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Abstract—Tracking multiple objects from radar data poses
several difficulties. In recent work, it has been shown that an
algorithm consisting of a thresholding, clustering and multiple
object tracking step using the Kalman filter can track multiple
objects. Afterwards, features can be extracted from the range-
Doppler map to classify the tracked objects. However, this
method needs many heuristics on each stage and in the process,
information which could be useful in subsequent steps is lost.

To overcome these issues, in this paper we introduce a neural
network based multiple object tracker. This removes the need
for a separate thresholding, clustering, feature extraction and
classification step because it combines those into one step which
uses a neural network based on the You Only Look Once (YOLO)
object detection system to classify and localize objects. The output
of the neural network is fed into a Kalman filter based tracker
to manage the tracks.

We show that a convolutional neural network trained as an
object detector can be successfully applied in the radar domain
and we show the advantages of our neural network based multiple
object tracker over the clustering based method for specific
scenarios. These scenarios include tracking objects that cross
each other and tracking objects while the radar is non-stationary.

Index Terms—Deep Neural Network, Range-Doppler, FMCW

I. INTRODUCTION

Radar systems play an important role in applications like the
autonomous car, intelligent road infrastructure and property
surveillance systems. There are many reasons for choosing
radar sensors over image sensors. First of all, radar sensors
are not affected by weather or light conditions. Furthermore,
certain radar types like Fequency Modulated Continuous Wave
(FMCW) radars are able to directly measure the distance to
an object as well as its radial velocity.

Within the computer vision domain a lot of progress has
been achieved with the introduction of Deep Convolutional
Neural Networks (DCNNs) in fields like image classification
and object detection. However, it is not clear whether the
same approach can be applied to radar sensors. First of
all, radar sensors have lower spatial resolution than image
sensors making it harder to determine the shape and size of
objects. Moreover, only when objects are moving, the so-
called Doppler information is available in order to perform
classification.

Fig. 1: Schematic illustration of the two multiple object track-
ing methods. Top: clustering based method. Bottom: neural
network based method.

Additionally, for complex applications like autonomous
driving, classification alone is not sufficient; the task of
tracking these objects over time needs to be addressed as well.
Wagner et al. [1] presented an algorithm to track multiple ob-
jects from a series of FMCW radar data cubes. This algorithm
consists of several steps to perform the task: thresholding,
clustering, tracking based on Kalman filter, feature extraction
and finally classification.

This paper introduces a neural network based tracker capa-
ble of tracking multiple objects directly from FMCW range-
Doppler maps. Object detection from the range-Doppler maps
is possible due to the high resolution of modern FMCW radars
in both velocity and range. This causes road users such as
pedestrians and cyclists to have a distinctive signature in the
range-Doppler map.

Compared to the clustering based method, our algorithm
removes the need for separate thresholding, clustering, feature
extraction and classification stages. It combines these stages
into a single evaluation of the YOLO based DCNNs as can
be seen in Figure 1.

Combining these steps into one, has the advantage that
fewer manually designed heuristics are needed, making the
solution more robust to a changing environment. Furthermore,
the neural network takes all available information into account,
unlike the clustering based approach which discards informa-
tion along the process. More importantly, our neural network
based tracker classifies the detected objects at every frame.
Whereas, the clustering based method can only classify the
detections after several frames, increasing in this way the total
latency.978-1-7281-2660-9/19/$31.00 ©2019 IEEE
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II. RELATED WORK

In this work we address the problem of tracking and
classifying multiple objects in FMCW radar data. Other studies
related to classification from radar data can be divided into two
categories: feature based and automated.

Researchers have been trying to classify human gaits based
on manually extracted features [2] [3]. These studies have
achieved high accuracy, but they require domain knowledge
for feature extraction and thereby limit scalability [4]. Fur-
thermore, as mentioned in [2], some of the limitations of their
approach are that the algorithm is not very robust against
unpredictable, non-periodic motions and the relatively low
carrier frequency makes it difficult to classify objects that
generate fast-changing micro-Doppler velocities.

In order to avoid manual feature extraction, recent papers
experiment with neural networks to perform classification with
radar data [4] [5]. Kim et al. [4] utilized a DCNN to classify
between a human, dog, horse and a car. As input to the DCNN
they used spectrograms with a two second time-window. Next,
they classified seven human activities using a DCNN. In [5],
Shao et al. use a DCNN to classify the same seven human
activities as in [4], but the input to the network consists
of range information as a function of time, resulting in a
more robust classifier and with a better tolerance for different
incident angles.

All the research mentioned thus far use either the velocity-
time plot or the range-time plot as input for the classification
algorithm. However, in this paper an FMCW radar is used
which is capable of providing range as well as Doppler
information. By using only the range or velocity information,
potentially some information is lost which could be useful for
tracking.

More recently Perez et al. [6] utilized a DCNN to classify
range-Doppler-angle data cubes into three categories. Namely,
pedestrians, cyclists and vehicles. The main limitation of this
method is the inability to handle scenarios with multiple
objects as each frame will eventually classified into only one
of the aforementioned classes.

To the best of our knowledge, this is the first work that
makes use of a DCNN to detect multiple objects directly from
range-Doppler maps.

III. RADAR MEASUREMENTS

The measurements for our work were acquired by the
77 GHz TEF810X radar transceiver from NXP. Because we
aim to detect pedestrians and cyclist the settings were chosen
accordingly. Radar settings have a large impact on the resulting
data cube after spectrum estimation. Important considerations
are the maximum range and velocity of the radar, the range
and velocity resolution and the number of frames per second
that are recorded.

More specifically for every measurement 128 chirps were
transmitted, each consisting of 512 samples with a decimation
factor of 2. The resulting range-Doppler map has 128 × 128
values. Furthermore, a chirp bandwidth of 1.8 GHz has been
used and the dwell time, i.e. the time between chirps, has

Fig. 2: Network architecture for the neural network based
method

been set to 120µs. The aforementioned settings result in a
maximum velocity of 24 km/h and a maximum distance of
12.8 m. The velocity resolution is 0.375 km/h and the distance
resolution is 0.1 m. The frame rate is 20 fps.

IV. NEURAL NETWORK BASED METHOD

A. Neural Network-Based Object Detector

Our tracking algorithm consists of two components. First
is the object detector which follows after spectrum estimation
and the second is a tracker that uses a Kalman filter to track the
objects over time. The object detector of our tracking system
is based on the YOLO and YOLOv2 detectors. However, the
architecture of the DCNN is adapted to our dataset. First of
all, the input of our network consists of 128×128 values. This
dimensionality is the result of the specific radar parameters as
described in III.

Moreover, the grid cell size of the detector’s output is
adapted as well. In general, the YOLO detectors divide the
input image into a number of sub-regions. Each of the cells
of this grid predicts information about several objects that lie
entirely within or overlap with the grid cell. Our network has
been designed to only detect one object per grid cell. This
implies that the dimension of the grid cells determines the
minimal distance between objects that can be detected.

If the grid cells are too large, then only few objects can be
detected; if the grid cells are too small, then it becomes harder
to deal with multiple grid cells detecting the same object.
Therefore, a grid cell size of 8 has been empirically chosen
resulting in 16× 16 = 256 grid cells.

Figure 2 shows the architecture of the neural network. It is
composed of six convolutional layers and all of them consist
of 3 × 3 kernels. Max pooling with a window size of 2 × 2
is applied only after the first three convolutional layers. This
is because after three pooling layers the width and height of
the convolutional layers’ output has reached the desired grid
dimensions.

Our proposed neural network architecture contains less con-
volutional layers and a smaller amount of filters per layer than
YOLOv2. The first reason for this disparity is the substantial
difference between range-Doppler maps and images in terms
of complexity. Secondly, the receptive filed of a neuron at the
last convolutional layer is not required to cover the input’s
full extend. Receptive field is a term that describes the size of
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the area from the input which affects a single neuron at the
networks’ output.

In range-Doppler maps the extend of an object never occu-
pies the entire image. This is a key difference between images
and radar measurment: in range-Doppler maps the extend of
the objects does not change depending on the distance, only
the power varies. Whereas in images, objects look larger when
they move closer to the camera. By defining the architecture
as depicted in Figure 2, the output of a neuron at the last
convolutional layer is affected from an area of 54× 54 in the
range-Doppler map.

The ability of our neural network to act as an object detector
derives from the way that its output is structured. It consist of
a 3-dimensional tensor where the information of the detected
object per grid cell can be denoted as:

yi,j =



Pi,j

Ymidpointi,j

Xmidpointi,j

Yboxi,j
Xboxi,j

Hi,j

Wi,j

C1i,j

C2i,j


i, j ∈ [1, 16] (1)

where Pi,j denotes the probability that the midpoint of an
object is in this grid cell, (Ymidpointi,j , Xmidpointi,j) denotes
the coordinate of the midpoint of the object, (Yboxi,j , Xboxi,j)
denotes the coordinate of the midpoint of the bounding box,
(Hi,j ,Wi,j) denotes the dimension of the bounding box and
(C1i,j , C2i,j) denotes the class score for a pedestrian and
cyclist respectively. All coordinate and dimension values are
relative to the width of a grid cell and the coordinates are
expressed with an offset that starts at that grid cell.

B. Dataset and Training

The neural network was trained in fully supervised manner
with a training dataset that consists of 2008 range-Doppler
maps. The recordings took place outside along different roads
with buildings, trees and cars as part of the surroundings and
had a total duration of 100 seconds. The number of pedestrians
and cyclists that are present in the dataset is balanced and
finally, in 543 frames the radar transceiver was moving. During
the recordings the radar was placed 80 cm above the ground.

All 2008 r-D maps were manually labeled in order to
produce bounding boxes around the objects of interest. Sub-
sequently, the bounding boxes were encoded in the format
described by equation 1. An additional 400 range-Doppler
maps were produced in order to validate the results of the
neural network after training.

The network was implemented in Python using Tensorflow
and trained for approximately 50 minutes on a 3.4 GHz Intel
Core i7-6700. The optimizer was Adam [7] with a learning
rate of 0.0005 and the loss function was defined as in [8]. A
batch size of 16 frames has been used for a total of 12000
steps.

C. Object Tracker

The tracking algorithm is responsible for the initiation,
maintenance and termination of the tracks that correspond
to the detected objects. To cope with the noisy output of
the detector we use the Kalman filter [9] which is a recur-
sive algorithm that predicts state variables over time from
measurements and assumptions about the dynamics of the
tracked object. The velocity and range values we extract from
the object detector are somewhat inaccurate, caused by the
changing shape of the detection points of the objects over time.
Furthermore, an object that is being already tracked may not
be detected continuously in every frame.

The Kalman filter helps by smoothing these inaccuracies
and trying to predict the real values for the velocity and range
of an object, before updating its track. The state vector of the
Kalman filter contains the velocity and range of the object,
where a constant velocity is assumed.

As in [1], a new track and a new instance of the Kalman
filter is created for every new detection. A track is removed if
it has not been tracked for 0.2-0.8 s depending on the time the
object has been tracked already. This way a false detection will
start a track which will be removed after 0.2 s and a longer
tracked object will receive track updates up to 0.8 s. This
longer time before an untracked object will be removed, makes
the algorithm more robust against occlusions or crossings of
objects.

The assignment problem, which refers to the choice of the
correct measurement to update an existing track, is solved
by using the nearest neighbor approach. By doing so we
recursively assign detections to tracks that have the lowest
Euclidean distance. If the object has been tracked already for
more than 0.2 s, then this distance should be below a certain
threshold. This prevents a wrong assignment that could occur
in the case that the detection for a tracked object is absent for
that frame and there is a false detection at a different place.
This threshold does not hold for objects that are only being
tracked for less than 0.2 s. This is because the distance between
the track estimate and detection can still be large, since the
Kalman filter did not have enough time to converge yet.

After training, the detection network is able to predict the
presence of an object in each of the grid’s cell by giving a
probability witch is denoted in equation 1 as Pi,j . Because an
object will be detected in multiple neighboring cells we need
to define a threshold which will dictate whether the detection is
valid or not. The threshold value has been set to 0.5. In some
cases, even after thresholding the detected bounding boxes,
there are still double detections. To overcome the problem,
the intersection over union (IOU) value can be calculated and
if the IOU metric is above a threshold the non-maximum
detection will be removed recursively.

A problem arises when there are in fact two objects very
close together. One of the two detections will be removed,
because the IOU value of the two detections is above the
threshold. This problem can be prevented by using information
from the tracker itself. When two objects are approaching each
other, the IOU threshold is increased accordingly. Once the
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(a)

(b)

(c)

Fig. 3: Sample range-Doppler maps (a) and tracking results of the clustering based (b) and our YOLO based (c) approach for
a recording with 2 overtaking pedestrians.

(a)

(b)

(c)

Fig. 4: Sample range-Doppler maps (a) and tracking results of the clustering based (b) and our YOLO based (c) approach for
a recording where the radar was non-stationary.
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objects are further separated the IOU threshold is set back to
the original value.

V. RESULTS

Our initial assumption has been that a neural network
based tracker will alleviate the shortcomings of the clustering
method that derive from the heuristics that are involved. We
evaluate the performance of our algorithm by comparing the
two methods on a set of recordings that were not part of the
training dataset.

Figure 3 shows the tracks generated by the two methods
when the input was a recording where two pedestrians are
crossing each other. The two pedestrians are both moving to-
wards the radar but one of them is walking faster. Subfigure 3a
contains five sample range-Doppler maps from the recording
in chronological order, from left to right.

The resulting track of the clustering based method which
is depicted in subfigure 3b, is not correct. Initially it detects
the two pedestrians but as they approach each other they are
falsely detected as a single object for many consecutive frames.
As a result, the Kalman filter based tracker discontinues one
of the tracks and later when the two pedestrians are further
apart, it initiates a new one.

Our method on the other hand, is able to correctly track
the two objects for the entire duration of the recording. This
can be seen in subfigure 3c. The reason is that the neural
network based object detector can separately detect the two
pedestrians in almost all the frames. That allows the Kalman
filter to continue the tracks of both pedestrians uninterrupted.

Another scenario that our method generated better results
is when the radar was moving. In this case objects that
are standing still, have a negative velocity which equals the
velocity of the radar. Similarly to figure 3, subfigure 4a shows
five sample frames from the recording while subfigures 4b
and 4c depict the tracks generated from the clustering based
method and our algorithm respectively.

Our object tracker has been trained with recordings where
the radar was moving and can successfully detect only the
cyclists and pedestrians due to their unique signature in the
range-Doppler map. On the contrary, the clustering based
algorithm cannot handle the moving environment and initiates
a lot of false tracks

Note that the color of the tracks in subfigures 3c and 4c
shows the predicted class for each detected object. Orange
color indicates a cyclist, whereas light blue is a pedestrian.
On the other hand, in subfigures 3b and 4b the colors of
the tracks are chosen arbitrarily and do not indicate any class
because the classification stage of the algorithm presented in
[1] was not implemented.

Table I provides more detailed results over the comparison
of the two methods. We show separate results for the case of
the moving radar because the performance of the clustering
method drops sharply. More specifically, the recall, precision
and the False Alarms per Frame (FAF) values are a lot worse
than the results of the neural network based tracker.

When the radar is stationary our method perform slightly
better with an exception on the recall metric. This is because

TABLE I: Quantitative results comparing clustering based
method to neural network based method

Method Moving radar Recall Precision FAF

Clustering
Yes 0.65 0.21 2.38
No 0.85 0.94 0.08

Neural network
Yes 0.85 0.96 0.04
No 0.69 1.00 0.00

when the objects of interest move further away from the
sensor, the reflection of separate components like the arms,
legs and wheels, is getting weaker. Subsequently, the neural
network based object detector fails to detect the objects more
often.

Finally, our method can directly classify the detected objects
with an accuracy of 97%. In contrast to the clustering approach
that needs some time to extract the micro-Doppler signature of
the detected object and then classify them based on manually
selected features.

VI. CONCLUSION

This paper introduces a neural network based multiple
object tracker. This method removes the need for a separate
thresholding, clustering, feature extraction and classification
step, as applied in the state-of-the-art clustering based method
described in [1]. Instead, we incorporate those stages into a
single evaluation of a DCNN.

The results show that the proposed algorithm is more
robust for difficult scenarios in which one pedestrian overtakes
another person as well as for the case that the radar is
non-stationary. Furthermore, the total latency until an object
is classified is drastically reduced as our method performs
classification on every frame.

REFERENCES

[1] T. Wagner, R. Feger, and A. Stelzer, “Radar Signal Processing for Jointly
Estimating Tracks and Micro-Doppler Signatures,” IEEE Access, vol. 5,
pp. 1220–1238, 2017.

[2] Youngwook Kim, Sungjae Ha, and Jihoon Kwon, “Human Detection
Using Doppler Radar Based on Physical Characteristics of Targets,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 289–293,
2015.

[3] Z. Zhang, R. Zhang, W. Sheng, Y. Han, and X. Ma, “Feature extraction
and classification of human motions with LFMCW radar,” IEEE Interna-
tional Workshop on Electromagnetics, iWEM 2016 - Proceeding, 2016.

[4] Y. Kim and T. Moon, “Human detection and activity classification based
on micro-doppler signatures using deep convolutional neural networks,”
IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 1, pp. 8–12,
2016.

[5] Y. Shao, S. Guo, L. Sun, and W. Chen, “Human Motion Classification
Based on Range Information with Deep Convolutional Neural Network,”
2017 4th International Conference on Information Science and Control
Engineering (ICISCE), pp. 1519–1523, 2017.

[6] R. Pérez, F. Schubert, R. Rasshofer, and E. Biebl, “Single-frame vul-
nerable road users classification with a 77 ghz fmcw radar sensor
and a convolutional neural network,” in 2018 19th International Radar
Symposium (IRS), June 2018, pp. 1–10.

[7] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
pp. 1–15, 2014.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” 2015.

[9] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, p. 35, 1960.

2019 International Radar Conference (RADAR2019)

978-1-7281-2660-9/19/$31.00 ©2019 IEEE


