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ABSTRACT ARTICLE HISTORY

The well-known method of images relates the solution of the heat equa- Received 5 October 2020

tion on R” (typically n=2 or n=3) to the solution of the heat equation Accepted 22 May 2021

on certain spatial subdomains Q of R". By reformulating the method of

images in terms of a convolution kernel, two novel extensions are

obtained in this paper. First, the method of images is extended from ther- b L
) 2= oundary conditions; disk;

mal problems to thermoelastic problems, that is, it is demonstrated how repetitive heat sources;

the heat-induced deformations on R” can be related to the heat-induced thermal loading

deformations on certain subdomains Q of R". Secondly, an explicit expres-

sion for the convolution kernel for the disk is obtained. This enables the 2020 MsC

application of the method of images to circular domains to which it could 74F05; 74599

not be applied before. The two obtained extensions lead to a computa-

tionally efficient simulation method for repetitive heat loads on a disk. In a

representative simulation example of wafer heating, the proposed method

is more than ten times faster than a conventional Finite Element approach.

KEYWORDS
Analytical solutions;

1. Introduction

The Method of Images (Mol) relates the solution of the heat equation with constant coefficients
on R", typically n=2 or n=23, to solutions of the heat equation on certain subdomains Q C R".
Analytic expressions for the solution on R"” can be obtained using the fundamental solution of
the heat equation, see for example [1, 2]. The Mol is therefore typically used to derive analytic
and semi-analytic expressions for the solution of heat conduction problems on bounded domains,
see for example [3-5]. In most cases, the method is applied for zero Neumann boundary condi-
tions (BCs), but the method has been extended to a variety of other BCs such as (zero) Dirichlet
or Robin BCs, see [1, 6, 7]. In most cases, the material properties are assumed to be constant, but
extensions to multilayered materials in which the material properties are piecewise constant also
exist [6, 7]. The Mol dates back at least to the nineteenth century, see [8], but might well be even
older and has also applied to problems in elasticity, see for example [9, 10].

The Mol is not only of interest for the derivation of (semi)-analytical expressions for the tem-
perature field on certain subdomains, but can also be used to reduce the computational cost for
the simulation of heat conduction problems with repetitive sources [11]. For such processes, the
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Figure 1. An example of a repetitive heat load that occurs in a lithography process (wafer heating). In this process, a pattern of
electronic connections is projected onto the wafer in an area Qg (t) called the slit that moves over the wafer surface. The light
used to project the pattern results in a (uniform) heat load applied in Qg (t). Because each field is scanned in the same way, the
applied heat load is repetitive. (a) A typical expose pattern in lithography. The heat load scans multiple fields (light blue rectan-
gles) on a silicon wafer (gray disk) which results in a meandering path (red and orange arrows). (b) A detailed view of the scan-
ning of fields i - 1, i, and i+ 1 (the three light blue rectangles). The heat load is applied in a rectangular area Qg (t) which is
displayed at three time instances t; < t; < t; (red rectangles).

temperature field on the unbounded domain R" can be constructed effectively by exploiting the
translation, rotation, and time invariance of the heat equation on R". The Mol is then applied to
obtain the solution on the subdomain Q C R" of interest.

Repetitive heat loads occur in many industrial applications where a surface is treated by the
(small) spot of a laser beam. In these applications, multiple passings of the laser over the surface
occur. The heat load applied during each passing is the same up to a translation and/or rotation
in space and a shift in time. Examples of such processes are the laser hardening of metals
[12-14], additive manufacturing [15-17], and wafer heating [11, 18, 19]. In the latter application,
a pattern of electronic connections is projected onto a silicon wafer, see Figure 1. The light used
to project the pattern heats up the wafer which leads to thermal expansion and a degraded imag-
ing quality. Note that the pattern is projected consecutively onto all fields (the light blue rectan-
gles in Figure 1) and that the same pattern of electronic connections is projected in each field. It
is therefore natural to consider the scanning of one field as one passing of the heat load. Fast and
sufficiently accurate simulation of this process is needed to improve the imaging quality of the
latest generation wafer scanners.

It should be noted that the assumption of constant material properties is problematic when tem-
perature increases are large. However, semi-analytic models have also been developed for applica-
tions where the material properties are certainly not constant such as welding [4, 5] and additive
manufacturing [17]. In contrast to these applications, the temperature increases encountered in
wafer heating are small, that is, smaller than one Kelvin, and the material properties can assumed to
be constant. This makes the Mol particularly suitable for the wafer heating application.

However, the wafer heating application comes with two specific difficulties. The first difficulty
is that the spatial domain is a disk (see Figure 1) and that, to the best of our knowledge, the Mol
has only been applied to box-shaped (also called orthogonal) domains. The second difficulty is
that, rather than the temperature field, the heat-induced deformation is of interest because local
deformation eventually determines the imaging quality of the lithographic process. To the best of
our knowledge, the Mol has only been applied to the temperature field and not to the heat-
induced deformations.
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This paper addresses these two difficulties by reformulating the Mol in terms of a convolution
kernel. Two novel extensions are obtained. First, it is shown how the Mol can be applied in thermo-
elasticity, that is, it is shown how the heat-induced deformation in a subdomain Q C R" can be
computed based on the heat-induced deformation on R". This extension is based on the displace-
ment potential function, see for example [20-22], which means that in almost all cases an additional
correction is needed to satisfy the mechanical BCs. Secondly, it is shown how the Mol can be applied
to a disk. This extension is found by solving a certain Partial Differential Equation (PDE) for the
convolution kernel. These two extensions enable the efficient simulation of thermomechanical sys-
tems on a disk-shaped spatial domains. A representative wafer heating simulation demonstrates that
the developed methods can reduce the required computational time by more than a factor ten com-
pared to a conventional Finite Element (FE) analysis on a similar grid and with a similar accuracy.

The remainder of this paper is organized as follows. In Section 2, the considered class of ther-
momechanical systems and their response to repetitive heat loads is introduced. In Section 3, the
Mol for heat conduction problems is reformulated in terms of a convolution kernel and extended
to thermoelastic problems. Section 4 contains several examples that demonstrate how the general
theory from Section 3 can be applied to specific spatial domains Q C R" including a disk. The
efficiency of the Mol for the simulation of thermomechanical problems with repetitive heat sour-
ces is then demonstrated for a wafer heating application in Section 5. Finally, Section 6 contains
the conclusions and recommendations.

2. Problem description
2.1. Notation

The following notation will be used. Scalars are denoted by italic letters, for example ¢, k, and T
denote scalars. Vectors are denoted by bold lower-case Roman letters, for example x denotes a
vector. Unless specified otherwise, vectors are column vectors. Matrices are denoted by bold cap-
ital Roman letters or bold Greek letters, for example I and ¢ denote matrices. The transpose of a
vector or a matrix is indicated by ". Components of vectors and matrices are again scalars and
are thus denoted by lower-case italic letters, for example a vector x € R" can be written as x =
[x1, %2, ...,xn]T. The Euclidean inner product is denoted by x-y = x1y1 + x2)2 + ... + X,y and the
Euclidean norm is denoted by ||x|| := y/x-x.

The same conventions are used with respect to functions, for example T(x, t),u(x,t), and 6(x,t)
denote scalar-valued, vector-valued, and matrix-valued functions depending on the vector x and the
scalar variable ¢, respectively, and u (x, ) denotes the first component of u(x, t). The derivative of a
scalar-valued function T(x,t) w.r.t. x is a row vector T /0x = [0T/0x;,0T/0x,, ..., 0T [ 0xy),
whereas the gradient w.r.t. x is a column vector VT = [0T/9x] . When x are Cartesian coordinates,
the gradient w.r.t. x of an R"-valued function u(x, ¢) is an R"*"-valued function which has the gra-
dients of its components as columns, that is Vu = [Vuy, Vuy, ...Vu,]. The divergence w.r.t. x of an
R"-valued vector field u(x,t) is a scalar-valued function V-u = 0u;/dx; + Ouy/0x; + ... +
Ou, /Ox,. The divergence of a R""-valued function a(x,t) is a vector and is taken column-wise,
thatis V-6 =[V-6,,V-062..V" on]T, where a; denotes the i-th column of . The Laplacian of a
scalar-valued function T(x,t) is a scalar-valued function V2T = &*T/0x? + 0*T/0x% + ... +
0*T/0x%. The Laplacian of an R"-valued function u(x, t) is taken component-wise, that is V?u =
[V2u;, V2uy, ..., V2u,] . The Dirac delta is denoted by 9.

2.2, Linear quasi-static thermoelasticity

The equations of thermoelasticity considered in this paper are of the same form for three-dimen-
sional (3-D) and two-dimensional (2-D) problems. The spatial domain Q C R” can thus be 3-D
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or 2-D, that is, n=3 or n=2. The spatial coordinates in a Cartesian coordinate system are
denoted by x € Q C R". The edge of Q is denoted by Q. Time is denoted by t and is considered
during a time interval I := [0,#]. At the initial time ¢=0, the solid has a constant temperature
Ty and is stress-free.

The equations of linear thermoelasticity for an isotropic solid with constant material properties
take the form [21]

T
C%:szTg—hng—‘ng, (1a)
uViug + (u+ 2)V(V - uq) — koug = (2u + nd)aVTg, (1b)

where Qq(x,t) : Q@ x I — R [W/m"] is the applied heat load, To(x,t): Q x I — R [K] denotes
the temperature increase (relative to the reference temperature Ty), and u(x,t) : Q x I — R" [m]
denotes the displacement (relative to the stress-free reference configuration at t=0).
Furthermore, ¢ [J/m"/K] denotes the heat capacity (per unit of Q), k [W/m" ?/K] is the thermal
conductivity (per unit of Q), u and A [N/m" '] are the Lamé parameters, and a [1/K] is the
coefficient of thermal expansion. The Lamé parameter y is also known as the shear modulus and
/ is characterizes the (in)compressability. The parameters hy > 0 [W/m"/K] and ko > 0 [N/m""!]
are typically zero for 3-D problems, but can be used to account for certain external heat fluxes
and forces in 2-D problems as will be demonstrated in Section 5. Note that inertia effects have
been neglected in the force balance (1b), which is a common assumption in thermoelasticity, see
for example [21, 22].

The parameters ¢, x, u, and A in (1) are different in 3-D problems and in 2-D plane stress and
plane strain problems. For 3-D problems

c= pem K=k, y:ﬁ, (2a)
i=__ VB
(14 v)(1-2v)
where p [kg/m3] denotes the mass density, ¢,, [J/kg/K] is the heat capacity per unit mass (or spe-
cific heat capacity), k [W/K/m] is the thermal conductivity, E [N/m’] is the Young’s modulus,
and v [—] is Poisson’s ratio. For 2-D plane-stress problems used in the modeling of thin plates
EH

=30+

(2b)

¢ = pcy,H, K = kH, (3a)

vEH
A/ = I E—— 3b
.2 (3b)
where H [m] denotes the thickness of the considered plate. For 2-D plane-strain problems used
in the modeling of thick plates, (3b) is changed to

EH
I=— 251 , (3¢)
(14+v)(1-2v)
and the other parameters are the same as in (3a).
The PDEs (1) should be considered with BCs and initial conditions (ICs). Thermal BCs for
(1a) are typically formulated in terms of the temperature To(x,t) and the heat flux normal to the
edge

da.n(% 1) = qo(x 1) - n(x), (42)

where n(x) € R" denotes the outward pointing unit normal at the point x € 9Q and qq(x,?) :
Q x I — R" [W/m"!] denotes the heat flux
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qo(x,t) = kVTqo(x,1). (4b)

Note that the first term on the Right Hand Side (RHS) of (1a) can be recognized as the diver-
gence of the heat flux, that is as V - q,. Mechanical BCs for (1b) are usually formulated in terms
of ug(x, t) and the traction forces

to, (%, t) = 6q(x, t)n(x), (5a)

where x € 9Q and the stress aq(x,t) : Q x I — R™" [N/m""!] is given by the constitutive rela-
tion [21, 22]

o0 = u(Vua + (Vug)") + 102V - ug — (2t + ni)aTa), (5b)

where I denotes the #n x n identity matrix. Note that the force balance (1b) can be written as V -
6 — koug = 0. In view of the wafer heating application that will be presented in Section 5, this
paper mainly focuses on the perfectly insulated and traction force free BCs

qo,n =0, on 0Q x I, (6a)
to, =0,0n 0Q X I, (6b)

but modifications of the proposed approach to accommodate other BCs will be indicated as well.
As it is assumed that the solid has a constant temperature T, and is stress free at t=0, all ICs
are zero.

Remark 1. When ko > 0, the solution ug(x,t) of (1b) is unique for any choice of mechanical
BCs. When ky = 0, the solution ug(x,t) of (1b) with BCs (6b) is unique up to (n+ 1)n/2 rigid
body modes, see for example [23]. The solution ug(x,t) should then be made unique by impos-
ing (n+ 1)n/2 additional conditions on ug(x,t).

2.3. The displacement potential

The displacement field uq(x,t):Q x I — R" resulting from a temperature field To(x,t):
QxI— R can be obtained using the displacement potential Yo (x,1): Q xI — R, see for

example [20-22]. In this method, the displacement field ugp(x,t) is decomposed into two parts
ug(x,t) = ug) (x,t) + ugc) (x, 1), (7a)

where ug> (x,t) is equal to the gradient of the displacement potential (X, t), that is

ul (x,1) = Vipo(x,1). (7b)
Substituting (7b) into (1b) yields
U2V + (u+ AD)VVYq — koVipg = (2u + nd)aVTg, (8)

where it was used that V-V = V? by definition. Using that V2V = VV?, this equation can be
rewritten as

Qu+ 2)VV g — koVig = (2u+ ni)aVTq. )
This equation is satisfied if Y (x, t) satisfies
u+ 2)V*g — koo = (2u+ nd)aTq. (10)

Any solution ¥q(x,t) of (10) thus corresponds to a particular solution ug)(x, t) of (1b)
through (7b).

Note that (10) is a second-order PDE for }o(x,¢), which means that one BC can be specified
for Y (x,t). However, there are n mechanical BCs needed to define a unique displacement field
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ug(x,t), see for example (6b). There is thus not sufficient freedom in the BCs for yo(x,t) in

(10) to ensure that the corresponding displacement field ug) (x,t) will satisfy the mechanical BCs.

An additional correction ug ) (x,t) is used to assure that the displacement field ug(x,t) in (7a)

does satisfy the desired mechanical BCs. Because ug)(x, t) has been constructed to satisfy (1b),

ug ©) (x,t) should satisfy

(BC

pV2ul + (u+ A)V(V : ugO) — koul® =0, (11)

The BCs for ug <) (x,t) follow by substituting (7a) into the desired mechanical BCs for
uq(x, t). For the BCs (6b), this for example leads to

O_gsc) (x,t)n(x) = —ag>(x, t)n(x), (12)
where 6(7)(x,t) denotes the stress obtained by setting uq(x, t) = ug) (x,t) in (5b) and
T
¢8O = (VuQ (Vugm) ) + A1V - ugsc). (13)

Remark 2. It is not clear how the BC for (10) should be chosen. Possible choices are for example
the Dirichlet BC yo(x,t) = 0 or the Neumann BC Vi/o(x,¢t) - n(x) = 0. As different choices for
the BC will lead to different solutions ¥/ (x,t), the decomposition (7a) is also not unique. The
BC for (10) will be further addressed in Section 3.

Note that when Q = R" and ky > 0, the only solution of (11) is uRn )(X t) = 0 (under the nat-
ural assumption that afRn )<X t) — 0 for ||x|| — o0), see for example [23]. The decomposition (7a)
then thus reduces to

uge(x,t) = ufR];) (x,1) = Vips(x, 1), (14)
where it should be noted that the solution Yg»(x,t) of (10) is also unique when ky > 0, see for

example [2]. When ky = 0, (14) still holds. This follows because the only solutions u]%nc (x,t) of

(11) (again assuming that oﬁ{n >(x t) — 0 for ||x|| — oo0) are linear combinations of the (n+

1)n/2 rigid body modes, which can also be included in u'”)(x,t). To see that this is the case,
note that a displacement potential of the form

Yo o Z Cixi + Z CijXiXjs (15)

i,j=1

i#]
where ¢;,¢;j € R are constants, satisfies V2pn o(x,1) = 0. It is thus always possible to add a
solution of the form (15) to a solution Yp«(x,#) of (10) when ky = 0. Note that computing
u](RI;))O = Vgn o shows that the constants c; represent n translations and the coefficients c;; repre-
sent (n— 1)n/2 (linearized) rotations. The n+ (n— 1)n/2 = (n + 1)n/2 rigid body modes can
thus be obtained through a displacement potential of the form (15).

2.4. Repetitive heat sources

In many manufacturing processes such as the wafer heating problem in Figure 1, the applied heat
load Qq consists of multiple similar passings (in the wafer heating problem, one passing is the
scanning of one field). The only difference between two passings is a translation and/or rotation
in space and a shift in time. Such translations and rotations are more conveniently described on
R" and not on a subdomain Q C R". It is therefore useful to define the extension Qq (x,?) :
R" x I — R of a heat load Qq(x,t) : Q x I — R as
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Figure 2. The mapping ¥;(x) represents a translation along x; = [)(,-,1,y,-,2]T followed by a rotation over ¢;.

0 otherwise.

Qoo (X, 1) = {QQ(X’ t) for x € Q, o

The temperature and the displacement fields that satisfy (1) with Qq(x,t) = Qq,~(x,t) are
denoted by T, »(x,t) : R" x I — R and ug (%, t) : R" x I — R”, respectively.

In this paper, a heat load Qq(x,t) is called repetitive if its extension Qg o (X,t) to R? as in
(16) can be written as

N
QQ.,OO(X) t) - Z Qpass(lPi<X))t - Ti); (17)
i=1

where Qpass(X, 1) : R” x I — R represents the heat load applied during one passing of the heat
load, N is the total number of passings, 7; describes a shift in time, and W¥;(x):R" — R"
describes a translation over x; € R" followed by a rotation with rotation matrix R; = R} Te
R™"  that is

Y x—Ri(x — x;). (18)

Figure 2 illustrates the mapping W;(x) for the wafer heating application in Figure 1 where
n=2. For this application, Qpas(X,t) represents the heat load applied to a single field (one light
blue rectangle in Figure 1) and the matrix R; is completely characterized by one angle ¢;. It is
most convenient to define Qpass(X,t) as the heat load resulting from the scanning of a field in the
positive x,-direction that is centered at x = 0. In that case, x; = [x,»,l,xi,z]T is the center of i-th
field and ¢@; = 0 when the field is scanned in the positive x,-direction and ¢; = = when the field
is scanned in the negative x,-direction.

Remark 3. In 3-D problems, the heat load is often described through a BC of the form
qo,n(X,t) = qoa(x,t) on x € 0Q, where gapo(x,t): 0Q x I — R is some prescribed heat load.
Such heat loads at the boundary can also be incorporated in this framework because they are (in
the weak sense) equivalent to an internal heat load Qq(x,t). For example, the heat load
Qo (% t) = qoa(x,t) applied at the plane x; =x, is equivalent to the internal heat
load Qq(x,t) = q(x,t)5(x; — x,).
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Because (la) is linear and translation, rotation, and time invariant on R”, the temperature
field Tq, «(x,t) resulting from zero ICs and a repetitive heat load Qq, (X, t) of the form (17) can
be written as

N
Tooo(X%t) = > Tpass(Wi(X),t — 17), (19)
=1
where Tpag(x, 1) : R" x ((—00,0) UI) — R is zero for t<0 and equal to the temperature field
resulting from zero ICs and the heat load Qpass(X,t) : R" x I — R for t € I.

The displacement field ug - (x,¢) : R” x I — R" can be expressed similarly in terms of the dis-
placement field upa(X,t) : R” x ((—00,0) UT) — R", the displacement field resulting from
Tpass (X, t). However, it is important to note that rotations ‘¥;(x) also rotate the local coordinate
system in which upee(Wi(x), t) is expressed, see Figure 2. This also follows when considering the
displacement potential Y . (x,t) resulting from Tq o (xX,t) according to (10). Since Equation
(10) is linear and translation, rotation, and time invariant,

l//Q 00 X t Z lppa\ss Ti)’ (20)
where Y, (%, t) : R" X ((—00,0) UI) — R is the displacement field potential resulting from
Tpass (X, t) according to (10). Differentiating both sides of (20) w.r.t. x shows that

8 00 N alp ass
lpagj; (X, t) = a; (\P,’(X), t— ‘C,')Ri, (21)

i=1

where it was used that W;(x) is of the form (18). Because V = (9/dx) " in Cartesian coordinates
and using (14), taking the transpose of (21) yields

g, (X, 1) ZRTupaSS i(x),t —15). (22)

The rotation matrices R; thus indeed appear in the construction of ug (X, ), as is also illus-
trated in Figure 2.

Note that it is often much easier to compute Tpas(X, t) and Upag (X, ) resulting from Qpass(X, t)
than the solution ug, (X, t) resulting from Qq . (x, t) because up, (X, ) typically needs to be com-
puted over a smaller time window and requires a mesh of a smaller part of the spatial domain than
uQ, o (X, t). This makes the construction of Tq, - (X, t) and ug (X, t) through (19) and (22) attractive
in many applications such as the wafer heating problem considered in Section 5.

The problem remains to convert the temperature and displacement fields Tq »(X,t) and
ug (X, 1) on R” to solutions Ta(x,t) and ug(x,?) on the subdomain Q C R”" of interest. This
can be accomplished by the Mol that will be introduced in the following section.

Remark 4. Another motivation for the study of the Mol is that many (semi-)analytic methods
such as [4, 5, 11, 17] are most conveniently developed on R” because the temperature field
To,00(x,t) (with zero ICs) can be expressed as [2]

t
To, (%, t) = J JJ O(x — X, t — 17)Qq, (X, 7)dx dr, (23a)
0 n

where ®(x, t) denotes the fundamental solution of the heat equation

_ e —C||X||2>
D(x,t) = (@mnt)” exp < ) (23b)
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— Ty (2, 1)
—— Thpoo(.t)
-=--Tyr(z,t)

temperature increase

-
-
-
-
_ -

. . L4
position x Ze

Figure 3. The Mol on the half line HL = {x € R | x < X}.
The Mol enables the application of these methods to certain subdomains Q C R" as well.

3. The method of images
3.1. A Kernel representation
The kernel representation for the Mol is best understood from the following example.

Example 1. Consider the heat conduction problem (la) on a one-dimensional spatial domain,
that is n=1. The spatial coordinate is denoted by x € R and the spatial domain of interest is the
half line HL = {x € R | x < x,}. The boundary is perfectly insulated, that is 0Ty, /0x = 0 at x =
x, (Neumann BC). The Mol now provides a way to construct the solution Ty (x,t) : HL X I — R
resulting from a heat load Qpi(x,f): HL xI — R and zero ICs based on the solution
THL 0o(%, 1) : R x I — R resulting from a heat load Qpr, (%, ¢) : R x I — R defined according to
(16) and zero ICs, see also Figure 3. To see how this can be done, consider
THL(X, t) HL X I — ]R,

Thr(xt) = Tur (% t) — Tar, oo (%, 1), (24a)

that is the difference between the desired solution Tyr(x,t) and the restriction of Ty, o0 (x,t) to
HL. As Tpyp(x,t) and Typ «(x,t) are both solutions of (1a), THL(x, t) is a solution of (la) with
Qpui(x, t) = 0 that satisfies the BC 8THL/8x = —0THL, /0x at x = x, and zero ICs.

The restriction of Ty, oo(x,t) to HL° = R HL is also a solution of (1a) with Qg (x,t) =0 due
to the definition of Qpy, oo (x,t) in (16). Because 2x, — x € HL® iff x € HL, it is easy to verify that
Thr, 00 (2%, — x, 1) is a solution of (1a) with Qg (x,t) =0 on x € HL. We conclude that

THL(Xa t) = THL, 00 (2Xe — X, 1), (24b)

because the expression for THL(x, t) in (24b) also satisfies the BC OTHL/ax = —0ThL, 00 /0x at
x=1x, and zero ICs. In other words, the solution Tz (x,t) can be found by mirroring the restric-
tion of Ty o0 (x,t) to HL® in the edge x = x,. This is also illustrated in Figure 3.

Remark 5. The name ‘Method of Images’ originates from the observation that Ty o (2x, — X, 1) :
R x I — R is the solution resulting from the heat load Qpr, (2%, — x,t) : R x I — R. The tem-
perature field Ty (x,t) in (24a) can thus also be considered as the sum of the truncation of the
temperature field resulting from Qpy (%, t) and its mirror image Qpy, oo (2%, — X, 1).

Remark 6. Instead of the Neumann BC 0Ty /0x = 0 at x = x,, also a Dirichlet BC T(x,,t) =0
or a Robin BC aTy + 0Ty /0x = 0 at x =x, with a > 0 could have been considered in Example 1.
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For these two BCs, the Tyy can still be expressed in the form (24a), but (24b) should then be
replaced by

THL(X, t) = —THL,OO(er — X, t) (25)
o0
T (%, t) = Thr, 00 (2% — X, 1) — ZaJ e ™ Typ 0o (2%, — x + X, 1) dx/, (26)
0
respectively. It is easy to see that (26) approaches (24b) for a — 0. With a little more effort it can
be shown that (26) approaches (25) for a — oo as well.

It is now attempted to generalize the construction of Ty (x,t) on a one-dimensional spatial
domain in Example 1 to n-dimensional spatial domains Q. The problem is thus to obtain an
expression for the temperature field To(x,t) : Q@ x I — R on a spatial domain Q C R" resulting
from a heat load Qq(x,t): Q x I — R with BCs (6a) and zero ICs in terms of the solution
Ta,00(x%, 1) : R" X I — R resulting from the heat load Qg o (x,t) : R" X I — R as defined in (16)
and zero ICs. The derivation presented here considers the most commonly used zero Neumann
BC (6a), but can be easily adapted to zero Dirichlet and Robin BCs, see also Remark 7 later on.
Similar to the 1-D case in (24a), it is useful to write

Ta(x,t) = Tg,00(%, 1) + Ta(x, 1), (27a)

where Tqo(x,t) : Q X I — R has thus been introduced as the difference between the desired solu-
tion Tqo(x, t) and the restriction of To, (X, t) to Q. Because both To(x,t) and To, «(x,t) are solu-
tions of (1a) and in view of the Neumann BC (6a), Tq(x,t) should satisfy

T - -
caa—tQ =kV3Tq — hyTq, on QxI, (27b)
VTo-n= —VTo 010, on 0Q x I, (27¢)

and zero ICs. The definition of Qq (X, t) in (16) implies that the restriction of Tq (X, t) to Q° :
=R" Q is also a solution of (la) with Qq = 0. It is therefore attempted to express Tq(x,t) in
terms of the restriction of Tq «(x,¢) to Q° through a convolution kernel wq : Q x Q° — R,
that is

Tao(x,t) = jJ ch(x, X)T(x,t)dx. (274d)

The following proposition gives conditions on the kernel mq(x,x') for which Tq(x,t) in (27d)
is indeed the solution of (27b)-(27c¢), that is, conditions for which inserting (27d) into (27a)
indeed yields the solution Tq(x,t) of (1a) with the BC (6a) and zero ICs.

Proposition 1. The function Tg(x, t) in (27d) satisfies (27b)-(27c) if the kernel wq : Q x Q° — R
satisfies

V?wq(x,X) = Vioq(x,X), (28a)

forxe Qx € Q,
wao(x,X) = Vwa(x,X) - n(x') =0, (28b)

forx € Q,x' € 0Q
Vg (x,x) -n(x) = V'é(x — x') - n(x), (28¢)

for x € 0Q,x' € Q.
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Here, V' and V’? denote the gradient and Laplacian w.r.t. X'. Note that this result involves the
gradient of the Dirac delta in (28c) which should be interpreted in the weak sense, that is, for
any Q' C R" and any smooth function f : Q=R

” fE)Vo()dx = —J L/ (V'f(x))o(x')dx'. (29)

The proof of Proposition 1 can be found in Appendix A.
Remark 7. For the Dirichlet BC Tq(x,t) = 0 on x € 9Q, (27c) changes to

To (X, l’) = —TQ)OO(X, Z’), (30a)

on (x,t) € 0Q x I and (28c¢) should be replaced by
wo(x,x') = —d(x — /), (30b)

for x € 9Q and x’ € Q°. For the Robin BC aTqo(x,t) + VTqo(x,¢) - n(x) = 0 with a>0, (27¢)
changes to

aTa(x,t) + VTa(xt) - n(x) = —aTg (% t) — VT (X t) - n(x), (31a)
on (x,t) € 9Q x I and (28c¢) should be replaced by

awg(x,X') + Vog(x, t) -n(x) = —ad(x — x') + V'6(x — x') - n(x), (31b)
for x € 0Q and X’ € Q°.

Remark 8. An equation of the form (28a) is called ultrahyperbolic. When n=2, so when
wq(x,x') depends on four variables, (28a) is also known as John’s equation [24]. There is a cor-
respondence between solutions of (28a) with n=2 and functions R >R through the Radon
transform and a mapping from the lines in R* to points in R* [24]. This idea can be generalized
for n>2 [25]. For a general domain €, it cannot be guaranteed that there exists a kernel
wa(x,x') that satisfies (28) [24, 25].

Although the existence of solutions wq(x,x’) of the ultrahyperbolic problem (28) cannot be
guaranteed in general, it is often easy to determine the kernel wq(x,x’) from formulas available
in the literature. This is demonstrated by the following example.

Example 1 (Continued). Consider again the half line HL = {x € R | x < x.} with a perfectly
insulated BC 0Ty, /0x =0 at x = x, from Example 1. As the formula for Ty (x,t) is given in
(24b), it easy to see from (27d) that

oL (%,x') = 6(2x, — x — ). (32)

One can easily verify that this kernel indeed satisfies the conditions in (28).

The kernel wpy(x,x’) can also be found from the conditions (28). The solution of the 1-D
wave Equation (28a) with propagation speed 1 is given by d’Alembert’s formula, see for
example [2],

onr (%) = Fi((x — %) — (¢ — %)) + F-((x — %) + (¥’ — %))
=F (x—x)+F_(x+x —2x,), (33a)

where F; () : R — R and F_(¢) : R — R are the positive- and negative-going wave, respectively.
Because x € HL, that is x < x,, and x' € HL® := R\HL, it follows that x’ > x, and the values of
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F. (&) only influence w(x,x’) for ¢ < 0. Furthermore, the zero ICs (28b) imply that F, (&) =
F_(&) =0 for ¢ < 0. It thus follows that

opL(%,x') = F_(x + 1" — 2x,). (33b)
To determine F_(&) for £ > 0, (33b) is inserted in (28c)
OF_ 00
@O =520) (339

where ¢ = x + X' — 2x,. The solution of (33c) is clearly of the form F_(&) = 6(¢) + C, for some
constant C. As F_(£) =0 for £ < 0, C must be zero so that F_(&) = 6(&). Inserting this result
into (33b) and using that ¢ = x + x’ — 2x, yields (32).

In other cases, the number of independent variables (x,x') on which wqo depends can be
reduced based on certain symmetries of the spatial domain Q. It is then often possible to reduce
the ultrahyperbolic Equation (28a) to a hyperbolic equation for which the existence and unique-
ness of solutions is well understood, see for example [2]. This approach will be used in several
examples in Section 4.

3.2. Heat-induced deformation

The reformulation of the Mol in terms of a convolution kernel wq(x,x’) so far only considered
the temperature field To(x,t) in the thermal model (1a). The displacement field ug(x, ) in the
mechanical model (1b) will be considered now.

The extension of the Mol is based on the decomposition of ug(x,t) into ug) (x,t) and
ug ©) (x,t) as in (7a). The part ug> (x,t) is the gradient of a displacement potential q(x, ) that
satisfies (10) and is a particular solution of (1b) for the given temperature field Tq(x,t). Because
(10) is linear, the displacement potential Yo (x,t) : Q x I — R is constructed in a similar manner

as To(x,t) in (27a) and (27d)
Yo(x.t) =Yg o (X, 1) + Va(x1), (34a)

Volx.t) = JJ ng(x, X )Wq o (X, 1)dx, (34b)

where wq(x,x') is the same as in (27d) and Yq . (x,1) : R" X I — R is the displacement potential
that satisfies (10) with Tq(x, ) = Tq o (X, t). Recall that yq . (x,t) is unique when ko > 0.

Note that substitution of (27a) and (34a) into (10) shows that lpg(x, t) should be the displace-
ment potential resulting from To(x,t), that is, Yq(x,t) should satisfy (10) with To(x,t) =

To, (%, t). The following result shows that (34b) indeed defines a displacement potential o (x; t)
resulting from T(x,¢) in (27d) and that Y o(x, t) inherits certain BCs from the thermal problem.

Lemma 1. Assume that the kernel wq(x,x') satisfies the conditions in (28) and that To(x,t) is
defined as in (27d). Let Yo ., (x,t) be a solution of (10) with Ta(x,t) = To,«(X,t), then the func-
tion Yo (x,t) in (34b) satisfies

Qu+ Vo — koo = (2u+ ni)aTq, (35a)
on Q x I and
Vg -n=—Vig . -n, (35b)
on 0Q x I.
The proof of Lemma 1 can be found in Appendix A.
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Because the displacement potential is typically not of interest itself, it is most insightful to first
construct the displacement potential 1/ (x,t) according to (34) and then compute the resulting
displacement field ug(x,t) according to (7b). This is illustrated by the following example.

Example 1 (Continued). Consider once again the 1-D spatial domain Q = {x € R | x < x,} with a
perfectly insulated (Neumann) BC 0Ty /0x = 0 at x = x, from Example 1. As the kernel wpy (x, x')
is given by (32), a displacement potential y/; (x, t) for this problem follows from (34) as

Y (1) = Vg oo (6 1) + W o0 (2% — X, t). (36a)

By taking the gradient of (36a) and using (7b) and (14), an expression for the corresponding
(scalar-valued) displacement field ugL) (x,t) is obtained as

D (6, 8) = g oo (3%, £) — ttp 00 (2% — X, 1). (36b)

It is easy to see from (36b) that u(HTg (x,t) = 0 on the edge x = x,. This observation generalizes
to higher dimensions n > 1 as follows. By differentiating (34a) and using (35b), it follows that

Vo (x,t) - n(x) =0, xe€ o tel (37a)
Using (7b), this result can be rewritten as
u) (x,1) - n(x) =0, X€MLt (37b)
which shows that the component normal to the edge of displacement field ug) (x, 1) is zero.

Remark 9. A similar result can be obtained for Dirichlet BCs. To obtain the temperature field
Ta(x,t) such that the Dirichlet BC Tq(x,t) =0 for x € 9Q is satisfied, the kernel wq(x,x)
should satisfy (30b) instead of (28c). For this case, it is easy to see from (34b) and (30b) that
Yolx,t) = —Yq oo(X:t) for x € 0Q, so that (34a) shows that Yq(x,t) =0 for x € 0Q. This
implies that the gradient of Yo(x,t) in all directions parallel to the edge will be zero, that is for
all v € R” that satisfy v-n(x) = 0 at a point x € 0Q

Vio(x,t)-v= ug> (x,t)-v=0. (38)

All components of ug) (x,t) along the edge are thus zero on JQ when the kernel wq(x,x’) is

constructed such that Tq(x, t) satisfies zero Dirichlet BCs.

Recall that the displacement field ug(x,t) is decomposed into the two parts ug> (x,t) and

ug ) (x,t). The presented extension of the Mol to thermomechanical systems only considers the

part ug) (x,t) = Viyq(x,t), which is a good approximation of ug(x,t) away from the edge JQ.

The part ug ) (x,t) is the solution of the standard elasticity problem (11) in which ug> (x,t)

appears in the BCs, see for example (12). When the spatial domain Q is large enough, as in the
wafer heating application in Section 5, the solution ug ) (x,t) is concentrated near the edge OQ

and can be computed much easier than ug(x, t).

4. The method of images for specific domains
4.1. Orthogonal domains

The examples in this subsection demonstrate how the conditions (28) can be used to determine
the convolution kernel wq(x,x’) for several orthogonal domains Q. When the kernel has been
found, expressions for the temperature field To(x,t) and the displacement potential ¥/ (x,t) and
the corresponding displacement field ug> (x,t) in terms of the infinite domain solutions
To,00(X:t), Yo o0(X:t), and ug)oo(x, t) follow easily. The expressions for the temperature field
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Ta(x,t) on the orthogonal domains Q considered in this section can also be found in the litera-
ture, see for example [1, 5], but the expressions for the kernel wq(x,x’), the displacement poten-
tial Yo (x,t), and the displacement field ug> (x,t) are novelties.

The first two examples are extensions of Example 1 to the 2-D half plane and the 3-D
half space.

Example 2 (2-D half plane). Consider the 2-D half plane HP = {x € R?* | x; < x.}. As the spatial
domain is invariant under translations in the x,-direction,

opp(x1, X2, X, Xy) = opp(x1, X — x5, %)). (39)

By introducing X := x, — x,, conditions (28) become
Y g 2

82601-1}3 " 82(L)Hp "
b b = b b b 40
o (21, %,x]) o (1, %, %)) (40a)
- Odwpp 5
opp(x1, %, %) = - (xl,x,xe) =0, (40b)
O0x}
%‘”—flf’ (20, %, ) = g—i (xo — £)8(2), (400)

where x; < x, and x] > x,. Note that (40c) follows because o(x —x') = d(x; — x])(xz — x})
when n=2. By considering (x;,X) as the ‘spatial’ variables and x| as the ‘temporal” variable, (40)
can be viewed as a wave equation. In particular, (40a) shows that the propagation speed equals 1,
(40b) shows that the ICs at x; = x, are zero, and (40c) shows there is an input at the boundary
X; = X,. By considering the weak form of (40), it is shown in Appendix B.1 that (40b) and (40c)
are equivalent to

hﬂ} opp(X1, %, %, + €) = d(x1 — x.)0(%), (41a)
61%18;)—)? (x1,%,%x, +¢€) =0, (41b)
8(1)Hp "
- = 41
axl (x(Z) X, xl) 0) ( C)

for x| > x,. One easily verifies that the solution of (40a) with ICs (41a) and (41b) and the BC
(41c¢) is a Dirac delta traveling in the negative x;-direction, that is

wpp(x1,%,x,) = 6(2x, — x1 — x,)d(%). (42)
Inserting (42) into (27d) and using (27a) now yields
Tup(%,t) = Thp, oo (X, 1) + Thp, o0 (X15 1), (43)

where x; denotes the mirror image of x in the edge x; =x., that is, x; = [2x, —xl,xz]T.
Furthermore, inserting (42) into (34b) and using (34a) shows that

Yup(X,t) = Ypp oo (X, t) + Ypp oo (X1, ). (44)
Taking the gradient of (44) and using (14) yields

M;—;J), 1 (X, t) — |:UHP,oo, 1 (X, t) — UHP, 00,1 (X[, t) ) (45)
ug)z(x, t) UHP, 00,2(X, 1) + Upp, 00,2 (XI5 1)

Observe that the formulas for the 1- and 2-components of ugp) (x,t) are different. It is also
easy to verify that ”;BJ(X t) = 0 at x; = x,, which is in agreement with (37). Finally, note that
inserting (45) into the (1, 2) shear stress component of ¢(x,¢) in (5b) shows that
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Ounp, o Ouyp, o, OUpp, o, Oupp, o,
I R T I N

so that UI(LIP) (%) = 0 at the edge x; = x, where x = x;. The displacement field in (45) is thus a

solution of (1b) satisfying the BCs uz(qp) 1(x,t) =0 and JHP) Lx 1) =0.

Example 3 (3-D half space). The 3-D half space HS = {x € R’ | x; < x,} can be treated similarly
as the 2-D half space in Example 2. By exploiting the translation-invariance in the x,- and x;-
directions, one easily sees that conditions (28) can be reduced to a wave equation in the ‘spatial’
coordinates (x1,%1,%2) = (x1,% — x3,x3 —x;) and temporal variable x|. The solution of this
equation is again a Dirac delta traveling in the negative x;-direction

whHs = 5(2)66 — X1 — x’1)5(5c2)5(5c3) (47)

The resulting temperature field and displacement potential thus become
Trs(%,t) = Ths,00 (X t) + Ths, oo (X15 1), (48)

Yrs(X% ) = Vg oo (X 1) + g oo (X1 1), (49)

where x; = [er — X1, X2, x3] denotes the mirror image of x in the plane x; = x,. The displace-
ment field uQ)(x t) follows by taking the gradient of the displacement potential y/p4(x,#) in
(49)

(T)

uHs,l(X, t) UHS, oo, 1(x t) — UHS, 00, 1(X1 t)
g2 (%, 1) | = | tr15,0,2(% 1) + trzs, 02 (X0 1) | - (50)
tjgg 5 (%, 1) UHS, 50,3 (X5 1) + UnHs, 00,3 (X1, )

Similarly as in Example 2, it can be verified that the displacememt field component ”gs) (%, 1)

and the shear components 0'5_2 (% t) and UHTS> 13(%, t) vanish on the boundary x; = x..
Next, 1-D and 2-D domains with opposing parallel boundaries are considered.

Example 4 (The interval). Consider the interval J = {x € R | x_ < x < x;}. When interpreting
the condition (28a) for the kernel wj(x,x’) again as a wave equation with x as the ‘spatial’
coordinate and x’ as the ‘temporal’ coordinate, one observes that the ‘temporal’ domain J¢ =
R\J is not connected. The solution wj(x,x’) can therefore be obtained by combining the solu-
tions ) (x,x') and ; (x,x’) on the two connected parts J{ = {x' €R|x' >x.} and J¢ =
{¥ eR|x' <x_} of J. Considering the weak form of the conditions (28) on (x,x') €
J X [x4,x; + €] similarly as in Appendix B.1, it can be shown that (28b) and (28c) are equiva-
lent to

8(0,*
w; (%, x1) = o( ), o (x,x1) =0, (51a)
Ow; Ow;
T V) =0 ) =0 (51b)
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for x € J and x' > x,. At the initial ‘time’ x' = x;, ] (x,x’) is thus a Dirac delta which travels
with velocity 1 in the negative x-direction. At ‘time’ x’ = x, + (x4 — x_), the pulse reaches the
boundary x = x_ from which it is reflected. At ‘time’ x’ = x; + 2(x; — x_) the pulse arrives
again at x = x; where it reflected again and the process repeats. It thus follows that

o] (x,x) = 25(2x+ —x—x +2p(x; —x_))+ Zé(x —x +2p(x; —x)). (52a)
p=0 p=1

A similar analysis for ; (x,x’) shows that

oy (x,4') = ié(Zx_ —x—x =2p(x; —x_))+ ié(x —x —2p(x; —x_)). (52b)
p=0 p=1

The solution wj(x,x’) on J x J° is found by combining the solutions on the subdomains

o} (x,%') and o (x,x')

wy(x 252x+—x—x+2p Zéx—x—Zp( x_)).

PEL pEZ,
p#0

Assembling the temperature field Tj(x,t) as in (27a) and (27d) now yields

Ty t) = > Thoo(2xr —x+2p(xy —x),t) + Y Ty ool +2p(xy —x),1). (54)
PEZ PEL

Similarly, the displacement potential ;(x, t) follows from (34a) and (34b)

00 =Y Yo —x 4200 —x ), t) + Y Wy (X 2per —x D). (55

PEL PpEL

Taking the gradient and using (14) yields

u§T> (x,t) = Z U oo x (X +2p(xy —x_),8) — Z U, o0, x (2% — x +2p(x4 — x_), 8). (56)

PEL peEZ

One can verify from this expression that uj(x,,t) =0 and u;(x_,t) = 0, which is in agree-
ment with (37).

Remark 10. Similar to the extensions of Example 1 in Examples 2 and 3, the results for the inter-
val ] extend to domains J, = {x e R" | x_ < x; < x4 }.

Remark 11. The infinite sums that appear for example in (54) and (56) might seem cumbersome
to compute. However, because the heat load Qy » is only applied inside ] (see (16)), the tempera-
ture fields T}, o0 (x, t) and displacement field u;, - (x,t) typically decay rapidly outside J and only a
few terms with |p| near 0 often gives accurate results.
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Example 5 (The rectangle). Consider the rectangle R = {x € R? | x_1 <X <xp,1,%2 <X <
X1,2}. This domain is not translation invariant in any direction, and the ultrahyperbolic
Equations (28) for the kernel wgr(x,x’) can therefore not be reduced to a wave equation.
However, based on some physical intuition and the formulas in [5], one can come up with the
following formula

or(%,X) = —d(x1 — x))0(x2 — x})
+ Z (6(x1 — %, + 2pL1)d(xy — X, + 2rLy)
p>rEL

+ (1 — X +2pL1)d(xa — X, + 2rLy)

+ 0(x1 — X, + 2pLy)d(xz,2 — X5 + 2rLy)

+ 0(xp,1 — X, + 2pL1)d(x1,2 — X, + 2rLy)). (57)
where Ly = x4 1 —x_ 1,1, = x4 —x_ 2, %11 = 2x4,1 — x1, and x5, = 2x4 5 — x,. One can verify

that the kernel wg(x,x’) in (57) indeed satisfies the conditions in (28). Using (27a) and (27d), the
Tr(x, t) follows from (57) as

Tr(X,t) = Y (Troo(¥1 + 2pL1, X + 2rLa, 1)
pyrEL
+ Troo(x1,1 + 2pLy, x3 + 2rLy, 1)
+ TR oo (%1 + 2pLy, x1,5 + 2rLy, t)
+ Troo(x1,1 + 2pLy, x1,2 + 21Ly, 1)). (58)

Using (34a) and (34b), an expression for the displacement potential Yg(x,¢) in terms of
YR oo (X:t) can be found. Taking the gradient of the expression for Y (x,t) and using (14) yields

U (o) |
W) |
UR, 00,1(x1 + 2pL1, x5 + 2rLy, t)
p,;z ( [”R,m,z(xl +2pLy, x; + 2rLy, ) ]
n __uR,oc,l(xI,l +2pLy, x; + 2rLy, t)]
I UR,00,2(X1,1 + 2pLy, x2 + 27Ly, t)
N [ UR oo,1(X1 + 2pLy, x1,2 + 2rLy, t) ]
| —tR.o.2(x1 + 2pL1,x1,2 + 2rLa, t)

(59)

uR)x,I(xLl + 2PL1,)C1)2 —+ 2T’L2, t)
_uR,oo,Z(xI,l +2pLy, x15 +2rLyt) | )

One can again verify that ug) (x, t) satisfies (37b) and that agiz = 0 on OR from this formula.

Remark 12. Similar ideas as in Example 5 can also be applied to the 3-D box B =
(x—1,x4,1) X (x_,2,%4,2) X (x_3,%4,3), which is typically considered in welding applications,
see for example [5]. The expressions for wg(x,X'), Tp(x,t), Yg5(x,t), and dg(x,t) are similar to
the ones for the rectangle R in Example 5, but now involve summations of p,r,s € Z over all
points in the set

{x1 + ZPLI)XI,I + Zle} X {Xz + 2TL2,X[’2 + 21’L2} X {X3 + 25L3,X[’3 + 25L3}, (60)
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where Ll = x+,1 —X,,I,Lz = X+)2 — x,,z,Lg, = X+,3 — X,73,XI,1 = 2X+,1 —xl,xm = 29(4)2 — X7,
and x;3 = 2xy 3 — X3.

Remark 13. The results in this section have been presented for zero Neumann BCs, but can be
extended to zero Dirichlet BCs as well. However, this means that BCs for the kernels wq(x,x’)
then also change from Neumann BCs such as (41c) to Dirichlet BCs. Because Dirichlet BCs lead
to a change of sign when a wave is reflected at the boundary, expressions get sightly more
involved. Some combinations of zero Dirichlet and Neumann BCs can be incorporated as well,
see for example [5] where a box-shaped domain is considered with a zero Dirichlet BC at one
side and zero Neumann BCs on all other sides.

Finally, it is demonstrated how the formula for the kernel on the half line with Robin BCs can
be found from the conditions (28).

Example 6 (The half line with a Robin BC). Consider, just as in Example 1, the half line HL =
{x e R | x < x,} but now with the Robin BC aTy; + 0Ty, /0x =0 at x = x,. As observed in
Remark 7, the kernel wpy (x,x") should satisfy (28a), (28b), and (31b) for this BC. Similarly as in
Example 1, (28a) implies that w(x,x’) is of the form (33a) and the ICs (28b) reduce (33a) to
(33b), that is that

(,UHL(X, x’) = F,(x + x = 2xe)> (61)

for a function F_ : R — R. The ICs (28b) also imply that F_(£) =0 for £ < 0. To determine
F_(&) for £ >0, (61) is inserted in (31b)

OF_ 00

aF_ (&) + 7 () = —ad(&) + 2 (0) (62a)

where ¢ = x + x’ — 2x,. To determine the solution of (62a), introduce h(¢) := F_(£) — §(¢) and
note that

oh OF_ 06
55(5) = 75(5) - 875(5) = —aF_(&) — ad(&) = —ah(&) — 2a6(), (62b)

where the second identity follows from (62a) and the third from the definition of h(¢). Because
F(&) = h(&) =0 for £ <0, the solution of (62b) can be considered as the impulse response of a
first-order system and is given by h(¢) = —2ae for ¢ > 0. It thus follows that for & > 0

F_(&) = 6(¢) — 2ae . (62¢)

Since & = x + x' — 2x,, it follows that
oL (%,x) = 0(x + %' — 2x,) — 2ae ¥ 2%), (63)

for x + x’ — 2x, > 0 and that wy(x,x') = 0 otherwise. Inserting this expression into (27a) and
(27d) yields
00

THL (x, t) = THL, ) (er — X, t) —2a J e—a(x+x’—2xe) THL,oo (X/, t)dx’. (64)

2X.—X

Formula (26) that is known from [1] can be recovered after applying the change of coordinates
X" =x+x — 2x, in (64). Expressions for the displacement potential Y/ (x,¢) and displacement
field upyp(x,t) can be obtained based on the expression for wpy (x,x’) similarly as in Example 1.
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4.2. The disk

For the spatial domains considered in the previous subsection, it was already known how the
Mol should be applied to the temperature field but the kernel representation developed in
Section 3 also enables the application of the Mol to domains to which it could not be applied
before. This is illustrated by the results in this subsection, where the Mol is applied to the disk
D= {x € R* | ¥ + x < R*}. To the best of our knowledge, the Mol has not be applied to this
domain before.

It will be more convenient to use the polar coordinates (r,f) which are related to the
Cartesian coordinates x = [x;,x,] " by

x; = rcos (0), x, = rsin (0). (65a)

Furthermore, the radial and tangential components of the displacement field up(r, 6, t) can be
expressed in terms of the Cartesian components of up(x, t) as

up,(r,0,t) | | cos(0) sin(0) | | up,1(rcos(0),rsin(0),t)
[MD,O(T, 9, t)] - [_Sin (0) COS(Q)] luu,z(rcos(0),rsin(0),t)] (65b)

Because the disk r <R is invariant under rotations, the kernel wp will only depend on 0:=
0—0', r,and 7, that is wp = wp(r, 0, 7). Expressing the gradient and Laplacian in polar coordi-
nates, conditions (28) become

10 ,awD> 1 8260[) 10 < 860]3) 1 820)13
— N e A 66
' or (r or' Jrr’2 00° ror "or +1’2 00’ (662)
A OJwp A
op(r,0,R) = v (r,6,R) =0, (66b)
60)D - N 1 85 / ~
B (R,0,7) = wEw (R—=7"6(0), (66¢)

where 0 =0 — 0 € [-m,7),0<r <R, and ¥ > R.

Remark 14. The factor 1/¢ in (66c) appears because of the transformation to polar coordinates,
see for example [26]. One can see that this factor is necessary because it now holds that for any
test function f = f(r, 6)

J ) J 1000 L2 ot - oy

o Jo r 8 r!

__ r rn U, 0)5(r — ¥)o(0 — 0)drdo = — % (r,0). 67)

o Jo Or

Note that by interpreting (r,0) as the ‘spatial’ coordinates and r’ as the ‘temporal’ coordinate,
(66) can be considered as a wave equation. By considering the weak form of (66), it is shown in
Appendix B.2 that (66b) and (66¢) imply that
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liﬂ)la)D(r,@,R—i— ) = %5(1’ —R)5(0), (68a)
lim 22 (r,0,R + &) = (68b)

do or OETE

a(UD Ao
5, R0.7) =0, (68¢)

for ¥ > R.

A closed-form analytic expression can now be obtained by writing the kernel wp(r, 0,7 ) as a
linear combination of the eigenfunctions of the Laplacian on the disk (r,8) € [0,R) x [—m,7) sat-
isfying zero Neumann BCs. To avoid very narrow features that are not clearly visible and to
improve the convergence, the Dirac delta in the initial condition (68a) is replaced by the function
o,(r — R, 0), where y > 0 is a smoothing parameter. We choose d, ,(r—R, 0) equal to

1 (1 (n(r—R))) ) el 6
_2y2R2 + cos —VR + cos 7 N (69)

for r € [(1—7)R,R] and 0 € [—7,7] and zero otherwise. Note that &, ,(r Ig,@) approaches the
Dirac in (68a) for y — 0. It is shown in Appendix C that the kernel wp,,(r,0,r") satisfying (66a)
and (68) with the Dirac in (68a) replaced by J,(r — R, 0) can be expressed as

ZZA,, m]n( o R) cos (n@)] (ﬁn,m%), (70a)

n=0m=

where J, is the Bessel function of the first kind of order n, f8, ,, is the m-th root of 0J,(r)/dr = 0,
and A, ,, are constants. The computation of the constants A,, ,, for y > 0 is discussed in Appendix
C. For 7=0, Ag,; = 1/(nR?) and for all other values of n and m

1 26,

Apm = 2 > (70b)
R G”Iﬁqgn,m) (ﬁft,m - nZ)
where ¢, = 2 for n=0 and ¢, = 1 otherwise.
Remark 15. Note that
- 1 ro.r
b aa) / iy 1«(30))1 71
00,1, 0.7) = 25 0h, (520, 7

where . (r,@ ') is the kernel for a disk of radius R=1, that is the shape of the kernel
p, (1, 0, r) does not depend on the radius R.

The cross sections for ' and r constant in Flgures 4 and 5 give an 1mpressmn of the obtained
kernel wp,.,(r,0,7). The axes in Figure 5 show x| = ' cos (#) and x}, = #’sin (). The parameter
y is set to y = 0.05 and the summation in (70a) is truncated to 31,250 terms (n € {0,1,...,249}
and m € {1,2,...,125}). The difference between this solution and the solution obtained with four
times as many terms (i.e. n € {0,1,...,499} and m € {1,2,...,250}) is less than 1% for all consid-
ered snapshots.

The cross sections of wp,, (r,@,r’ ) for ¥ constant in Figure 4 illustrate how the wave propa-
gates inside the disk (r,0) € [0,R) X [—7,7) as the ‘time’ 7' increases. Observe that wp,.(r, 0, R)
in Figure 4a is (an approx1mat10n of) a Dirac delta at (r,0) = (R,0) at ¥/ = R and that the wave
front in Figure 4b and c for v > R is not circular. The latter observation can be understood from
the PDE (66a) which shows that the two terms involving 9*wp/ 90" cancel each other for r=R
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and ¥ = R. At the initial ‘time’ ¥ = R, there is thus no diffusion in 0-direction and the wave
propagates only in the r-direction. However, as ' — oo the term involving wp/00” on the
LHS of (66a) vanishes and the propagation speed in the 0-direction increases.

The cross sections of wp, /(r,H r') in Figure 5 are relevant for the computation of Tp(r,0,t)
according to (27d). A cross section wp,,(r,0,1') = wp,,(r,0 — 0/,1) at r = ro shows the function
that is multiplied with Tp (7, 0,t) = TD wo(r,0 — 0',t) and integrated over (r',0') € D° = R*\D
to obtain Tp(ro,0,t). Note that the cross section at r=R in Figure 5a does not only show (an
approximation of) a Dirac delta at (,0) = (R,0), but also shows two traces starting at (¥,0) =
(R,0). These traces are no artifact of the truncation of the infinite sum in (70a), but indicate all
‘time instances’ v’ at which a nonzero value occurs at r=R, that is all points at the boundary of
cross sections for r’ constant as the ones in Figure 4 where wp,, is nonzero. The traces in Figure
5b and c¢ have a similar interpretation, but they show the nonzero values of wp, , at the circles
r = 0.9R and r = 0.7R, respectively.

The computation of Tp(r,0,t) in (27d) is computationally expensive because the values of
wp,(r,0 — 0',7') and Tp (7, 0',t) are needed in the whole domain (r,0') € D° to compute
Tp(r,0,t) in one point (r, ). Therefore, the kernel wp(r,0,r") will be replaced by an approxima-
tion @p, appe (1, 0,7"), which is obtained as follows. Because Tp, (7, 0, t) will typically decrease rap-
idly outside D, it is most important that p, app(7, 0, ') is an accurate approximation of
wp(r, 0, t') for r and v’ near R. In this case, (66a) can be approximated by

azwD, appr l 86OD, appr 82(fUD appr 1 8Q)D appr

or'? R oF o Jrﬁ or (72)

The solution of (72) with the ICs and the BC in (68) is

Opappe (12 0,7) = %5(@ “ R + (X = R)8(D). (73)

Inserting the kernel wp appr (7, 0,7 ) into (27d) and again using the approximation # & R yields

i—‘D,appr(n 0, t) = J
R

o0

| 100,100 10— 0,1 )RAO D = Ty R~ 1001), 74)
—T
so that (27a) shows that
Tp,appr (7> 05t) = Tp,oo (1, 0,t) + Tp, o (2R — 1,0, t). (75)
Note that the computation of Tp, appr in a point (r, 0,t) only requires the evaluation of Tp  in
two points and that Tp appe(7,0,¢) is a good approximation of Tp(r,0,t) near the edge r=R
because wp, appr (15 0,7') is a good approximation of wp(r, 0,r’) near ¥ = R.

The approximation of the displacement potential based on the approximation of the kernel in
(73) can be obtained in a similar way as for Tp, appr(r, 0, ) as

lpD, appr(r’ 0’ t) = lpD,oo(r’ 0’ t) + l//Doo(ZR -n 0’ t)' (76)

The displacement field ug)(r, 0,t) can now be obtained by computing the gradient of (76). To
this end, note that the gradient of , . (r,0,¢) in polar coordinates is

8lpD,oo ~
{up,oo,,(i',@,t)] | o B0 o)
uD,oo,()(r’ 0, t) lalpD,oo (»}; 0 t) ’
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Table 1. Considered parameter values.

Description Symbol Value Unit
Wafer radius R 150 mm
Wafer thickness H 0.775 mm
Slit length in x; Lait 26 mm
Slit length in x; Wi 4.6 mm
Field length in x, Lield 26 mm
Field length in x, Wrield 33 mm
Mass density ) 2329 kg/m?
Specific heat capacity 4 705 J/kg/K
Thermal conductivity k 149 W/m/K
Convection coefficient ho 1500 W/m?%/K
Young's modulus E 167 GPa
Poisson’s ratio v 0.3 -
Stiffness per unit area ko 1209 N/mm?
Scan speed v 0.276 m/s
Heating power Py 3.229 W

for all (7,0) € [0,00) x [—7m, 7). Taking the gradient on both sides of (76) and using (14) thus
shows that (for (r,0) € [0,R) x [—7, 7))

(T) (r,0,1) Up, oo, r(1:0,t) — Up, 0, , (2R — 1,0, 1)

= 2R—r , (78)
(r,0,1) Up, 00 0(r, 0, t) + Up,co,0(2R — 1,06,1)

where the second term on the RHS of the expression for u(DT’z)(r, 0, t) can be understood by evalu-
ating the second row in (77) in (7,0,t) = (2R — r, 0,¢) which shows that

8lpD, [e%e]
a0

Formulas (75) and (78) will be applied to the wafer heating application in the next section.

(2R —1,0,t) = (2R — r)up,o0,0(2R — 1,0, ). (79)

5. Wafer heating

In this section, a part of the theory developed in the previous sections will be applied to a wafer
heating problem. In this application, a thin silicon disk, called the wafer, is exposed to a light
source which creates a pattern of electronic connections (see Figure 1). Because the wafer is thin,
a 2-D plane-stress model is used, just as in [11, 19]. The temperature field Tp(x,t) and the dis-
placement field up(x, t) resulting from the heat load Qp(x,t) are thus solutions of (1) with BCs
(6), where D = {x € R | x¥ + x < R*} and the coefficients in (1) are given by (3a) and (3b).
The used parameter values in Table 1 are based on a representative case study also considered in
[11]. The accurate and efficient computation of the resulting temperature and displacement fields
Tp(x,t) and up(x,t) is important, because such predictions can be used to assess and subse-
quently improve the quality of the lithography process.

The pattern of electronic connections is not projected to the whole wafer at once, but only in
a small rectangular area Qg;(t), called the slit, which moves over the wafer surface, see Figure 1.
The heat load Qp(x,t) induced by the projection light is modeled as a uniform heat load in
Qqit(¢) with a constant intensity Pgyy. The exposure of the wafer is illustrated in Figure 1, which
shows how the slit consecutively scans all fields on the wafer (light blue rectangles). Typically, the
same pattern of electronic connections is projected in each field on the wafer. During the scan-
ning of each field the heat load moves with a constant velocity v. The relevant dimensions of the
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Figure 6. Dimensions of one field (light blue) and of the slit (red).

slit and of a field are illustrated in Figure 6. Note that fields in Figure 1 are scanned alternately
in the positive and negative x,-direction. Also note that because the pattern of electronic connec-
tions is projected only inside Qg(t), the displacement field up(x, t) inside Qg () will determine
the imaging quality of the lithography process.

It is assumed that after the scanning of one field is completed, the heat load instantly moves
to the next field, but if desired some time delay needed to switch to the next field could have
been taken into account as well. Note that the heat load applied to each field is the same, only
the location, the scanning direction, and the time at which the slit arrives varies for the different
fields. This means that (the extension to R? of) the applied heat load Qp, « (X, t) can be written in
the form (17). When Qpus(xX, t) is the heat load applied to a single field centered at x = 0 that is
scanned in the positive x,-direction starting at time t =0, the i-th shift in space x; is the center of
the i-th field, the i-th rotation matrix R; = I when the i-th field is scanned in the positive x,-dir-
ection and R; = —I when the i-th field is scanned in the negative x,-direction, and the i-th shift
in time 7; is the time at which the scanning of the i-th field starts. On R2, the temperature and
displacement fields Tp o (x,t) and up - (x,t) resulting from the repetitive heat load Qp,(x,t)
can thus be constructed from the responses Tpass(X,t) and Up(X,t) resulting from Qpags(X,t)
according to (19) and (22), respectively.

Note that solutions can also be considered as a function of the polar coordinates (r,0), for
example Tp (X, t) can also be considered as Tp (1, 0,t). Based on the approximation of the
true kernel wp(r,0—0',t) in (70) by Op, appr (1, 0 — 0',7) in (73), the true solutions Tp(r,0,t)
and up(r,0,t) can be approximated by Tp appr(7,0,t) and up appe(r,0,t) in (75) and (78),
respectively.

First, the construction of the temperature and displacement fields at one particular time
instant (and for all x € D) using the Mol will be demonstrated in Subsection 5.1 because this
illustrates the proposed method clearly. Subsequently, a more practical case will be considered in
Subsection 5.2 where the Mol is used to compute overlay maps. These show the deformation that
is observed at each point in the wafer surface at the moment it is scanned and thus provide the
information that is relevant for the quality of the lithography process.

5.1. Snapshots at a particular time instant

First, the construction of the temperature and displacement fields at a particular time instant #; =
0.628 s will be considered. At this time instant, the fifth field in the expose pattern in Figure 1 is
being scanned. The solutions Tp, appr(X, t1) and up appr(X, t1) obtained using the Mol with the ker-
nel in (73) will be compared to the solutions Tp(x,t;) and up(x, ;) obtained through the used
standard FE analysis. Recall that the repetitive nature of the applied heat load is exploited in the
construction of Tp appr(X,t1) and Up appr(X, t1) based on the responses Tpees(X,t) and pas(X, £),
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Table 2. The number of spatial and temporal grid points used to compute the snapshots Tp(x,t1), up(x, t1), Tp,appr(X, t1), and
up, appr (X, 1) for t =t; = 0.628 s.

# spatial grid points # temporal grid points
Le Tp (X: t)r 7-D,appr (Xr t) 7-pass (X, t) (80) Tp (Xr t): TD,appr (X: t) Tpass (Xr t)
[mm] up(X, t), up, appr(X, 1) Wpass (X, 1) u, (x,1) up (X, t), up, appr (X, 1) Wpass (X, 1)
2 3,782 2,132 793 158 68
1 15,030 8,343 3,146 315 135
1/2 59,914 33,005 12,291 629 269
1/4 239,290 131,289 48,581 1,257 537
1/8 956,346 523,697 193,161 2,513 1,073
1716 3,823,838 — — 5,025 —
-80 400
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(a)
-80
__-100
g
A
~ -120
53
-140
-160
-100 -50 0 50 100
x1 [mm]
(b)

Figure 7. The temperature field Tp oo (x,t1) and the displacement field wup,(x,t;) on R? constructed from Tpass(x, t) and
Upass(X, ). The white rectangles with arrows indicate the considered fields with their scanning directions. (a) Tp . (X.t);

(b) up,c(x,0).

but that such an approach is not possible in the computation of Tp(x,#) and up(x, ;) by the
used standard FE method.

5.1.1. Spatial and temporal discretization
The standard FE solutions Tp(x, ;) and up(x,t;) will be computed based on several spatial and
temporal grids, which are characterized by L,, the smallest element size in the spatial grid. The
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Table 3. Computational times for the snapshots Tp(x, t;) and up(x, t1) by the used standard FE approach at t; = 0.628 s.

L, [mm] To up total

2 04s <0.1s 14s

1 36s 0.2s 52s
1/2 2745 0.8s 33.8s
1/4 260.0s 47s 287.0s
1/8 222835 99.6s 2424.0s
1/16* 20015.3s 37945 20763.9s

Table 4. Computational times for the snapshots Tp, appr(X, t1) and up, appr(X, t1) using the Mol at t; = 0.628 s.

Le [mm] Tpass & Upass ugggzmr total
2 04s 0.5s 1.1s
1 15s 1.2s 33s
1/2 9.6 43s 1595
1/4 68.0s 17.3s 93.5s
1/8 516.2s 7195 620.6 s

Table 5. Absolute (and relative) errors in the solutions Tp, appr(x, ;) computed using the Mol and the solutions Tp(x,t;) com-
puted by the used standard FE method for t; = 0.628 s.

Le [mm] Mol FE

2 18.4 mK (4.3%) 51.3 mK (12.0%)
1 10.2 mK (2.4%) 17.1 mK (4.0%)
1/2 2.4 mK (0.6%) 9.9 mK (2.3%)
1/4 1.6 mK (0.4%) 3.7 mK (0.9%)
1/8 1.6 mK (0.4%) 1.3 mK (0.3%)

Table 6. Absolute (and relative) errors in the solutions up, appr(x, t;) computed using the Mol and the solutions up(x, t;) com-
puted by the used standard FE method for t; = 0.628 s.

Le [mm] Mol FE

2 0.27 nm (5.1%) 1.32nm (25.0%)
1 0.20nm (3.9%) 0.53nm (10.0%)
1/2 0.18 nm (3.4%) 0.30nm (6.8%)
1/4 0.19nm (3.4%) 0.12nm (2.3%)
1/8 0.18 nm (3.4%) 0.05nm (0.9%)

spatial grid used for the FE solutions is based on a rectangular grid that covers the area (x1,x;) €
[—194,194] x [—150, — 38] mm?, but elements that fall (partially) outside the disk D are dis-
carded. The element size in the x;-direction is L, when x; € [—90,90] mm and 4L, otherwise.
The element size in the x,-direction is L, when x, € [—150, — 70] and 4L, otherwise. The element
size is increased near the edges of the considered domain because Tp(x,#) and up(x,t;) are small
in these areas. The time interval I = [0, #;] is discretized with a uniform time step of L./v,, where
v, = 0.5 m/s. Note that v, > v, which assures that the heat load does not move over more than
one element in each time step. The number of points in these spatial and temporal grids are
given in Table 2.

The solutions Tp,appr(X, 1) and up appr(X, t1) obtained by the Mol are evaluated on the same
spatial grid as the standard FE solutions. The computation of Tp appr(X, 1) and up, appr(X, 1) also
requires the computation of the single-field solutions Tpa(X, ) and Upag(X,t). The spatial grid
used for the computation of Tpue(X,t) and upae(x,t) covers the area (xi,x;) € [—82,82] x
[~105,105] mm®. The element size in the x;-direction is L. when x; € [~26,26] mm and 4L,
otherwise and the element size in x,-direction is L, when x, € [—33,33] and 4L, otherwise. The
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Table 7. Computational times for the overlay maps e;ppr(x) and MA deformation we, appr(x) computed using the Mol and for
the overlay maps e(x) and MA deformation u.(x) computed by the used standard FE method for t € [0, t;] with t; = 0.628 s.

Le [mm] Upass Mol FE

2 0.6s 15s 28s

1 5.2s 765 20.0s
1/2 56.1s 69.4s 1624
1/4 680.0s 779.6 s 1485.8s
1/8* — — 12498.6s

Table 8. Absolute (and relative) errors in the overlay maps e;pr(x) computed using the Mol and in the overlay maps e(x)
computed by the used standard FE method for t € [0, ;] with t; = 0.628 s.

Le [mm] Mol FE

2 0.27 nm (5.5%) 0.39nm (7.9%)
1 0.12nm (2.4%) 0.12nm (2.5%)
1/2 0.07 nm (1.5%) 0.06 nm (1.2%)
1/4 0.07 nm (1.4%) 0.02nm (0.5%)

temporal grid uses a time step of L./v, on the interval ¢ € [0,0.148] during which the heat load is
applied and a time step of 4L./v, on the interval ¢t € [0.148, 1] during which the applied heat
load is zero. The computation of up appr(X, 1) also requires the computation of the edge correc-
tion ugggpr(x, t1) at the final time instant ¢t = ;. This solution is computed in polar coordinates
on a grid that covers the area (r,0) € [98,150)mm x [—7/2 — 0.8, — /2 + 0.8] rad. The element
size is 2L, in the r-direction and the elements cover an angle 2L./R in the 0-direction. The num-
ber of points in these spatial and temporal grids are given in Table 2.

The construction of the FE matrices required for the computation of
Tp(x, 1), up(X, 1), Tpass (X, £), Upass (X, 1), and ugﬁlpr(x, t) is implemented in MATLAB (R2019a) and
is based on FE tooling developed at ASML, which was also used in [27]. Linear Lagrangian shape
functions are used, which means that the number of spatial grid points in Table 2 is equal to the
number of nodes in the FE model. The time integration is done using the Crank-Nicolson
scheme [28]. Lower-Upper (LU) matrix decompositions are used for the linear systems that need
to be solved at every time step.

5.2. Graphical illustration

The first step to obtain Tp appr(X, ) and up, appr(X, t) using the Mol is the construction of the tem-
perature and displacement fields Tp o (x,t) and up . (x,t) on R* based on the single-field
responses Tpass(X, 1) and upae(x, t) according to (19) and (22). This requires the interpolation of
Tpass(X,t) and upee(x,t), which is done using MATLAB’s griddedInterpolant function.
The snapshots Tp, oo (X, #;) and up (x,#) at f; = 0.628 s are shown in Figure 7.

Based on Tp (X t;) and up o (x,t;) in Figure 7, the approximations Tp, .ppr(7,0,t;) and
uglppr(r, 0,t) can then be computed according to (75) and (78) and are shown in Figure 8a and
b, respectively. Note that (75) and (78) are formulated in polar coordinates but that Tp (X, )
and up . (x, 1) are computed in Cartesian coordinates. This step thus requires a conversion from
Cartesian to polar coordinates according to (65). As the reflections along radial lines in (75) and
(78) are not compatible with the used rectangular grids, this step also requires the interpolation
of Tpoo(x,t) and wup(x,t) which is again implemented using MATLAB’s gridded
Interpolant function.

The displacement field uglppr(r, 0,t;) that satisfies the stress free BCs (6b) still requires the
computation of the edge correction ugf;pr(n 0,t), which is the solution of (11) with BC (12).

Note that Tp, (7, 0,t) and up, (7, 0, t) appear in (12) through ¢!")(x,t). The found displacement
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field up, appr(r’ 0, tl) = ug:)appr

(BC)
D, appr

(r,0,11) —&—ugfgpr(r, 0,t) is shown in Figure 8c, which shows that

the edge correction u (r,0,t) is significant. Note that Tp appr(X, t1) and up appr(X,t;) can be

obtained by inverting (65).

5.3. Computational times & accuracy

Most simulations in this section have been done on a laptop with 8 GB RAM, but some simula-
tions on very fine grids require more memory and have been done on a desktop with 32 GB
RAM. The latter results are indicated by a *.

Table 3 shows the computational times required to obtain Tp(x,#) and up(x,t;) using the
used standard FE method. Note that the computation of Tp(x,t) is more time consuming than
the computation of the resulting displacement field up(x, t;) because Tp(x,t) is computed at all
considered time instances, whereas up(x, f;) is computed only at the final time instant t = t; =
0.628 s.

Table 4 shows the computational times required to obtain Tp appr(X, f1) and up appr(X, 1) using
the Mol. The most time-consuming steps are the computation of the responses Tpa(X,t) and
Upass(x, ) for one field and the computation of u®%)(x,t;). These are indicated separately.
Comparing the total times in Tables 3 and 4 shows that, on finer grids, the times for the Mol are
clearly becoming shorter than the times for the used standard FE method. Note that the total
times in Tables 3 and 4 also include overheads such as the construction of the FE matrices and
thus exceed the sum of the times in the other two columns.

Using the standard FE solution on the L, =1/16 mm grid as a reference, the error in
Tp,appr(X, 1) and up appr(X, ;) obtained using the Mol can be compared to the error in Tp(x,t)
and up(x,t) obtained by the used standard FE method. The resulting temperature and displace-
ment errors (measured in the sup-norm) are given in Tables 5 and 6, respectively. It is worth
noting that the maximal error in the FE solutions Tp(x,#;) and up(x,#) occurs on the edge of
the wafer (around the point (x;,x;) = (=65, —135) mm for Tp(x,t;) and near the point
(x1,%) = (—68, — 134) mm for up(x,t;)). This seems to indicate that the errors in the FE solu-
tions are mostly due to the approximation of the circular edge by rectangular elements. On the
L.=1/4 mm and L, = 1/8 mm grids, the maximal error in Tp appr(X,#;) occurs on the edge
around the point (x5,x;) = (=59, — 138) mm. On the coarser grids, the maximal error in
Tp, appr (X, t1) occurs inside Qg (1) where the temperature gradient is the steepest. The maximal
error in up .ppr(X, ;) occurs on the edge around the point (x,x;) = (=56, — 139) mm for all
considered grids.

It is remarkable to see that the solutions computed using the Mol are often more accurate
than the solutions computed using the used standard FE method, especially on the coarser grids.
Note that the error in Tp appr (x,t;) stops decreasing at the L, = 1/4 mm grid and that the error
in dp(x,t;) stops decreasing at the L, =1/2 mm grid. This indicates that the errors in
Tp, appr (X, {1) and up appr(X, 1) introduced by the approximation of wD(r,@,r' ) in (70a) by
Op,appr (1, 0,7") in (73) are for the considered simulation approximately 1.6 mK and 0.18 nm,
respectively.

Note that the error in the FE solutions Tp(x,t;) and up(x,t;) in Tables 5 and 6 is approxi-
mately halved each time the element size L, is halved. Extrapolating this trend to the L, =1/16
mm grid, the estimated error in Tp(x,t;) is still of a similar magnitude as the error in
Tp,appr(X, 1) on the L, = 1/8 mm grid. On the L, = 1/4 mm and L, = 1/8 mm grids, the max-
imal errors in the FE solutions Tp(x,#) also occur at locations that are close to the locations
where the maximal error in the Mol solutions Tp, appr(X,t;) occur. It is therefore possible that the
estimated error in Tp, 4ppr(X, ¢;) of 1.6 mK is still influenced by the accuracy of the used reference
solution. We were not able to compute a reference solution on grids finer than the L, = 1/16
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Figure 9. Overlay map for t € [0,t;] with t; = 0.628 s computed using the Mol on the L, = 1/4 mm grid. The color scale and

the black arrows indicate e,ppr(x) and g, appr(x), respectively. The white rectangles with arrows indicate the considered fields
with their scanning directions.

mm grid due to the high computational times, see Table 3, and the increasing memory require-
ments. However, the results clearly demonstrate that, for the considered wafer heating problem,
the accuracy of the proposed method is comparable to the accuracy of a standard FE model that
can be solved in a reasonable amount of time. Note that the error in the reference solution will
only have a minor influence on the estimated error of 0.18 nm in up appr (X, 11).

5.4. Overlay maps

The construction of the snapshots in the previous subsection was mainly used to illustrate the
proposed method. In this subsection, the construction of overlay maps using the Mol will be
demonstrated. These overlay maps show the moving-average (MA) overlay e(x) defined as

: lup(x, £)||dt, (80a)

where t_(x) and ¢, (x) denote the starting point and end point of the time interval during which
the point x is exposed to the projection light, that is Qp(x,t) is nonzero precisely for t €
[t-(x),t;(x)]. For points x that are never exposed to the projection light, e(x) is set to zero. The
MA overlay e(x) thus gives a good indication of the degradation in imaging quality due to wafer
heating. To get some indication of the occurring deformation, the figures in this subsection will
also display

1 ty (%)
ue(x) = th(x) UD(X, t)dt (SOb)

Note that the norm of u.(x) is not equal to e(x). The MA overlay e, (x) and the MA
deformation u, .pp(x) are defined similarly but are computed based on up .ppr(X,t) instead
of UD(X, t).

Recall that, similarly as in Subsection 5.1, the repetitive nature of the applied heat load is
exploited in the construction of eyppr(x) and w, appr(X) based on the single-field responses
Tpass (X, t) and (. £), but that such an approach is not possible in the computation of e(x)
and u.(x) by the used standard FE method.
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Table 9. The number of spatial and temporal grid points used to compute e(x),€appr(xX), ue(x), and we appr(x) for the
whole wafer.

# spatial grid points # temporal grid points
Le e(x), eappr(x) Toass (%, 1) (80) e(x), eappr(x) Toass (X, 1)
[mm] U (X), Ug, appr (X) Wpass (X, t) uy (%0 e (X), Ue, appr (X) Upass (X, )
2 17,665 2,132 793 2,193 216
1 70,681 8,343 3,146 4,385 431
1/2 282,697 33,005 12,291 8,769 861
1/4 1,130,913 131,289 48,581 17,537 1721

5.4.1. The first five fields

The overlay map is first computed for the same time interval as in the previous subsection, so for
t €[0,t;] with #; = 0.628 s. The overlay map is computed field-by-field, meaning that, for each
field, up(x,t) is computed only in the spatial grid points in the considered field and in the tem-
poral grids points during which the current field is being scanned. It is straightforward to com-
pute e(x) and u.(x) in (80a) and (80b) based on this data.

The spatial and temporal grids are essentially the same as in the previous subsection. The only
difference is that the grid used to compute ugfgpr(x, t) changes with the currently considered
field and now covers the area (r,0) € [98,150)mm X [0; — 0.8, 0; + 0.8] rad, where 0; denotes the
0-component of the center of the i-th field. The number of spatial and temporal grid points are
thus still the same as in Table 2.

The obtained overlay map is shown in Figure 9. The maximum overlay, that is maxye(x), is
4.9 nm. Note that for all fields except the first one, ., app: (%, y) has a significant component in the
negative x;-direction due to thermal expansion in the previously scanned fields.

The MA overlay maps e,ppr(x) and MA deformation u,, appr(x) obtained using the Mol will be
compared to the overlay maps e(x) and u,(x) obtained by the used standard FE method. The times
required to compute eppr (%, ¥) and U, qppr(X) using the Mol and the times to compute e(x, y) and
u,(x) by the used standard FE method are compared in Table 7. Note that the overlay map on the
L, =1/8 mm grid is computed on a desktop with 32 GB RAM. Especially for smaller element sizes
L., the construction using the Mol is significantly faster. Note that most of the computational time
for the Mol is spent on the computation of the single-field response up,s(x, t) and that the times in
Table 7 are significantly longer than the times for the construction of the snapshots given in Tables
3 and 4 because the computation of the overlay map requires the computation of the deformation at
all considered time instances and not just at the final time instance.

The absolute and relative error in the overlay map e, (x) (computed using the Mol) and in
the overlay map e(x) (computed by the used standard FE method) are compared in Table 8. The
accuracy of both methods is similar on most of the considered grids. It seems that the accuracy
of eyppr(X) stops decreasing at the L, = 1/2 mm grid. This was also observed for the accuracy of
the displacement field up app(X,71) in Table 6 and seems to indicate that the error due to the
approximation of wp(r,0,7") in (70a) by wp, appe(r,0,7") starts to dominate. It is interesting to
observe that the absolute error in e, (x) is already below the typically required accuracy of
0.1nm. The error in the MA deformation g, .ppr(x) and u(x) is of a similar magnitude as the
error in the overlay e(x) and e,ppr(x) reported in Table 8 and is therefore not reported here.

The maximal errors the FE solutions e(x) and u.(x) occur for all considered grids around the
point (x1,x,) = (—61, — 132) mm, which is the left point closest to edge inside the five consid-
ered fields. The maximal error in the Mol solutions e,p,r(x) and u.(x) occurs in the rightmost
field; on the L, = 2mm and L, = 1 mm grids around (x;,x;) = (61, — 132) and for the L, = 1/2
mm and L, = 1/4 mm grids around (x;,x;) = (39, — 132) mm. This observation and the accur-
acy of the FE solutions on the L, = 1/4 mm grid indicate that the accuracy of the used reference
solution does not significantly influence the errors in epp(X) and u appr(X), see Tables 8 and 6.
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Figure 10. Overlay map constructed using the Mol on a uniform L,

€appr(X) and ug appr(X), respectively. The white rectangles with arrows indicate the considered fields with their scan-

ning directions.

5.4.2. All fields on the wafer

The overlay map is now constructed for all fields on the wafer, meaning that the length of the

8.768 s. The spatial grid used for the FE

is increased to t, =

]

[0, 1,
solution is now based on a rectangular grid that covers the area

considered time interval I

) € [—150,150] x

X1, X2

(

[~150,150] mm® with a uniform grid spacing of L, in both the x;- and x,-directions, but ele-

ments that (partially) fall outside D are discarded. The temporal grid for the FE solution covers

the time interval [0, t,

] with a uniform step size L./v,, where v, = 0.5 m/s. The spatial grid for

x,t) remains unchanged but the temporal grid now covers the interval

2.996 s. The time step is L. /v, when t € [0, ;] with 7,

the computation of g (

[0, tr] with t,

0.148 s (during which

) and 4L./v, when t € (t1,t7;] (during which no heat load is applied). The

a heat load is applied

(x,t) remains unchanged. The resulting number of spatial and

(BC)
D, appr

temporal grid points are given in Table 9.

grid for the edge correction u

is 5.5 nm, which shows that control is necessary to reduce

(x)

The overlay map computed using the Mol on the L, = 1/4 mm grid is shown in Figure 10.
the overlay to the subnanometer level required in modern wafer scanners.

The maximum of the MA overlay e

The times required for the computation of e(x) and w.(x) using the Mol and by the used
standard FE method are compared in Table 10. Even the 32 GB RAM of the used desktop PC

1/4 mm grid within a reasonable

was not sufficient to compute the FE solution on the L, =
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Figure 11. Overlay map obtained by the Mol when the rigid-body translations in the x;- and x,-directions of the wafer stage are
used reduce the overlay error. The color scale and the black arrows indicate eappr(x) and ug, appr(x), respectively. The white rec-
tangles with arrows indicate the considered fields with their scanning directions.

Table 10. Computational times for the overlay map of the whole wafer using the Mol and by the used standard FE method.

Le [mm] Upass Mol FE

2 13s 94s 140.3s
1 54s 26.7s 118755
1/2 56.4s 256.7 s 1049355
1/4 75445 25775s -

amount of time. We were therefore not able to determine an accurate reference solution and the
accuracy of the results of the simulation that considers all fields on the wafer could not be
reported in the same way as for the simulation that considers only the first five fields. However,
we expect that the accuracy of these results will be similar to the accuracy reported in Tables 5,
6, and 8 because the error introduced by the Mol will be the largest near the edge of the wafer.

Table 10 shows that making use of the repetitive nature of the heat load in the Mol signifi-
cantly reduces computational time, especially on fine grids. Note that the time to compute
Upass (X, £) is now relatively small compared to the total time required to compute e(x) and u,(x).
Most of the computational time is spent during the evaluation of the infinite domain solutions
Tp, (X, t) and up, « (X, t) according to (19) and (22), which involves interpolation of the solutions
Tpass (X, t) and upee(X, t). It might be possible to reduce this time further with a smarter choice of
spatial grids and/or a different interpolation method.
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5.4.3. Wafer stage positioning

The imaging quality can be improved by adapting the position of the wafer stage that moves the
wafer under the projection light. The overlay map in Figure 11 shows results of such an approach
in which the two translations in x;- and x,-direction are used to reduce the overlay error. In par-
ticular, the overlay e(x) and the MA deformation u,(x) in this figure are obtained by replacing
up(x,t) in (80a) and (80b) by

up (x,t) =up(x,t) — JJ up(x, t)dx, (81)
Qqie(t)

where Qq;;(t) C R? denotes the area of the slit (i.e. the area in which the heat load is applied) at

time t. These rigid-body corrections reduce the maximal overlay error from 5.5nm without cor-

rections to less than 3.5 nm.

The computational times with corrections are very similar to the times without corrections
given in Table 10. The proposed method thus provides an efficient way to test various correction
strategies. This efficiency is important because these corrections should eventually be imple-
mented in the wafer scanner, which means they have to be computed just before or during the
exposure of the wafer.

6. Conclusions and recommendations

The results in this paper extend the classic Mol in two ways. Both extensions are based on the
reformulation of the Mol on an arbitrary spatial domain Q C R” in terms of a convolution kernel
wq(x,x') that should satisfy the conditions in Proposition 1. First, the kernel representation for
the Mol enables the application of the Mol to heat-induced deformations. This extension is based
on the displacement potential, which means that in most cases an additional elasticity problem
needs to be solved to satisfy the mechanical BCs. Secondly, an analytic expression for the convo-
lution kernel for the disk has been derived. Because the convolution with this kernel is expensive
to compute, an approximation with lower computational cost has been derived as well. This ena-
bles the application of the Mol to a circular domains, which was not possible before.

These two extensions have been applied to a wafer heating problem in which the Mol is used
to exploit the repetitive nature of the heat load. A reduction of more than a factor 10 in compu-
tation time could be achieved, see Table 10. Although the accuracy of the solutions constructed
using the Mol on the disk is limited by the approximation of the convolution kernel, the discret-
ization error in solutions computed by the used standard FE method is similar to the error in sol-
utions obtained using the Mol on most of the considered grids. The total time to construct the
overlay map with the Mol on a 2mm grid is now 9.4seconds. This is about the same time it
takes to process one wafer. The proposed method can thus potentially be used for real-time pre-
diction and correction.

The proposed extension of the Mol can be applied to a spatial domain Q when a kernel wq
that satisfies the conditions in Proposition 1 has been found. The existence of such a kernel has
been demonstrated for several examples, but can in general not be guaranteed, see Remark 8. It
is therefore an interesting topic for future research to investigate which spatial domains Q admit
a convolution kernel wq that satisfies the conditions in Proposition 1.

The proposed method requires the storage of the responses Tpass(X,t) and dpees(X, t) resulting
from the scanning of a single field at all considered time instances, which can take up a signifi-
cant amount of memory. On the L, = 1/4 mm grid, this requires for example more than 1 GB of
memory. The required amount of memory can potentially be reduced by semi-analytic techniques
such as discussed in [11] or by model order reduction, see for example [29].

Although a closed-form analytic formula for the kernel on the disk has been derived, an
approximation consisting of a single Dirac delta has been used in the numerical example in
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Section 5. The error resulting from this approximation is acceptable in the considered wafer heat-
ing application, but other applications might require more accurate approximations. It would
therefore be interesting to investigate how more accurate approximations can be obtained. As the
convolution with these approximations should be easy to evaluate, it seems most natural to look
for approximations consisting of multiple Dirac deltas.

Two additional difficulties in the simulation of wafer heating have not been considered in
Section 5. First of all, it has been assumed that the heat load moves instantaneously to the next
field after the scanning the previous field has been completed. In reality, this process will take
some time that is not known exactly before the exposure of the wafer. Such uncertain timings
can be incorporated easily in the proposed method by modifying the time shifts 7; in (19) and
(22) and can thus be incorporated after the solutions for the single field have been computed.
Secondly, it should be noted that all fields in the heat load in Figure 1 fit fully on the wafer.
However, to maximize the number of integrated circuits on each wafer, wafers often also contain
fields that do not fit completely on the wafer. Such incomplete fields have not been considered.
As each of these incomplete fields will typically have a different position w.r.t. the edge of the
wafer, the exposure of each half field will typically require an additional (single-field) simulation.

Finally, it is interesting to note that the overlay clearly depends on the order in which the
fields on the wafer are scanned. Designing an alternative ordering that leads to a better imaging
quality (without significantly increasing the processing time) is an interesting topic for future
research. The proposed method seems an ideal tool to evaluate the overlay resulting from various
potential orderings quickly and accurately.

Appendix A. Proofs of proposition 1 and lemma 1

Proof of Proposition 1. It will be shown that substitution of (27d) in the LHS and RHS of (27b) and (27c)
yields the same results when the conditions in (28) hold.
Substitution of (27d) in the LHS of (27b) yields

c—(x1) = [[ (4)g1(x,)(/)687§t'°C (¥, 1) dx’
J o
= J J 0 (%, X) (kV"? T, o (X, 1) — BT, o0 (X, 1)) d¥/
o
= KJ J 0o (%X )V Tq, 00 (X, £)dX — By T (x, t), (A1)
o

where the second identity follows because Tq ~ satisfies (1a) and the heat load Qg is zero outside Q according
to (16). Inserting (27d) in the RHS of (27b) yields

KV2To(x p,t) — heTa(xy,t) = K[ [ V2w (x,X) To, 00 (X, t)dX — hoTa(x, t). (A.2)
JJae
To see that the expressions on the RHS of (A.1) and (A.2) are equal, note that one of Green’s identities, see for

example [2], shows that

J[ wQV/ZTQ,deI = J[ (vlsz)Tg,m dx’ + [ ((UQV/TQ,OC — Tg,xv/wg) -nd/
Jor Jor JoQ

= JJ (V/ZU)Q)TQ)de/ = Jj VZUJQTQ)OO dx/, (A.3)

where the dependence of wg on (x,X') and of Tg « on (x/,t) has been omitted, and n = n(x’) denotes the out-
ward pointing normal of Q which is the inward pointing normal of Q°. The second identity in (A.3) follows
because (28b) shows that the boundary terms vanish and the last identity in (A.3) follows from (28a). It thus fol-
lows that Tq in (27d) satisfies the PDE (27b).
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For the BC (27c¢), note that the LHS of (27c) can be rewritten as

VTa(x,t) - n(x) = JJ [TQ,DQ(XI, Voo (x,x) - n(x)dx' = JJ To,00 (X, 1)V'd(x — x') d¥' - n(x). (A4)

c

For the RHS of (27c¢), note that
— VTo,00(%,t) -n(x) = —[J 3(x =X )V'Tg o0 (¥,t) dx' - n(x) = [J To,(X,1)V'é(x—x)dx -n(x), (AS5)
J o J o

where the last identity follows from the definition of the derivative of the Dirac delta in (29). The function TQ in
(27d) thus also satisfies the BC (27c). O

Proof of Lemma 1. To see that yo(x,t) defined by (34b) indeed satisfies (35a), note that the definition (34b)
shows that

n+ Vg = u D) | (Foalaax = @urd)]| | (ool

= (2u+ ))J JQCwQ(vlzpo’m) dx' + (2u+ Z)J.aQ (0aV'¥g 0 — Vo0 V'0a) -ndl

= JJ wa(koWo o + (21t + n2)aTo, o) dX' = koq + (2 + ni)aTa, (A.6)
o

where the second identity follows from the first condition for the kernel wq(x,x’) in (28a), the third identity fol-
lows from one of Green’s identities, the fourth identity because the boundary terms vanish due to second condition
for wa(x,x") (28b) and because Y . (x,t) is defined as the solution of (10), and the last identity from the defini-
tions of Yq(x,t) and To(x,t) in (34b) and (27d). Note that the dependence of ¥ and Tq on (x,t), the depend-
ence of g o, and Tq o on (X,t), and the dependence of wq on (x,x’) has been dropped in (A.6). It thus follows
that l/;Q(x, t) in (34b) indeed satisfies (35a).

For the BC (35b), note that for x € 0Q

Va0 060 = [ | (Voalxx) o .0 dx = | | (Vo6 x)  nx)in o (.0)

Jos J Jos
= || vatx =¥ ) 8x nx) = [ |V (0030 = %) & (x) =~ 1) (),
(A.7)

where the first identity follows from the expression for Y (x,f) in (34b), the second identity from the third condi-
tion for wq(x,x’) in (28c), the third identity by pulling the normal n(x) out of the integral, the fourth identity
from the definition of the derivative of a Dirac delta in (29), and the fifth identity from the definition of the Dirac
delta. The BC (35b) is thus indeed satisfied by @Q(x, t) defined in (34b). m]

Appendix B. Boundary conditions and the weak form

In this appendix, it is demonstrated that the BCs in (40) and (66) for the kernels wpp(x1, %2, X)) on the half plane
HP and wp(r,0,7") on the disk D are (in the weak sense) equivalent to the BCs (41) and (68), respectively.

B.1. The half plane

The weak form of (40) is found by multiplying (40a) by a test function f = f(x;,%,x]) and integrating over
(x1,%,x]) € HP X [x,, %, + ¢]. This leads to

[, 0% s

Xe+e Xe+¢& aZf R ,
+ J JJHPW&ZwHP dx; dx dxl

HP 89{1 Ox) X=X, Xe
o Xe+E

--| £ swas—[7[[ LI g av, (B.1)
RO {3y )~ ) s e O Ox
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The LHS of (B.1) has been obtained from f <-4 z e ysing integration by parts over x| twice. The RHS of (B.1) has
been obtained by rewriting f < 4 ca oAt using 1ntegraf10n by parts over x;, the BC (40c¢), and the definition of derivative
of the Dirac delta in (29).

When taking the limit ¢ — 0, the integrals over x| converge to zero. Note that (40b) shows that the boundary
terms on the LHS of (B.1) at x = x| vanish as well. Because the test function f(x,%,x]) is smooth, it thus follows
that

9 0 . .
}gr(l) - % (21, %, xe ) opp(x1, %, X, + &) = 8){'1 (%1, %, %) 0(x — %) (%), (B.2a)
li 2, 00) D0 (4 =0 (B.2b)
8133,)((951,96,%)87){1(361,96,%-#8) =0, .

Conditions (41a) and (41b) now follow because (B.2) must hold for any (smooth) test function f(x,%,x}). The
last condition (41c) simply follows by noting that (40c) reduces to (41c) for x| > x,.

B.2. The disk

To remove the derivative of the Dirac delta in (66¢), the weak form of (66) is derived by multiplying (66a) by
f(r,0,7)¢r, where f(r,0, ) is a test function, and integrating over (r, 0,7') € (0,R) x (0,27) x (R, R + ¢). This yields

N s I M A G AR
J, _[ { o ar,wp r'rdrd0 ﬂ:R+ . 7 \" 3y 86 wDrdrder

tof Ao (BT R OfOwp 1 O Bwp Py
j 5 R5(9)d07JR JRL (EW+;’7% aé)rrdrdﬁ)dr. (B.3)

_ The LHS of (B.3) has been obtained by integration by parts over ' and 0 (the boundary terms at 0 =—nand
0 = m vanish because of the periodicity in the 0-direction). The RHS of (B.3) has been obtained using integration
by parts over r and 0, the BC (66¢), and the definition of the derivative of the Dirac delta. Similarly as before, the
integrals over ' vanish when taking the limit ¢ — 0 and the boundary terms on the LHS at ¥ = R vanish because
of (66b). It thus follows that

0 0 R
155% —6—{, (r, 0, R)wp(r, 0,R + &)Rr g/ (r, 0, R)RS(R —1)d(0), (B.4a)

(r,”")=(R,R)

hmf(r, 0,R) 88 ;

As (B.4) must hold for any test function f(r, 0,7 ), (68a) and (68b) follow. The BC (68c) follows by noting that
(66¢) reduces to (68c) for ¥ > R.

(r,0,R+ &)Rr = 0. (B.4b)

Appendix C. The kernel for the disk

An explicit expression for wp ,(r, 0,7') satisfying (66a) and (68) with the Dirac in (68a) replaced by J,(r — R, 0) in
(69) is obtained by noting that, at every ‘time instant’ Y,wp(r,0,7") can be expressed in terms of the eigenfunc-
tions of the Laplacian on the disk (r,0) € [0,R) X [—=, n]. The eigenfunctions of the Laplacian that are in agree-
ment with the BC (68c) are, see for example [30]

Wy, m (1,0 ) I (ﬁn m ) cos (nb), n>0,m>1, (C.1a)

Wm(r,0) = J, (ﬁwg) sin(nd), n>1,m> 1, (C.1b)

where J, is the Bessel function of the first kind of order n and B, ,, is the m-th zero of 0J,/9r(r) = 0. Note that
Bo.1 = 0 and that Jo(0) = 1, so that w1 (r,0) = 1. The kernel wp(r, 0,7") can thus be written as

o(r0,7) = Zzun (7 YWi,m(r,0) + Zzun (7 )W (1, 0), (C2)

n=0m= n=1m=

where the coefficients a,, ('), and a, ,(r') still need to be determined.

A set of ODEs for the coefficients a, ,,(r') and @, ,(r') can be obtained through a Galerkm discretization of
(66a). Using that the eigenvalue of the Laplacian associated to wy, (1, 0) and wy, (r, 0) is — . 2 /R? and that the
eigenfunctions are mutually orthogonal w.r.t. the natural inner product
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R pm
f.g) = J J f(r,@)g(r,@)rdé dr, (C3)
0J—mn
it follows that inserting (C.2) into (66a) and taking the inner product with the shape functions wy, ,(r, @) yields
10 (04, o Bawm
78—1"1 (7/ or (7/)> - ﬁan,m(r) - R2 an,m(r ); (C4a)

where the factor (W, ,u, W, m) has been omitted. Similarly, inserting (C.2) into (66a) and taking the inner product

with the shape functions w,, ,(r,0) yields

10 aﬁn,m / n?_ ’ _ﬂi,m~ /

767 (H or' (T' )) - ﬁan,m(r ) - R2 an,m(r )) (C4b)
where the factor (W, m, Wy, m) has been omitted. Recall that f;; = 0, so that the solution of (C.5b) for (n,m) =
(0,1) is of the form

ao,1(r') = A1 + Bo,1 log (¥ /R), (C.5a)
where Ay ; and By ; are constants. For all other values of n and m, the solution of (C.4a) is of the form
an,rn(r,) = Anmln (ﬂn,mrl/R) + BymYn (ﬁ”,mr//R), (C.5b)

where Y,(r) is the Bessel function of the second kind of order n and A, , and B, , are constants. Similarly, the
solutions of (C.4b) take the form

ﬁn,m(rl) = An,m]n(ﬂn,mrl/R) + Bn‘mYn(ﬁn,mT,/R)’ (C5¢)

where A, ,, and B, ,, are constants. ~
The constants A, m> Bu, s An,ms and By, m are determined based on the initial conditions (68a) and (68b). Since

the eigenfunctions w,, ,(r, 0) and W, ,(r,0) are linearly independent, (68b) implies that

aaO, 1 aan, m aa n,m
5 B (R) =0, B (R) = 0. (C.6)
Inserting the expressions for a,, (') and a,,,(r') in (C.5) into (C.6) and using that 9], /dr(,, ,,) =0, it fol-
lows that B, ,, = 0 and Bn,m =0. . .
The constants A, ,, and A, ,, follow by inserting (C.2) into (68a) and projecting on wy, ,(r,0) and Wy, (1, 0).
This yields

(R) =0,

Gy (R) (W s Wi m) = (0D (s -3 R) W ) = (3, (r — R, 0), Wi ) (C.72)

ﬁn,m(R)<wn,ma ﬁ’n,m) = <wD(" . ’R): wn,m> = <5},(7’ —R, é), ;Vn,m>~ (C7b)

Note that a,, ,»(R) = 0 because J, is symmetric and W,,,, is anti symmetric in 0 = 0. Because E’W,, =0, (C.5¢)
now shows that Apm =0 and thus that @, ,(r') = 0. Inserting (C.1) and (C.5) with B, ,, =0 into (C.2) now
shows that wp,,(r,0,7’) is of the form (70a).

The coefficients A, ,, follow after inserting (C.5a) and (C.5b) into (C.7a) as
(0,(r — R, 0), Wy m)

A Brn) O W) (9
The denominator in the expression for A, ,, in (C.8) can be made more explicit by noting that
(wo,1,Wo,1) = mR?, (C.92)
and for all other values of n and m, see for example [30],
€ n?
(Wis W) = TR (B ) {1 - ﬁz—} ; (C.9b)

where €, =2 when n=0 and ¢, = 1 for n # 0.
The coefficients A, ,, in (70b) for y =0 now follow from (C.8) and (C.9) by noting that

<50(7_R’9)’Wn,m> = Wn,m(R’O) :]n(ﬂn,m)a (C.lO)

where it was used that ¢,(r — R,0) approaches a Dirac at (r,0) = (R,0) for y — 0 and that w, ,(r,0) is given
by (C.1a).
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For y > 0, the numerator in (C.8) can be rewritten using the expressions for J,(r — R, 0) in (69) and w,, (1, 0)
in (C.1a) as

A 4
(0;(r — R, 0),wo,1) = 1_%(1—§)> (C.11a)
for n=0 and m=1 and as R
(0y(r — R, 0), Wp,m) = Cy,mDhn> (C.11b)

for all other values of n and m. Here, C,, ,, and D, are

1 (R Bomt n(r —R)
Com = J T (ﬂ) (1 + cos (7 rdr, (C.11¢)
"/RZ (1-7)R R VR
D, = lJ/ cos (nB)| 1+ cos 0 do = L(W/) (C.11d)
2yl ¥ ( nzyz)
m\1——3
T

The integral in (C.11c) cannot be simplified further and is approximated numerically by a trapezoid quadra-
ture rule.
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