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ABSTRACT
The well-known method of images relates the solution of the heat equa-
tion on R

n (typically n¼ 2 or n¼ 3) to the solution of the heat equation
on certain spatial subdomains X of Rn: By reformulating the method of
images in terms of a convolution kernel, two novel extensions are
obtained in this paper. First, the method of images is extended from ther-
mal problems to thermoelastic problems, that is, it is demonstrated how
the heat-induced deformations on R

n can be related to the heat-induced
deformations on certain subdomains X of Rn: Secondly, an explicit expres-
sion for the convolution kernel for the disk is obtained. This enables the
application of the method of images to circular domains to which it could
not be applied before. The two obtained extensions lead to a computa-
tionally efficient simulation method for repetitive heat loads on a disk. In a
representative simulation example of wafer heating, the proposed method
is more than ten times faster than a conventional Finite Element approach.
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1. Introduction

The Method of Images (MoI) relates the solution of the heat equation with constant coefficients
on R

n, typically n¼ 2 or n¼ 3, to solutions of the heat equation on certain subdomains X � R
n:

Analytic expressions for the solution on R
n can be obtained using the fundamental solution of

the heat equation, see for example [1, 2]. The MoI is therefore typically used to derive analytic
and semi-analytic expressions for the solution of heat conduction problems on bounded domains,
see for example [3–5]. In most cases, the method is applied for zero Neumann boundary condi-
tions (BCs), but the method has been extended to a variety of other BCs such as (zero) Dirichlet
or Robin BCs, see [1, 6, 7]. In most cases, the material properties are assumed to be constant, but
extensions to multilayered materials in which the material properties are piecewise constant also
exist [6, 7]. The MoI dates back at least to the nineteenth century, see [8], but might well be even
older and has also applied to problems in elasticity, see for example [9, 10].

The MoI is not only of interest for the derivation of (semi)-analytical expressions for the tem-
perature field on certain subdomains, but can also be used to reduce the computational cost for
the simulation of heat conduction problems with repetitive sources [11]. For such processes, the
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temperature field on the unbounded domain R
n can be constructed effectively by exploiting the

translation, rotation, and time invariance of the heat equation on R
n: The MoI is then applied to

obtain the solution on the subdomain X � R
n of interest.

Repetitive heat loads occur in many industrial applications where a surface is treated by the
(small) spot of a laser beam. In these applications, multiple passings of the laser over the surface
occur. The heat load applied during each passing is the same up to a translation and/or rotation
in space and a shift in time. Examples of such processes are the laser hardening of metals
[12–14], additive manufacturing [15–17], and wafer heating [11, 18, 19]. In the latter application,
a pattern of electronic connections is projected onto a silicon wafer, see Figure 1. The light used
to project the pattern heats up the wafer which leads to thermal expansion and a degraded imag-
ing quality. Note that the pattern is projected consecutively onto all fields (the light blue rectan-
gles in Figure 1) and that the same pattern of electronic connections is projected in each field. It
is therefore natural to consider the scanning of one field as one passing of the heat load. Fast and
sufficiently accurate simulation of this process is needed to improve the imaging quality of the
latest generation wafer scanners.

It should be noted that the assumption of constant material properties is problematic when tem-
perature increases are large. However, semi-analytic models have also been developed for applica-
tions where the material properties are certainly not constant such as welding [4, 5] and additive
manufacturing [17]. In contrast to these applications, the temperature increases encountered in
wafer heating are small, that is, smaller than one Kelvin, and the material properties can assumed to
be constant. This makes the MoI particularly suitable for the wafer heating application.

However, the wafer heating application comes with two specific difficulties. The first difficulty
is that the spatial domain is a disk (see Figure 1) and that, to the best of our knowledge, the MoI
has only been applied to box-shaped (also called orthogonal) domains. The second difficulty is
that, rather than the temperature field, the heat-induced deformation is of interest because local
deformation eventually determines the imaging quality of the lithographic process. To the best of
our knowledge, the MoI has only been applied to the temperature field and not to the heat-
induced deformations.

Figure 1. An example of a repetitive heat load that occurs in a lithography process (wafer heating). In this process, a pattern of
electronic connections is projected onto the wafer in an area XslitðtÞ called the slit that moves over the wafer surface. The light
used to project the pattern results in a (uniform) heat load applied in XslitðtÞ: Because each field is scanned in the same way, the
applied heat load is repetitive. (a) A typical expose pattern in lithography. The heat load scans multiple fields (light blue rectan-
gles) on a silicon wafer (gray disk) which results in a meandering path (red and orange arrows). (b) A detailed view of the scan-
ning of fields i - 1, i, and iþ 1 (the three light blue rectangles). The heat load is applied in a rectangular area XslitðtÞ which is
displayed at three time instances t1 < t2 < t3 (red rectangles).
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This paper addresses these two difficulties by reformulating the MoI in terms of a convolution
kernel. Two novel extensions are obtained. First, it is shown how the MoI can be applied in thermo-
elasticity, that is, it is shown how the heat-induced deformation in a subdomain X � R

n can be
computed based on the heat-induced deformation on R

n: This extension is based on the displace-
ment potential function, see for example [20–22], which means that in almost all cases an additional
correction is needed to satisfy the mechanical BCs. Secondly, it is shown how the MoI can be applied
to a disk. This extension is found by solving a certain Partial Differential Equation (PDE) for the
convolution kernel. These two extensions enable the efficient simulation of thermomechanical sys-
tems on a disk-shaped spatial domains. A representative wafer heating simulation demonstrates that
the developed methods can reduce the required computational time by more than a factor ten com-
pared to a conventional Finite Element (FE) analysis on a similar grid and with a similar accuracy.

The remainder of this paper is organized as follows. In Section 2, the considered class of ther-
momechanical systems and their response to repetitive heat loads is introduced. In Section 3, the
MoI for heat conduction problems is reformulated in terms of a convolution kernel and extended
to thermoelastic problems. Section 4 contains several examples that demonstrate how the general
theory from Section 3 can be applied to specific spatial domains X � R

n including a disk. The
efficiency of the MoI for the simulation of thermomechanical problems with repetitive heat sour-
ces is then demonstrated for a wafer heating application in Section 5. Finally, Section 6 contains
the conclusions and recommendations.

2. Problem description

2.1. Notation

The following notation will be used. Scalars are denoted by italic letters, for example t, j, and T0

denote scalars. Vectors are denoted by bold lower-case Roman letters, for example x denotes a
vector. Unless specified otherwise, vectors are column vectors. Matrices are denoted by bold cap-
ital Roman letters or bold Greek letters, for example I and r denote matrices. The transpose of a
vector or a matrix is indicated by >: Components of vectors and matrices are again scalars and
are thus denoted by lower-case italic letters, for example a vector x 2 R

n can be written as x ¼
½x1, x2, :::, xn�>: The Euclidean inner product is denoted by x � y ¼ x1y1 þ x2y2 þ :::þ xnyn and the
Euclidean norm is denoted by kxk :¼ ffiffiffiffiffiffiffiffiffi

x � xp
:

The same conventions are used with respect to functions, for example Tðx, tÞ, uðx, tÞ, and rðx, tÞ
denote scalar-valued, vector-valued, and matrix-valued functions depending on the vector x and the
scalar variable t, respectively, and u1ðx, tÞ denotes the first component of uðx, tÞ: The derivative of a
scalar-valued function Tðx, tÞ w.r.t. x is a row vector @T=@x ¼ ½@T=@x1, @T=@x2, :::, @T=@xn�,
whereas the gradient w.r.t. x is a column vector rT ¼ ½@T=@x�>: When x are Cartesian coordinates,
the gradient w.r.t. x of an R

n-valued function uðx, tÞ is an R
n�n-valued function which has the gra-

dients of its components as columns, that is ru ¼ ½ru1,ru2, :::run�: The divergence w.r.t. x of an
R

n-valued vector field uðx, tÞ is a scalar-valued function r � u ¼ @u1=@x1 þ @u2=@x2 þ :::þ
@un=@xn: The divergence of a R

n�n-valued function rðx, tÞ is a vector and is taken column-wise,
that is r � r ¼ ½r � r1,r � r2, :::,r � rn�>, where ri denotes the i-th column of r: The Laplacian of a
scalar-valued function Tðx, tÞ is a scalar-valued function r2T ¼ @2T=@x21 þ @2T=@x22 þ :::þ
@2T=@x2n: The Laplacian of an R

n-valued function uðx, tÞ is taken component-wise, that is r2u ¼
½r2u1,r2u2, :::,r2un�>: The Dirac delta is denoted by d.

2.2. Linear quasi-static thermoelasticity

The equations of thermoelasticity considered in this paper are of the same form for three-dimen-
sional (3-D) and two-dimensional (2-D) problems. The spatial domain X � R

n can thus be 3-D
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or 2-D, that is, n¼ 3 or n¼ 2. The spatial coordinates in a Cartesian coordinate system are
denoted by x 2 X � R

n: The edge of X is denoted by @X: Time is denoted by t and is considered
during a time interval I :¼ ½0, t1�: At the initial time t¼ 0, the solid has a constant temperature
T0 and is stress-free.

The equations of linear thermoelasticity for an isotropic solid with constant material properties
take the form [21]

c
@TX

@t
¼ jr2TX � h0TX þ QX, (1a)

lr2uX þ ðlþ kÞr r � uXð Þ � k0uX ¼ ð2lþ nkÞarTX, (1b)

where QXðx, tÞ : X� I ! R [W/mn] is the applied heat load, TXðx, tÞ : X� I ! R [K] denotes
the temperature increase (relative to the reference temperature T0), and uðx, tÞ : X� I ! R

n [m]
denotes the displacement (relative to the stress-free reference configuration at t¼ 0).
Furthermore, c [J/mn/K] denotes the heat capacity (per unit of X), j [W/mn�2/K] is the thermal
conductivity (per unit of @X), l and k [N/mn�1] are the Lam�e parameters, and a [1/K] is the
coefficient of thermal expansion. The Lam�e parameter l is also known as the shear modulus and
k is characterizes the (in)compressability. The parameters h0 � 0 [W/mn/K] and k0 � 0 [N/mnþ1]
are typically zero for 3-D problems, but can be used to account for certain external heat fluxes
and forces in 2-D problems as will be demonstrated in Section 5. Note that inertia effects have
been neglected in the force balance (1b), which is a common assumption in thermoelasticity, see
for example [21, 22].

The parameters c, j, l, and k in (1) are different in 3-D problems and in 2-D plane stress and
plane strain problems. For 3-D problems

c ¼ qcm, j ¼ k, l ¼ E
2ð1þ �Þ , (2a)

k ¼ �E
ð1þ �Þð1� 2�Þ , (2b)

where q [kg/m3] denotes the mass density, cm [J/kg/K] is the heat capacity per unit mass (or spe-
cific heat capacity), k [W/K/m] is the thermal conductivity, E [N/m2] is the Young’s modulus,
and � [�] is Poisson’s ratio. For 2-D plane-stress problems used in the modeling of thin plates

c ¼ qcmH, j ¼ kH, l ¼ EH
2ð1þ �Þ , (3a)

k ¼ �EH
1� �2

, (3b)

where H [m] denotes the thickness of the considered plate. For 2-D plane-strain problems used
in the modeling of thick plates, (3b) is changed to

k ¼ �EH
ð1þ �Þð1� 2�Þ , (3c)

and the other parameters are the same as in (3a).
The PDEs (1) should be considered with BCs and initial conditions (ICs). Thermal BCs for

(1a) are typically formulated in terms of the temperature TXðx, tÞ and the heat flux normal to the
edge

qX, nðx, tÞ ¼ qXðx, tÞ � nðxÞ, (4a)

where nðxÞ 2 R
n denotes the outward pointing unit normal at the point x 2 @X and qXðx, tÞ :

X� I ! R
n [W/mn�1] denotes the heat flux

4 D. W. M. VELDMAN ET AL.



qXðx, tÞ ¼ jrTXðx, tÞ: (4b)

Note that the first term on the Right Hand Side (RHS) of (1a) can be recognized as the diver-
gence of the heat flux, that is as r � qX: Mechanical BCs for (1b) are usually formulated in terms
of uXðx, tÞ and the traction forces

tX, nðx, tÞ ¼ rXðx, tÞnðxÞ, (5a)

where x 2 @X and the stress rXðx, tÞ : X� I ! R
n�n [N/mn�1] is given by the constitutive rela-

tion [21, 22]

rX ¼ l ruX þ ruXð Þ>
� �

þ I kr � uX � ð2lþ nkÞaTXð Þ, (5b)

where I denotes the n� n identity matrix. Note that the force balance (1b) can be written as r �
r� k0uX ¼ 0: In view of the wafer heating application that will be presented in Section 5, this
paper mainly focuses on the perfectly insulated and traction force free BCs

qX, n ¼ 0, on @X� I, (6a)

tX, n ¼ 0, on @X� I, (6b)

but modifications of the proposed approach to accommodate other BCs will be indicated as well.
As it is assumed that the solid has a constant temperature T0 and is stress free at t¼ 0, all ICs
are zero.

Remark 1. When k0 > 0, the solution uXðx, tÞ of (1b) is unique for any choice of mechanical
BCs. When k0 ¼ 0, the solution uXðx, tÞ of (1b) with BCs (6b) is unique up to ðnþ 1Þn=2 rigid
body modes, see for example [23]. The solution uXðx, tÞ should then be made unique by impos-
ing ðnþ 1Þn=2 additional conditions on uXðx, tÞ:

2.3. The displacement potential

The displacement field uXðx, tÞ : X� I ! R
n resulting from a temperature field TXðx, tÞ :

X� I ! R can be obtained using the displacement potential wXðx, tÞ : X� I ! R, see for
example [20–22]. In this method, the displacement field uXðx, tÞ is decomposed into two parts

uXðx, tÞ ¼ uðTÞX ðx, tÞ þ uðBCÞX ðx, tÞ, (7a)

where uðTÞX ðx, tÞ is equal to the gradient of the displacement potential wXðx, tÞ, that is
uðTÞX ðx, tÞ ¼ rwXðx, tÞ: (7b)

Substituting (7b) into (1b) yields

lr2rwX þ ðlþ kÞrr2wX � k0rwX ¼ ð2lþ nkÞarTX, (8)

where it was used that r � r ¼ r2 by definition. Using that r2r ¼ rr2, this equation can be
rewritten as

ð2lþ kÞrr2wX � k0rwX ¼ ð2lþ nkÞarTX: (9)

This equation is satisfied if wXðx, tÞ satisfies
ð2lþ kÞr2wX � k0wX ¼ ð2lþ nkÞaTX: (10)

Any solution wXðx, tÞ of (10) thus corresponds to a particular solution uðTÞX ðx, tÞ of (1b)
through (7b).

Note that (10) is a second-order PDE for wXðx, tÞ, which means that one BC can be specified
for wXðx, tÞ: However, there are n mechanical BCs needed to define a unique displacement field
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uXðx, tÞ, see for example (6b). There is thus not sufficient freedom in the BCs for wXðx, tÞ in

(10) to ensure that the corresponding displacement field uðTÞX ðx, tÞ will satisfy the mechanical BCs.

An additional correction uðBCÞX ðx, tÞ is used to assure that the displacement field uXðx, tÞ in (7a)

does satisfy the desired mechanical BCs. Because uðTÞX ðx, tÞ has been constructed to satisfy (1b),

uðBCÞX ðx, tÞ should satisfy

lr2uðBCÞX þ ðlþ kÞr r � uðBCÞX

� �
� k0u

ðBCÞ
X ¼ 0, (11)

The BCs for uðBCÞX ðx, tÞ follow by substituting (7a) into the desired mechanical BCs for
uXðx, tÞ: For the BCs (6b), this for example leads to

r
ðBCÞ
X ðx, tÞnðxÞ ¼ �r

ðTÞ
X ðx, tÞnðxÞ, (12)

where rðTÞðx, tÞ denotes the stress obtained by setting uXðx, tÞ � uðTÞX ðx, tÞ in (5b) and

rðBCÞ ¼ l ruðBCÞX þ ruðBCÞX

� �>� �
þ kIr � uðBCÞX : (13)

Remark 2. It is not clear how the BC for (10) should be chosen. Possible choices are for example
the Dirichlet BC wXðx, tÞ ¼ 0 or the Neumann BC rwXðx, tÞ � nðxÞ ¼ 0: As different choices for
the BC will lead to different solutions wXðx, tÞ, the decomposition (7a) is also not unique. The
BC for (10) will be further addressed in Section 3.

Note that when X ¼ R
n and k0 > 0, the only solution of (11) is uðBCÞ

R
n ðx, tÞ � 0 (under the nat-

ural assumption that rðBCÞ
R

n ðx, tÞ ! 0 for kxk ! 1), see for example [23]. The decomposition (7a)
then thus reduces to

uRnðx, tÞ ¼ uðTÞ
R

n ðx, tÞ ¼ rw
R

nðx, tÞ, (14)

where it should be noted that the solution w
R

nðx, tÞ of (10) is also unique when k0 > 0, see for

example [2]. When k0 ¼ 0, (14) still holds. This follows because the only solutions uðBCÞ
R

n ðx, tÞ of

(11) (again assuming that r
ðBCÞ
R

n ðx, tÞ ! 0 for kxk ! 1) are linear combinations of the ðnþ
1Þn=2 rigid body modes, which can also be included in uðTÞðx, tÞ: To see that this is the case,
note that a displacement potential of the form

w
R

n , 0ðxÞ ¼
Xn
i¼1

cixi þ
X
i, j ¼ 1
i 6¼ j

n
cijxixj, (15)

where ci, ci, j 2 R are constants, satisfies r2w
R

n , 0ðx, tÞ � 0: It is thus always possible to add a
solution of the form (15) to a solution w

R
nðx, tÞ of (10) when k0 ¼ 0: Note that computing

uðTÞ
R

n, 0 ¼ rw
R

n , 0 shows that the constants ci represent n translations and the coefficients cij repre-
sent ðn� 1Þn=2 (linearized) rotations. The nþ ðn� 1Þn=2 ¼ ðnþ 1Þn=2 rigid body modes can
thus be obtained through a displacement potential of the form (15).

2.4. Repetitive heat sources

In many manufacturing processes such as the wafer heating problem in Figure 1, the applied heat
load QX consists of multiple similar passings (in the wafer heating problem, one passing is the
scanning of one field). The only difference between two passings is a translation and/or rotation
in space and a shift in time. Such translations and rotations are more conveniently described on
R

n and not on a subdomain X � R
n: It is therefore useful to define the extension QX,1ðx, tÞ :

R
n � I ! R of a heat load QXðx, tÞ : X� I ! R as

6 D. W. M. VELDMAN ET AL.



QX,1ðx, tÞ ¼ QXðx, tÞ for x 2 X,
0 otherwise:

�
(16)

The temperature and the displacement fields that satisfy (1) with QXðx, tÞ ¼ QX,1ðx, tÞ are
denoted by TX,1ðx, tÞ : Rn � I ! R and uX,1ðx, tÞ : Rn � I ! R

n, respectively.
In this paper, a heat load QXðx, tÞ is called repetitive if its extension QX,1ðx, tÞ to R

2 as in
(16) can be written as

QX,1ðx, tÞ ¼
XN
i¼1

QpassðWiðxÞ, t � siÞ, (17)

where Qpassðx, tÞ : Rn � I ! R represents the heat load applied during one passing of the heat
load, N is the total number of passings, si describes a shift in time, and WiðxÞ : Rn ! R

n

describes a translation over xi 2 R
n followed by a rotation with rotation matrix Ri ¼ R�>

i 2
R

n�n, that is

Wi : x 7!Riðx � xiÞ: (18)

Figure 2 illustrates the mapping WiðxÞ for the wafer heating application in Figure 1 where
n¼ 2. For this application, Qpassðx, tÞ represents the heat load applied to a single field (one light
blue rectangle in Figure 1) and the matrix Ri is completely characterized by one angle ui: It is
most convenient to define Qpassðx, tÞ as the heat load resulting from the scanning of a field in the
positive x2-direction that is centered at x ¼ 0: In that case, xi ¼ ½xi, 1, xi, 2�> is the center of i-th
field and ui ¼ 0 when the field is scanned in the positive x2-direction and ui ¼ p when the field
is scanned in the negative x2-direction.

Remark 3. In 3-D problems, the heat load is often described through a BC of the form
qX, nðx, tÞ ¼ q@Xðx, tÞ on x 2 @X, where q@Xðx, tÞ : @X� I ! R is some prescribed heat load.
Such heat loads at the boundary can also be incorporated in this framework because they are (in
the weak sense) equivalent to an internal heat load QXðx, tÞ: For example, the heat load
qX, nðx, tÞ ¼ q@Xðx, tÞ applied at the plane x1 ¼ xe is equivalent to the internal heat
load QXðx, tÞ ¼ qðx, tÞdðx1 � xeÞ:

Figure 2. The mapping WiðxÞ represents a translation along xi ¼ ½xi, 1 , yi, 2�> followed by a rotation over ui:
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Because (1a) is linear and translation, rotation, and time invariant on R
n, the temperature

field TX,1ðx, tÞ resulting from zero ICs and a repetitive heat load QX,1ðx, tÞ of the form (17) can
be written as

TX,1ðx, tÞ ¼
XN
i¼1

TpassðWiðxÞ, t � siÞ, (19)

where Tpassðx, tÞ : Rn � ðð�1, 0Þ [ IÞ ! R is zero for t< 0 and equal to the temperature field
resulting from zero ICs and the heat load Qpassðx, tÞ : Rn � I ! R for t 2 I:

The displacement field uX,1ðx, tÞ : Rn � I ! R
n can be expressed similarly in terms of the dis-

placement field upassðx, tÞ : Rn � ðð�1, 0Þ [ IÞ ! R
n, the displacement field resulting from

Tpassðx, tÞ: However, it is important to note that rotations WiðxÞ also rotate the local coordinate
system in which upassðWiðxÞ, tÞ is expressed, see Figure 2. This also follows when considering the
displacement potential wX,1ðx, tÞ resulting from TX,1ðx, tÞ according to (10). Since Equation
(10) is linear and translation, rotation, and time invariant,

wX,1ðx, tÞ ¼
XN
i¼1

wpassðWiðxÞ, t � siÞ, (20)

where wpassðx, tÞ : Rn � ðð�1, 0Þ [ IÞ ! R is the displacement field potential resulting from
Tpassðx, tÞ according to (10). Differentiating both sides of (20) w.r.t. x shows that

@wX,1
@x

ðx, tÞ ¼
XN
i¼1

@wpass

@x
ðWiðxÞ, t � siÞRi, (21)

where it was used that WiðxÞ is of the form (18). Because r ¼ ð@=@xÞ> in Cartesian coordinates
and using (14), taking the transpose of (21) yields

uX,1ðx, tÞ ¼
XN
i¼1

R>
i upassðWiðxÞ, t � siÞ: (22)

The rotation matrices Ri thus indeed appear in the construction of uX,1ðx, tÞ, as is also illus-
trated in Figure 2.

Note that it is often much easier to compute Tpassðx, tÞ and upassðx, tÞ resulting from Qpassðx, tÞ
than the solution uX,1ðx, tÞ resulting from QX,1ðx, tÞ because upassðx, tÞ typically needs to be com-
puted over a smaller time window and requires a mesh of a smaller part of the spatial domain than
uX,1ðx, tÞ: This makes the construction of TX,1ðx, tÞ and uX,1ðx, tÞ through (19) and (22) attractive
in many applications such as the wafer heating problem considered in Section 5.

The problem remains to convert the temperature and displacement fields TX,1ðx, tÞ and
uX,1ðx, tÞ on R

n to solutions TXðx, tÞ and uXðx, tÞ on the subdomain X � R
n of interest. This

can be accomplished by the MoI that will be introduced in the following section.

Remark 4. Another motivation for the study of the MoI is that many (semi-)analytic methods
such as [4, 5, 11, 17] are most conveniently developed on R

n because the temperature field
TX,1ðx, tÞ (with zero ICs) can be expressed as [2]

TX,1ðx, tÞ ¼
ðt
0

ð ð
R

n
Uðx � x0, t � sÞQX,1ðx0, sÞdx0 ds, (23a)

where Uðx, tÞ denotes the fundamental solution of the heat equation

Uðx, tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cn

ð4pjtÞn
s

exp
�ckxk2
4jt

� �
: (23b)
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The MoI enables the application of these methods to certain subdomains X � R
n as well.

3. The method of images

3.1. A Kernel representation

The kernel representation for the MoI is best understood from the following example.

Example 1. Consider the heat conduction problem (1a) on a one-dimensional spatial domain,
that is n¼ 1. The spatial coordinate is denoted by x 2 R and the spatial domain of interest is the
half line HL ¼ fx 2 R j x < xeg: The boundary is perfectly insulated, that is @THL=@x ¼ 0 at x ¼
xe (Neumann BC). The MoI now provides a way to construct the solution THLðx, tÞ : HL� I ! R

resulting from a heat load QHLðx, tÞ : HL� I ! R and zero ICs based on the solution
THL,1ðx, tÞ : R� I ! R resulting from a heat load QHL,1ðx, tÞ : R� I ! R defined according to
(16) and zero ICs, see also Figure 3. To see how this can be done, consider
~THLðx, tÞ : HL� I ! R,

~THLðx, tÞ ¼ THLðx, tÞ � THL,1ðx, tÞ, (24a)

that is the difference between the desired solution THLðx, tÞ and the restriction of THL,1ðx, tÞ to
HL. As THLðx, tÞ and THL,1ðx, tÞ are both solutions of (1a), ~THLðx, tÞ is a solution of (1a) with
QHLðx, tÞ � 0 that satisfies the BC @~THL=@x ¼ �@THL,1=@x at x ¼ xe and zero ICs.

The restriction of THL,1ðx, tÞ to HLc ¼ R HL is also a solution of (1a) with QHLðx, tÞ � 0 due
to the definition of QHL,1ðx, tÞ in (16). Because 2xe � x 2 HLc iff x 2 HL, it is easy to verify that
THL,1ð2xe � x, tÞ is a solution of (1a) with QHLðx, tÞ � 0 on x 2 HL: We conclude that

~THLðx, tÞ ¼ THL,1ð2xe � x, tÞ, (24b)

because the expression for ~THLðx, tÞ in (24b) also satisfies the BC @~THL=@x ¼ �@THL,1=@x at
x¼ xe and zero ICs. In other words, the solution ~THLðx, tÞ can be found by mirroring the restric-
tion of THL,1ðx, tÞ to HLc in the edge x ¼ xe. This is also illustrated in Figure 3.

Remark 5. The name ‘Method of Images’ originates from the observation that THL,1ð2xe � x, tÞ :
R� I ! R is the solution resulting from the heat load QHL,1ð2xe � x, tÞ : R� I ! R: The tem-
perature field THLðx, tÞ in (24a) can thus also be considered as the sum of the truncation of the
temperature field resulting from QHL,1ðx, tÞ and its mirror image QHL,1ð2xe � x, tÞ:

Remark 6. Instead of the Neumann BC @THL=@x ¼ 0 at x ¼ xe, also a Dirichlet BC Tðxe, tÞ ¼ 0
or a Robin BC aTHL þ @THL=@x ¼ 0 at x¼ xe with a> 0 could have been considered in Example 1.

Figure 3. The MoI on the half line HL ¼ fx 2 R j x 	 xeg:
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For these two BCs, the THL can still be expressed in the form (24a), but (24b) should then be
replaced by

~THLðx, tÞ ¼ �THL,1ð2xe � x, tÞ (25)

~THLðx, tÞ ¼ THL,1ð2xe � x, tÞ � 2a
ð1
0
e�ax0THL,1ð2xe � xþ x0, tÞ dx0, (26)

respectively. It is easy to see that (26) approaches (24b) for a ! 0: With a little more effort it can
be shown that (26) approaches (25) for a ! 1 as well.

It is now attempted to generalize the construction of THLðx, tÞ on a one-dimensional spatial
domain in Example 1 to n-dimensional spatial domains X. The problem is thus to obtain an
expression for the temperature field TXðx, tÞ : X� I ! R on a spatial domain X � R

n resulting
from a heat load QXðx, tÞ : X� I ! R with BCs (6a) and zero ICs in terms of the solution
TX,1ðx, tÞ : Rn � I ! R resulting from the heat load QX,1ðx, tÞ : Rn � I ! R as defined in (16)
and zero ICs. The derivation presented here considers the most commonly used zero Neumann
BC (6a), but can be easily adapted to zero Dirichlet and Robin BCs, see also Remark 7 later on.
Similar to the 1-D case in (24a), it is useful to write

TXðx, tÞ ¼ TX,1ðx, tÞ þ ~TXðx, tÞ, (27a)

where ~TXðx, tÞ : X� I ! R has thus been introduced as the difference between the desired solu-
tion TXðx, tÞ and the restriction of TX,1ðx, tÞ to X. Because both TXðx, tÞ and TX,1ðx, tÞ are solu-
tions of (1a) and in view of the Neumann BC (6a), ~TXðx, tÞ should satisfy

c
@~TX

@t
¼ jr2~TX � h0~TX, on X� I, (27b)

r~TX � n ¼ �rTX,1 � n, on @X� I, (27c)

and zero ICs. The definition of QX,1ðx, tÞ in (16) implies that the restriction of TX,1ðx, tÞ to Xc :
¼ R

n X is also a solution of (1a) with QX � 0: It is therefore attempted to express ~TXðx, tÞ in
terms of the restriction of TX,1ðx, tÞ to Xc through a convolution kernel xX : X� Xc ! R,
that is

~TXðx, tÞ ¼
ð ð

Xc
xXðx, x0Þ~Tðx0, tÞdx0: (27d)

The following proposition gives conditions on the kernel xXðx, x0Þ for which ~TXðx, tÞ in (27d)
is indeed the solution of (27b)–(27c), that is, conditions for which inserting (27d) into (27a)
indeed yields the solution TXðx, tÞ of (1a) with the BC (6a) and zero ICs.

Proposition 1. The function ~TXðx, tÞ in (27d) satisfies (27b)–(27c) if the kernel xX : X� Xc ! R

satisfies

r02xXðx, x0Þ ¼ r2xXðx, x0Þ, (28a)

for x 2 X, x0 2 Xc,

xXðx, x0Þ ¼ r0xXðx, x0Þ � nðx0Þ ¼ 0, (28b)

for x 2 X, x0 2 @X

rxXðx, x0Þ � nðxÞ ¼ r0dðx � x0Þ � nðxÞ, (28c)

for x 2 @X, x0 2 Xc:
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Here, r0 and r02 denote the gradient and Laplacian w.r.t. x0: Note that this result involves the
gradient of the Dirac delta in (28c) which should be interpreted in the weak sense, that is, for
any X0 
 R

n and any smooth function f : X0 ! Rð ð
X0
f ðx0Þr0dðx0Þdx0 ¼ �

ð ð
X0

r0f ðx0Þ� 	
dðx0Þdx0: (29)

The proof of Proposition 1 can be found in Appendix A.

Remark 7. For the Dirichlet BC TXðx, tÞ ¼ 0 on x 2 @X, (27c) changes to

~TXðx, tÞ ¼ �TX,1ðx, tÞ, (30a)

on ðx, tÞ 2 @X� I and (28c) should be replaced by

xXðx, x0Þ ¼ �dðx � x0Þ, (30b)

for x 2 @X and x0 2 Xc: For the Robin BC aTXðx, tÞ þ rTXðx, tÞ � nðxÞ ¼ 0 with a> 0, (27c)
changes to

a~TXðx, tÞ þ r~TXðx, tÞ � nðxÞ ¼ �aTX,1ðx, tÞ � rTX,1ðx, tÞ � nðxÞ, (31a)

on ðx, tÞ 2 @X� I and (28c) should be replaced by

axXðx, x0Þ þ rxXðx, tÞ � nðxÞ ¼ �adðx � x0Þ þ r0dðx � x0Þ � nðxÞ, (31b)

for x 2 @X and x0 2 Xc:

Remark 8. An equation of the form (28a) is called ultrahyperbolic. When n¼ 2, so when
xXðx, x0Þ depends on four variables, (28a) is also known as John’s equation [24]. There is a cor-
respondence between solutions of (28a) with n¼ 2 and functions R

3 ! R through the Radon
transform and a mapping from the lines in R

3 to points in R
4 [24]. This idea can be generalized

for n> 2 [25]. For a general domain X, it cannot be guaranteed that there exists a kernel
xXðx, x0Þ that satisfies (28) [24, 25].

Although the existence of solutions xXðx, x0Þ of the ultrahyperbolic problem (28) cannot be
guaranteed in general, it is often easy to determine the kernel xXðx, x0Þ from formulas available
in the literature. This is demonstrated by the following example.

Example 1 (Continued). Consider again the half line HL ¼ fx 2 R j x < xeg with a perfectly
insulated BC @THL=@x ¼ 0 at x ¼ xe from Example 1. As the formula for ~THLðx, tÞ is given in
(24b), it easy to see from (27d) that

xHLðx, x0Þ ¼ dð2xe � x� x0Þ: (32)

One can easily verify that this kernel indeed satisfies the conditions in (28).
The kernel xHLðx, x0Þ can also be found from the conditions (28). The solution of the 1-D

wave Equation (28a) with propagation speed 1 is given by d’Alembert’s formula, see for
example [2],

xHLðx, x0Þ ¼ Fþððx� xeÞ � ðx0 � xeÞÞ þ F�ððx� xeÞ þ ðx0 � xeÞÞ
¼ Fþðx� x0Þ þ F�ðxþ x0 � 2xeÞ, (33a)

where FþðnÞ : R ! R and F�ðnÞ : R ! R are the positive- and negative-going wave, respectively.
Because x 2 HL, that is x < xe, and x0 2 HLc :¼ RnHL, it follows that x0 > xe and the values of
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FþðnÞ only influence xðx, x0Þ for n < 0: Furthermore, the zero ICs (28b) imply that FþðnÞ ¼
F�ðnÞ ¼ 0 for n < 0: It thus follows that

xHLðx, x0Þ ¼ F�ðxþ x0 � 2xeÞ: (33b)

To determine F�ðnÞ for n � 0, (33b) is inserted in (28c)

@F�
@n

ðnÞ ¼ @d
@n

ðnÞ, (33c)

where n ¼ xþ x0 � 2xe: The solution of (33c) is clearly of the form F�ðnÞ ¼ dðnÞ þ C, for some
constant C. As F�ðnÞ ¼ 0 for n < 0, C must be zero so that F�ðnÞ ¼ dðnÞ: Inserting this result
into (33b) and using that n ¼ xþ x0 � 2xe yields (32).

In other cases, the number of independent variables ðx, x0Þ on which xX depends can be
reduced based on certain symmetries of the spatial domain X. It is then often possible to reduce
the ultrahyperbolic Equation (28a) to a hyperbolic equation for which the existence and unique-
ness of solutions is well understood, see for example [2]. This approach will be used in several
examples in Section 4.

3.2. Heat-induced deformation

The reformulation of the MoI in terms of a convolution kernel xXðx, x0Þ so far only considered
the temperature field TXðx, tÞ in the thermal model (1a). The displacement field uXðx, tÞ in the
mechanical model (1b) will be considered now.

The extension of the MoI is based on the decomposition of uXðx, tÞ into uðTÞX ðx, tÞ and
uðBCÞX ðx, tÞ as in (7a). The part uðTÞX ðx, tÞ is the gradient of a displacement potential wXðx, tÞ that
satisfies (10) and is a particular solution of (1b) for the given temperature field TXðx, tÞ: Because
(10) is linear, the displacement potential wXðx, tÞ : X� I ! R is constructed in a similar manner
as TXðx, tÞ in (27a) and (27d)

wXðx, tÞ ¼ wX,1ðx, tÞ þ ~wXðx, tÞ, (34a)

~wXðx, tÞ ¼
ð ð

Xc
xXðx, x0ÞwX,1ðx0, tÞdx0, (34b)

where xXðx, x0Þ is the same as in (27d) and wX,1ðx, tÞ : Rn � I ! R is the displacement potential
that satisfies (10) with TXðx, tÞ � TX,1ðx, tÞ: Recall that wX,1ðx, tÞ is unique when k0 > 0:

Note that substitution of (27a) and (34a) into (10) shows that ~wXðx, tÞ should be the displace-
ment potential resulting from ~TXðx, tÞ, that is, ~wXðx, tÞ should satisfy (10) with TXðx, tÞ ¼
TX,1ðx, tÞ: The following result shows that (34b) indeed defines a displacement potential ~wXðx, tÞ
resulting from ~Tðx, tÞ in (27d) and that ~wXðx, tÞ inherits certain BCs from the thermal problem.

Lemma 1. Assume that the kernel xXðx, x0Þ satisfies the conditions in (28) and that ~TXðx, tÞ is
defined as in (27d). Let wX,1ðx, tÞ be a solution of (10) with TXðx, tÞ � TX,1ðx, tÞ, then the func-
tion ~wXðx, tÞ in (34b) satisfies

ð2lþ kÞr2~wX � ~k0~wX ¼ ð2lþ nkÞa~TX, (35a)

on X� I and

r~wX � n ¼ �rwX,1 � n, (35b)

on @X� I:

The proof of Lemma 1 can be found in Appendix A.
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Because the displacement potential is typically not of interest itself, it is most insightful to first
construct the displacement potential wXðx, tÞ according to (34) and then compute the resulting
displacement field uXðx, tÞ according to (7b). This is illustrated by the following example.

Example 1 (Continued). Consider once again the 1-D spatial domain X ¼ fx 2 R j x < xeg with a
perfectly insulated (Neumann) BC @THL=@x ¼ 0 at x ¼ xe from Example 1. As the kernel xHLðx, x0Þ
is given by (32), a displacement potential wHLðx, tÞ for this problem follows from (34) as

wHLðx, tÞ ¼ wHL,1ðx, tÞ þ wHL,1ð2xe � x, tÞ: (36a)

By taking the gradient of (36a) and using (7b) and (14), an expression for the corresponding
(scalar-valued) displacement field uðTÞHL ðx, tÞ is obtained as

uðTÞHL ðx, tÞ ¼ uHL,1ðx, tÞ � uHL,1ð2xe � x, tÞ: (36b)

It is easy to see from (36b) that uðTÞHL ðx, tÞ ¼ 0 on the edge x ¼ xe. This observation generalizes
to higher dimensions n> 1 as follows. By differentiating (34a) and using (35b), it follows that

rwXðx, tÞ � nðxÞ ¼ 0, x 2 @X, t 2 I: (37a)

Using (7b), this result can be rewritten as

uðTÞX ðx, tÞ � nðxÞ ¼ 0, x 2 @X, t 2 I, (37b)

which shows that the component normal to the edge of displacement field uðTÞX ðx, tÞ is zero.
Remark 9. A similar result can be obtained for Dirichlet BCs. To obtain the temperature field
TXðx, tÞ such that the Dirichlet BC TXðx, tÞ ¼ 0 for x 2 @X is satisfied, the kernel xXðx, x0Þ
should satisfy (30b) instead of (28c). For this case, it is easy to see from (34b) and (30b) that
~wXðx, tÞ ¼ �wX,1ðx, tÞ for x 2 @X, so that (34a) shows that wXðx, tÞ ¼ 0 for x 2 @X: This
implies that the gradient of wXðx, tÞ in all directions parallel to the edge will be zero, that is for
all v 2 R

n that satisfy v � nðxÞ ¼ 0 at a point x 2 @X

rwXðx, tÞ � v ¼ uðTÞX ðx, tÞ � v ¼ 0: (38)

All components of uðTÞX ðx, tÞ along the edge are thus zero on @X when the kernel xXðx, x0Þ is
constructed such that TXðx, tÞ satisfies zero Dirichlet BCs.

Recall that the displacement field uXðx, tÞ is decomposed into the two parts uðTÞX ðx, tÞ and

uðBCÞX ðx, tÞ: The presented extension of the MoI to thermomechanical systems only considers the

part uðTÞX ðx, tÞ ¼ rwXðx, tÞ, which is a good approximation of uXðx, tÞ away from the edge @X:

The part uðBCÞX ðx, tÞ is the solution of the standard elasticity problem (11) in which uðTÞX ðx, tÞ
appears in the BCs, see for example (12). When the spatial domain X is large enough, as in the

wafer heating application in Section 5, the solution uðBCÞX ðx, tÞ is concentrated near the edge @X
and can be computed much easier than uXðx, tÞ:

4. The method of images for specific domains

4.1. Orthogonal domains

The examples in this subsection demonstrate how the conditions (28) can be used to determine
the convolution kernel xXðx, x0Þ for several orthogonal domains X. When the kernel has been
found, expressions for the temperature field TXðx, tÞ and the displacement potential wXðx, tÞ and
the corresponding displacement field uðTÞX ðx, tÞ in terms of the infinite domain solutions
TX,1ðx, tÞ, wX,1ðx, tÞ, and uðTÞX,1ðx, tÞ follow easily. The expressions for the temperature field
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TXðx, tÞ on the orthogonal domains X considered in this section can also be found in the litera-
ture, see for example [1, 5], but the expressions for the kernel xXðx, x0Þ, the displacement poten-
tial wXðx, tÞ, and the displacement field uðTÞX ðx, tÞ are novelties.

The first two examples are extensions of Example 1 to the 2-D half plane and the 3-D
half space.

Example 2 (2-D half plane). Consider the 2-D half plane HP ¼ fx 2 R
2 j x1 < xeg: As the spatial

domain is invariant under translations in the x2-direction,

xHPðx1, x2, x01, x02Þ ¼ xHPðx1, x2 � x02, x
0
1Þ: (39)

By introducing x̂ :¼ x2 � x02, conditions (28) become

@2xHP

@x02
1

ðx1, x̂, x01Þ ¼
@2xHP

@x21
ðx1, x̂, x01Þ, (40a)

xHPðx1, x̂, xeÞ ¼ @xHP

@x01
ðx1, x̂, xeÞ ¼ 0, (40b)

@xHP

@x1
ðxe, x̂, x0Þ ¼ @d

@x1
ðxe � x01Þdðx̂Þ, (40c)

where x1 < xe and x01 > xe: Note that (40c) follows because dðx� x0Þ ¼ dðx1 � x01Þdðx2 � x02Þ
when n¼ 2. By considering ðx1, x̂Þ as the ‘spatial’ variables and x01 as the ‘temporal’ variable, (40)
can be viewed as a wave equation. In particular, (40a) shows that the propagation speed equals 1,
(40b) shows that the ICs at x01 ¼ xe are zero, and (40c) shows there is an input at the boundary
x1 ¼ xe: By considering the weak form of (40), it is shown in Appendix B.1 that (40b) and (40c)
are equivalent to

lim
e#0

xHPðx1, x̂, xe þ eÞ ¼ dðx1 � xeÞdðx̂Þ, (41a)

lim
e#0

@xHP

@x01
ðx1, x̂, xe þ eÞ ¼ 0, (41b)

@xHP

@x1
ðxe, x̂, x01Þ ¼ 0, (41c)

for x01 > xe: One easily verifies that the solution of (40a) with ICs (41a) and (41b) and the BC
(41c) is a Dirac delta traveling in the negative x1-direction, that is

xHPðx1, x̂, x01Þ ¼ dð2xe � x1 � x01Þdðx̂Þ: (42)

Inserting (42) into (27d) and using (27a) now yields

THPðx, tÞ ¼ THP,1ðx, tÞ þ THP,1ðxI , tÞ, (43)

where xI denotes the mirror image of x in the edge x1 ¼ xe, that is, xI ¼ ½2xe � x1, x2�>:
Furthermore, inserting (42) into (34b) and using (34a) shows that

wHPðx, tÞ ¼ wHP,1ðx, tÞ þ wHP,1ðxI , tÞ: (44)

Taking the gradient of (44) and using (14) yields

uðTÞHP, 1ðx, tÞ
uðTÞHP, 2ðx, tÞ

" #
¼ uHP,1, 1ðx, tÞ � uHP,1, 1ðxI , tÞ

uHP,1, 2ðx, tÞ þ uHP,1, 2ðxI , tÞ

 �

: (45)

Observe that the formulas for the 1- and 2-components of uðTÞHP ðx, tÞ are different. It is also
easy to verify that uðTÞHP, 1ðx, tÞ ¼ 0 at x1 ¼ xe, which is in agreement with (37). Finally, note that
inserting (45) into the (1, 2) shear stress component of rðx, tÞ in (5b) shows that
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rðTÞHP, 12ðx, tÞ ¼ l

�
@uHP,1, 1

@x2
ðx, tÞ � @uHP,1, 1

@x2
ðxI , tÞ þ @uHP,1, 2

@x1
ðx, tÞ � @uHP,1, 2

@x1
ðxI , tÞ

�
, (46)

so that rðTÞHP, 12ðx, tÞ ¼ 0 at the edge x1 ¼ xe where x ¼ xI: The displacement field in (45) is thus a
solution of (1b) satisfying the BCs uðTÞHP, 1ðx, tÞ ¼ 0 and rðTÞHP, 12ðx, tÞ ¼ 0:

Example 3 (3-D half space). The 3-D half space HS ¼ fx 2 R
3 j x1 < xeg can be treated similarly

as the 2-D half space in Example 2. By exploiting the translation-invariance in the x2- and x3-
directions, one easily sees that conditions (28) can be reduced to a wave equation in the ‘spatial’
coordinates ðx1, x̂1, x̂2Þ ¼ ðx1, x2 � x02, x3 � x03Þ and temporal variable x01: The solution of this
equation is again a Dirac delta traveling in the negative x1-direction

xHS ¼ dð2xe � x1 � x01Þdðx̂2Þdðx̂3Þ: (47)

The resulting temperature field and displacement potential thus become

THSðx, tÞ ¼ THS,1ðx, tÞ þ THS,1ðxI , tÞ, (48)

wHSðx, tÞ ¼ wHS,1ðx, tÞ þ wHS,1ðxI , tÞ, (49)

where xI ¼ ½2xe � x1, x2, x3�> denotes the mirror image of x in the plane x1 ¼ xe: The displace-
ment field uðTÞX ðx, tÞ follows by taking the gradient of the displacement potential wHSðx, tÞ in
(49)

uðTÞHS, 1ðx, tÞ
uðTÞHS, 2ðx, tÞ
uðTÞHS, 3ðx, tÞ

2
664

3
775 ¼

uHS,1, 1ðx, tÞ � uHS,1, 1ðxI , tÞ
uHS,1, 2ðx, tÞ þ uHS,1, 2ðxI , tÞ
uHS,1, 3ðx, tÞ þ uHS,1, 3ðxI , tÞ

2
4

3
5: (50)

Similarly as in Example 2, it can be verified that the displacememt field component uðTÞHS, 1ðx, tÞ
and the shear components rðTÞHS, 12ðx, tÞ and rðTÞHS, 13ðx, tÞ vanish on the boundary x1 ¼ xe:

Next, 1-D and 2-D domains with opposing parallel boundaries are considered.

Example 4 (The interval). Consider the interval J ¼ fx 2 R j x� < x < xþg: When interpreting
the condition (28a) for the kernel xJðx, x0Þ again as a wave equation with x as the ‘spatial’
coordinate and x0 as the ‘temporal’ coordinate, one observes that the ‘temporal’ domain Jc ¼
RnJ is not connected. The solution xJðx, x0Þ can therefore be obtained by combining the solu-
tions xþ

J ðx, x0Þ and x�
J ðx, x0Þ on the two connected parts Jcþ ¼ fx0 2 R j x0 � xþg and Jc� ¼

fx0 2 R j x0 	 x�g of Jc. Considering the weak form of the conditions (28) on ðx, x0Þ 2
J � ½xþ, xþ þ e� similarly as in Appendix B.1, it can be shown that (28b) and (28c) are equiva-
lent to

xþ
J ðx, xþÞ ¼ dðx� xþÞ,

@xþ
J

@x0
ðx, xþÞ ¼ 0, (51a)

@xþ
J

@x
ðx�, x0Þ ¼ 0,

@xþ
J

@x
ðxþ, x0Þ ¼ 0, (51b)
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for x 2 J and x0 > xþ: At the initial ‘time’ x0 ¼ xþ, xþ
J ðx, x0Þ is thus a Dirac delta which travels

with velocity 1 in the negative x-direction. At ‘time’ x0 ¼ xþ þ ðxþ � x�Þ, the pulse reaches the
boundary x ¼ x� from which it is reflected. At ‘time’ x0 ¼ xþ þ 2ðxþ � x�Þ the pulse arrives
again at x ¼ xþ where it reflected again and the process repeats. It thus follows that

xþ
J ðx, x0Þ ¼

X1
p¼0

dð2xþ � x� x0 þ 2pðxþ � x�ÞÞ þ
X1
p¼1

dðx� x0 þ 2pðxþ � x�ÞÞ: (52a)

A similar analysis for x�
J ðx, x0Þ shows that

x�
J ðx, x0Þ ¼

X1
p¼0

dð2x� � x� x0 � 2pðxþ � x�ÞÞ þ
X1
p¼1

dðx� x0 � 2pðxþ � x�ÞÞ: (52b)

The solution xJðx, x0Þ on J � Jc is found by combining the solutions on the subdomains
xþ

J ðx, x0Þ and x�
J ðx, x0Þ

xJðx, x0Þ ¼
X
p2Z

dð2xþ � x� x0 þ 2pðxþ � x�ÞÞ þ
X
p 2 Z,
p 6¼ 0

dðx� x0 � 2pðxþ � x�ÞÞ:

Assembling the temperature field TJðx, tÞ as in (27a) and (27d) now yields

TJðx, tÞ ¼
X
p2Z

TJ,1ð2xþ � xþ 2pðxþ � x�Þ, tÞ þ
X
p2Z

TJ,1ðxþ 2pðxþ � x�Þ, tÞ: (54)

Similarly, the displacement potential wJðx, tÞ follows from (34a) and (34b)

wJðx, tÞ ¼
X
p2Z

wJ,1ð2xþ � xþ 2pðxþ � x�Þ, tÞ þ
X
p2Z

wJ,1ðxþ 2pðxþ � x�Þ, tÞ: (55)

Taking the gradient and using (14) yields

uðTÞJ ðx, tÞ ¼
X
p2Z

uJ,1, xðxþ 2pðxþ � x�Þ, tÞ �
X
p2Z

uJ,1, xð2xþ � xþ 2pðxþ � x�Þ, tÞ: (56)

One can verify from this expression that uJðxþ, tÞ ¼ 0 and uJðx�, tÞ ¼ 0, which is in agree-
ment with (37).

Remark 10. Similar to the extensions of Example 1 in Examples 2 and 3, the results for the inter-
val J extend to domains Jn ¼ fx 2 R

n j x� < x1 < xþg:

Remark 11. The infinite sums that appear for example in (54) and (56) might seem cumbersome
to compute. However, because the heat load QJ,1 is only applied inside J (see (16)), the tempera-
ture fields TJ,1ðx, tÞ and displacement field uJ,1ðx, tÞ typically decay rapidly outside J and only a
few terms with jpj near 0 often gives accurate results.
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Example 5 (The rectangle). Consider the rectangle R ¼ fx 2 R
2 j x�, 1 < x1 < xþ, 1, x�, 2 < x2 <

xþ, 2g: This domain is not translation invariant in any direction, and the ultrahyperbolic
Equations (28) for the kernel xRðx, x0Þ can therefore not be reduced to a wave equation.
However, based on some physical intuition and the formulas in [5], one can come up with the
following formula

xRðx, x0Þ ¼ �dðx1 � x01Þdðx2 � x02Þ
þ
X
p, r2Z

ðdðx1 � x01 þ 2pL1Þdðx2 � x02 þ 2rL2Þ

þ dðxI, 1 � x0 þ 2pL1Þdðx2 � x02 þ 2rL2Þ
þ dðx1 � x01 þ 2pL1ÞdðxI, 2 � x02 þ 2rL2Þ
þ dðxI, 1 � x01 þ 2pL1ÞdðxI, 2 � x02 þ 2rL2ÞÞ: (57)

where L1 ¼ xþ, 1 � x�, 1, L2 ¼ xþ, 2 � x�, 2, xI, 1 ¼ 2xþ, 1 � x1, and xI, 2 ¼ 2xþ, 2 � x2: One can verify
that the kernel xRðx, x0Þ in (57) indeed satisfies the conditions in (28). Using (27a) and (27d), the
TRðx, tÞ follows from (57) as

TRðx, tÞ ¼
X
p, r2Z

ðTR,1ðx1 þ 2pL1, x2 þ 2rL2, tÞ

þ TR,1ðxI, 1 þ 2pL1, x2 þ 2rL2, tÞ
þ TR,1ðx1 þ 2pL1, xI, 2 þ 2rL2, tÞ
þ TR,1ðxI, 1 þ 2pL1, xI, 2 þ 2rL2, tÞÞ: (58)

Using (34a) and (34b), an expression for the displacement potential wRðx, tÞ in terms of
wR,1ðx, tÞ can be found. Taking the gradient of the expression for wRðx, tÞ and using (14) yields

uðTÞR, 1ðx, tÞ
uðTÞR, 1ðx, tÞ

2
4

3
5 ¼

X
p, r2Z

 
uR,1, 1ðx1 þ 2pL1, x2 þ 2rL2, tÞ
uR,1, 2ðx1 þ 2pL1, x2 þ 2rL2, tÞ

" #

þ �uR,1, 1ðxI, 1 þ 2pL1, x2 þ 2rL2, tÞ
uR,1, 2ðxI, 1 þ 2pL1, x2 þ 2rL2, tÞ

" #

þ uR,1, 1ðx1 þ 2pL1, xI, 2 þ 2rL2, tÞ
�uR,1, 2ðx1 þ 2pL1, xI, 2 þ 2rL2, tÞ

" #

� uR,1, 1ðxI, 1 þ 2pL1, xI, 2 þ 2rL2, tÞ
uR,1, 2ðxI, 1 þ 2pL1, xI, 2 þ 2rL2, tÞ

" #!
: (59)

One can again verify that uðTÞR ðx, tÞ satisfies (37b) and that rðTÞR, 12 ¼ 0 on @R from this formula.

Remark 12. Similar ideas as in Example 5 can also be applied to the 3-D box B ¼
ðx�, 1, xþ, 1Þ � ðx�, 2, xþ, 2Þ � ðx�, 3, xþ, 3Þ, which is typically considered in welding applications,
see for example [5]. The expressions for xBðx, x0Þ,TBðx, tÞ, wBðx, tÞ, and dBðx, tÞ are similar to
the ones for the rectangle R in Example 5, but now involve summations of p, r, s 2 Z over all
points in the set

fx1 þ 2pL1, xI, 1 þ 2pL1g � fx2 þ 2rL2, xI, 2 þ 2rL2g � fx3 þ 2sL3, xI, 3 þ 2sL3g, (60)
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where L1 ¼ xþ, 1 � x�, 1, L2 ¼ xþ, 2 � x�, 2, L3 ¼ xþ, 3 � x�, 3, xI, 1 ¼ 2xþ, 1 � x1, xI, 2 ¼ 2xþ, 2 � x2,
and xI, 3 ¼ 2xþ, 3 � x3:

Remark 13. The results in this section have been presented for zero Neumann BCs, but can be
extended to zero Dirichlet BCs as well. However, this means that BCs for the kernels xXðx, x0Þ
then also change from Neumann BCs such as (41c) to Dirichlet BCs. Because Dirichlet BCs lead
to a change of sign when a wave is reflected at the boundary, expressions get sightly more
involved. Some combinations of zero Dirichlet and Neumann BCs can be incorporated as well,
see for example [5] where a box-shaped domain is considered with a zero Dirichlet BC at one
side and zero Neumann BCs on all other sides.

Finally, it is demonstrated how the formula for the kernel on the half line with Robin BCs can
be found from the conditions (28).

Example 6 (The half line with a Robin BC). Consider, just as in Example 1, the half line HL ¼
fx 2 R j x < xeg but now with the Robin BC aTHL þ @THL=@x ¼ 0 at x ¼ xe. As observed in
Remark 7, the kernel xHLðx, x0Þ should satisfy (28a), (28b), and (31b) for this BC. Similarly as in
Example 1, (28a) implies that xðx, x0Þ is of the form (33a) and the ICs (28b) reduce (33a) to
(33b), that is that

xHLðx, x0Þ ¼ F�ðxþ x0 � 2xeÞ, (61)

for a function F� : R ! R: The ICs (28b) also imply that F�ðnÞ ¼ 0 for n < 0: To determine
F�ðnÞ for n � 0, (61) is inserted in (31b)

aF�ðnÞ þ @F�
@n

ðnÞ ¼ �adðnÞ þ @d
@n

ðnÞ, (62a)

where n ¼ xþ x0 � 2xe: To determine the solution of (62a), introduce hðnÞ :¼ F�ðnÞ � dðnÞ and
note that

@h
@n

ðnÞ ¼ @F�
@n

ðnÞ � @d
@n

ðnÞ ¼ �aF�ðnÞ � adðnÞ ¼ �ahðnÞ � 2adðnÞ, (62b)

where the second identity follows from (62a) and the third from the definition of hðnÞ: Because
FðnÞ ¼ hðnÞ ¼ 0 for n < 0, the solution of (62b) can be considered as the impulse response of a
first-order system and is given by hðnÞ ¼ �2ae�an for n > 0: It thus follows that for n � 0

F�ðnÞ ¼ dðnÞ � 2ae�an: (62c)

Since n ¼ xþ x0 � 2xe, it follows that

xHLðx, x0Þ ¼ dðxþ x0 � 2xeÞ � 2ae�aðxþx0�2xeÞ, (63)

for xþ x0 � 2xe � 0 and that xHLðx, x0Þ ¼ 0 otherwise. Inserting this expression into (27a) and
(27d) yields

~THLðx, tÞ ¼ THL,1ð2xe � x, tÞ � 2a
ð1
2xe�x

e�aðxþx0�2xeÞTHL,1ðx0, tÞdx0: (64)

Formula (26) that is known from [1] can be recovered after applying the change of coordinates
x00 ¼ xþ x0 � 2xe in (64). Expressions for the displacement potential wHLðx, tÞ and displacement
field uHLðx, tÞ can be obtained based on the expression for xHLðx, x0Þ similarly as in Example 1.
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4.2. The disk

For the spatial domains considered in the previous subsection, it was already known how the
MoI should be applied to the temperature field but the kernel representation developed in
Section 3 also enables the application of the MoI to domains to which it could not be applied
before. This is illustrated by the results in this subsection, where the MoI is applied to the disk
D ¼ fx 2 R

2 j x21 þ x22 < R2g: To the best of our knowledge, the MoI has not be applied to this
domain before.

It will be more convenient to use the polar coordinates ðr, hÞ which are related to the
Cartesian coordinates x ¼ ½x1, x2�> by

x1 ¼ r cos ðhÞ, x2 ¼ r sin ðhÞ: (65a)

Furthermore, the radial and tangential components of the displacement field uDðr, h, tÞ can be
expressed in terms of the Cartesian components of uDðx, tÞ as

uD, rðr, h, tÞ
uD, hðr, h, tÞ

" #
¼ cos ðhÞ sin ðhÞ

� sin ðhÞ cos ðhÞ

" #
uD, 1ðr cos ðhÞ, r sin ðhÞ, tÞ
uD, 2ðr cos ðhÞ, r sin ðhÞ, tÞ

" #
(65b)

Because the disk r<R is invariant under rotations, the kernel xD will only depend on ĥ :¼
h� h0, r, and r0, that is xD ¼ xDðr, ĥ, r0Þ: Expressing the gradient and Laplacian in polar coordi-
nates, conditions (28) become

1
r0

@

@r0
r0
@xD

@r0

� �
þ 1
r02

@2xD

@ĥ
2 ¼ 1

r
@

@r
r
@xD

@r

� �
þ 1
r2
@2xD

@ĥ
2 , (66a)

xDðr, ĥ,RÞ ¼ @xD

@r0
ðr, ĥ,RÞ ¼ 0, (66b)

@xD

@r
ðR, ĥ, r0Þ ¼ 1

r0
@d
@r0

ðR� r0ÞdðĥÞ, (66c)

where ĥ ¼ h� h0 2 ½�p, pÞ, 0 	 r < R, and r0 > R:

Remark 14. The factor 1=r0 in (66c) appears because of the transformation to polar coordinates,
see for example [26]. One can see that this factor is necessary because it now holds that for any
test function f ¼ f ðr, hÞ

ð1
0

ð2p
0
f ðr0, h0Þ 1

r0
@d
@r0

ðr � r0Þdðh� h0Þr0dh0dr0

¼ �
ð1
0

ð2p
0

@f
@r

ðr0, h0Þdðr � r0Þdðh� h0Þdr0dh0 ¼ � @f
@r

ðr, hÞ: (67)

Note that by interpreting ðr, ĥÞ as the ‘spatial’ coordinates and r0 as the ‘temporal’ coordinate,
(66) can be considered as a wave equation. By considering the weak form of (66), it is shown in
Appendix B.2 that (66b) and (66c) imply that
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lim
e#0

xDðr, ĥ,Rþ eÞ ¼ 1
R
dðr � RÞdðĥÞ, (68a)

lim
e#0

@xD

@r0
ðr, ĥ,Rþ eÞ ¼ 0, (68b)

@xD

@r
ðR, ĥ, r0Þ ¼ 0, (68c)

for r0 > R:
A closed-form analytic expression can now be obtained by writing the kernel xDðr, ĥ, r0Þ as a

linear combination of the eigenfunctions of the Laplacian on the disk ðr, ĥÞ 2 ½0,RÞ � ½�p, pÞ sat-
isfying zero Neumann BCs. To avoid very narrow features that are not clearly visible and to
improve the convergence, the Dirac delta in the initial condition (68a) is replaced by the function
dcðr � R, ĥÞ, where c > 0 is a smoothing parameter. We choose dcðr � R, ĥÞ equal to

1
2c2R2

1þ cos
pðr � RÞ

cR

� �� �
1þ cos

pĥ
c

 ! !
, (69)

for r 2 ½ð1� cÞR,R� and ĥ 2 ½�c, c� and zero otherwise. Note that dcðr � R, ĥÞ approaches the
Dirac in (68a) for c ! 0: It is shown in Appendix C that the kernel xD, cðr, ĥ, r0Þ satisfying (66a)
and (68) with the Dirac in (68a) replaced by dcðr � R, ĥÞ can be expressed as

xD, cðr, ĥ, r0Þ ¼
X1
n¼0

X1
m¼1

An,mJn bn,m
r
R

� �
cos ðnĥÞJn bn,m

r0

R

� �
, (70a)

where Jn is the Bessel function of the first kind of order n, bn,m is the m-th root of @JnðrÞ=@r ¼ 0,
and An,m are constants. The computation of the constants An,m for c > 0 is discussed in Appendix
C. For c¼ 0, A0, 1 ¼ 1=ðpR2Þ and for all other values of n and m

An,m ¼ 1
pR2

2b2n,m

�nJ2nðbn,mÞ b2n,m � n2
� � , (70b)

where �n ¼ 2 for n¼ 0 and �n ¼ 1 otherwise.

Remark 15. Note that

xD, cðr, ĥ, r0Þ ¼ 1
R2

x1
D, c

r
R
, ĥ,

r0

R

� �
, (71)

where x1
D, cðr, ĥ, r0Þ is the kernel for a disk of radius R¼ 1, that is the shape of the kernel

xD, cðr, ĥ, r0Þ does not depend on the radius R.

The cross sections for r0 and r constant in Figures 4 and 5 give an impression of the obtained
kernel xD, cðr, ĥ, r0Þ: The axes in Figure 5 show x01 ¼ r0 cos ðĥÞ and x02 ¼ r0 sin ðĥÞ: The parameter
c is set to c ¼ 0:05 and the summation in (70a) is truncated to 31,250 terms (n 2 f0, 1, :::, 249g
and m 2 f1, 2, :::, 125g). The difference between this solution and the solution obtained with four
times as many terms (i.e. n 2 f0, 1, :::, 499g and m 2 f1, 2, :::, 250g) is less than 1% for all consid-
ered snapshots.

The cross sections of xD, cðr, ĥ, r0Þ for r0 constant in Figure 4 illustrate how the wave propa-
gates inside the disk ðr, ĥÞ 2 ½0,RÞ � ½�p, pÞ as the ‘time’ r0 increases. Observe that xD, cðr, ĥ,RÞ
in Figure 4a is (an approximation of) a Dirac delta at ðr, ĥÞ ¼ ðR, 0Þ at r0 ¼ R and that the wave
front in Figure 4b and c for r0 > R is not circular. The latter observation can be understood from
the PDE (66a) which shows that the two terms involving @2xD=@ĥ

2
cancel each other for r¼R

20 D. W. M. VELDMAN ET AL.



Figure 4. Cross sections of the kernel xD, cðr, ĥ , r0Þ for three different values of r0 and c ¼ 0:05: (a) r0 ¼ R; (b) r0 ¼ 1.15R; (c) r0
¼ 1.3R.
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Figure 5. Cross sections of the kernel xD, cðr, ĥ, r0Þ for three different values of r and c ¼ 0:05:; (a) r ¼ R; (b) r¼ 0.85R;
(c) r¼ 0.7R.
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and r0 ¼ R: At the initial ‘time’ r0 ¼ R, there is thus no diffusion in ĥ-direction and the wave
propagates only in the r-direction. However, as r0 ! 1 the term involving @2xD=@ĥ

2
on the

LHS of (66a) vanishes and the propagation speed in the ĥ-direction increases.
The cross sections of xD, cðr, ĥ, r0Þ in Figure 5 are relevant for the computation of ~TDðr, h, tÞ

according to (27d). A cross section xD, cðr, ĥ, r0Þ ¼ xD, cðr, h� h0, r0Þ at r ¼ r0 shows the function
that is multiplied with TD,1ðr0, ĥ, tÞ ¼ TD,1ðr0, h� h0, tÞ and integrated over ðr0, h0Þ 2 Dc ¼ R

2nD
to obtain ~TDðr0, h, tÞ: Note that the cross section at r¼R in Figure 5a does not only show (an
approximation of) a Dirac delta at ðr0, ĥÞ ¼ ðR, 0Þ, but also shows two traces starting at ðr0, ĥÞ ¼
ðR, 0Þ: These traces are no artifact of the truncation of the infinite sum in (70a), but indicate all
‘time instances’ r0 at which a nonzero value occurs at r¼R, that is all points at the boundary of
cross sections for r0 constant as the ones in Figure 4 where xD, c is nonzero. The traces in Figure
5b and c have a similar interpretation, but they show the nonzero values of xD, c at the circles
r ¼ 0:9R and r ¼ 0:7R, respectively.

The computation of ~TDðr, h, tÞ in (27d) is computationally expensive because the values of
xD, cðr, h� h0, r0Þ and TD,1ðr0, h0, tÞ are needed in the whole domain ðr0, h0Þ 2 Dc to compute
~TDðr, h, tÞ in one point ðr, hÞ: Therefore, the kernel xDðr, ĥ, r0Þ will be replaced by an approxima-
tion xD, apprðr, ĥ, r0Þ, which is obtained as follows. Because TD,1ðr, h, tÞ will typically decrease rap-
idly outside D, it is most important that xD, apprðr, ĥ, r0Þ is an accurate approximation of
xDðr, ĥ, r0Þ for r and r0 near R. In this case, (66a) can be approximated by

@2xD, appr

@r02
þ 1
R

@xD, appr

@r0
¼ @2xD, appr

@r2
þ 1
R

@xD, appr

@r
: (72)

The solution of (72) with the ICs and the BC in (68) is

xD, apprðr, ĥ, r0Þ ¼ 1
R
dððr � RÞ þ ðr0 � RÞÞdðĥÞ: (73)

Inserting the kernel xD, apprðr, ĥ, r0Þ into (27d) and again using the approximation r0 � R yields

~TD, apprðr, h, tÞ ¼
ð1
R

ðp
�p

TD,1ðr0, h0, tÞxD, apprðr, h� h0, r0ÞRdh0dr0 ¼ TD,1ð2R� r, h, tÞ, (74)

so that (27a) shows that

TD, apprðr, h, tÞ ¼ TD,1ðr, h, tÞ þ TD,1ð2R� r, h, tÞ: (75)

Note that the computation of TD, appr in a point ðr, h, tÞ only requires the evaluation of TD,1 in
two points and that TD, apprðr, h, tÞ is a good approximation of TDðr, h, tÞ near the edge r¼R
because xD, apprðr, h, r0Þ is a good approximation of xDðr, h, r0Þ near r0 ¼ R:

The approximation of the displacement potential based on the approximation of the kernel in
(73) can be obtained in a similar way as for TD, apprðr, h, tÞ as

wD, apprðr, h, tÞ ¼ wD,1ðr, h, tÞ þ wD,1ð2R� r, h, tÞ: (76)

The displacement field uðTÞD ðr, h, tÞ can now be obtained by computing the gradient of (76). To
this end, note that the gradient of wD,1ðr, h, tÞ in polar coordinates is

uD,1, rð~r , h, tÞ
uD,1, hð~r , h, tÞ

 �

¼
@wD,1
@r

ð~r , h, tÞ
1
~r

@wD,1
@h

ð~r , h, tÞ

2
664

3
775, (77)
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for all ð~r , hÞ 2 ½0,1Þ � ½�p,pÞ: Taking the gradient on both sides of (76) and using (14) thus
shows that (for ðr, hÞ 2 ½0,RÞ � ½�p,pÞ)

uðTÞD, rðr, h, tÞ
uðTÞD, hðr, h, tÞ

2
4

3
5 ¼

uD,1, rðr, h, tÞ � uD,1, rð2R� r, h, tÞ
uD,1, hðr, h, tÞ þ 2R� r

r
uD,1, hð2R� r, h, tÞ

2
4

3
5, (78)

where the second term on the RHS of the expression for uðTÞD, hðr, ĥ, tÞ can be understood by evalu-
ating the second row in (77) in ð~r , h, tÞ ¼ ð2R� r, h, tÞ which shows that

@wD,1
@h

ð2R� r, h, tÞ ¼ ð2R� rÞuD,1, hð2R� r, h, tÞ: (79)

Formulas (75) and (78) will be applied to the wafer heating application in the next section.

5. Wafer heating

In this section, a part of the theory developed in the previous sections will be applied to a wafer
heating problem. In this application, a thin silicon disk, called the wafer, is exposed to a light
source which creates a pattern of electronic connections (see Figure 1). Because the wafer is thin,
a 2-D plane-stress model is used, just as in [11, 19]. The temperature field TDðx, tÞ and the dis-
placement field uDðx, tÞ resulting from the heat load QDðx, tÞ are thus solutions of (1) with BCs
(6), where D ¼ fx 2 R

2 j x21 þ x22 < R2g and the coefficients in (1) are given by (3a) and (3b).
The used parameter values in Table 1 are based on a representative case study also considered in
[11]. The accurate and efficient computation of the resulting temperature and displacement fields
TDðx, tÞ and uDðx, tÞ is important, because such predictions can be used to assess and subse-
quently improve the quality of the lithography process.

The pattern of electronic connections is not projected to the whole wafer at once, but only in
a small rectangular area XslitðtÞ, called the slit, which moves over the wafer surface, see Figure 1.
The heat load QDðx, tÞ induced by the projection light is modeled as a uniform heat load in
XslitðtÞ with a constant intensity PEUV: The exposure of the wafer is illustrated in Figure 1, which
shows how the slit consecutively scans all fields on the wafer (light blue rectangles). Typically, the
same pattern of electronic connections is projected in each field on the wafer. During the scan-
ning of each field the heat load moves with a constant velocity v. The relevant dimensions of the

Table 1. Considered parameter values.

Description Symbol Value Unit

Wafer radius R 150 mm
Wafer thickness H 0.775 mm
Slit length in x1 Lslit 26 mm
Slit length in x2 Wslit 4.6 mm
Field length in x1 Lfield 26 mm
Field length in x2 Wfield 33 mm

Mass density q 2329 kg/m3

Specific heat capacity c 705 J/kg/K
Thermal conductivity k 149 W/m/K
Convection coefficient h0 1500 W/m2/K
Young’s modulus E 167 GPa
Poisson’s ratio � 0.3 –
Stiffness per unit area k0 1209 N/mm3

Scan speed v 0.276 m/s
Heating power PEUV 3.229 W
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slit and of a field are illustrated in Figure 6. Note that fields in Figure 1 are scanned alternately
in the positive and negative x2-direction. Also note that because the pattern of electronic connec-
tions is projected only inside XslitðtÞ, the displacement field uDðx, tÞ inside XslitðtÞ will determine
the imaging quality of the lithography process.

It is assumed that after the scanning of one field is completed, the heat load instantly moves
to the next field, but if desired some time delay needed to switch to the next field could have
been taken into account as well. Note that the heat load applied to each field is the same, only
the location, the scanning direction, and the time at which the slit arrives varies for the different
fields. This means that (the extension to R

2 of) the applied heat load QD,1ðx, tÞ can be written in
the form (17). When Qpassðx, tÞ is the heat load applied to a single field centered at x ¼ 0 that is
scanned in the positive x2-direction starting at time t¼ 0, the i-th shift in space xi is the center of
the i-th field, the i-th rotation matrix Ri ¼ I when the i-th field is scanned in the positive x2-dir-
ection and Ri ¼ �I when the i-th field is scanned in the negative x2-direction, and the i-th shift
in time si is the time at which the scanning of the i-th field starts. On R

2, the temperature and
displacement fields TD,1ðx, tÞ and uD,1ðx, tÞ resulting from the repetitive heat load QD,1ðx, tÞ
can thus be constructed from the responses Tpassðx, tÞ and upassðx, tÞ resulting from Qpassðx, tÞ
according to (19) and (22), respectively.

Note that solutions can also be considered as a function of the polar coordinates ðr, hÞ, for
example TD,1ðx, tÞ can also be considered as TD,1ðr, h, tÞ: Based on the approximation of the
true kernel xDðr, h� h0, tÞ in (70) by xD, apprðr, h� h0, r0Þ in (73), the true solutions TDðr, h, tÞ
and uDðr, h, tÞ can be approximated by TD, apprðr, h, tÞ and uD, apprðr, h, tÞ in (75) and (78),
respectively.

First, the construction of the temperature and displacement fields at one particular time
instant (and for all x 2 D) using the MoI will be demonstrated in Subsection 5.1 because this
illustrates the proposed method clearly. Subsequently, a more practical case will be considered in
Subsection 5.2 where the MoI is used to compute overlay maps. These show the deformation that
is observed at each point in the wafer surface at the moment it is scanned and thus provide the
information that is relevant for the quality of the lithography process.

5.1. Snapshots at a particular time instant

First, the construction of the temperature and displacement fields at a particular time instant t1 ¼
0:628 s will be considered. At this time instant, the fifth field in the expose pattern in Figure 1 is
being scanned. The solutions TD, apprðx, t1Þ and uD, apprðx, t1Þ obtained using the MoI with the ker-
nel in (73) will be compared to the solutions TDðx, t1Þ and uDðx, t1Þ obtained through the used
standard FE analysis. Recall that the repetitive nature of the applied heat load is exploited in the
construction of TD, apprðx, t1Þ and uD, apprðx, t1Þ based on the responses Tpassðx, tÞ and upassðx, tÞ,

Figure 6. Dimensions of one field (light blue) and of the slit (red).
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but that such an approach is not possible in the computation of TDðx, t1Þ and uDðx, t1Þ by the
used standard FE method.

5.1.1. Spatial and temporal discretization
The standard FE solutions TDðx, t1Þ and uDðx, t1Þ will be computed based on several spatial and
temporal grids, which are characterized by Le, the smallest element size in the spatial grid. The

Table 2. The number of spatial and temporal grid points used to compute the snapshots TDðx, t1Þ,uDðx, t1Þ, TD, apprðx, t1Þ, and
uD, apprðx, t1Þ for t ¼ t1 ¼ 0:628 s.

# spatial grid points # temporal grid points

Le TDðx, tÞ, TD, apprðx, tÞ Tpassðx, tÞ TDðx, tÞ, TD, apprðx, tÞ Tpassðx, tÞ
[mm] uDðx, tÞ,uD, apprðx, tÞ upassðx, tÞ uðBCÞD ðx, tÞ uDðx, tÞ,uD, apprðx, tÞ upassðx, tÞ
2 3,782 2,132 793 158 68
1 15,030 8,343 3,146 315 135
1/2 59,914 33,005 12,291 629 269
1/4 239,290 131,289 48,581 1,257 537
1/8 956,346 523,697 193,161 2,513 1,073
1/16 3,823,838 — — 5,025 —

Figure 7. The temperature field TD,1ðx, t1Þ and the displacement field uD,1ðx, t1Þ on R
2 constructed from Tpassðx, tÞ and

upassðx, tÞ: The white rectangles with arrows indicate the considered fields with their scanning directions. (a) TD,1(x,t);
(b) uD,1(x,t).
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Figure 8. The temperature field TD, apprðx, t1Þ (a) and the displacement fields uðTÞD, apprðx, t1Þ (b) and uD, apprðx, t1Þ ¼ uðTÞD, apprðx, t1Þ þ
uðBCÞD, apprðx, t1Þ (c) at t1 ¼ 0:628 s. The white rectangles with arrows indicate the considered fields with their scanning directions.
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spatial grid used for the FE solutions is based on a rectangular grid that covers the area ðx1, x2Þ 2
½�194, 194� � ½�150, � 38� mm2, but elements that fall (partially) outside the disk D are dis-
carded. The element size in the x1-direction is Le when x1 2 ½�90, 90� mm and 4Le otherwise.
The element size in the x2-direction is Le when x2 2 ½�150, � 70� and 4Le otherwise. The element
size is increased near the edges of the considered domain because TDðx, t1Þ and uDðx, t1Þ are small
in these areas. The time interval I ¼ ½0, t1� is discretized with a uniform time step of Le=ve, where
ve ¼ 0:5 m/s. Note that ve > v, which assures that the heat load does not move over more than
one element in each time step. The number of points in these spatial and temporal grids are
given in Table 2.

The solutions TD, apprðx, t1Þ and uD, apprðx, t1Þ obtained by the MoI are evaluated on the same
spatial grid as the standard FE solutions. The computation of TD, apprðx, t1Þ and uD, apprðx, t1Þ also
requires the computation of the single-field solutions Tpassðx, tÞ and upassðx, tÞ: The spatial grid
used for the computation of Tpassðx, tÞ and upassðx, tÞ covers the area ðx1, x2Þ 2 ½�82, 82� �
½�105, 105� mm2. The element size in the x1-direction is Le when x1 2 ½�26, 26� mm and 4Le
otherwise and the element size in x2-direction is Le when x2 2 ½�33, 33� and 4Le otherwise. The

Table 3. Computational times for the snapshots TDðx, t1Þ and uDðx, t1Þ by the used standard FE approach at t1 ¼ 0:628 s.

Le [mm] TD uD total

2 0.4 s <0.1 s 1.4 s
1 3.6 s 0.2 s 5.2 s
1/2 27.4 s 0.8 s 33.8 s
1/4 260.0 s 4.7 s 287.0 s
1/8 2228.3 s 99.6 s 2424.0 s
1/16� 20015.3 s 379.4 s 20763.9 s

Table 4. Computational times for the snapshots TD, apprðx, t1Þ and uD, apprðx, t1Þ using the MoI at t1 ¼ 0:628 s.

Le [mm] Tpass & upass uðBCÞD, appr total

2 0.4 s 0.5 s 1.1 s
1 1.5 s 1.2 s 3.3 s
1/2 9.6 s 4.3 s 15.9 s
1/4 68.0 s 17.3 s 93.5 s
1/8 516.2 s 71.9 s 620.6 s

Table 5. Absolute (and relative) errors in the solutions TD, apprðx, t1Þ computed using the MoI and the solutions TDðx, t1Þ com-
puted by the used standard FE method for t1 ¼ 0:628 s.

Le [mm] MoI FE

2 18.4 mK (4.3%) 51.3 mK (12.0%)
1 10.2 mK (2.4%) 17.1 mK (4.0%)
1/2 2.4 mK (0.6%) 9.9 mK (2.3%)
1/4 1.6 mK (0.4%) 3.7 mK (0.9%)
1/8 1.6 mK (0.4%) 1.3 mK (0.3%)

Table 6. Absolute (and relative) errors in the solutions uD, apprðx, t1Þ computed using the MoI and the solutions uDðx, t1Þ com-
puted by the used standard FE method for t1 ¼ 0:628 s.

Le [mm] MoI FE

2 0.27 nm (5.1%) 1.32 nm (25.0%)
1 0.20 nm (3.9%) 0.53 nm (10.0%)
1/2 0.18 nm (3.4%) 0.30 nm (6.8%)
1/4 0.19 nm (3.4%) 0.12 nm (2.3%)
1/8 0.18 nm (3.4%) 0.05 nm (0.9%)
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temporal grid uses a time step of Le=ve on the interval t 2 ½0, 0:148� during which the heat load is
applied and a time step of 4Le=ve on the interval t 2 ½0:148, t1� during which the applied heat
load is zero. The computation of uD, apprðx, t1Þ also requires the computation of the edge correc-
tion uðBCÞD, apprðx, t1Þ at the final time instant t ¼ t1. This solution is computed in polar coordinates
on a grid that covers the area ðr, hÞ 2 ½98, 150�mm� ½�p=2� 0:8, � p=2þ 0:8� rad. The element
size is 2Le in the r-direction and the elements cover an angle 2Le=R in the h-direction. The num-
ber of points in these spatial and temporal grids are given in Table 2.

The construction of the FE matrices required for the computation of
TDðx, tÞ,uDðx, tÞ,Tpassðx, tÞ, upassðx, tÞ, and uðBCÞD, apprðx, tÞ is implemented in MATLAB (R2019a) and
is based on FE tooling developed at ASML, which was also used in [27]. Linear Lagrangian shape
functions are used, which means that the number of spatial grid points in Table 2 is equal to the
number of nodes in the FE model. The time integration is done using the Crank-Nicolson
scheme [28]. Lower-Upper (LU) matrix decompositions are used for the linear systems that need
to be solved at every time step.

5.2. Graphical illustration

The first step to obtain TD, apprðx, tÞ and uD, apprðx, tÞ using the MoI is the construction of the tem-
perature and displacement fields TD,1ðx, tÞ and uD,1ðx, tÞ on R

2 based on the single-field
responses Tpassðx, tÞ and upassðx, tÞ according to (19) and (22). This requires the interpolation of
Tpassðx, tÞ and upassðx, tÞ, which is done using MATLAB’s griddedInterpolant function.
The snapshots TD,1ðx, t1Þ and uD,1ðx, t1Þ at t1 ¼ 0:628 s are shown in Figure 7.

Based on TD,1ðx, t1Þ and uD,1ðx, t1Þ in Figure 7, the approximations TD, apprðr, h, t1Þ and
uðTÞD, apprðr, h, t1Þ can then be computed according to (75) and (78) and are shown in Figure 8a and
b, respectively. Note that (75) and (78) are formulated in polar coordinates but that TD,1ðx, t1Þ
and uD,1ðx, t1Þ are computed in Cartesian coordinates. This step thus requires a conversion from
Cartesian to polar coordinates according to (65). As the reflections along radial lines in (75) and
(78) are not compatible with the used rectangular grids, this step also requires the interpolation
of TD,1ðx, tÞ and uD,1ðx, tÞ which is again implemented using MATLAB’s gridded
Interpolant function.

The displacement field uðTÞD, apprðr, h, t1Þ that satisfies the stress free BCs (6b) still requires the

computation of the edge correction uðBCÞD, apprðr, h, tÞ, which is the solution of (11) with BC (12).

Note that TD,1ðr, h, tÞ and uD,1ðr, h, tÞ appear in (12) through rðTÞðx, tÞ: The found displacement

Table 7. Computational times for the overlay maps eapprðxÞ and MA deformation ue, apprðxÞ computed using the MoI and for
the overlay maps eðxÞ and MA deformation ueðxÞ computed by the used standard FE method for t 2 ½0, t1� with t1 ¼ 0:628 s.

Le [mm] upass MoI FE

2 0.6 s 1.5 s 2.8 s
1 5.2 s 7.6 s 20.0 s
1/2 56.1 s 69.4 s 162.4 s
1/4 680.0 s 779.6 s 1485.8 s
1/8� — — 12498.6 s

Table 8. Absolute (and relative) errors in the overlay maps eapprðxÞ computed using the MoI and in the overlay maps eðxÞ
computed by the used standard FE method for t 2 ½0, t1� with t1 ¼ 0:628 s.

Le [mm] MoI FE

2 0.27 nm (5.5%) 0.39 nm (7.9%)
1 0.12 nm (2.4%) 0.12 nm (2.5%)
1/2 0.07 nm (1.5%) 0.06 nm (1.2%)
1/4 0.07 nm (1.4%) 0.02 nm (0.5%)
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field uD, apprðr, h, t1Þ ¼ uðTÞD, apprðr, h, t1Þ þ uðBCÞD, apprðr, h, t1Þ is shown in Figure 8c, which shows that

the edge correction uðBCÞD, apprðr, h, tÞ is significant. Note that TD, apprðx, t1Þ and uD, apprðx, t1Þ can be

obtained by inverting (65).

5.3. Computational times & accuracy

Most simulations in this section have been done on a laptop with 8GB RAM, but some simula-
tions on very fine grids require more memory and have been done on a desktop with 32GB
RAM. The latter results are indicated by a �:

Table 3 shows the computational times required to obtain TDðx, t1Þ and uDðx, t1Þ using the
used standard FE method. Note that the computation of TDðx, tÞ is more time consuming than
the computation of the resulting displacement field uDðx, t1Þ because TDðx, tÞ is computed at all
considered time instances, whereas uDðx, t1Þ is computed only at the final time instant t ¼ t1 ¼
0:628 s.

Table 4 shows the computational times required to obtain TD, apprðx, t1Þ and uD, apprðx, t1Þ using
the MoI. The most time-consuming steps are the computation of the responses Tpassðx, tÞ and
upassðx, tÞ for one field and the computation of uðBCÞðx, t1Þ: These are indicated separately.
Comparing the total times in Tables 3 and 4 shows that, on finer grids, the times for the MoI are
clearly becoming shorter than the times for the used standard FE method. Note that the total
times in Tables 3 and 4 also include overheads such as the construction of the FE matrices and
thus exceed the sum of the times in the other two columns.

Using the standard FE solution on the Le ¼ 1=16 mm grid as a reference, the error in
TD, apprðx, t1Þ and uD, apprðx, t1Þ obtained using the MoI can be compared to the error in TDðx, tÞ
and uDðx, tÞ obtained by the used standard FE method. The resulting temperature and displace-
ment errors (measured in the sup-norm) are given in Tables 5 and 6, respectively. It is worth
noting that the maximal error in the FE solutions TDðx, t1Þ and uDðx, t1Þ occurs on the edge of
the wafer (around the point ðx1, x2Þ ¼ ð�65, � 135Þ mm for TDðx, t1Þ and near the point
ðx1, x2Þ ¼ ð�68, � 134Þ mm for uDðx, t1Þ). This seems to indicate that the errors in the FE solu-
tions are mostly due to the approximation of the circular edge by rectangular elements. On the
Le ¼ 1=4 mm and Le ¼ 1=8 mm grids, the maximal error in TD, apprðx, t1Þ occurs on the edge
around the point ðx1, x2Þ ¼ ð�59, � 138Þ mm. On the coarser grids, the maximal error in
TD, apprðx, t1Þ occurs inside Xslitðt1Þ where the temperature gradient is the steepest. The maximal
error in uD, apprðx, t1Þ occurs on the edge around the point ðx1, x2Þ ¼ ð�56, � 139Þ mm for all
considered grids.

It is remarkable to see that the solutions computed using the MoI are often more accurate
than the solutions computed using the used standard FE method, especially on the coarser grids.
Note that the error in TD, apprðx, t1Þ stops decreasing at the Le ¼ 1=4 mm grid and that the error
in dDðx, t1Þ stops decreasing at the Le ¼ 1=2 mm grid. This indicates that the errors in
TD, apprðx, t1Þ and uD, apprðx, t1Þ introduced by the approximation of xDðr, ĥ, r0Þ in (70a) by
xD, apprðr, ĥ, r0Þ in (73) are for the considered simulation approximately 1.6 mK and 0.18 nm,
respectively.

Note that the error in the FE solutions TDðx, t1Þ and uDðx, t1Þ in Tables 5 and 6 is approxi-
mately halved each time the element size Le is halved. Extrapolating this trend to the Le ¼ 1=16
mm grid, the estimated error in TDðx, t1Þ is still of a similar magnitude as the error in
TD, apprðx, t1Þ on the Le ¼ 1=8 mm grid. On the Le ¼ 1=4 mm and Le ¼ 1=8 mm grids, the max-
imal errors in the FE solutions TDðx, t1Þ also occur at locations that are close to the locations
where the maximal error in the MoI solutions TD, apprðx, t1Þ occur. It is therefore possible that the
estimated error in TD, apprðx, t1Þ of 1.6 mK is still influenced by the accuracy of the used reference
solution. We were not able to compute a reference solution on grids finer than the Le ¼ 1=16
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mm grid due to the high computational times, see Table 3, and the increasing memory require-
ments. However, the results clearly demonstrate that, for the considered wafer heating problem,
the accuracy of the proposed method is comparable to the accuracy of a standard FE model that
can be solved in a reasonable amount of time. Note that the error in the reference solution will
only have a minor influence on the estimated error of 0.18 nm in uD, apprðx, t1Þ:

5.4. Overlay maps

The construction of the snapshots in the previous subsection was mainly used to illustrate the
proposed method. In this subsection, the construction of overlay maps using the MoI will be
demonstrated. These overlay maps show the moving-average (MA) overlay eðxÞ defined as

eðxÞ ¼ 1
tþðxÞ � t�ðxÞ

ðtþðxÞ
t�ðxÞ

kuDðx, tÞkdt, (80a)

where t�ðxÞ and tþðxÞ denote the starting point and end point of the time interval during which
the point x is exposed to the projection light, that is QDðx, tÞ is nonzero precisely for t 2
½t�ðxÞ, tþðxÞ�: For points x that are never exposed to the projection light, eðxÞ is set to zero. The
MA overlay eðxÞ thus gives a good indication of the degradation in imaging quality due to wafer
heating. To get some indication of the occurring deformation, the figures in this subsection will
also display

ueðxÞ ¼ 1
tþðxÞ � t�ðxÞ

ðtþðxÞ
t�ðxÞ

uDðx, tÞdt: (80b)

Note that the norm of ueðxÞ is not equal to eðxÞ: The MA overlay eapprðxÞ and the MA
deformation ue, apprðxÞ are defined similarly but are computed based on uD, apprðx, tÞ instead
of uDðx, tÞ:

Recall that, similarly as in Subsection 5.1, the repetitive nature of the applied heat load is
exploited in the construction of eapprðxÞ and ue, apprðxÞ based on the single-field responses
Tpassðx, tÞ and upassðx, tÞ, but that such an approach is not possible in the computation of eðxÞ
and ueðxÞ by the used standard FE method.

Figure 9. Overlay map for t 2 ½0, t1� with t1 ¼ 0:628 s computed using the MoI on the Le ¼ 1=4 mm grid. The color scale and
the black arrows indicate eapprðxÞ and ue, apprðxÞ, respectively. The white rectangles with arrows indicate the considered fields
with their scanning directions.
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5.4.1. The first five fields
The overlay map is first computed for the same time interval as in the previous subsection, so for
t 2 ½0, t1� with t1 ¼ 0:628 s. The overlay map is computed field-by-field, meaning that, for each
field, uDðx, tÞ is computed only in the spatial grid points in the considered field and in the tem-
poral grids points during which the current field is being scanned. It is straightforward to com-
pute eðxÞ and ueðxÞ in (80a) and (80b) based on this data.

The spatial and temporal grids are essentially the same as in the previous subsection. The only
difference is that the grid used to compute uðBCÞD, apprðx, tÞ changes with the currently considered
field and now covers the area ðr, hÞ 2 ½98, 150�mm� ½hi � 0:8, hi þ 0:8� rad, where hi denotes the
h-component of the center of the i-th field. The number of spatial and temporal grid points are
thus still the same as in Table 2.

The obtained overlay map is shown in Figure 9. The maximum overlay, that is maxxeðxÞ, is
4.9 nm. Note that for all fields except the first one, ue, apprðx, yÞ has a significant component in the
negative x1-direction due to thermal expansion in the previously scanned fields.

The MA overlay maps eapprðxÞ and MA deformation ue, apprðxÞ obtained using the MoI will be
compared to the overlay maps eðxÞ and ueðxÞ obtained by the used standard FE method. The times
required to compute eapprðx, yÞ and ue, apprðxÞ using the MoI and the times to compute e(x, y) and
ueðxÞ by the used standard FE method are compared in Table 7. Note that the overlay map on the
Le ¼ 1=8 mm grid is computed on a desktop with 32GB RAM. Especially for smaller element sizes
Le, the construction using the MoI is significantly faster. Note that most of the computational time
for the MoI is spent on the computation of the single-field response upassðx, tÞ and that the times in
Table 7 are significantly longer than the times for the construction of the snapshots given in Tables
3 and 4 because the computation of the overlay map requires the computation of the deformation at
all considered time instances and not just at the final time instance.

The absolute and relative error in the overlay map eapprðxÞ (computed using the MoI) and in
the overlay map eðxÞ (computed by the used standard FE method) are compared in Table 8. The
accuracy of both methods is similar on most of the considered grids. It seems that the accuracy
of eapprðxÞ stops decreasing at the Le ¼ 1=2 mm grid. This was also observed for the accuracy of
the displacement field uD, apprðx, t1Þ in Table 6 and seems to indicate that the error due to the
approximation of xDðr, ĥ, r0Þ in (70a) by xD, apprðr, ĥ, r0Þ starts to dominate. It is interesting to
observe that the absolute error in eapprðxÞ is already below the typically required accuracy of
0.1 nm. The error in the MA deformation ue, apprðxÞ and ueðxÞ is of a similar magnitude as the
error in the overlay eðxÞ and eapprðxÞ reported in Table 8 and is therefore not reported here.

The maximal errors the FE solutions eðxÞ and ueðxÞ occur for all considered grids around the
point ðx1, x2Þ ¼ ð�61, � 132Þ mm, which is the left point closest to edge inside the five consid-
ered fields. The maximal error in the MoI solutions eapprðxÞ and ueðxÞ occurs in the rightmost
field; on the Le ¼ 2mm and Le ¼ 1mm grids around ðx1, x2Þ ¼ ð61, � 132Þ and for the Le ¼ 1=2
mm and Le ¼ 1=4 mm grids around ðx1, x2Þ ¼ ð39, � 132Þ mm. This observation and the accur-
acy of the FE solutions on the Le ¼ 1=4 mm grid indicate that the accuracy of the used reference
solution does not significantly influence the errors in eapprðxÞ and ue, apprðxÞ, see Tables 8 and 6.

Table 9. The number of spatial and temporal grid points used to compute eðxÞ, eapprðxÞ,ueðxÞ, and ue, apprðxÞ for the
whole wafer.

# spatial grid points # temporal grid points

Le eðxÞ, eapprðxÞ Tpassðx, tÞ eðxÞ, eapprðxÞ Tpassðx, tÞ
[mm] ueðxÞ,ue, apprðxÞ upassðx, tÞ uðBCÞD ðx, tÞ ueðxÞ,ue, apprðxÞ upassðx, tÞ
2 17,665 2,132 793 2,193 216
1 70,681 8,343 3,146 4,385 431
1/2 282,697 33,005 12,291 8,769 861
1/4 1,130,913 131,289 48,581 17,537 1721
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5.4.2. All fields on the wafer
The overlay map is now constructed for all fields on the wafer, meaning that the length of the
considered time interval I ¼ ½0, t2� is increased to t2 ¼ 8:768 s. The spatial grid used for the FE
solution is now based on a rectangular grid that covers the area ðx1, x2Þ 2 ½�150, 150� �
½�150, 150� mm2 with a uniform grid spacing of Le in both the x1- and x2-directions, but ele-
ments that (partially) fall outside D are discarded. The temporal grid for the FE solution covers
the time interval ½0, t2� with a uniform step size Le=ve, where ve ¼ 0:5 m/s. The spatial grid for
the computation of upassðx, tÞ remains unchanged but the temporal grid now covers the interval
½0, tf 2� with tf 2 ¼ 2:996 s. The time step is Le=ve when t 2 ½0, tf 1� with tf 1 ¼ 0:148 s (during which
a heat load is applied) and 4Le=ve when t 2 ðtf 1, tf 2� (during which no heat load is applied). The

grid for the edge correction uðBCÞD, apprðx, tÞ remains unchanged. The resulting number of spatial and
temporal grid points are given in Table 9.

The overlay map computed using the MoI on the Le ¼ 1=4 mm grid is shown in Figure 10.
The maximum of the MA overlay eðxÞ is 5.5 nm, which shows that control is necessary to reduce
the overlay to the subnanometer level required in modern wafer scanners.

The times required for the computation of eðxÞ and ueðxÞ using the MoI and by the used
standard FE method are compared in Table 10. Even the 32GB RAM of the used desktop PC
was not sufficient to compute the FE solution on the Le ¼ 1=4 mm grid within a reasonable

Figure 10. Overlay map constructed using the MoI on a uniform Le ¼ 1=4 mm grid. The color scale and the black arrows indicate
eapprðxÞ and ue, apprðxÞ, respectively. The white rectangles with arrows indicate the considered fields with their scan-
ning directions.

JOURNAL OF THERMAL STRESSES 33



amount of time. We were therefore not able to determine an accurate reference solution and the
accuracy of the results of the simulation that considers all fields on the wafer could not be
reported in the same way as for the simulation that considers only the first five fields. However,
we expect that the accuracy of these results will be similar to the accuracy reported in Tables 5,
6, and 8 because the error introduced by the MoI will be the largest near the edge of the wafer.

Table 10 shows that making use of the repetitive nature of the heat load in the MoI signifi-
cantly reduces computational time, especially on fine grids. Note that the time to compute
upassðx, tÞ is now relatively small compared to the total time required to compute eðxÞ and ueðxÞ:
Most of the computational time is spent during the evaluation of the infinite domain solutions
TD,1ðx, tÞ and uD,1ðx, tÞ according to (19) and (22), which involves interpolation of the solutions
Tpassðx, tÞ and upassðx, tÞ: It might be possible to reduce this time further with a smarter choice of
spatial grids and/or a different interpolation method.

Figure 11. Overlay map obtained by the MoI when the rigid-body translations in the x1- and x2-directions of the wafer stage are
used reduce the overlay error. The color scale and the black arrows indicate eapprðxÞ and ue, apprðxÞ, respectively. The white rec-
tangles with arrows indicate the considered fields with their scanning directions.

Table 10. Computational times for the overlay map of the whole wafer using the MoI and by the used standard FE method.

Le [mm] upass MoI FE

2 1.3 s 9.4 s 140.3 s
1 5.4 s 26.7 s 1187.5 s
1/2 56.4 s 256.7 s 10493.5 s
1/4 754.4 s 2577.5 s –
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5.4.3. Wafer stage positioning
The imaging quality can be improved by adapting the position of the wafer stage that moves the
wafer under the projection light. The overlay map in Figure 11 shows results of such an approach
in which the two translations in x1- and x2-direction are used to reduce the overlay error. In par-
ticular, the overlay eðxÞ and the MA deformation ueðxÞ in this figure are obtained by replacing
uDðx, tÞ in (80a) and (80b) by

uD, cðx, tÞ ¼ uDðx, tÞ �
ð ð

XslitðtÞ
uDðx, tÞdx, (81)

where XslitðtÞ � R
2 denotes the area of the slit (i.e. the area in which the heat load is applied) at

time t. These rigid-body corrections reduce the maximal overlay error from 5.5 nm without cor-
rections to less than 3.5 nm.

The computational times with corrections are very similar to the times without corrections
given in Table 10. The proposed method thus provides an efficient way to test various correction
strategies. This efficiency is important because these corrections should eventually be imple-
mented in the wafer scanner, which means they have to be computed just before or during the
exposure of the wafer.

6. Conclusions and recommendations

The results in this paper extend the classic MoI in two ways. Both extensions are based on the
reformulation of the MoI on an arbitrary spatial domain X � R

n in terms of a convolution kernel
xXðx, x0Þ that should satisfy the conditions in Proposition 1. First, the kernel representation for
the MoI enables the application of the MoI to heat-induced deformations. This extension is based
on the displacement potential, which means that in most cases an additional elasticity problem
needs to be solved to satisfy the mechanical BCs. Secondly, an analytic expression for the convo-
lution kernel for the disk has been derived. Because the convolution with this kernel is expensive
to compute, an approximation with lower computational cost has been derived as well. This ena-
bles the application of the MoI to a circular domains, which was not possible before.

These two extensions have been applied to a wafer heating problem in which the MoI is used
to exploit the repetitive nature of the heat load. A reduction of more than a factor 10 in compu-
tation time could be achieved, see Table 10. Although the accuracy of the solutions constructed
using the MoI on the disk is limited by the approximation of the convolution kernel, the discret-
ization error in solutions computed by the used standard FE method is similar to the error in sol-
utions obtained using the MoI on most of the considered grids. The total time to construct the
overlay map with the MoI on a 2mm grid is now 9.4 seconds. This is about the same time it
takes to process one wafer. The proposed method can thus potentially be used for real-time pre-
diction and correction.

The proposed extension of the MoI can be applied to a spatial domain X when a kernel xX

that satisfies the conditions in Proposition 1 has been found. The existence of such a kernel has
been demonstrated for several examples, but can in general not be guaranteed, see Remark 8. It
is therefore an interesting topic for future research to investigate which spatial domains X admit
a convolution kernel xX that satisfies the conditions in Proposition 1.

The proposed method requires the storage of the responses Tpassðx, tÞ and dpassðx, tÞ resulting
from the scanning of a single field at all considered time instances, which can take up a signifi-
cant amount of memory. On the Le ¼ 1=4 mm grid, this requires for example more than 1GB of
memory. The required amount of memory can potentially be reduced by semi-analytic techniques
such as discussed in [11] or by model order reduction, see for example [29].

Although a closed-form analytic formula for the kernel on the disk has been derived, an
approximation consisting of a single Dirac delta has been used in the numerical example in
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Section 5. The error resulting from this approximation is acceptable in the considered wafer heat-
ing application, but other applications might require more accurate approximations. It would
therefore be interesting to investigate how more accurate approximations can be obtained. As the
convolution with these approximations should be easy to evaluate, it seems most natural to look
for approximations consisting of multiple Dirac deltas.

Two additional difficulties in the simulation of wafer heating have not been considered in
Section 5. First of all, it has been assumed that the heat load moves instantaneously to the next
field after the scanning the previous field has been completed. In reality, this process will take
some time that is not known exactly before the exposure of the wafer. Such uncertain timings
can be incorporated easily in the proposed method by modifying the time shifts si in (19) and
(22) and can thus be incorporated after the solutions for the single field have been computed.
Secondly, it should be noted that all fields in the heat load in Figure 1 fit fully on the wafer.
However, to maximize the number of integrated circuits on each wafer, wafers often also contain
fields that do not fit completely on the wafer. Such incomplete fields have not been considered.
As each of these incomplete fields will typically have a different position w.r.t. the edge of the
wafer, the exposure of each half field will typically require an additional (single-field) simulation.

Finally, it is interesting to note that the overlay clearly depends on the order in which the
fields on the wafer are scanned. Designing an alternative ordering that leads to a better imaging
quality (without significantly increasing the processing time) is an interesting topic for future
research. The proposed method seems an ideal tool to evaluate the overlay resulting from various
potential orderings quickly and accurately.

Appendix A. Proofs of proposition 1 and lemma 1

Proof of Proposition 1. It will be shown that substitution of (27d) in the LHS and RHS of (27b) and (27c)
yields the same results when the conditions in (28) hold.

Substitution of (27d) in the LHS of (27b) yields

c
@~TX

@t
ðx, tÞ ¼

ð ð
Xc
xXðx, x0Þc @TX,1

@t
ðx0, tÞ dx0

¼
ð ð

Xc
xXðx, x0Þ jr02TX,1ðx0, tÞ � h0TX,1ðx0, tÞ

� 	
dx0

¼ j
ð ð

Xc
xXðx, x0Þr02TX,1ðx0, tÞdx0 � h0~TXðx, tÞ, (A.1)

where the second identity follows because TX,1 satisfies (1a) and the heat load QX,1 is zero outside X according
to (16). Inserting (27d) in the RHS of (27b) yields

jr2~TXðx, y, tÞ � h0~TXðx, y, tÞ ¼ j
ð ð

Xc
r2xXðx, x0ÞTX,1ðx0, tÞdx0 � h0~TXðx, tÞ: (A.2)

To see that the expressions on the RHS of (A.1) and (A.2) are equal, note that one of Green’s identities, see for
example [2], shows thatð ð

Xc
xXr02TX,1dx0 ¼

ð ð
Xc

r02xX

� 	
TX,1 dx0 þ

ð
@X

xXr0TX,1 � TX,1r0xX

� 	 � n d‘0
¼
ð ð

Xc
ðr02xXÞTX,1dx0 ¼

ð ð
Xc
r2xXTX,1 dx0, (A.3)

where the dependence of xX on ðx, x0Þ and of TX,1 on ðx0, tÞ has been omitted, and n ¼ nðx0Þ denotes the out-
ward pointing normal of X which is the inward pointing normal of Xc: The second identity in (A.3) follows
because (28b) shows that the boundary terms vanish and the last identity in (A.3) follows from (28a). It thus fol-
lows that ~TX in (27d) satisfies the PDE (27b).
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For the BC (27c), note that the LHS of (27c) can be rewritten as

r~TXðx, tÞ � nðxÞ ¼
ð ð

Xc
TX,1ðx0, tÞrxXðx, x0Þ � nðxÞ dx0 ¼

ð ð
Xc
TX,1ðx0, tÞr0dðx� x0Þ dx0 � nðxÞ: (A.4)

For the RHS of (27c), note that

�rTX,1ðx, tÞ � nðxÞ ¼ �
ð ð

Xc
dðx� x0Þr0TX,1ðx0, tÞ dx0 � nðxÞ ¼

ð ð
Xc
TX,1ðx0, tÞr0dðx� x0Þ dx0 � nðxÞ, (A.5)

where the last identity follows from the definition of the derivative of the Dirac delta in (29). The function ~TX in
(27d) thus also satisfies the BC (27c). w

Proof of Lemma 1. To see that ~wXðx, tÞ defined by (34b) indeed satisfies (35a), note that the definition (34b)
shows that

ð2lþ kÞr2~wX ¼ ð2lþ kÞ
ð ð

Xc
ðr2xXÞwX,1 dx0 ¼ ð2lþ kÞ

ð ð
Xc
ðr02xXÞwX,1 dx0

¼ ð2lþ kÞ
ð ð

Xc
xXðr02wX,1Þ dx0 þ ð2lþ kÞ

ð
@X

xXr0wX,1 � wX,1r0xX
� 	 � n d‘0

¼
ð ð

Xc
xXð~k0wX,1 þ ð2lþ nkÞaTX,1Þ dx0 ¼ ~k0~wX þ ð2lþ nkÞa~TX, (A.6)

where the second identity follows from the first condition for the kernel xXðx, x0Þ in (28a), the third identity fol-
lows from one of Green’s identities, the fourth identity because the boundary terms vanish due to second condition
for xXðx, x0Þ (28b) and because wX,1ðx, tÞ is defined as the solution of (10), and the last identity from the defini-
tions of ~wXðx, tÞ and ~TXðx, tÞ in (34b) and (27d). Note that the dependence of ~wX and ~TX on ðx, tÞ, the depend-
ence of wX,1 and TX,1 on ðx0, tÞ, and the dependence of xX on ðx, x0Þ has been dropped in (A.6). It thus follows
that ~wXðx, tÞ in (34b) indeed satisfies (35a).

For the BC (35b), note that for x 2 @X

r~wXðx, tÞ � nðxÞ ¼
ð ð

Xc
ðrxXðx, x0Þ � nðxÞÞwX,1ðx0, tÞ dx0 ¼

ð ð
Xc
ðr0dðx� x0Þ � nðxÞÞwX,1ðx0, tÞ dx0

¼
ð ð

Xc
ðr0dðx� x0ÞÞwX,1ðx0, tÞ dx0 � nðxÞ ¼ �

ð ð
Xc
r0wX,1ðx0, tÞdðx� x0Þ dx0 � nðxÞ ¼ �rwX,1ðx, tÞ � nðxÞ,

(A.7)

where the first identity follows from the expression for ~wXðx, tÞ in (34b), the second identity from the third condi-
tion for xXðx, x0Þ in (28c), the third identity by pulling the normal nðxÞ out of the integral, the fourth identity
from the definition of the derivative of a Dirac delta in (29), and the fifth identity from the definition of the Dirac
delta. The BC (35b) is thus indeed satisfied by ~wXðx, tÞ defined in (34b). w

Appendix B. Boundary conditions and the weak form

In this appendix, it is demonstrated that the BCs in (40) and (66) for the kernels xHPðx1, x̂2, x01Þ on the half plane
HP and xDðr, ĥ, r0Þ on the disk D are (in the weak sense) equivalent to the BCs (41) and (68), respectively.

B.1. The half plane

The weak form of (40) is found by multiplying (40a) by a test function f ¼ f ðx1, x̂, x01Þ and integrating over
ðx1, x̂, x01Þ 2 HP� ½xe, xe þ e�: This leads toð ð

HP
f
@xHP

@x01
� @f
@x01

xHP

� �
dx1dx̂

����
xeþe

x01¼xe

þ
ðxeþe

xe

ð ð
HP

@2f

@x02
1

xHP dx1 dx̂ dx01

¼ �
ð
R

@f
@x01

����
ðx1, x01Þ¼ðxe , xeÞ

dðx̂Þ dx̂ �
ðxeþe

xe

ð ð
HP

@f
@x1

@xHP

@x1
dx1dx̂ dx

0
1: (B.1)
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The LHS of (B.1) has been obtained from f @2xHP

@x021
using integration by parts over x01 twice. The RHS of (B.1) has

been obtained by rewriting f @2xHP
@x21

using integration by parts over x1, the BC (40c), and the definition of derivative
of the Dirac delta in (29).

When taking the limit e ! 0, the integrals over x01 converge to zero. Note that (40b) shows that the boundary
terms on the LHS of (B.1) at x ¼ x01 vanish as well. Because the test function f ðx1, x̂, x01Þ is smooth, it thus follows
that

lim
e!0

� @f
@x01

ðx1, x̂, xeÞxHPðx1, x̂, xe þ eÞ ¼ � @f
@x01

ðx1, x̂, xeÞdðx� xeÞdðx̂Þ, (B.2a)

lim
e!0

f ðx1, x̂, xeÞ @xHP

@x01
ðx1, x̂, xe þ eÞ ¼ 0, (B.2b)

Conditions (41a) and (41b) now follow because (B.2) must hold for any (smooth) test function f ðx1, x̂, x01Þ: The
last condition (41c) simply follows by noting that (40c) reduces to (41c) for x01 > xe:

B.2. The disk

To remove the derivative of the Dirac delta in (66c), the weak form of (66) is derived by multiplying (66a) by
f ðr, ĥ, r0Þr0r, where f ðr, ĥ, r0Þ is a test function, and integrating over ðr, ĥ, r0Þ 2 ð0,RÞ � ð0, 2pÞ � ðR,Rþ eÞ: This yieldsðp

�p

ðR
0

f
@xD

@r0
� @f
@r0

xD


 �
r0r dr dĥ

����
Rþe

r0¼R

þ
ðRþe

R

ðp
�p

ðR
0

@

@r0
r0
@f
@r0

� �
þ 1
r0
@2f

@ĥ
2

" #
xDr dr dĥ dr

0

¼ �
ðp
�p

@f
@r0

����
ðr, r0Þ¼ðR,RÞ

RdðĥÞ dĥ �
ðRþe

R

ðp
�p

ðR
0

@f
@r

@xD

@r
þ 1
r2

@f

@ĥ

@xD

@ĥ

� �
r0r dr dĥ dr0: (B.3)

The LHS of (B.3) has been obtained by integration by parts over r0 and ĥ (the boundary terms at ĥ ¼ �p and
ĥ ¼ p vanish because of the periodicity in the ĥ-direction). The RHS of (B.3) has been obtained using integration
by parts over r and ĥ, the BC (66c), and the definition of the derivative of the Dirac delta. Similarly as before, the
integrals over r0 vanish when taking the limit e ! 0 and the boundary terms on the LHS at r0 ¼ R vanish because
of (66b). It thus follows that

lim
e!0

� @f
@r0

ðr, ĥ,RÞxDðr, ĥ,Rþ eÞRr ¼ @f
�@r0

ðr, ĥ,RÞRdðR� rÞdðĥÞ, (B.4a)

lim
e!0

f ðr, ĥ,RÞ @xD

@r0
ðr, ĥ,Rþ eÞRr ¼ 0: (B.4b)

As (B.4) must hold for any test function f ðr, ĥ, r0Þ, (68a) and (68b) follow. The BC (68c) follows by noting that
(66c) reduces to (68c) for r0 > R:

Appendix C. The kernel for the disk

An explicit expression for xD, cðr, ĥ, r0Þ satisfying (66a) and (68) with the Dirac in (68a) replaced by dcðr � R, ĥÞ in
(69) is obtained by noting that, at every ‘time instant’ r0,xDðr, ĥ, r0Þ can be expressed in terms of the eigenfunc-
tions of the Laplacian on the disk ðr, ĥÞ 2 ½0,RÞ � ½�p,p�: The eigenfunctions of the Laplacian that are in agree-
ment with the BC (68c) are, see for example [30]

wn,mðr, ĥÞ ¼ Jn bn,m
r
R

� �
cos ðnĥÞ, n � 0,m � 1, (C.1a)

~wn,mðr, ĥÞ ¼ Jn bn,m
r
R

� �
sin ðnĥÞ, n � 1,m � 1, (C.1b)

where Jn is the Bessel function of the first kind of order n and bn,m is the m-th zero of @Jn=@rðrÞ ¼ 0: Note that
b0, 1 ¼ 0 and that J0ð0Þ ¼ 1, so that w0, 1ðr, ĥÞ � 1: The kernel xDðr, ĥ, r0Þ can thus be written as

xDðr, ĥ, r0Þ ¼
X1
n¼0

X1
m¼1

an,mðr0Þwn,mðr, ĥÞ þ
X1
n¼1

X1
m¼1

~an,mðr0Þ~wn,mðr, ĥÞ, (C.2)

where the coefficients an,mðr0Þ, and ~an,mðr0Þ still need to be determined.
A set of ODEs for the coefficients an,mðr0Þ and ~an,mðr0Þ can be obtained through a Galerkin discretization of

(66a). Using that the eigenvalue of the Laplacian associated to wn,mðr, ĥÞ and wn,mðr, ĥÞ is �b2n,m=R
2 and that the

eigenfunctions are mutually orthogonal w.r.t. the natural inner product
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hf , gi ¼
ðR
0

ðp
�p

f ðr, ĥÞgðr, ĥÞr dĥ dr, (C.3)

it follows that inserting (C.2) into (66a) and taking the inner product with the shape functions wn,mðr, ĥÞ yields
1
r0

@

@r0
r0
@an,m
@r0

ðr0Þ
� �

� n2

r02
an,mðr0Þ ¼

�b2n,m
R2

an,mðr0Þ, (C.4a)

where the factor hwn,m,wn,mi has been omitted. Similarly, inserting (C.2) into (66a) and taking the inner product
with the shape functions ~wn,mðr, ĥÞ yields

1
r0

@

@r0
r0
@~an,m
@r0

ðr0Þ
� �

� n2

r02
~an,mðr0Þ ¼

�b2n,m
R2

~an,mðr0Þ, (C.4b)

where the factor h~wn,m, ~wn,mi has been omitted. Recall that b0, 1 ¼ 0, so that the solution of (C.5b) for ðn,mÞ ¼
ð0, 1Þ is of the form

a0, 1ðr0Þ ¼ A0, 1 þ B0, 1 log ðr0=RÞ, (C.5a)

where A0, 1 and B0, 1 are constants. For all other values of n and m, the solution of (C.4a) is of the form

an,mðr0Þ ¼ An,mJnðbn,mr0=RÞ þ Bn,mYnðbn,mr0=RÞ, (C.5b)

where YnðrÞ is the Bessel function of the second kind of order n and An,m and Bn,m are constants. Similarly, the
solutions of (C.4b) take the form

~an,mðr0Þ ¼ ~An,mJnðbn,mr0=RÞ þ ~Bn,mYnðbn,mr0=RÞ, (C.5c)

where ~An,m and ~Bn,m are constants.
The constants An,m,Bn,m, ~An,m, and ~Bn,m are determined based on the initial conditions (68a) and (68b). Since

the eigenfunctions wn,mðr, ĥÞ and ~wn,mðr, ĥÞ are linearly independent, (68b) implies that

@a0, 1
@r0

ðRÞ ¼ 0,
@an,m
@r0

ðRÞ ¼ 0,
@~an,m
@r0

ðRÞ ¼ 0: (C.6)

Inserting the expressions for an,mðr0Þ and ~an,mðr0Þ in (C.5) into (C.6) and using that @Jn=@rðbn,mÞ ¼ 0, it fol-
lows that Bn,m ¼ 0 and ~Bn,m ¼ 0:

The constants An,m and ~An,m follow by inserting (C.2) into (68a) and projecting on wn,mðr, ĥÞ and ~wn,mðr, ĥÞ:
This yields

an,mðRÞhwn,m,wn,mi ¼ hxDð�, � ,RÞ,wn,mi ¼ hdcðr � R, ĥÞ,wn,mi, (C.7a)

~an,mðRÞh~wn,m, ~wn,mi ¼ hxDð�, � ,RÞ, ~wn,mi ¼ hdcðr � R, ĥÞ, ~wn,mi: (C.7b)

Note that ~an,mðRÞ ¼ 0 because dc is symmetric and ~wn,m is anti symmetric in ĥ ¼ 0: Because ~Bn,m ¼ 0, (C.5c)
now shows that ~An,m ¼ 0 and thus that ~an,mðr0Þ � 0: Inserting (C.1) and (C.5) with Bn,m ¼ 0 into (C.2) now
shows that xD, cðr, ĥ, r0Þ is of the form (70a).

The coefficients An,m follow after inserting (C.5a) and (C.5b) into (C.7a) as

An,m ¼ hdcðr � R, ĥÞ,wn,mi
Jnðbn,mÞhwn,m,wn,mi : (C.8)

The denominator in the expression for An,m in (C.8) can be made more explicit by noting that

hw0, 1,w0, 1i ¼ pR2, (C.9a)

and for all other values of n and m, see for example [30],

hwn,m,wn,mi ¼ �n
2
pR2J2nðbn,mÞ 1� n2

b2n,m

" #
, (C.9b)

where �n ¼ 2 when n¼ 0 and �n ¼ 1 for n 6¼ 0:
The coefficients An,m in (70b) for c¼ 0 now follow from (C.8) and (C.9) by noting that

hd0ðr � R, ĥÞ,wn,mi ¼ wn,mðR, 0Þ ¼ Jnðbn,mÞ, (C.10)

where it was used that dcðr � R, ĥÞ approaches a Dirac at ðr, ĥÞ ¼ ðR, 0Þ for c ! 0 and that wn,mðr, ĥÞ is given
by (C.1a).
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For c > 0, the numerator in (C.8) can be rewritten using the expressions for dcðr � R, ĥÞ in (69) and wn,mðr, ĥÞ
in (C.1a) as

hdcðr � R, ĥÞ,w0, 1i ¼ 1� c
2

1� 4
p2

� �
, (C.11a)

for n¼ 0 and m¼ 1 and as
hdcðr � R, ĥÞ,wn,mi ¼ Cn,mDn, (C.11b)

for all other values of n and m. Here, Cn,m and Dn are

Cn,m ¼ 1
cR2

ðR
ð1�cÞR

Jn
bn,mr
R

� �
1þ cos

pðr � RÞ
cR

� �� �
r dr, (C.11c)

Dn ¼ 1
2c

ðc
�c

cos ðnĥÞ 1þ cos
pĥ
c

 ! !
dĥ ¼ sin ðncÞ

nc 1� n2c2

p2

� � : (C.11d)

The integral in (C.11c) cannot be simplified further and is approximated numerically by a trapezoid quadra-
ture rule.
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