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Abstract
The few existing life cycle assessment studies considering pavement recycling techniques usually omit the stages of mainte-
nance and rehabilitation (M&R) and use. The reason for this omission is the lack of information about how the pavement’s
performance evolves over time and absence of methods to determine the M&R frequency and service life for completed
projects. As a result, the deterioration of pavement recycling projects in the long term is not clearly understood. Few proj-
ects have available data, the majority of which are on low volume primary and secondary roads. This paper describes an
approach to develop a family of roughness models for recycling projects in Colorado using functional data analysis, and indi-
vidual models for selected projects in Virginia to support ongoing life cycle assessment (LCA) studies. In the case of
Colorado, full depth reclamation (FDR) projects will most likely deteriorate following an average group rate of 1.4 in./mi/year,
with an initial international roughness index (IRI) between 52 and 70 in./mi. For the individual roughness models developed
for Virginia projects, the initial IRI values and the rate of change for the treatments analyzed were found to range between 49
and 107 in./mi and between 0.7 and 5.2 in./mi/year, respectively, depending on the recycling method and type of stabilization
treatment. The results of an LCA case study show that, in addition to recycling, Virginia Department of Transportation can
achieve statewide emission reduction goals if focus is placed on achieving smoother roads while measures are taken to keep
the annual rates of deterioration low.

Asphalt pavement recycling techniques, including hot in-
place recycling, cold in-place recycling (CIR), cold cen-
tral plant recycling (CCPR), and full depth reclamation
(FDR), have proven to be cost-effective rehabilitation
strategies that offer many advantages compared with tra-
ditional methods, such as milling and filling. Some of
these advantages include reduction in virgin material
needs, reduced traffic congestion, and lower environmen-
tal impacts (1–3). Despite many successful experiences,
some departments of transportation (DOTs) are still
reluctant to use in-place pavement recycling treatments
because of concerns about the performance of these
treatments compared with more traditional pavement
maintenance and rehabilitation (M&R) treatments.

The existence of criteria for selecting the right treat-
ment to apply to the right candidate road section at the
right time is one of the most commonly cited bottlenecks
impeding the widespread use of asphalt pavement recy-
cling treatments (1). The Federal Highway
Administration’s (FHWA) 2006 Recycled Materials
Policy, revised in 2015 (4), aims to encourage the use of

recycling techniques in pavement rehabilitation projects.
An extract from the 2015 policy states, ‘‘the determina-
tion of the use of recycled materials should include an
initial review of engineering and environmental suitabil-
ity.’’ Several FHWA publications include technical
guidelines and checklists providing information to sup-
port the review of the engineering suitability aspects of
the policy statement, covering initial project level foren-
sic examinations and the identification of the failure
mechanism of candidate projects. However, until
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recently, there were no guidelines on how to assess the
environmental suitability of these recycled materials.

Life cycle assessment (LCA), a standardized metho-
dology intended to analyze and quantify the potential
environmental impacts of a process, product or system,
can be used to ascertain the suitability of the FHWA pol-
icy from the environmental perspective. Because pave-
ment LCA is an emerging field of study, and few analyses
involving recycling projects have been carried out, many
important components still need to be developed for the
sake of a comprehensive analysis. Key among these are:
(i) an inventory database that covers various unit pro-
cesses related to the recycling of a road pavement using
various techniques; (ii) performance prediction model
models that predict how these recycled pavements will
deteriorate over time; (iii) a tool that conducts an inven-
tory analysis and estimates the associated potential envi-
ronmental impacts.

Some of the needs listed above are corroborated by
National Cooperative Highway Research Program
Synthesis 421, which identified the lack of a well-designed
experimental approach to assess the progression of pave-
ment distresses and the overall decline in the pavement
condition index that can provide information on life cycle
cost and service life of in-place recycling techniques (1).
Among the existing studies that have analyzed and docu-
mented the performance of in-place pavement recycling
techniques (5–8) only a few have provided a time evolu-
tion of project performance exceeding five years (9, 10).

A recent survey conducted by Transportation Pooled
Fund 5-268 (11) to synthesize long-term performance
data from states with active in-place recycling projects
revealed that only a few states collect/monitor the perfor-
mance of completed projects. Asked whether perfor-
mance data was being collected for their recycled
projects, 18 out of the 46 participating states answered
affirmatively. The Moving Ahead for Progress in the
21st Century (MAP21) and Fixing America’s Surface
Transportation (FAST) Act (12) require state agencies to
collect and report performance data for pavements on
the national highway system (NHS). However, since
most states have only executed pavement recycling proj-
ects on low volume roads, the lack of available perfor-
mance data on NHS routes is not surprising. Data
provided by those states collecting performance data
showed significant variations from state to state—type
of performance indicators measured, number of data col-
lection years—and some missed relevant information
such as recycling thickness, stabilizers/recycling additives
used, traffic information, and climate information, for
instance.

Motivated by the needs discussed above, this paper
presents the development of pavement performance pre-
diction models (PPPMs) for recycled asphalt pavements

that will not only serve as critical inputs to enhance the
comprehensiveness of pavement LCA modeling but also
aid DOTs and other decision makers in (i) quantifying
the service life of recycling projects and (ii) developing
M&R strategies for better planning and allocation of
funds in the future.

Objectives

The primary objective of this paper is to present single
and family-type performance models to characterize dete-
rioration of pavement recycling projects. Furthermore, it
presents a modeling approach to analyze and extract
projects with similar deterioration trends where data suf-
ficiency may be a limitation, and introduces the develop-
ment of individual and family-type roughness prediction
models for recycled pavements—in Virginia and
Colorado respectively—to be utilized at the M&R and
use stages of ongoing LCA studies. Finally, it illustrates
the relevance of the models developed when used in the
context of an LCA study that aims to quantify the 10-
year global warming score associated with the recycled
pavement projects completed in Virginia.

Background

Wolters and Zimmerman reviewed state practices on per-
formance modeling and developed three pavement per-
formance modeling options for two groups of models—
individual and family-type models—for Pennsylvania
DOT (13). Deterioration models were developed for
Virginia DOT (VDOT) in a study that incorporated the
structural capacity of the pavement in the form of a
modified structural index along with the pavement age
and discussed several model shapes (14). However, mod-
els for in-place recycling projects were not specifically
developed in any of these studies. A literature review
identified three recent studies that discussed deteriora-
tion models for in-place recycling projects as part of a
broader project (3, 15–17). Senhaji (15) discussed a two-
pronged approach to estimating the performance and
lifespan of in-place recycling treatments. Linear models
for conventional asphalt concrete overlays, CIR, and
FDR were developed for this project.

Cross et al. (18) compared the energy, greenhouse gas,
and environmental emissions of CIR, traditional mill and
fill, and a hot mix asphalt overlay using the pavement
life-cycle assessment tool for environmental and eco-
nomic effects (PaLATE). The study incorporated CIR
only as an end-of-life treatment option. The use stage
was not considered in the study, and therefore the impact
of the progression of roughness was not discussed. Giani
et al. (19) assessed the environmental sustainability of
three pavement types: one with virgin materials using
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traditional technology, and two others with various com-
binations of reclaimed asphalt pavement (RAP) and
warm mix asphalt (WMA) in the base layer. The service
lives of the pavements were estimated from averages
derived from experience, while the frequency of mainte-
nance treatments applied at the use stage derived from
expert opinion—not from performance models.

Santos et al. (3) conducted LCA for an in-place recy-
cling project and compared the results with two other
pavement maintenance alternatives: traditional recon-
struction and corrective maintenance. The authors devel-
oped an LCA model that included the use stage in the
system boundaries. To determine the M&R strategies to
be implemented in these projects, the authors used a
quadratic model that predicted the pavement IRI pro-
gression from the treatment age. The IRI prediction was
subsequently used to estimate the additional fuel con-
sumption from rolling resistance.

Saboori et al. (16) estimated the potential environmen-
tal impacts of alternative end-of-life treatments, including
pavement recycling treatments, in California. The scope
of the study did not include the M&R and use stages
because of the lack of information on (i) how pavement
roughness evolves over time (affecting vehicle fuel con-
sumption), and (ii) how to determine the M&R frequen-
cies and service life of each alternative treatment. The
study concluded by emphasizing the need for PPPMs
that can help to explain how pavement recycling-based
treatments affect pavement performance.

Several approaches—both deterministic and
probabilistic—have been used to develop PPPMs. These
include, among others, neural networks, fuzzy logic sys-
tems, genetic algorithms, neurofuzzy systems, and regres-
sion methods (20–25). Despite its simplicity compared
with the other methods, the traditional regression analy-
sis approach has the potential to satisfy the model vali-
dation criteria. Thus, it was included in this study. Other
functions—exponential, sigmoidal, and logistic—that are
commonly used outside the pavement domain were also
evaluated. The exponential model describes a mathemat-
ical function whose growth rate value is proportional to
the function’s current value. Since the condition of a
pavement section each year depends on the condition in
the previous year, the inclusion of the exponential model
is then justified. Specifically, the 2P and 3P (where P
stands for parameter, indicating the number of model
coefficients) forms were evaluated.

Methodology

Data Collection

Performance data were collected as part of a broad pave-
ment recycling synthesis project using a web-based sur-
vey shared with members of the American Association

of State Highway and Transportation Officials Research
Advisory Committee in 2018. Eighteen states indicated
that they monitored the performance of active pavement
recycling programs, and eight provided performance
data in a response survey. However, based solely on the
period over which data were collected, only data from
Virginia and Colorado were deemed suitable for model-
ing performance.

Colorado Data. Performance data from 36 FDR projects
received from Colorado DOT were used in this study.
The performance data were collected over 0.10 mi sec-
tions for each project, and included IRI, rutting, fatigue
cracking, transverse cracking, and longitudinal cracking.
Information on the construction year, average daily
truck traffic, overlay thickness, and recycling cost was
also provided for each project. Information about the
thickness of the recycling layer and the type and quantity
of stabilizing/recycling agents used was not available or
not provided.

The average project age, computed from the year of
project completion, was 8.3 years with a range of three to
11 years. The rehabilitation history on these projects
since completion was not provided with the data. Figure
1 is a scatterplot matrix showing the distribution, corre-
lations, and density eclipse for IRI, annual average daily
truck traffic (AADTT), overlay thickness, and project
age. A table summarizing project details for Colorado
was not included due the manuscript length requirement
(available on request from authors).

Virginia Data. VDOT submitted data from 16 FDR, four
CIR, and two CCPR projects. The available data include
pavement age along with condition descriptors, such as
fatigue cracking, rutting, IRI, transverse cracking, longitu-
dinal cracking, patching, and bleeding. Information on
the overall condition of the projects in the form of sum-
marized indices (i.e., critical condition index [CCI], load-
related distress index, and non-load-related distress index)
was also included. Other pertinent information such as
the thickness of the recycling layer, the type and quantity
of stabilizing/recycling agents, overlay thickness, truck
traffic volume, and the rehabilitation history of these proj-
ects since completion was provided with the data. A scat-
terplot matrix of the projects showing distributions, linear
fits, and correlation between these variables is presented
in Figure 2. The pooled data showed negative correlation
between CCI and age, and positive correlation between
IRI and age. These trends were expected, as they are char-
acteristic of pavement deterioration with time. The ages of
the projects ranged from a minimum of five years to a
maximum of nine years. Details of the final selected proj-
ects are highlighted in Table 1.
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Data Processing

This section discusses the approach used to analyze the
performance data received. Only the roughness data are
analyzed in this paper. For one of the datasets, a systema-
tic approach was used to identity projects of similar beha-
vior and develop a model representative of that group.
First, projects were grouped by performing an analysis of
means (ANOM) test on the parameter estimates (slopes
and intercepts) from a regression fit. This was done after
the performance data had undergone filtering and clean-
ing. Then, functional data analysis was conducted with
the objective of extracting important features such as
shapes and trends from the data analyzed as a group. The
resulting functional principal components (FPCs), which
carry these trends extracted from the aggregated data,
were then classified into the groups identified earlier from
the ANOM test, using discriminant analysis. A mixed
model design of experiments (DoE) was constructed using
IRI as a response variable as a function of pavement age,
and AADTT and pavement overlay thickness as treat-
ment factors to select variables for the final deterioration

model. The details of these steps are further described in
the following paragraphs.

Exploratory Data Analysis. Building on the assessment of
the scatterplots, linear fits of IRI versus age were plotted
utilizing curve fitting tools in JMP statistical software
(26). From the visual and interactive functionality in the
software, data preparation steps involving the identifica-
tion and removal of erroneous data (e.g., unreasonably
high or low data points, negative values) were carried out
to clean the raw data. Utilizing curve fitting tools, the
analysis was carried out by ‘‘Recycling Method’’ and
‘‘Project’’ was used as a grouping variable so that sepa-
rate exponential 2P (two-parameter) models were fitted
for each of the projects (R2 of 0.935) at each level of recy-
cling method. For nonlinear modeling, a requirement of
a minimum three time-series data points (27) was set to
clean the data and projects with less than three years of
data were removed from the analysis. Since the M&R
history of some projects was not available for analysis,
periods where there were more than two consecutive

Figure 1. Scatterplot matrices for the data from Colorado Department of Transportation full depth reclamation (FDR) projects.
Note: AADTT = annual average daily truck traffic; IRI = international roughness index.
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Figure 2. Scatterplot matrices for recycled pavement projects in Virginia.
Note: AADTT = annual average daily truck traffic; CCI = critical condition index; IRI = international roughness index.

Table 1. Details of Virginia Department of Transportation Recycling Projects

Route
(length in miles)

Recycling
methods

Recycling/ stabilization
agent content (%)

AADTT
(2017)

Pavement structure (above subgrade) Total
thickness

(in.)Layer 1 Layer 2 Layer 3 Layer 4

IS81SB (3.7) FDR lime+
CIR FA+
CCPR

*CIR & CCPR
(2% FA+ 1% lime)
FDR
(3% cement+ LKD)

6943 2.0 in.
SMA12.5D

4.0 in
IM19.0D

6.0 in
CCPR

12.0
in FDR

24.0

SR3EB (3.0) FDR cement 4% cement 92 2.0 in. SM12.5A 2.0 in. IM19.0A 9.5 in. FDR - 13.5
SR3WB (3.0) FDR cement 4% cement 85 2.0 in. SM12.5A 2.0 in. IM19.0A 9.5 in. FDR - 13.5
SR6EB (3.6) FDR cement 5% cement 127 1.5-in SM12.5A 2.0-in IM19.0A 9.0-in FDR - 12.5
SR13EB (3.6) FDR cement 5% cement 172 1.5-in SM12.5A 2.0-in IM19.0A 9.0-in FDR - 12.5
SR24EB (2.9) FDR cement 4% cement 61 1.5-in SM9.5D 9.0-in FDR - - 10.5
SR40FA (0.25) FDR FA 2.7% FA+ 1% cement 48 2.5-in SM9.5D 9.8-in FDR - - 12.3
SR40EA (0.25) FDR EA 3.5% EA 48 2.5-in SM9.5D 9.8-in FDR - - 12.3
US17NB (9.8) CIR EA 2.5% EA 127 1.5-in SM12.5A 2.0-in IM19.0A 5.0 in. CIR - 8.5
US17SB (9.8) CIR FA 2.5% FA 170 2.0-in SM12.5A 3.0-in IM19.0A 5.0 in. CIR - 10.0

Note: AADTT = average annual daily truck traffic; CIR = cold in-place recycling; CCPR = cold central plant recycling; EA = emulsified asphalt; FA = foamed

asphalt; FDR = full depth reclamation; IM19.0D = intermediate mix with 19.0 mm maximum nominal aggregates, ‘‘D’’ for binder with performance grade

70-22; SMA12.5D = stone matrix asphalt with 12.5 mm maximum nominal aggregates, ‘‘D’’ for binder with performance grade 70-22; SM9.5A = surface

mix with 9.5 mm maximum nominal aggregates, ‘‘A’’ for binder with performance grade 64-22; SM9.5D = surface mix with 9.5 mm maximum nominal

aggregates, ‘‘D’’ for binder with performance grade 70-22; SM12.5A = surface mix with 12.5 mm maximum nominal aggregates, ‘‘A’’ for binder with

performance grade 64-22.; SM19.0A = surface mix with 19.0 mm maximum nominal aggregates, ‘‘A’’ for binder with performance grade 64-22;.
*Thickness of right lane of I-81 is not consistent for the entire 3.7 miles. The initial part is 4 in. asphalt over 8 in. CCPR while the rest is 6 in. asphalt over

6 in. CCPR. The left lane composed of 5 in. CIR with a 4 in. asphalt overlay.
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measurements showing an improvement in the pavement
condition (roughness or overall condition index) were
visually identified and marked as points where some
form of M&R activity had been performed. Only the
periods before the marked points were considered for
subsequent analysis. After the data processing/filtering
steps, a total of 30 FDR projects from Colorado DOT,
and eight FDR and two CIR projects from VDOT were
considered for analysis. The cleaned data for the selected
projects were then re-fitted. The result for Colorado
DOT is shown in Figure 3.

A consolidation of all the fitted models presented in
Figure 3 shows no obvious patterns. They contain only
irregular intercepts and random slopes with no clear cri-
teria to group the projects. Consolidating the projects
and developing a model based on the average to repre-
sent FDR projects was not considered appropriate as it
would mean losing many important trends/features in
the data. To ensure sample homogeneity the researchers
examined how model parameters differ for each project
compared with an overall parameter mean. An ANOM
test with an alpha level of 0.05 was used to identify which
projects had different rates of IRI change (slope) and ini-
tial IRI (intercept). The projects were then flagged into
three initial groups: statistically different exceeding upper
limit of overall project mean (UDL), statistically differ-
ent exceeding lower limit of overall project mean (LDL),
and not enough evidence to support a statistical differ-
ence from overall project mean (Avg). The ANOM test
was not conducted for the VDOT data, as the interest
with this dataset was developing models for each project
rather than a family-type model to represent the various
recycling methods.

Functional Data Analysis. To validate the results obtained
from the ANOM test, a method used in analyzing func-
tional data was employed (28). The strength of this
approach is that it takes many functional processes and
extracts important features to use in further modeling.

The functional data explorer platform fits surrogate
functions, in this case B-splines (splines are knotted or
jointed polynomials), to the data using a mixed model
where the spline coefficients are treated as random effects
estimated via best linear unbiased predictors. Data in this
analysis are in vector form and the objective is to seek a
few scalars that explain as much of the information in
the data as possible. The first step to obtaining these
information-containing scalars is finding vectors, vk , that
explain the largest amount of variation in the data, Yi,
once centered and (usually) scaled.

vk minimizes
X

i

k Yi � vkvT
k Yik2 subject to

vkvT
k = 1 and vT

k vk = 0 if j 6¼ k

ð1Þ

These scalar projections of the data, Sk, i = vT
k Yi, called

principal components, are used in place of the complete
data vectors:

Yi ’ S1, iv1 + S2, iv2 + S3, iv3 + . . . ð2Þ

A set of orthogonal basis functions jk tð Þ that explain the
maximal amount of variation in the observed functions
is found by going through the analogous process in func-
tion space. Each observed function is smoothed and
approximated by linear combination of basis vectors:

yi tð Þ’ b1, ib1 tð Þ+b2, ib2 tð Þ+b3, ib3 tð Þ+ . . . ð3Þ

A similar dimension reduction can be applied to find a
small number of functions that explain the variation in
the data. This gives us the more compact representation
of the function:

yi tð Þ’ S1, ij1 tð Þ +b2, ij2 tð Þ +b3, ij3 tð Þ + . . . ð4Þ

Instead of the basis functions, the functions presented
in Equation 4 were decomposed into much smaller linear
combinations of eigenfunctions and FPC scores. The
eigenfunctions, jk tð Þ, are orthogonal ‘‘natural harmo-
nics’’ that describe variation in the shape of the data
functions. The scores are the most concise derived fea-
ture from the data. These scores can be used as inputs
and outputs of other statistical models. In this case, the
output FPCs, which carry the shapes extracted from the
various functions, were save for feature extraction and
classification analysis in another modeling platform.

Discriminant Analysis. Fisher (29) described the linear dis-
criminant function and its offshoots, the quadratic

Figure 3. Initial model re-fitting after outlier removal for
Colorado Department of Transportation full depth reclamation
projects showing irregular slopes and random intercepts.
Note: IRI = international roughness index.
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discriminant function, and multi-class discrimination
using Mahalanobis distance (a measure of the distance
between a point and a distribution). Discriminant analy-
sis seeks to classify observations described by values on
continuous variable into groups. A classification catego-
rical variable is predicted based on known continuous
responses, also known as covariates. The quadratic
method, which assumes that the within-group covariance
matrices differ, was used in the analysis. The FPC scores
were used as covariates to classify the projects into the
preliminary groups (UDL, LDL, and Avg) identified
from the exploratory data analysis. Instead of developing
individual deterioration models for 30 FDR projects,
there are now three classified groups to work with.

Development of PPPMs

Regression analysis was performed to predict the proj-
ects’ IRI using project age as the predictor variable. A
mixed model DoE analysis with appropriate response
variables (IRI) was used and constructed the model
effects using the FPCs, AADTT, and overlay thickness
as treatment factors. Generalized regression with stan-
dard least squares was used, assuming a normal distribu-
tion for the IRI response. In pavement LCA modeling,
IRI prediction models are used to forecast the progres-
sion of surface roughness over time and subsequently to
assess the impact of rolling resistance on vehicle fuel con-
sumption. Several model shapes from various functions
discussed in Ercisli (14) were initially fitted to the data
from individual projects to determine which models best
fit the trends observed in the scatter plots.

The most plausible models were then selected using
the second order Akaike information criterion (AICc)
weight (calculated from the AICc). This estimator repre-
sents the relative likelihood of a model (where 1.0 is most
likely) when comparing several models. Usually, bound-
ary conditions for the response variable are set, and the
effects on the resulting models are re-evaluated. No
boundary conditions for the maximum IRI value were
set, though a pavement with an IRI greater than 500in./
mi is generally considered not rideable except at low
speeds (30).

The models satisfying the boundary conditions with
AICc weights closest to 1.0 were then selected. Finally,
an inverse prediction of the project age with the IRI
threshold values considered by the DOTs was carried
out to estimate the service life of the projects.

Results and Discussion

Exploratory Data Analysis

Figure 4 presents the results of the ANOM test.
Observations in red are statistically different from the

overall project mean. For the FDR projects, 56% of the
projects had initial IRIs (intercept) that were not signifi-
cantly different (Avg group) from the overall project
mean, while 26% and 17% were respectively significantly
above (UDL group) and significantly below (LDL
group) the overall project mean. The IRI growth rate
(slopes) were not used for the initial grouping, as 93% of
the projects’ IRI growth rates were not significantly dif-
ferent from the overall project mean (in which case, one
deterioration model would be sufficient to represent the
whole group of projects).

Functional Data Analysis

Among the B-spline surrogate models (i.e., linear,
quadratic, and cubic) fitted to the initial data, a linear
model with one knot (indicated by the red dash-line)
was selected as the best fit based on the Bayesian infor-
mation criterion fit statistic (Figure 5a) for FDR proj-
ects. The curve in the overall IRI prediction plot (left
chart of Figure 5b) is a prediction of the mean curve
while the grid (right chart of Figure 5b) shows the indi-
vidual plots for the projects. The overall IRI prediction
plots show the location of the knots/joints (indicated
by the vertical blue dashed line). While not a focus of
the analysis, the location of the knot is of particular
importance, as it indicates a point in the project’s ser-
vice life where there is a significant change in the pave-
ment condition. The knot was situated at age six years
for FDR projects in Colorado. Routine maintenance

Figure 4. Results of analysis of means (ANOM) test showing
projects with significantly different slopes and intercepts above
and below the overall project means.
Note: IRI = international roughness index; UDL = statistically different

exceeding upper limit of overall project mean; Avg = not enough evidence

to support a statistical difference from overall project mean; LDL =

statistically different exceeding lower limit of overall project mean.
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practices would be of primary importance before this
point in the pavement’s age to delay deterioration and
extend the pavement life.

The results from the FPC analysis (FPCA) after the
fitting of the surrogate B-spline (linear model with one
knot) to the initial data are presented in Figure 6.

The FPCA report lists eigenvalues that correspond to
each FPC in order, from largest to smallest. The percent
variations accounted for by each FPC and the cumula-
tive percent are indicated in the bar chart. For the FDR
projects, while two FPCs explain approximately 99.7%
of the variation in the data, the eigenvalue of FPC1 alone
explains more than 96% (Figure 6a). Projects that may
be outliers from other projects, or project grouping, in
some cases, can be revealed from an assessment of the
score plots (Figure 6b). Projects 15950, 13472, 15145,
and 14347R in Figure 6b are outliers. The prediction

profiler highlights the impact of each FPC on the IRI
over time (Figure 6c). High values of FCP1 result in
lower initial IRI values than the mean. FPC2 seems to
control the slope of the mean curve; high values show
slower deterioration before age six years with deteriora-
tion increasing afterwards.

Discriminant Analysis

The discriminant analysis is more suitable to highlight
outliers or to identify groups of projects than the visual
assessment of the score plots from the FPCA. Figure 7
shows canonical plots from the discriminant analysis.
The plots highlight three distinct groups from the classi-
fication exercise. A separate report shows projects that
were misclassified. Out of 30 FDR projects, three were
misclassified.

Figure 5. (a) Solution path plot with fit statistics; (b) B-spline fit on initial data showing the overall international roughness index (IRI)
prediction (left plot) and grid of individual project IRI predictions (right plot) for full depth reclamation.
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Prediction Models

Individual Models. As stated above, an ongoing LCA study
involving the selected VDOT projects requires roughness
models for each of these projects. The model functions
and corresponding statistics from the regression analysis
are presented in Table 2.

Based on the AICc weight values, the exponential 2P
model was found to be the model that best predicts IRI
from the treatment age compared with the linear model.
Table 3 shows the estimates and test statistics for the final
IRI model selected. For the sake of simplicity, the growth
rate term b in the exponential model is expressed as linear
deterioration rates in the discussion. The IS81SB project
was found to have a significantly lower initial IRI value
(49.4 in./mi) compared with the overall project average
of 85.8 in./mi. The SR40EA project was found to have a

significantly high rate of IRI deterioration (7 in./mi, lin-
ear approx. of the term, b) compared with the overall
project average of 2 in./mi/year. The average rates of
change of IRI for the cement-stabilized and bitumen-
stabilized FDR projects were found to be 1.5 and 5.2 in./
mi/year, respectively, while the bitumen-treated CIR
treatments were found to deteriorate at an average rate
value of 0.7 in./mi/year.

Family-Type Models. For the FDR projects, AADTT and
overlay thickness were not statistically significant para-
meters. The parameter estimates for fitted models for
each project group by recycling method are presented in
Table 3.

Figure 6. Full depth reclamation results: (a) plot of mean
international roughness index (IRI) versus age with extracted
shapes (eigenfunctions) explaining variations; (b) score plot
showing potential clustering/grouping of projects; (c) functional
principal component (FPC) profiler showing correlation between
FPCs and IRI as a function of age for FDR projects.

Figure 7. Results of the discriminant analysis showing distinct
groups in canonical plot for the full depth reclamation projects in
Colorado.
Note: FPC = functional principal component; IRI = international roughness

index; UDL = statistically different exceeding upper limit of overall project

mean; Avg = not enough evidence to support a statistical difference from

overall project mean; LDL = statistically different exceeding lower limit of

overall project mean.

Key to Figure 8:

SN = structural number.

IM19.0A = Intermediate mix with 19.0 mm maximum nominal aggregates,

‘‘A’’ for binder with performance grade 64-22.

IM19.0D = Intermediate mix with 19.0 mm maximum nominal aggregates,

‘‘D’’ for binder with performance grade 70-22.

SMA12.5D = Stone matrix asphalt with 12.5 mm maximum nominal

aggregates, ‘‘D’’ for binder with performance grade 70-22.

SM9.5D = Surface mix with 9.5 mm maximum nominal aggregates, ‘‘D’’ for

binder with performance grade 70-22.

SM12.5A = Surface mix with 12.5 mm maximum nominal aggregates, ‘‘A’’

for binder with performance grade 64-22.

SM19.0A = Surface mix with 19.0 mm maximum nominal aggregates, ‘‘A’’

for binder with performance grade 64-22.

FA = Foamed asphalt.

EA = Emulsified asphalt.

HMA = Hot mix asphalt.

CCPR = Cold central plant recycling.

FDR = Full depth reclamation.

CIR = Cold in-place recycling.
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The same exponential functions used for VDOT’s indi-
vidual models were also used for the family-type models.
The deterioration in FDR projects that were completed
with an initial IRI between 75 and 105 in./mi were most
likely to follow predictions in the UDL group at a growth
rate of 4.02 in./mi/year; between 52 and 70 in./mi, the Avg
group at a rate of 1.4 in./mi/yr; between 38 and 51 in./mi,
the LDL group at a rate of 0.93 in./mi/yr.

LCA Case Study

This section illustrates the relevance and applicability of
the roughness prediction models developed in the paper
when used in the context of an LCA study.

Goal and Scope

The goal of the study was to quantify and compare the
environmental performance of selected recycling projects
completed by VDOT utilizing the roughness models
developed earlier in this paper. The projects were selected
to cover various stabilization types (i.e., cement, foamed

asphalt, and emulsion asphalt) for each recycling method
(i.e., CIR, FDR), while ensuring variations in the initial
roughness and annual deterioration rates. The physical
functional unit was one lane-mile of a recycled pavement
project with a width of 12 ft. Details about the types of
mixtures, thickness of the layers and the structural num-
ber of the projects studied are given in Figure 8. The
analysis period was 10 years, starting in 2018, and only
the use stage was included in the system boundaries.
Finally, the environmental impact assessment was lim-
ited to the global warming (GW) score for the sake of
simplicity.

Inventory and Impact Assessment

Rolling resistance is the vehicle energy loss associated
with pavement–vehicle interaction (PVI), as the vehicle
moves over a pavement surface. Among other factors, it
is affected by pavement surface texture, roughness, and
stiffness, and generally, the higher the resistance to the
rolling of the tires, the more fuel is consumed. Among
the three mechanisms influencing rolling resistance only

Table 2. Model Comparison Report with Fit Statistics

Function General equation
Akaike information

criterion (AICc) AICc weight SSE RMSE

Exponential 2P a3e(b3Age) 495.4 73% 2927.9 8.1
Linear a+ b3Age 497.4 27% 3019.0 8.2

Note: SSE = sum of square error; RMSE = root mean square error.

Table 3. Parameter Estimates and Statistics for International Roughness Index Prediction Models

State Recycling method Project/Group

A b

Estimate Standard error p-value Estimate Standard error p-value

Virginia FDR lime+CIR FA
+CCPR

IS81SB 49.429 6.817 \.0001 0.008 0.031 1.000

FDR cement SR3EB 79.201 6.968 \.0001 0.034 0.022 0.111
FDR cement SR3WB 89.868 7.181 \.0001 0.021 0.020 0.301
FDR cement SR6EB 89.995 5.751 \.0001 0.007 0.012 0.520
FDR cement SR13EB 91.914 5.628 \.0001 0.014 0.011 0.191
FDR cement SR24EB 107.000 8.460 \.0001 0.004 0.024 1.000
FDR FA SR40FA 89.711 6.266 \.0001 0.035 0.015 0.019
FDR EA SR40EA 100.774 5.906 \.0001 0.058 0.012 0.000
CIR EA US17NB 74.208 8.417 \.0001 0.003 0.034 0.938
CIR FA US17SB 84.158 8.247 \.0001 0.013 0.029 0.648

Colorado FDR Avg 68.944 1.794 \.0001 0.022 0.004 0.000
LDL 50.804 1.538 \.0001 0.024 0.004 0.000
UDL 76.579 1.556 \.0001 0.015 0.004 0.000

Note: A = initial IRI; b = growth constant, i.e., the frequency of growing by a factor e; CIR = cold in-place recycling; CCPR = cold central plant recycling; EA

= emulsified asphalt; FA = foamed asphalt; FDR = full depth reclamation. Avg = not enough evidence to support a statistical difference from overall project

mean; LDL = statistically different exceeding lower limit of overall project mean; UDL = statistically different exceeding upper limit of overall project mean.
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roughness was considered. The roughness prediction
models developed for the projects under study were used
to project the progression of roughness over a 10-year
analysis period. The model developed by Ziyadi et al.
(31) was used to calculate environmental impacts and
energy consumption depending on pavement roughness
and vehicle speed. The general form of the roughness–
speed impact (RSI) model is given by Equation 5.

RSI
Energy
t = 0 : Ê v, IRIð Þ= p

v
+ ka:IRI + dað Þ

+ b:v+ kc:IRI + dcð Þ:v2
ð5Þ

where:
Ê = estimated energy consumption per vehicle dis-

tance (kJ/mile)
v = average speed (mph)
IRI = international roughness index (in./mile)
ka, kc, da, dc, p, b = model coefficients
The model developed by Ziyadi et al. (31) was cali-

brated with data from a series of MOVES simulations
using ordinary least squares fitting method to obtain val-
ues for the model coefficients for the four classes of vehi-
cles in the MOVES software (Table 4).

The model was reformulated and expanded to cover
the complete list of the U.S. Environmental Protection

Agency’s Tool for Reduction and Assessment of
Chemicals and Other Environmental Impacts (TRACI)
(32) impact categories resulting from an increment rate
of pollutants as a function of vehicle speed and pavement
IRI (Equations 6 and 7).

DRSIEnv:
t = 0 : DÎ v,DIRIð Þ= qv:DIRI=63:36½ �:Ii vð Þ ð6Þ

RSIEnv:
t= 0 : Î v, IRIð Þ= Ii vð Þ+ DÎ v,DIRIð Þ ð7Þ

where:
DÎ v,DIRIð Þ= estimated additional TRACI impact i

per vehicle distance (mile) at a given speed because of
change in pavement roughness DIRI (in./mile)

qv = % increase per one unit (63.36 in./mile) change
in IRI

Ii vð Þ= baseline TRACI impact i at a given speed and
IRI = 0

The baseline IRI value was defined to be equal to 60
in./mi which corresponds to the boundary between an
excellent and good condition rating (33). Where a proj-
ect’s initial IRI was below this threshold value (as in the
case of the IS81 project), the initial IRI of that project
was used as a baseline in the estimation of vehicles’
energy consumption. The traffic information used as
inputs to the RSI model are shown in Table 5.

Figure 8. Details of recycled pavement projects considered in the case study.
Key to Figure 8:

SN = structural number.

IM19.0A = Intermediate mix with 19.0 mm maximum nominal aggregates, ‘‘A’’ for binder with performance grade 64-22.

IM19.0D = Intermediate mix with 19.0 mm maximum nominal aggregates, ‘‘D’’ for binder with performance grade 70-22.

SMA12.5D = Stone matrix asphalt with 12.5 mm maximum nominal aggregates, ‘‘D’’ for binder with performance grade 70-22.

SM9.5D = Surface mix with 9.5 mm maximum nominal aggregates, ‘‘D’’ for binder with performance grade 70-22.

SM12.5A = Surface mix with 12.5 mm maximum nominal aggregates, ‘‘A’’ for binder with performance grade 64-22.

SM19.0A = Surface mix with 19.0 mm maximum nominal aggregates, ‘‘A’’ for binder with performance grade 64-22.

FA = Foamed asphalt.

EA = Emulsified asphalt.

HMA = Hot mix asphalt.

CCPR = Cold central plant recycling.

FDR = Full depth reclamation.

CIR = Cold in-place recycling.
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Results and Interpretation

Table 6 reports the resulting 10-year GW score for the
projects under consideration. For one lane-mile of pave-
ment project, the cement-stabilized FDR projects
(SR13&SR24) yielded the lowest average score at 23.9
tonne-CO2-equivalent while the asphalt stabilized CIR
projects (US17) yielded the highest average score at 52.7
tonne-CO2-equivalent. The average GW score from the
asphalt stabilized FDR projects was 44.4 tonne-CO2-
equivalent.

To understand/explain further the factors influencing
the use stage impacts, the 10-year GW scores for each
project, along with several input parameters, were ana-
lyzed. Generally, the higher the route traffic, the higher
the GW score. However, large trucks on low volume
roads traveling at low speeds between 45 and 55mph can
yield very large GW scores. For any two projects with

the same traffic inputs, the GW score is higher for the
project with higher initial IRI, as observed with the
asphalt stabilized FDR (SR40) and asphalt stabilized
CIR (US17) projects in the GW progression chart
(Figure 9). The interstate project with the lowest initial
IRI and low deterioration resulted in the lowest GW
score even though it had comparable number of passen-
ger cars as the US17 projects. Since the initial roughness
after projects are completed and their future deteriora-
tion rates can be controlled (to some extent) by VDOT,
measures should be taken to keep these factors low by
incentivizing contractors to attain low initial roughness
even on low volume primary and secondary roads.

Conclusions

Pavement performance prediction models are essential to
pavement management programs. These models

Table 4. Roughness–Speed Impact Model Regression Coefficients per Vehicle Type (31)

Coefficient Passenger car Small truck Medium truck Large truck

Ka 6.70E201 7.68E201 9.18E201 1.40E+ 00
Kc 2.81E204 1.25E204 1.33E204 1.36E204
Dc 2.1860E201 3.0769E201 9.7418E201 2.3900E+ 00
Da 2.1757E+ 03 7.0108E+ 03 9.2993E+ 03 1.9225E+ 04
B 21.6931E+ 01 27.3026E+ 01 21.3959E+ 02 22.6432E+ 02
P 3.3753E+ 04 1.1788E+ 05 1.0938E+ 05 8.2782E+ 04

Table 5. Traffic Information Inputs Used in the Roughness–Speed Impact Model

Traffic information (one direction) I81 SR13 SR24 SR40 US17

Total annual average daily traffic 31,000 2,300 17,000 4,900 29,000
% Passenger cars 74.0 97.1 98.3 93.0 97.0
% Small trucks 2.0 0.9 0.8 0.8 0.4
% Medium trucks 21.0 1.4 0.3 2.2 1.1
% Large trucks 3.0 0.6 0.6 4.0 1.1
% Annual growth 5.0 3.0 3.0 3.0 3.0
Average traffic speed (mph) 70 45 60 45 55

Table 6. Cumulative Global Warming (GW) Score after 10 Years of Service

Project ID

BaselineInternational
Roughness Index

(IRI) (in./mi)
Initial IRI
(in./mi)

IRI change rate
(in./mi/year)

2018 Annual average daily traffic

Speed
(mph)

GW score
(tonne-CO2-equivalent)

Passenger
cars

Total
trucks

IS81SB 49 49 0.8 22940 8060 70 20.16
SR13EB 60 92 1.4 2233 67 45 6.36
SR24EB 60 107 0.5 16711 289 60 41.40
SR40FA 60 90 3.4 4557 343 45 37.15
SR40EA 60 100 7.1 4557 343 45 51.57
US17NB 60 74 0.2 28130 752 55 35.34
US17SB 60 84 1.2 28130 752 55 70.06
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facilitate the quantification of pavements’ service life for
use in LCA studies and life cycle cost analysis (LCCA).
The performance data required to model these prediction
curves are rarely available for pavement recycling proj-
ects. Only a few states collect data for the majority of
low volume primary and secondary roads rehabilitated
with various recycling methods. To aid the modeling of
the M&R and use stages of an ongoing LCA study, per-
formance models to predict IRI using family-type models
and individual models were developed.

The following conclusions can be drawn from this
study:

1. In the case of Colorado, FDR projects will most
likely deteriorate following the ‘‘Avg group’’
trends at a rate of 1.4 in./mi/yr, with an initial
IRI between 52 and 70 in./mi.

2. For the individual roughness models developed
for Virginia, the initial IRI values and the rate
of change for the treatments analyzed were
found to range from 49 to 107 in./mi and from
0.7 to 5.2 in./mi/year respectively, depending on
the recycling method and type of stabilization
treatment.

3. Overall, the average initial IRI measurements for
projects in Colorado were lower than for projects
in Virginia. One possible explanation is that most
of the rehabilitated projects in Colorado are rural
highways (AADTT up to 2,800) compared with
Virginia, where the majority of such projects are
primary roads (AADTT up to 250, the exception
being the interstate project with AADTT up to
7,090). Also, it is typically harder to achieve
lower roughness on lower volume roads with con-
strained geometric standards. The rate of IRI
deterioration, however, is not significantly differ-
ent between the two states.

4. In addition to pavement recycling, building
smoother roads is an important measure for
VDOT and other state agencies to meet MAP21/
FAST Act goals. Research has shown that pave-
ments with low initial roughness after construc-
tion remain smoother over their life (34). Thus,
focusing on building smoother roads and ensur-
ing that the annual deterioration rate remains
low are important steps to achieve low environ-
mental burdens in the use stage.

Future Work

The few LCA studies that incorporate recycled asphalt
pavements usually omit the M&R and use stage because
of the lack of information on how the performance of
completed projects evolves over time, and how to deter-
mine the M&R frequencies and service life of each alter-
native treatment. Performance models can be used to
predict deterioration over time, thereby informing owner
agencies on rehabilitation cycles and allowing for better
budget allocation during planning. In the near future,
this study will be complemented with the following:

1. The roughness prediction models developed in
this research will be uploaded to a model library
of an LCA tool currently under development.
These models will be available for LCA studies
where project-specific data is not available.

2. Together with agency rehabilitation decision
matrices and trigger values, these models will be
used to develop M&R schedules.

3. Models for other pavement condition parameters
such as fatigue cracking, longitudinal cracking,
and patching will be developed using the same
methods. The set of predictors will be expanded
to consider other factors, such as material proper-
ties, traffic, and climate zones as data become
available for these types of pavements.
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