0.2 0.061 0.049 0.057 0.052 0.059 0.059 
   0.4 0.061 0.063 0.056 0.066 0.051 0.068 
  100 0.2 0.053 0.057 0.053 0.055 0.056 0.045 
   0.4 0.055 0.061 0.053 0.056 0.045 0.062 
 10   50 0.2 0.053 0.057 0.052 0.058 0.057 0.045 
   0.4 0.051 0.071 0.051 0.071 0.050 0.060 
  100 0.2 0.047 0.044 0.043 0.043 0.046 0.042 
   0.4 0.039 0.049 0.041 0.051 0.045 0.043 
          

GRM   5   50 0.2 0.060 0.061 0.057 0.064 0.056 0.066 
   0.4 0.059 0.047 0.058 0.058 0.056 0.044 
  100 0.2 0.055 0.059 0.052 0.056 0.058 0.066 
   0.4 0.056 0.050 0.061 0.050 0.055 0.061 
 10   50 0.2 0.053 0.058 0.049 0.057 0.054 0.050 
   0.4 0.061 0.060 0.059 0.064 0.056 0.050 
  100 0.2 0.048 0.043 0.048 0.041 0.050 0.041 
   0.4 0.050 0.037 0.048 0.037 0.053 0.028 

 
Next, the power was investigated using a number of simulations with the same setup as above: simulations with a 

group effect only, simulations with a time effect only, and simulation studies where both effects were present. The 
results for the two plausible value methods for the case with an autocorrelation of 0.4 are reported in Tables 10–12. The 
results for an autocorrelation of 0.2 are not reported here, but they had the same pattern as above; that is, the power for 
the time effect was slightly lower, and the power for the group effect was slightly higher. Note that the unidimensional 
plausible value method seems to have a slightly higher power than the multidimensional method. There is no clear 
explanation for this phenomenon. The magnitude of the power obtained using the concurrent MML method (not shown 
here) was very close to the power obtained using the multidimensional plausible value method, even if the wrong model 
was used. 
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TABLE 10 
Type I error rate for time effect and power for group effect for different models, test lengths, sample sizes, and effect sizes obtained 
using plausible values 

Plausible Value 
Unidimensional 

Plausible Value  
Multidimensional 

 
Generating 

Model 

 
 

 K

 
 

N  

 
 

Effect Size Time Effect Group Effect Time Effect Group Effect 

GPCM   5   50 0.2 0.055 0.497 0.062 0.455 
   0.5 0.061 0.995 0.064 0.988 
  100 0.2 0.046 0.792 0.058 0.711 
   0.5 0.047 1.000 0.052 1.000 
 10   50 0.2 0.049 0.499 0.052 0.455 
   0.5 0.055 0.997 0.059 0.989 
  100 0.2 0.035 0.794 0.046 0.715 
   0.5 0.054 1.000 0.036 1.000 
        

SEQM   5   50 0.2 0.074 0.579 0.067 0.457 
   0.5 0.072 1.000 0.056 0.994 
  100 0.2 0.056 0.808 0.060 0.694 
   0.5 0.058 1.000 0.045 1.000 
 10   50 0.2 0.049 0.585 0.035 0.466 
   0.5 0.053 0.994 0.047 0.991 
  100 0.2 0.047 0.808 0.046 0.694 
   0.5 0.046 1.000 0.060 1.000 
        

GRM   5   50 0.2 0.043 0.613 0.044 0.467 
   0.5 0.049 1.000 0.038 0.988 
  100 0.2 0.054 0.851 0.052 0.681 
   0.5 0.061 1.000 0.066 1.000 
 10   50 0.2 0.045 0.647 0.045 0.479 
   0.5 0.051 0.997 0.059 0.984 
  100 0.2 0.061 0.899 0.061 0.714 
   0.5 0.060 1.000 0.054 1.000 

 
TABLE 11 
Type I error rate for group effect and power for time effect for different models, test lengths, sample sizes, and effect sizes obtained 
using plausible values 

Plausible Value 
Unidimensional 

Plausible Value  
Multidimensional 

 
Generating 

Model 

 
 

K  

 
 

N  

 
 

Effect Size Time Effect Group Effect Time Effect Group Effect 

GPCM   5   50 0.2 0.769 0.050 0.637 0.052 
   0.5 1.000 0.049 1.000 0.061 
  100 0.2 0.954 0.047 0.878 0.046 
   0.5 1.000 0.051 1.000 0.058 
 10   50 0.2 0.786 0.051 0.634 0.052 
   0.5 1.000 0.043 1.000 0.043 
  100 0.2 0.956 0.040 0.876 0.030 
   0.5 1.000 0.049 1.000 0.040 
        

SEQM   5   50 0.2 0.865 0.052 0.638 0.053 
   0.5 1.000 0.038 0.997 0.055 
  100 0.2 0.979 0.046 0.880 0.048 
   0.5 1.000 0.043 1.000 0.051 
 10   50 0.2 0.875 0.055 0.664 0.055 
   0.5 1.000 0.044 1.000 0.035 
  100 0.2 0.957 0.045 0.885 0.039 
   0.5 1.000 0.045 1.000 0.043 
        

GRM   5   50 0.2 0.871 0.063 0.632 0.069 
   0.5 1.000 0.053 1.000 0.043 
  100 0.2 0.993 0.044 0.894 0.060 
   0.5 1.000 0.046 1.000 0.052 
 10   50 0.2 0.896 0.059 0.654 0.037 
   0.5 1.000 0.052 1.000 0.039 
  100 0.2 0.994 0.035 0.881 0.029 
   0.5 1.000 0.043 1.000 0.047 
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TABLE 12 
Power for time and group effect for different models, test lengths, sample sizes, and effect sizes obtained using plausible values 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
Generating 

Model 

 
 

 K

 
 

N  

 
 

Effect Size Time Effect Group Effect Time Effect Group Effect 

GPCM   5   50 0.2 0.769 0.503 0.649 0.450 
   0.5 1.000 0.995 0.999 0.989 
  100 0.2 0.957 0.770 0.893 0.710 
   0.5 1.000 1.000 1.000 1.000 
 10   50 0.2 0.788 0.503 0.682 0.496 
   0.5 1.000 0.993 0.999 0.994 
  100 0.2 0.981 0.756 0.905 0.721 
   0.5 1.000 1.000 1.000 1.000 
        

SEQM   5   50 0.2 0.862 0.563 0.640 0.458 
   0.5 1.000 1.000 1.000 0.988 
  100 0.2 0.993 0.819 0.893 0.707 
   0.5 1.000 1.000 1.000 1.000 
 10   50 0.2 0.877 0.583 0.663 0.467 
   0.5 1.000 0.997 0.999 0.990 
  100 0.2 0.987 0.883 0.901 0.722 
   0.5 1.000 1.000 1.000 1.000 
        

GRM   5   50 0.2 0.886 0.607 0.691 0.442 
   0.5 1.000 0.999 0.999 0.984 
  100 0.2 0.992 0.857 0.878 0.694 
   0.5 1.000 1.000 1.000 1.000 
 10   50 0.2 0.881 0.668 0.697 0.479 
   0.5 1.000 0.998 1.000 0.989 
  100 0.2 0.976 0.888 0.896 0.723 
   0.5 1.000 1.000 1.000 1.000 

 
However, this did not hold for the MML2 method (Tables 13–15). The columns labeled “True Model” give the 

power obtained when using the generating model in which the related generating values of the item parameters were 
used as fixed constants. The other columns give the power obtained when the item parameters were re-estimated, under 
both the correct model and the two wrong models. Note that in these three last cases, the power goes down further. 
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TABLE 13 
Type I error rate for time effect and power for group effect for different models, test lengths, sample sizes, and effect sizes obtained 
using MML estimates of population parameters 

Computation Model True Model GPCM SEQM GRM  
Generating 

Model 
 

 K
 

N  
 

Effect Size 
Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

GPCM   5   50 0.2 0.064 0.069 0.058 0.058 0.052 0.052 0.058 0.052 
   0.5 0.057 0.303 0.063 0.269 0.057 0.274 0.063 0.286 
  100 0.2 0.054 0.166 0.054 0.152 0.054 0.126 0.054 0.148 
   0.5 0.078 0.654 0.097 0.682 0.097 0.673 0.111 0.673 
 10   50 0.2 0.043 0.086 0.037 0.093 0.049 0.105 0.049 0.086 
   0.5 0.065 0.319 0.087 0.275 0.072 0.284 0.094 0.288 
  100 0.2 0.055 0.142 0.059 0.188 0.068 0.128 0.078 0.137 
   0.5 0.037 0.689 0.050 0.721 0.050 0.685 0.059 0.721 
            

SEQM   5   50 0.2 0.043 0.052 0.052 0.034 0.052 0.026 0.052 0.026 
   0.5 0.034 0.293 0.052 0.190 0.060 0.155 0.043 0.181 
  100 0.2 0.023 0.169 0.147 0.056 0.141 0.062 0.141 0.051 
   0.5 0.073 0.606 0.121 0.327 0.115 0.255 0.115 0.327 
 10   50 0.2 0.019 0.151 0.057 0.057 0.075 0.075 0.038 0.057 
   0.5 0.094 0.328 0.109 0.188 0.062 0.188 0.078 0.094 
  100 0.2 0.095 0.202 0.137 0.048 0.155 0.048 0.155 0.048 
   0.5 0.054 0.631 0.113 0.344 0.155 0.284 0.125 0.273 
            

GRM   5   50 0.2 0.029 0.095 0.058 0.051 0.036 0.058 0.036 0.051 
   0.5 0.040 0.240 0.040 0.107 0.027 0.160 0.040 0.187 
  100 0.2 0.017 0.106 0.095 0.039 0.106 0.056 0.101 0.045 
   0.5 0.032 0.468 0.077 0.186 0.090 0.244 0.064 0.378 
 10   50 0.2 0.109 0.065 0.043 0.065 0.000 0.109 0.000 0.065 
   0.5 0.056 0.296 0.074 0.037 0.056 0.074 0.056 0.074 
  100 0.2 0.048 0.126 0.186 0.060 0.204 0.078 0.204 0.072 
   0.5 0.019 0.604 0.130 0.240 0.130 0.262 0.117 0.162 

 
TABLE 14 
Type I error rate for group effect and power for time effect for different models, test lengths, sample sizes, and effect sizes obtained 
using MML estimates of population parameters 

Computation Model True Model GPCM SEQM GRM  
Generating 

Model 
 

K  
 

N  
 

Effect Size 
Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

GPCM   5   50 0.2 0.163 0.023 0.186 0.017 0.174 0.012 0.169 0.017 
   0.5 0.543 0.051 0.526 0.040 0.503 0.034 0.509 0.029 
  100 0.2 0.253 0.054 0.290 0.041 0.258 0.036 0.267 0.041 
   0.5 0.824 0.050 0.811 0.027 0.806 0.027 0.824 0.032 
 10   50 0.2 0.151 0.033 0.151 0.020 0.164 0.020 0.151 0.013 
   0.5 0.633 0.030 0.615 0.024 0.609 0.018 0.633 0.024 
  100 0.2 0.282 0.045 0.288 0.014 0.266 0.009 0.260 0.014 
   0.5 0.847 0.037 0.838 0.028 0.819 0.037 0.838 0.042 
            

SEQM   5   50 0.2 0.138 0.046 0.119 0.064 0.083 0.064 0.064 0.046 
   0.5 0.494 0.052 0.455 0.052 0.494 0.078 0.545 0.065 
  100 0.2 0.162 0.060 0.090 0.132 0.066 0.186 0.096 0.150 
   0.5 0.782 0.083 0.590 0.051 0.692 0.090 0.744 0.045 
 10   50 0.2 0.159 0.079 0.143 0.048 0.143 0.048 0.095 0.063 
   0.5 0.485 0.023 0.42 0.045 0.477 0.068 0.555 0.091 
  100 0.2 0.230 0.026 0.145 0.145 0.118 0.224 0.125 0.197 
   0.5 0.854 0.024 0.691 0.057 0.693 0.089 0.685 0.089 
            

GRM   5   50 0.2 0.066 0.008 0.049 0.066 0.033 0.074 0.033 0.057 
   0.5 0.467 0.017 0.400 0.067 0.517 0.033 0.633 0.017 
  100 0.2 0.172 0.040 0.075 0.109 0.052 0.184 0.040 0.121 
   0.5 0.809 0.034 0.897 0.079 0.833 0.101 0.844 0.034 
 10   50 0.2 0.164 0.000 0.115 0.180 0.082 0.131 0.098 0.164 
   0.5 0.606 0.061 0.455 0.121 0.606 0.121 0.576 0.061 
  100 0.2 0.191 0.038 0.045 0.191 0.038 0.229 0.045 0.217 
   0.5 0.810 0.017 0.892 0.103 0.821 0.103 0.803 0.103 
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TABLE 15 
Power for time and group effect for different models, test lengths, sample sizes, and effect sizes obtained using MML estimates of 
population parameters 

Computation Model True Model GPCM SEQM GRM  
Generating 

Model 
 

 K
 

N  
Effect 
Size 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

Time 
Effect 

Group 
Effect 

GPCM   5   50 0.2 0.110 0.069 0.098 0.064 0.104 0.087 0.098 0.064 
   0.5 0.579 0.360 0.573 0.354 0.524 0.335 0.543 0.354 
  100 0.2 0.248 0.158 0.270 0.167 0.270 0.167 0.252 0.167 
   0.5 0.805 0.686 0.818 0.705 0.814 0.668 0.809 0.691 
 10   50 0.2 0.141 0.092 0.169 0.106 0.176 0.099 0.169 0.099 
   0.5 0.541 0.389 0.580 0.414 0.573 0.369 0.567 0.427 
  100 0.2 0.281 0.167 0.299 0.136 0.303 0.154 0.290 0.154 
   0.5 0.908 0.693 0.876 0.702 0.876 0.665 0.881 0.688 
            

SEQM   5   50 0.2 0.064 0.074 0.032 0.011 0.043 0.021 0.032 0.032 
   0.5 0.333 0.394 0.273 0.333 0.515 0.455 0.455 0.424 
  100 0.2 0.168 0.173 0.087 0.064 0.046 0.052 0.069 0.046 
   0.5 0.727 0.662 0.636 0.442 0.870 0.818 0.857 0.766 
 10   50 0.2 0.145 0.127 0.109 0.055 0.109 0.073 0.109 0.073 
   0.5 0.788 0.477 0.801 0.400 0.901 0.422 0.889 0.412 
  100 0.2 0.287 0.188 0.147 0.047 0.133 0.047 0.113 0.040 
   0.5 0.933 0.600 0.899 0.488 0.933 0.533 0.933 0.647 
            

GRM   5   50 0.2 0.065 0.093 0.047 0.019 0.028 0.028 0.028 0.019 
   0.5 0.467 0.200 0.667 0.333 0.800 0.600 0.933 0.667 
  100 0.2 0.188 0.175 0.081 0.037 0.056 0.031 0.062 0.031 
   0.5 0.800 0.450 0.800 0.550 1.000 0.950 1.000 0.950 
 10   50 0.2 0.204 0.037 0.130 0.074 0.093 0.074 0.074 0.056 
   0.5 0.750 0.500 0.588 0.350 0.650 0.650 0.900 0.850 
  100 0.2 0.212 0.176 0.099 0.020 0.086 0.046 0.079 0.040 
   0.5 1.000 0.477 1.000 0.677 1.000 0.888 1.000 0.688 

 
Dichotomously Scored Items With Response Times, Two Groups and Two Time Points 

The last set of simulation studies referred to the combined model for accuracy and speed. In this setup, the 
parameters of the model were fixed to the values obtained in the real data example reported by van der Linden and Glas 
(2006). It was assumed that two groups of respondents were administered either the first 10 or 40 items of the item bank 
used in the example by van der Linden and Glas on two occasions. The autocorrelation was either 0.2 or 0.4. Both the 
mean of the accuracy parameters (the ability parameters in the 3PL model) and the mean of the speed parameters (the 
parameters of the model for speed) could differ across groups and time points. 

The results in Table 16 pertain to a simulation where a group effect on the accuracy parameters was induced. Again, 
the magnitude of this group effect was either 0.2 or 0.5. There was no main effect for speed. The powers of the tests for 
the speed effect had the usual main effects of test length and sample size. The choice of the estimation methods, which 
were the two plausible value methods and the concurrent MML method, had little impact. The Type I error rate for the 
test targeted at group differences in speed was close to the nominal value. The same held for the (not displayed) results 
for the power of the tests targeted at time effects. 

The results in Table 17 pertain to a simulation with a group effect on both the accuracy and speed parameters. As in 
the other tables, the magnitudes of these group effects were either 0.2 or 0.5. Again, the powers of the tests for the speed 
effect had the usual main effects of test length and sample size and, again, the choice of the estimation methods made 
little difference. The (not displayed) Type I error rate for time effects was close to the nominal value. 

Finally, Table 18 gives the results of a power study for time effects both in accuracy and speed. The results are 
analogous to the results above. Note that the effects of the autocorrelation on a test targeted at a time effect reported 
above are also clearly visible in this last study. 
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TABLE 16 
Type I error rate for group effect for speed and power for group effect for accuracy for different test lengths, sample sizes, effect sizes, 
autocorrelations, and estimation methods 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
MML Estimate 

 
 
 

 K

 
 
 

N  

 
 

Effect 
Size 

 
 
 

Autocorr. 
Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

10 100 0.2 0.2 0.06 0.66 0.05 0.63 0.06 0.66 
   0.4 0.07 0.67 0.05 0.64 0.06 0.67 
  0.5 0.2 0.06 1.00 0.05 1.00 0.04 1.00 
   0.4 0.07 1.00 0.06 1.00 0.05 1.00 
 200 0.2 0.2 0.05 0.98 0.06 0.92 0.05 0.87 
   0.4 0.06 0.98 0.05 0.92 0.04 0.78 
  0.5 0.2 0.05 1.00 0.05 1.00 0.04 1.00 
   0.4 0.06 1.00 0.04 1.00 0.05 1.00 

40 100 0.2 0.2 0.05 0.67 0.05 0.65 0.05 0.66 
   0.4 0.06 0.67 0.06 0.66 0.04 0.66 
  0.5 0.2 0.06 1.00 0.05 1.00 0.06 1.00 
   0.4 0.06 1.00 0.06 1.00 0.06 1.00 
 200 0.2 0.2 0.05 0.99 0.05 0.91 0.04 0.87 
   0.4 0.04 0.99 0.05 0.91 0.05 0.89 
  0.5 0.2 0.05 1.00 0.06 1.00 0.06 1.00 
   0.4 0.04 1.00 0.04 1.00 0.06 1.00 

 
TABLE 17 
Power for group effects for speed and accuracy for different test lengths, sample sizes, effect sizes, autocorrelations, and estimation 
methods 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
MML Estimate 

 
 
 

 K

 
 
 

N  

 
 

Effect 
Size 

 
 
 

Autocorr. 
Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

10 100 0.2 0.2 0.73 0.67 0.75 0.63 0.56 0.49 
   0.4 0.70 0.67 0.83 0.63 0.68 0.43 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.90 0.95 0.94 0.93 0.88 0.81 
   0.4 0.92 0.96 0.97 0.88 0.95 0.79 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 

40 100 0.2 0.2 0.72 0.67 0.77 0.68 0.70 0.68 
   0.4 0.77 0.68 0.87 0.68 0.84 0.66 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.96 0.94 0.97 0.91 0.95 0.87 
   0.4 0.98 0.94 0.97 0.99 0.95 0.87 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
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TABLE 18 
Power for time effects for speed and accuracy for different test lengths, sample sizes, effect sizes, autocorrelations, and estimation 
methods 

Plausible Value 
Unidimensional 

Plausible Value 
Multidimensional 

 
MML Estimate 

 
 
 

K  

 
 
 

N  

 
 

Effect 
Size 

 
 
 

Autocorr. 
Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

Speed 
Effect 

Accuracy 
Effect 

10 100 0.2 0.2 0.74 0.66 0.72 0.67 0.60 0.51 
   0.4 0.79 0.67 0.77 0.69 0.68 0.55 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.90 0.94 0.96 0.91 0.90 0.91 
   0.4 0.98 0.99 0.98 0.95 0.97 0.99 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 

40 100 0.2 0.2 0.73 0.66 0.76 0.66 0.76 0.68 
   0.4 0.78 0.69 0.86 0.71 0.84 0.72 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 200 0.2 0.2 0.96 0.92 0.95 0.90 0.95 0.90 
   0.4 0.98 0.96 0.99 0.99 0.95 0.98 
  0.5 0.2 1.00 1.00 1.00 1.00 1.00 1.00 
   0.4 1.00 1.00 1.00 1.00 1.00 1.00 
 

Conclusions 

The essential problem with the estimation of linear models on ability parameters is that the estimates of these 
parameters are not observations, but they are estimates with sampling variance. In CAT and in educational surveys such 
as PISA, TIMSS, and NAEP, students do not respond to the same items, or sometimes not even to the same number of 
items. This leads to differences in the uncertainty in their parameter estimates, and this uncertainty and these differences 
in uncertainty have to be taken into account. The theoretically ideal way to do this is to obtain a concurrent estimate of 
all the parameters in the model. Unfortunately, this is often quite complicated. Several alternatives have been developed. 
In the studies presented here, we assessed the performance with respect to the power to detect main effects in an analysis 
of variance model with a repeated measure of one alternative, plausible value imputation. It turns out that a relatively 
simple method, a unidimensional plausible value method where the plausible values are drawn from separate 
unidimensional posteriors, has a Type I error rate and power that is at least comparable to the Type I error rate and power 
obtained using concurrent MML estimation. So the more complicated approach of drawing from a multidimensional 
posterior seems to be unnecessary. It must be noted that Rubin and Thomas (2001) proposed an alternative method for 
introducing multidimensional ability estimates into regression equations. Their method is a two-step approach where the 
measurement model is estimated first, and in their method the dependence between a student’s abilities must be taken 
into account in the first step. The present simulations seem to indicate that this approach is unnecessary. 

Finally, we found that a two-step MML approach where the second step consists of MML estimation of the 
parameters of the linear model on the abilities, treating the item parameters as constants, results in a substantial loss of 
power. Therefore this method is not advisable. 
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