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Abstract—Scientists have long been attracted to
mechanisms surrounding the predator–prey system. The
Lotka–Volterra (LV) model is the most popular formal-
ism used to investigate the dynamics of this system.
LV equations present non-linear dynamics that exhibit
periodic oscillations in both prey and predator popula-
tions. In practical situations, it is useful to stabilise the
system asymptotically to a desired set point (population)
wherein the two species coexist by fashioning specific
control actions. This control strategy can be beneficial for
problems that can arise when there is a risk of extinction
of one of the species and human intervention must be
planned. One natural and well-established theory for
describing systems obeying energy balance laws is the
port-Hamiltonian modeling, an extension of classical
Hamiltonian mechanics to systems endowed with control
and observation. The LV model can be formally represented
as a non-linear mechanical oscillator employing the canon-
ical equations of Hamilton. This special mathematical
structure aids planning and designing efficient control
actions. The proposed strategy employs a systematic
procedure to efficiently plan biological control actions and
bypass species extinction through asymptotic stabilisation
of populations.

Index Terms—Nonlinear control systems, biological
system modeling, stability analysis.

I. INTRODUCTION

AN INTERESTING phenomenon regarding population
dynamics between predatory and prey fish was observed

by the Italian marine biologist Umberto D’Ancona. His find-
ings, which date back to the period after World War I,
were that in the Adriatic Sea the percentage of predatory
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fish was decreasing with respect to their prey. This peculiar
phenomenon attracted the curiosity of the biologist, because
during the war fishing practices were considerably reduced.
Hence, a decline in predatory fish was unexpected. In order to
find a rational explanation to this event, D’Ancona asked his
father-in-law, the mathematician Vito Volterra, to analytically
model the evolution of the two competing species. This request
attracted the interest and curiosity of the mathematician, who,
in 1926, proposed a dynamic model to describe the predator–
prey interaction of two species characterised by cyclic oscil-
lations in the number of individuals [1]. The common interest
of the two relatives in finding a scientific explanation for
this phenomenon is unsurprising. In fact, population dynam-
ics are at the intersection of various fields, viz. mathematics,
biology, social science, and medicine [2]. It is interesting
to observe that the same equations developed by Volterra to
model a biological system were already independently derived
by Alfred Lotka, in 1910, to describe a hypothetical auto-
catalytic chemical reaction in which chemical concentrations
oscillate [3].

Subsequent experimental results showed that the so-called
Lotka–Volterra (LV) equations can accurately predict the
behaviour of different biological systems, e.g., bacteria [4],
and the snowshoe hare (prey) and Canadian lynx (preda-
tor) [5]. Additionally, in order to analyse how perturba-
tions affect the system, researchers have been studying
how the presence of other significant species, along with
factors such as food or disease, influence the predator–
prey relation [6], [7], [8]. Many researchers have focused on
changing the dynamics of the LV model by means of a proper
controller. In fact, the design of a controller for this system
can be used to solve significant problems, e.g., reducing the
risk of extinction [9], [10], [11].

The LV model is appealing when modelling several rela-
tionships: resource–consumer [12], microbial competition for
food [13], plant–herbivore [14], parasite–host [15], tumour
cells (virus)–immune system [16], and susceptible–infectious
interactions [17].

In addition to these practical aspects, the structure of the
model is peculiar from a mathematical point of view, inso-
far as it is analogous to a nonlinear mechanical oscillator. In
particular, from the beginning of the nineties, the underlying
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Fig. 1. Workflow of the control design proposed in this letter. First, the
model is transformed in Hamiltonian form; in this reference frame extinc-
tion avoidance of species is implicitly guaranteed. Then, the stabilizing
controller is derived in a port–Hamiltonian fashion.

geometrical structure of the LV equations has been investigated
in [18], [19], [20], where it became clear that such equations
admit a non–trivial Hamiltonian formulation. Furthermore,
as briefly suggested in [21], by a proper change of coordi-
nates, the model resembles the canonical equations of classical
mechanics. As first minor contribution of this letter, we review
and derive in a systematic way these steps, which are only
briefly mentioned in the literature. As major contribution, we
introduce a new approach to control processes that can be
modelled with LV equations by employing a relatively new but
well–established branch of control theory: port-Hamiltonian
systems [22], [23], [24], [25]. Previous attempts to stabilize
food–chain systems in the port–Hamiltonian framework are
present [26], [27]. The major difference of the proposed con-
trol strategy with respect to these approaches relies on the
particular Hamiltonian model that is used. We take advantage
of the aforementioned change of coordinates to resemble a
canonical mechanical system. This aspect turns out to be cru-
cial in designing the algorithm in a relatively simple way, in
which no PDE matching conditions [26] nor LMIs [28] need
to be solved.

The workflow on the control design proposed in this letter
is graphically represented by Fig. 1.

II. LOTKA–VOLTERRA EQUATIONS: MODELING

The classical formulation of the LV model is the following
autonomous dynamical system:{

ẋ = ax − bxy
ẏ = −cy + dxy,

(1)

where x(t), y(t) ∈ R represent the time evolution of the
populations of prey and predators, respectively. The positive
parameters a, b, c, and d have the following meaning: a is
the natural growth rate of the prey in absence of predators, b
is the effect of predation on the prey, c is the natural death
rate of the predators in absence of prey, and d is the effi-
ciency and propagation rate of the predators in the presence
of prey. The assumption of the LV model is that prey have infi-
nite food resources and the only limitation to their increment
is given by predation. The system presents two equilibrium
points in the prey–predator space. These points can be classi-
fied through an initial stability analysis based on linearisation.
The first point is the origin [0, 0] and results in a saddle point
that has an unstable eigendirection coincident with the x-axis,
and a stable eigendirection coincident with the y-axis of the

x–y plane (phase space). It follows that convergence toward a
state in which both predators and preys are extinct is implic-
itly avoided by the autonomous dynamics of the system. The
second equilibrium point, located at [a/b, c/d], is elliptic. The
eigenvalues of this point are complex. Hence, the linear clas-
sification is insufficient to ensure that the non-linear system
will follow periodic orbits around the equilibria. However, the
system is conservative with respect to a specific quantity, and,
as a result, the trajectories follow a periodic trend. In fact,
the LV model has the structure of a canonical Hamiltonian
system [21]. The equations of motion of Hamiltonian mechan-
ics, known as the canonical equations of Hamilton, have the
following form:

q̇ = ∂pH(q, p) ṗ = −∂qH(q, p),

in which, generally, p, q ∈ R
n and the scalar Hamiltonian

function H : R
n ×R

n → R is constant in time. Hence,

Ḣ = q̇�∂qH(q, p)+ ṗ�∂pH(q, p) = 0.

The transformation of the LV to the structure of a
Hamiltonian system is done by changing the variables. Indeed,
we can divide the two equations in (1) by x and y, respectively,
and replace [q, p] with [ ln(y), ln(x)]. This leads to{

q̇ = −c + dep = ∂p(−cp + dep + γ (q))
ṗ = a − beq = −∂q(−aq + beq + μ(p)),

for any scalar functions γ (q) and μ(p). Selecting γ (q) =
aq − beq and μ(p) = −cp + dep yields{

q̇ = ∂p(−cp + dep − aq + beq) = ∂pH(q, p)
ṗ = −∂q(−cp + dep − aq + beq) = −∂pH(q, p),

(2)

and, consequently, the Hamiltonian function results in
H(q, p) = −aq + beq − cp + dep. In the case of classical
mechanics, the Hamiltonian function physically represents the
total energy of the system. In this case, it simply reflects
the “conserved quantity” in time. Moreover, the equilibrium
[0, 0] has no finite correspondence in Hamiltonian coordinates.
Hence, the possibility of extinction is automatically neglected
by this transformation.

Remark 1: The derived Hamiltonian model for system (1)
by means of the discussed change of coordinates yields a
canonical interconnection structure, i.e., the system in the
new variables looks exactly like the equations of motion in
Hamiltonian mechanics. This constitutes a major difference
with respect to the works [18], [19], [20], [26] investigat-
ing the Hamiltonian structure of the LV equations, in which
the interconnection structure is represented by a non constant
skew-symmetric operator, modulated by the state variables.

This particular structure implies the existence of the integral
of motion V(x, y) for the standard LV model:

V(x, y) = H(q, p)|[ ln(y),ln(x)] = −a ln(y)− c ln(x)+ by + dx,

which demonstrates that the motion of the system in the x–y
plane follows periodic trajectories coinciding with isolines of
the integral of motion V(x, y) = V0, where the value of V0 is
defined by the initial conditions at the starting time: x(t0) = x0,
y(t0) = y0. Similarly, in the q–p plane the periodic motion
happens on the closed curves corresponding to the level sets
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Fig. 2. Plots of V (x , y ) (a) and H(q, p) (b). Coinciding with the level sets of V and H, foliations of phase-space (periodic) trajectories of the system.
In both figures a = b = c = d = 1.

H(q, p) = H0 given by the initial conditions: H0 = H(q0, p0).
Therefore, the time evolution of the system consists of cyclic
fluctuations of the two populations, for which predator pop-
ulations follow variation in the prey population, and with
certain dynamics that depend on the system parameters a,
b, c and d. The biological interpretation of this oscillatory
behaviour is that an abundance of hunters implies more killing
of prey, that, in the long term, causes a consistent absence
of food for predators and hence their decline. Consequently,
the death of predators causes an increase in prey, and so on
in cyclical alternates. The possibility of modelling the LV
equations from a Hamiltonian perspective, allows us to apply
to an ecological model the well-consolidated theory of port-
Hamiltonian systems, widely exploited for the analysis and
control of systems belonging to many physical domains in the
control-theoretical community. It is easy to see that the equi-
librium point in q–p is [q∗, p∗] = [ ln(a/b), ln(c/d)], which is
also a minimum point of H(q, p):

∂H(q∗, p∗) = 0, ∂2H(q∗, p∗) = diag [a, c] > 0.

In the same way, it can be shown that [c/d, a/b] is a minimum
for V(x, y). Thus, for any a, c > 0, the Hessian of H is always
positive-definite. As consequence the equilibrium of the LV
model is always a minimum of the Hamiltonian function. A
criticism of the LV model consists in its structural absence of
stable attractors due to the presence of the conservativeness
given by the Hamiltonian structure [21]. In fact, a generic
perturbation, destroying the integral of motion where orbits lie,
will dramatically change the behaviour of the system. V(x, y)
and H(q, p) are shown in Fig. 2, which also illustrates the
families of periodic orbits of the system in both their standard
and the Hamiltonian forms corresponding to the isolines of V
and H, respectively. The model’s parameters have been set to
a = b = c = d = 1.

III. CONTROL OF THE EVOLUTION

A. Definition of the Control Problem

We assume the ability to influence the behaviour of the
system with some control actions, e.g., harvesting or repopu-
lating the two species, promoting or suppressing the birth (or
death) of the species. Let us assume that the control objec-
tive is to bring the ecological model to a certain set point in
which the two species coexist. The controlled system is then

described as {
q̇ = ∂pH(p, q)+ v(t)
ṗ = −∂qH(p, q)+ w(t),

(3)

where the scalar functions v and w are the control inputs.

B. Passivity-Based Control and Stability of the System

Thanks to the special structure of the dynamic model of
the considered system, it is suitable to use a control strat-
egy that exploits an energy–based perspective. The strict
minima of the energy function (i.e., the Hamiltonian func-
tion) correspond to a Lyapunov-stable equilibrium that can be
asymptotically stabilised through a specific technique called
damping injection. A brief introduction to passivity-based con-
trol of port-Hamiltonian systems is hereafter given [22], [23].
This methodology has been applied in several contexts which
encompass classical Hamiltonian dynamics [29]. In general, a
port-Hamiltonian system without dissipation is expressed as{

ξ̇ = J(ξ)∂H(ξ)+ g(ξ)u
η = g�(ξ)∂H(ξ),

(4)

where ξ is the state of the system, u and η are the vectors of the
inputs and the outputs, respectively. H(ξ) is the Hamiltonian
function, i.e., the energy storing function, J(ξ) is a skew sym-
metric matrix representing the internal power of preserving
interconnections, and g(ξ) is a matrix describing the way that
power coming from the external world is distributed into the
system. The system defined in Eq. (4) is lossless, which means
that the variations in time of the energy of the system are only
due to the power flow through input and output ports:

Ḣ(t) = η�(t)u(t).

In this condition, under local observability assumptions it
is possible to asymptotically stabilise an equilibrium con-
figuration corresponding to a local minimum point of the
Hamiltonian function by the control law u = −kη and k > 0.
The power balance equation of controlled system becomes:

Ḣ(t) = −kη�(t)η(t) ≤ 0. (5)

The damping injection adds to the lossless systems power
dissipation. Unfortunately, it is common that the configura-
tion to be stabilised does not correspond to a strict minimum
of the Hamiltonian function. Therefore, in order to apply the
damping injection control, it is necessary to introduce another
controller, whose objective is to change the shape of the energy
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function of the controlled system. This will allow a strict min-
imum in the configuration of interest. This control strategy is
called energy shaping plus damping injection and it consists
of two steps:

• Energy shaping: Shape the energy of the plant by means
of a proper control law able to assign a strict minimum
in the desired configuration;

• Damping injection: Add dissipation via damping injec-
tion in order to asymptotically stabilise the desired
configuration.

The rate of convergence of the state toward the minimum
of H(x) is determined by the amount of energy extracted
from the system. In general, port-Hamiltonian systems admit
lower bounded storage energy functions such that there exists
ζ ∈ R

+ such that H(ξ) > −ζ . Considering the port-
Hamiltonian system described by Eq. (4) and the energy
balance equation (5), the control problem of energy shaping
for the lossless system can be formalised as follows.

Let ξ∗ be a desired minimum of the energy function. Select
a control u = β(ξ) + v such that the closed-loop dynamics
satisfy the new power balance equation:

Ḣ∗(t) = z�(t)v(t), (6)

where H∗ is the desired energy function with a strict minimum
in ξ∗, and z is the new output. This implies the design of a
controller that modifies the energy function by changing its
shape, but preserves the lossless property of the system.

C. Control Design for the Lotka–Volterra Model

Let ξ = (q, p) and recall H(p, q) = −aq + beq − cp + dep.
The port-Hamiltonian model of the LV equations is compactly
rewritten in the form of Eq. (4) as follows:

⎧⎨
⎩
ξ̇ =

[
0 1

−1 0

]
∂ξH + gu

η = g�∂H
(7)

Let us first consider the energy-shaping part of the con-
troller. The desired control action should maintain the lossless
property of the system and, at the same time, place the
global minimum of the Hamiltonian function, i.e., move the
equilibrium point of the system in the desired set point.

The energy-shaping controlled system assumes the follow-
ing form:

{
q̇ = −c + dep − β1(p)
ṗ = a − beq + β2(q)

(8)

If β1 does not depend on q, and β2 does not depend on
p, the lossless property of the system is preserved. The new
shaped Hamiltonian function, which maintains the system in
the form of Eq. (7), is the following:

H∗(q, p) = −cp + dep −
∫ p

0
β1(ϕ)dϕ

− aq + beq −
∫ q

0
β2(ψ)dψ.

Therefore, the new equilibrium configurations of the system
correspond to states that nullify ∂ξH∗:

∂ξH∗ =
[
∂qH(q, p)
∂pH(q, p)

]
=

[−a + beq − β2(q)
−c + dep − β1(p)

]
=

[
0
0

]

A simple way to regulate the system to a fixed point in the
phase space is achieved by fixing β1 and β2 to a constant
value, the new Hamiltonian will have a unique minimum in

q = ln
(β2 + a

b

)
, p = ln

(β1 + c

d

)
. (9)

Now, let [x∗, y∗] be the desired set point of the system,
which can be expressed in the q–p coordinate system as
[q∗, p∗] = [ ln(y∗), ln(x∗)]. By setting [q∗, p∗], the minimum
point of the shaped Hamiltonian can be straightforwardly
obtained by replacing q and p with the coordinates of the
desired set point in Eq. (9). This leads to the following constant
energy-shaping control actions β1 and β2:

β1 = dx∗ − c, β2 = by∗ − a. (10)

Thus, the substitution of β1 and β2 in Eq. (8) leads to the
energy-shaped controlled system:{

q̇ = −dx∗ + dep

ṗ = by∗ − beq ,

and the corresponding new shaped Hamiltonian H∗ is

H∗(q, p) = −dx∗p + dep − by∗q + beq,

which is bounded from below and has a minimum in
[ ln(y∗), ln(x∗)].

Note that the existence of the logarithms in Eq. (9) is always
guaranteed by this choice of β1, β2. In fact, x∗ and y∗ must
be positive by definition.

It can also be noticed that the Hamiltonian might not be zero
at the minimum point, though it is certainly lower–bounded:

H∗(q, p) ≥ H∗(ln(y∗), ln(x∗)) = ζ,

and, therefore, without any loss of generality, it is worth
redefining H∗ as H∗−ζ . We can select, for example, as output
of the controlled system the prey’s per-individual birth rate:
z = ẋ

x = ṗ. It is now possible to design the damping injection
controller. The control’s law can be defined as:⎧⎪⎪⎨

⎪⎪⎩

[
q̇
ṗ

]
=

[
0 1

−1 0

][
∂qH∗
∂pH∗

]
+

[−1
0

]
v

z = ṗ = [−1 0
][∂qH∗
∂pH∗

]
.

Consequently, the damping injection control action will be
given by v = −kz, which yields to the closed-loop system:[

q̇
ṗ

]
=

[−k 1
−1 0

][
∂qH∗
∂pH∗

]
.

It is possible to conduct a stability analysis of the equilib-
rium point

[
ln(y∗), ln(x∗)

]
for both the uncontrolled (v = 0)

and controlled systems via Lyapunov’s second method. Taking
as Lyapunov function candidate the Hamiltonian H∗, it holds
that

H∗(q, p) > 0 ∀q 
= q∗,∀p 
= p∗, H∗(q∗, p∗) = 0.
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Fig. 3. Qualitative effects of the proposed controller on the Hamiltonian vector field. While the energy shaping “shifts” the equilibrium (i.e., the
minimum of H) to the desired set point preserving the losslessness property of the system, the damping injection asymptotically stabilizes the flows,
guaranteeing global convergence to the equilibrium without altering its location.

Regarding the system in which only energy shaping is
applied but not damping injection, i.e., the one without a
damping injection control action, the Hamiltonian is expected
to be constant in time. In fact,

Ḣ∗ = (∂H∗)�
[

0 1
−1 0

]
∂H∗ = 0.

Thus, the uncontrolled system is stable, but not asymptot-
ically stable, and characterised by a periodic trend around
the desired set point. Rather, the controlled system should
present a monotonically decreasing Hamiltonian thanks to the
dissipation effect of the damping injection controller:

Ḣ∗ = (∂H∗)�
[−k 1
−1 0

]
∂H∗ = −k(∂qH∗)2 ≤ 0, ∀q, p.

Therefore, the controlled system is Lyapunov-stable. To
prove the asymptotic stability we can use LaSalle’s invariance
principle [30]. In fact,

Ḣ∗ = 0 ⇔ q, p ∈ 
 = {q, p | q = q∗ = ln(y∗)},
and the largest invariant subset of 
 is the point

[
q∗, p∗],

which, consequently, is asymptotically stable, as is the con-
trolled system. The effect of the controller on the Hamiltonian
LV’s vector field is shown by Fig. 3.

Remark 2: The proposed approach, relying on the dynamics
in Hamiltonian canonical form, leads to a simpler, yet effec-
tive, control design compared to [22], [27], [28]. This is due
to the fact that, in p − q coordinates, where the underlying
interconnection structure is not state–dependent, the energy
shaping can be carried out “by hand” without solving any
matching PDE. Finally, as in canonical coordinates the extinc-
tion state [x, y] = [0, 0] is not mapped in any finite state, the
risk of accidental annihilation of the species during the control
phase is automatically avoided.

IV. SIMULATION EXPERIMENTS

The autonomous models (1) and (2) were simulated using
the Livermore solver for non-linear ordinary differential equa-
tions (LSODE) of solve_ivp, from the SciPy library of
Python.1 To validate the effectiveness of the controller, simu-
lations were performed with parameters a = b = c = d = 1. It
is important to underline that the time scale of the simulation

1The whole code to reproduce all the experiments presented in this letter
is available at https://github.com/massastrello/Lotka-Volterra-Control.

Fig. 4. Time evolution and phase-space trajectories of the controlled
system. In the underdamped case, the state converges to the set
point oscillating around it. In the overdamped case, no oscillations are
observed.

does not influence the analysis presented in this letter. In fact,
it strongly depends on the context of the system modelled. For
example, in the case of fish, the time scale might be years,
whereas in the case of bacteria it might be hours. Likewise, in
the case of a chemical reaction, the time scale will be minutes
or seconds.

First, a total of 100 initial conditions [q0, p0] have been
sampled from a bivariate Gaussian distribution with standard
deviation 0.75. The desired set point has been chosen as the
natural minimum of H ([x∗, y∗] = [1, 1]). For each initial
condition, the system has been integrated for a total of 20s
with k = 0.5 (underdamped case) and k = 2 (overdamped
case). Results are shown in Fig. 4. It can be noticed how,
with the higher dissipation rate, trajectories converges to the
minimum of H without oscillations.

To extensively explore how the (arbitrary) choice of the
positive scalar k affects the behavior of the system, 1000 sim-
ulation with the same initial condition [q0, p0] = [1, 1] and
random k between 0.01 and 2 have been carried out. Results
are presented in Fig. 5.

V. DISCUSSION

In this letter, the equilibrium of species population for an
LV system is obtained by employing a novel port-Hamiltonian
representation of the equations. Simulations were conducted
to demonstrate the effectiveness of the derived controller.
The results show that, if it is only possible to observe the
prey’s birth or death rate and only two control actions can
be performed (i.e., on the tracked variable and on the preda-
tors, for example by harvesting them or encouraging their
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Fig. 5. State trajectories and damping injection control effort for different
values of k .

reproduction), then it is indeed possible to control the system
and reach and maintain a desired stable equilibrium for the
populations of the two species. One of the most interesting
aspects of this formulation of the problem is that, since the
control is designed for the Hamiltonian form of the LV model,
we do not need to know the number of prey individuals to sta-
bilise the output. Rather, only their per-individual birth rates
must be estimated, and this is simple to obtain in practical
cases, e.g., with bacteria. Additionally, the proposed port-
Hamiltonian control scheme ensures that there will never be
the extinction of one or both species, i.e., that is not possible
to bring q and p to infinity.

The proposed scheme could be beneficial to many appli-
cations, as any possible modification made to an ecosystem
based on the scheme would never lead to irreversible states.
On the other hand, this might be considered a limitation in
other applications, e.g., killing a colony of a specific bacte-
ria species. (It has been experimentally verified that certain
species pairs of bacteria, placed in the same environment,
match the LV dynamics [4].) Furthermore, it is worth under-
lining that the energy shaping control efforts, β1 and β2, are
constant in time. The aim of the energy shaping controller is
to bring the equilibrium point of the system to the desired set
point while preserving the energy balance. In order to place the
minimum of the Hamiltonian function in the desired set point
perfectly, exact knowledge is needed of the model’s parameters
a, b, c, and d. However, in practice, only experimental esti-
mates of these quantities are available. The designed controller
relies on combined passivity properties of the LV model and
the port-Hamiltonian controller, inheriting robustness proper-
ties of the system. This means that the control task is achieved
also for small perturbations of the system parameters. A quan-
titative analysis of the admissible perturbations as well as the
implementation of a set up to perform experiments for the
described system is part of the future activities involving this
letter.
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