
A New Monitor Insertion Algorithm for Intermittent
Fault Detection

Hassan Ebrahimi and Hans G. Kerkhoff
Testable Design and Test of Integrated Systems (TDT) Group,

University of Twente, Enschede, the Netherlands
{h.ebrahimi, h.g.kerkhoff}@utwente.nl

Abstract—The dependability of highly dependable systems
relies on the reliability of its components and interconnections.
One of the most challenging faults that threatens the reliability
of interconnections in a system are intermittent resistive faults
(IRFs). They may occur randomly in time, duration and ampli-
tude in every interconnection. The occurrence rate can vary from
a few nanoseconds to months. As a result, evoking and detecting
such faults is a major challenge. In this paper, IRF detection
at the chip level has been tackled by utilising a fully digital in-
situ IRF monitor. This paper introduces a new algorithm for
inserting IRF monitors in a design. The goal of this algorithm
is to minimise the number of IRF monitors while providing a
high fault coverage for IRFs. The algorithm has been validated
using software-based fault injection. The simulation results show
that the proposed algorithm improves the IRF coverage at the
chip level at the cost of a small area and power-consumption
overhead.

Index Terms—Reliability, No Faults Found, Intermittent Resis-
tive Faults, Intermittent Fault Detection, Chip-level and board-
level fault detection

I. INTRODUCTION

The continuous shrinking of the minimum feature size
together with the ever increasing growth in complexity makes
the reliability of electronic integrated systems a major design
challenge. The complexity of electronic systems grows rapidly
with having more logic elements in a smaller area. This leads
to more layers of interconnections and thinner interconnects
in a system. As interconnections are yet extremely dominant,
their reliability is becoming increasingly important. One of
the key interconnect reliability challenges that threaten highly
dependable systems are intermittent resistive faults (IRFs).

The most common causes of IRFs are marginal or unstable
interconnections. The interconnections at both board and chip
levels such as tracks, vias, and solder joints are suscepti-
ble to IRFs. In addition, temperature and mechanical stress,
electromigration, and corrosion cause increased instability in
interconnections. IRFs manifest themselves as a sequence of
low-level resistance changes in an interconnection. This can
lead to a timing error or performance degradation in a system.

During the operational mode of a system, IRFs might
occur intermittently in any interconnect at any time. Besides,
their occurrence rate at a location may gradually increase
and become increasingly severe during the lifetime of the
system. Ultimately, they may evolve into a permanent fault
[1]. Therefore, it is vital to detect IRFs before they become

permanent and result in a system failure especially in safety-
critical systems.

Intermittent-fault detection is difficult. Due to the nondeter-
ministic behaviour of intermittent faults, the probability that
an IRF is activated while in test mode is very low. Therefore,
conventional test methods are highly unlikely to detect these
faults. Two alternative methods for intermittent fault detection
are periodic testing [2] and in-situ on-line monitoring [3].
The periodic testing method is basically retesting the system
periodically which increases the probability of detecting inter-
mittent faults. The on-line monitoring method is to monitor
the health of a system using embedded instruments during
the operational mode. Since IRFs may remain inactive during
test phases, the in-situ on-line monitoring technique is a better
option to detect IRFs in the case they become active while a
system is in operational mode.

A selection algorithm is required to find the locations in a
system to be monitored. Using the IRF monitor for all inter-
connects in a system is not practical because of the extra cost
of the area and power-consumption overhead. Therefore, in
order to have the maximum coverage of IRFs using the on-line
monitors, an efficient location selection algorithm is required.
In this paper, we propose an efficient selection algorithm for
IRF monitoring which provides the maximum IRF coverage
for a given area overhead constraint. The efficiency of the
algorithm is verified using software-based fault injections.

The rest of the paper is organised as follows. Section
II reviews related work and the background of the on-line
monitor selection and insertion algorithm. The IRF monitor
which is used by the proposed algorithm is introduced in
section III. In section IV, the proposed algorithm is described.
The simulation setup and simulation results are presented in
sections V and VI, respectively. Finally, conclusions are drawn
in section VII.

II. RELATED WORK

In-situ on-line monitoring is widely used to detect timing-
faults [4]–[6] at the chip level. Timing violation along a data
path can occur due to process, voltage and temperature varia-
tions, aging and IRF [7]. In-situ on-line monitoring techniques
can be used for timing-error detection and correction in critical
paths [4], timing slack measurements [6], adaptive voltage
scaling [8], aging detection [9] and IRF detection as well [3].

2020 25th IEEE European Test Symposium (ETS)

978-1-7281-4312-5/20/$31.00 ©2020 IEEE

There are several works that have investigated the path
selection approach for online aging and process variation
detection. In [9] a critical-path selection algorithm has been
proposed for dynamic frequency scaling under BTI-aging and
process variations effects. A path-selection flow for online
aging monitoring in a reconfigurable architecture has been
presented in [10]. Their algorithm first selects the aging-
prone path based on path delay, temperature, duty cycle, and
switching activity. Then, the selected paths get pruned based
on fan-out, and physical location of the path endpoints.

Few works have investigated the aging-monitor insertion at
internal nodes of the circuit [5], [11]. The motivation behind
is to capture timing violations as early as possible before they
become masked. The proposed method in [5] inserts timing-
slack monitors as probes at the endpoints and internal nodes
of critical paths.

In [11], the authors have proposed a procedure for selecting
the monitoring nodes only among the internal nodes of the
circuit. This increases the accuracy of age-monitoring mech-
anisms and also decreases the number of nodes which results
in a low hardware overhead.

The techniques mentioned above are based on the detection
of delay violations which can be caused by aging or process
variation based on monitoring the critical path(s) and near-
critical path(s). The measurement of paths delays, temperature
and switching activity play main roles in the aging estimation.
Since the critical path and near critical paths are more prone to
aging effects, they are good candidates for aging monitoring.
Despite the aging effects, IRFs can happen randomly in any
path of a circuit and can result in timing violation at the path
endpoint. Therefore, the critical path and near-critical paths
are not necessarily the best candidates for IRF detection.

In this paper, a new node-selection algorithm is proposed.
The objective of this algorithm is to maximise the IRF
coverage of a circuit. The algorithm selects the best locations
for IRF monitoring in a circuit. It maximises the fault coverage
for the most vulnerable parts of the circuit to IRFs such
as wire interconnections, vias and input pads. Two different
methods based on end nodes selection as well as internal nodes
selection have been investigated. The experimental results
show the efficiency of the proposed algorithm.

III. THE IRF MONITOR

The IRF monitor used in this paper is based on the monitor
which has been introduced in [12] with minor changes. Fig. 1
shows how the IRF monitor can be used at the end of a data
path. The output of the monitor is a Warning signal which
indicates whether an IRF is detected or not.

To make sure that the correct data at an endpoint will be
captured, the data signal at the end of a data path should stay
stable during a timing window; otherwise the flip-flop at the
endpoint may capture wrong data. The IRF monitor checks
whether or not a late transition in the data path occurs. The
timing window can be generated using a guard-band signal or
employ delay elements. In this monitor, the timing window is
created by a delay chain.

��������� �

�

���	

��

�

�

�

���	

��

�

���

��������

��������

��������

���

��������

�����������

Fig. 1: An example of the insertion of IRF monitors at the
endpoint and an internal node of a data path.

Design hardware
description Synthesis

Switching
activity &

timing analysis

Propagation &
coverage analysis

Node selection &
monitor insertion Fault simulation

Fig. 2: The flow of the proposed node selection and the IRF
monitor insertion.

IV. THE ENDPOINT SELECTION FLOW AND THE
PROPOSED ALGORITHM

In this section, the nodes selection flow and the proposed
algorithm are introduced and explained in detail.

A. The selection flow

The flow of the proposed node selection and the IRF
monitor insertion is depicted in Fig. 2. After synthesising a
given design, the switching activity of each net is extracted.
The static timing analysis reveals the slack of paths, and
consequently the critical paths and near critical paths of the
fresh design. In order to avoid performance degradation, the
proposed algorithm tries to not insert any monitor in the
critical paths and near critical paths.

In the next phase, the probability that an IRF is being
propagated and being captured by an monitor is calculated for
each net. The result of these calculations will be a set of nets
for every (internal and end) node. Each set contains all nets
that can be covered by inserting a monitor at the corresponding
node. The nodes that cover more nets with higher fault
probability are good candidates for monitor insertion.

Based on the extracted information in the previous phases,
the proposed algorithm selects a set of nodes which provide
a maximum IRF fault coverage within a given area-overhead
constraint. Finally, the IRF monitor will be inserted in the
selected nodes.

Synopsys tools are used during the synthesis phase and
performing timing analysis. The fault injection and simulation
have been executed using the QuestaSim tool. The switching
activity is extracted for every benchmark using the QuestaSim

!

!

tool. The other phases of the flow have been implemented
using Python scripts.

The fault-propagation probability calculation and the pro-
posed selection algorithm are explained in detail below.

B. Fault propagation probability

The fault propagation strongly depends on the circuit struc-
ture and input stimuli. IRFs can occur in every net (wire
interconnects and vias) of the design. IRFs may cause timing
delays in the affected net. The induced delay fault may be
either masked by a logic gate in the path or may be propagated
via the path and being captured by a flip-flop at the end
of the path and cause a logical error. Therefore, to know
which locations are suitable for monitoring IRFs, the fault
propagation probability for each net of the circuit should be
calculated. This information will be used by the proposed
selection algorithm to select nodes which can cover the nets
that have a high probability of fault propagation. It should be
noted that the probability that an IRF occurs in a net could
vary based on the layout of the design after the place and
route phase. The vulnerability of each net to IRFs depends on
the number of wire interconnects and vias it consists of. The
information on the layout can be used for extra refinement
later. Since, this information is not available at the synthesis
phase, we have estimated the number of wire interconnects
and vias based on the fan-out number for each net. Our
experimental results show the accuracy of this estimation.

An example of the calculation of the propagation probability
for a simple circuit is shown in Fig. 3. This Fig. shows the
calculation of the propagation probability for the net x. As can
be seen, the signal x can be propagated via two paths. One
is shown by the blue line and another with the red line. The
signal probability of each nets are written on top of the net.
The propagation probability of each gate is written underneath
it. In this example, the signal probability for the input nets
are assumed to be 0.5. In the red path, the probability that
the signal x propagates via the NAND gate is 0.5. After the
NAND gate, the signal x can be propagated via the NOT and
XOR gate without being masked. In the case of blue path,
the propagation probability of NOR gate is 0.25 (1 - 0.75).
Therefore, the probability that a fault on x is propagated to
a flip-flop (either or both FF1 and FF2) is 0.5 + 0.25 - (0.5
* 0.25) = 0.625. Since, the propagation probability of the red

�

�

����

���

�

		

�

�

����

���

�

		�

�

�

���

����

�

��

�

���

���

���

���
����

Fig. 3: An example of the calculation of the propagation
probability

path is higher than the blue one, the flip-flop FF1 is a better
choice for IRF monitoring.

C. The proposed selection algorithm

The proposed node selection algorithm is shown in the
Algorithm 1. The inputs of this algorithm are a graph of netlist
G, an area constraints A and the timing data T . The netlist
is a directed graph. In this graph, edges are nets and vertices
are either logic gates or nets. The timing data T is the output
of the synthesis tool which contains the information on the
switching activity of each net. The output of the algorithm
is a set of selected nodes S which will be used for the IRF
monitor insertion. The proposed algorithm consists of three
main functions and a while loop.

Algorithm 1 Selection algorithm

Input: G; A; T
Output: S ={Selected nodes}

1: P ← Propagation and Coverage Analysis(G)
2: while Area overhead < A do
3: e← Find best node(T, P)
4: Add e to S set
5: Area overhead ← Estimate area overhead(S)

6: function FIND BEST NODE(T, P)
7: E={all nodes or endpoints in the netlist G}
8: for all e ∈ E do
9: varFaultCoverage← Fault coverage(P, e)

10: varMaximum← 0
11: objective← α (varFaultCoverage)
12: if objective > varMaximum then
13: varMaximum← objective
14: SelectedNode← e
15: Remove nets from search space(SelectedNode)
16: return SelectedNode
17: function PROPAGATION AND COVERAGE ANALYSIS(G)
18: N ={all nets in the netlist G} . Set of all nets
19: V ={} . Set of visited nets
20: for all n ∈ N do
21: if n /∈ V then
22: L← DFS(G,V, n)

23: P ← Create list of nets for each node(L)
24: return P
25: function DFS(G, V, n)
26: F ={Flip-flops and Outputs}
27: S ← Extract direct successors(n)
28: for all s ∈ S do
29: if s /∈ V & s /∈ F then
30: Calculate the propagation probability for s
31: DFS(G,V, s)
32: else
33: Update the list of nodes for net n
34: return L = {the list of nodes for net n}

The function Propagation and Coverage Analysis is used
to calculate the fault-propagation probability for all nets of the

!

!

netlist (lines 17-24). This function receives the graph of the
netlist G as an input. The output of this function is a list for
each endpoint/internal node of the circuit. The lists contain
a set of nets that can be covered by the corresponding end-
point/internal node. For every net, the propagation probability
is calculated using the equations that have been presented in
the previous subsection. This function uses a depth-first search
(DFS) to traverse the netlist. The DFS function will be called
for every net of the netlist (n ∈ N) only if the net is not
processed before (n /∈ V). The output of the DFS function
is a list of nodes (L) for net n. From these lists, a list of
nets (P) will be extracted for each node. List P allows to
know which nets are connected to a certain node and how
much is the value of the propagation probability for each net.
It should be noted that the correlation between paths due to
reconvergent fanout [13] are considered in this function. This
provides a more accurate and less pessimistic fault-propagation
probability calculation.

A pseudocode of the function DFS is presented in the
lines 25-34. This function is a recursive function and calls
itself until it reaches either an endpoint or till all nets of
the netlist have been visited. The function calculates the
propagation probability for each net while traversing it (line
30). This information will be returned to e the function
Propagation and Coverage Analysis as a list L.

The function Find Best Node receives the information of
timing (T) and the coverage and propagation probability of
nets (P) as inputs. The value of IRF coverage (varFaultCov-
erage) will be calculated for each node using the following
equation:

IRF Coverage =
N∑

n=1

PFn
(1)

where N is the number of nets which is covered by the given
node. The variable PFn

is the fault-propagation probability for
each net n which can be calculated from equation 2.

PFi
=

n∏
g=1

PTg
(2)

where PTg
is the propagation probability for a gate g and n

is the number of gates in the path. This equation indicates
that an IRF in a net i can be propagated via a path and being
captured by an endpoint only in the case that it is able to pass
via all the gates in the path.

The objective of the function Find Best Node is to find a
node which has the maximum value for the IRF fault coverage.
At the end of the function calculation, the covered net by the
selected node will be removed from the search space.

Using the above mentioned functions, the algorithm in a
while loop selects a set of nodes (endpoints or internal nodes)
with maximum fault coverage. The algorithm estimates the
amount of area that is required for the IRF monitoring and
continues its selection procedure till the area overhead reaches
the given limit A. If the area overhead is not a concern but
instead the amount of total IRF fault coverage is important,

TABLE I: Range of used uniform distributed parameters in
the IRF generator during fault emulation

Parameter Minimum Maximum
Start time 1 ns 20 ns
Delay 10 ps 500 ps
Active time 0.1 ns 12 ns
Inactive time 0.1 ns 12 ns
Burst length 1 10
Safe time 1 ns 1 ms

the condition of the while loop can be easily substituted to
satisfy this new objective.

V. SIMULATION SETUP

A. The Intermittent Resistive Fault Model

The IRF model being used for the fault injection is based on
our and others’ experiences in practice. In this model, a burst
of IRF pulses is generated based on six parameters. These
parameters consist of the number of pulses in a burst, start
and stop times of the burst, active and inactive times, and the
amount of induced delay for each pulse.

The values and distributions applied for the fault injection
in this paper are shown in Table I. The fault injection starts
when a random Start Time is passed from the simulation, then
the fault injection starts with injecting a burst of pulses. Each
pulse in the burst has a random delay value ∆t. Each pulse
remains active during a random activation time (Active Time)
and after that stays inactive for a random time (Inactive Time).
The delay pulse generation continues until the same number of
pulses as the burst length are produced. At the end, a fault-free
situation will occur which is called Safe Time.

The IRF model has been implemented in a Python script.
The script randomly generates IRFs based on the parameter
of Table I. The output of the script is a TCL file that will be
the input for the fault-injection procedure.

B. Simulation-based fault injection

The well-known QuestaSim tool was used for the fault-
simulation experiments. The tool receives the procedure of
random IRF generation via a TCl file. The technique of
saboteur [14] is used for the fault injection. It means a HDL
component named as saboteur is defined for IRF injection.
This component was inserted in every net of the benchmark
which were selected for fault injection. A saboteur is inactive
during fault-free operation, but when it becomes active it
injects a random IRF in the selected net.

VI. SIMULATION RESULTS

All experiments were performed on a Linux system with
8 Intel 2 GHz cores and with 16GB RAM. The execution
time of the proposed selection algorithm is shown in Table
II. In this table, the execution for two different methods,
internal nodes and endpoints selection, are shown. Five of the
largest benchmarks of ISCAS’89 and an AES-128 encoder
[15] were used for our experiments. The benchmarks have
been synthesized using the Synopsys Design Compiler tool

!

!

TABLE II: The measured execution time [Sec] of the
proposed algorithm.

Benchmarks Internal nodes Endpoints
s13207 1,79 1,60
s15850 2,44 2,15
s35932 2,82 2,39
s38417 7,42 6,22
s38584 10,64 9,10
AES-128 20,23 16,77

10 20 30 40 50

10

20

Chip-level IRF coverage [%]

A
re

a
ov

er
he

ad
[%

]

AES-128
s38584
s38417
s35932
s15850
s13207

Fig. 4: Area overhead vs. fault coverage

with TSMC 40nm technology. After a performance-driven
synthesis the large benchmarks s38584, s38417 and AES-128
have been optimised for a clock of 1.25 GHz, and the smaller
benchmarks have been optimised for a clock of 1.66 GHz.

Table III gives an insight into the structure of the bench-
marks such as the number of inputs, outputs, sequential and
combinational cells. In addition, the areas for combinational
and sequential parts are presented at a scale of square microm-
eters.

TABLE III: Synthesis reports for the benchmarks (Area
[µm2])

Benchmarks AES s38584 s38417 s35932 s15850 s13207
Inputs 36 38 28 35 77 62
Outputs 38 317 106 320 150 152
Comb. cells 4619 5772 4163 2445 1885 1379
Seq. cells 910 1275 1564 1728 513 625
Comb. area 24458 23633 17131 12045 6732 4973
Seq. area 12556 16782 20214 920 6805 7760

The results of the proposed algorithm for the benchmarks
are shown in Fig. 4. For each benchmark, the result of the
area overhead against fault coverage of IRFs is depicted. For
example, the result of benchmark s35932 is drawn with a
black line. It shows the algorithm can provide 20%, 40%
fault coverage at the cost of 4.3% and 8% area overheads,
respectively. In the case of s38584, the same fault coverage can
be obtained with 2.8% and 7.5% area overheads, respectively.

In Fig. 4, the fault coverage for each benchmark starts
with a different number because the algorithm first starts with
providing full board-level coverage. The reason is that input

ports are more susceptible to IRFs than internal vias and
interconnections. For example, covering all inputs of S13207
in the first stage of the algorithm results in 30 % fault coverage.
This fault coverage includes full input coverage and partial
internal connections coverage. Another example is the fault
coverage for the AES-128 benchmark. As shown in Fig. 5, a
full input coverage can be reached by only 9 monitors with
22% total IRF coverage.

Fig. 5 shows an implementation of the proposed insertion
flow for the AES-128 benchmark. In this Fig., the location
and the number of IRF monitors are chosen by the proposed
algorithm. In total a number of 9 monitors has been selected,
to provide full IRF coverage for all input ports. The IRF
monitors are coloured in red colour. The input ports, vias and
interconnection wires which are covered by the monitors are
coloured in green. The output, clk and reset ports are coloured
in yellow.

The comparison between the proposed algorithm and a
slack-based method such as [5], is shown for the benchmark
s38417 in Fig. 6. In this Fig., the results of fault coverage for
different area overheads are shown. For example, it depicts that
the proposed algorithm can reach a fault coverage of IRFs of
about 50% with an area overhead of 7.7%. Whereas, for the
slack-based algorithm the area overhead is 11.6%. In total, the
proposed method provides the same amount of fault coverage
with about 30% less area overhead in comparison to the slack-
based method.

The correlation between the number fan-outs for each net
and the number of its vias after placing and routing is shown
in Fig. 7. As can be seen, there is a linear relation between
the amount of fan-outs and the required vias for each net. As
mentioned before, the proposed algorithm uses an accurate
estimation of vias to calculate the IRF probability for each
net.

To evaluate the effectiveness of the proposed algorithm for
IRF detection, a simulation-based fault injection was used.
AES-128 benchmark was selected for fault injection. A post-
synthesis simulation has been performed using the QuestaSim

Fig. 5: An implementation of the proposed insertion flow for
the AES-128 benchmark. The cells coloured in red colour are
the inserted IRF monitors at selected internal and end nodes.

!

!

10 20 30 40 50

4

6

8

10

12

Fault coverage [%]

A
re

a
ov

er
he

ad
[%

]

proposed
slack-based

Fig. 6: Comparison of the area overhead for a slack-based
approach and the proposed algorithm for benchmark s38417.

TABLE IV: Fault injection results

Fault impact Masked Detected Undetected Failed
Fault percentage 32.5% 38.2% 21.8% 7.3%

tool. The algorithm was executed on the benchmark with a
20% area constraint. A total number of 10000 IRFs have been
injected on 1000 nets which were randomly selected from the
benchmark. The results are shown in Table IV. As can be seen,
about 32.5% of injected faults have been masked and have
not propagated to an endpoint. From the rest of the faults,
38.2% have been detected by IRF monitors. Around 21.8%
of faults have caused a slack reduction in the endpoint which
were not selected for IRF monitoring and therefore remained
undetected. Finally, 7.3% of the injected faults lead to a failure.

The maximum fault coverage for end-node and internal node
methods is on average 80% and 95%, respectively. However,
full IRFs coverage is not feasible. Therefore, the algorithm
tries to maximise the IRF coverage for connections that are
more susceptible to IRFs i.e. the input ports and the nets with
a high number of vias.

VII. CONCLUSIONS

In this paper, a node selection-algorithm has been proposed
to monitor IRFs in a system. The algorithm finds the best

Fig. 7: Comparison of the number of vias.

locations for IRF monitoring based on information of the
propagation probability for each net of the system. It can
provide a set of endpoints or internal nodes for inserting the
IRF monitors. The simulation results show that the proposed
algorithm can improve the fault coverage for IRFs of a system
at the cost of only a small area and power-consumption
overhead.

ACKNOWLEDGEMENT

This research was carried out within the EU-PENTA project
”HADES”, financed by the European Commission (EC) and
the Netherlands Enterprise Agency (RVO).

REFERENCES

[1] J. P. Hofmeister, P. Lall, D. Panchagade, N. N. Roth, T. A. Tracy,
J. B. Judkins, and K. L. Harris, “Ball grid array (BGA) solder joint
intermittency detection: SJ BIST,” in IEEE Aerospace Conference,
pp. 1–11, 2008.

[2] N. Kranitis, A. Merentitis, N. Laoutaris, G. Theodorou, A. Paschalis,
D. Gizopoulos, and C. Halatsis, “Optimal periodic testing of intermittent
faults in embedded pipelined processor applications,” in IEEE Design,
Automation and Test in Europe (DATE), vol. 1, pp. 1–6, 2006.

[3] H. Ebrahimi, A. Rohani, and H. G. Kerkhoff, “Detecting intermittent
resistive faults in digital CMOS circuits,” in IEEE Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
pp. 87–90, 2016.

[4] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. M. Bull,
and D. T. Blaauw, “RazorII: In situ error detection and correction for
pvt and ser tolerance,” in IEEE Journal of Solid-State Circuits, vol. 44,
no. 1, pp. 32–48, 2009.

[5] L. Lai, V. Chandra, R. C. Aitken, and P. Gupta, “SlackProbe: A flexible
and efficient in-situ timing slack monitoring methodology,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 8, pp. 1168–1179, 2014.

[6] M. Sadi, L. Winemberg, and M. Tehranipoor, “A robust digital sensor
IP and sensor insertion flow for in-situ path timing slack monitoring in
SoCs,” in IEEE VLSI Test Symposium (VTS), pp. 1–6, 2015.

[7] H. G. Kerkhoff and H. Ebrahimi, “Investigation of intermittent resistive
faults in digital CMOS circuits,” in World Scientific Journal of circuits,
systems and computers, vol. 25, no. 03, p. 1640023, 2016.

[8] W. Shan, L. Shi, and J. Yang, “In-situ timing monitor-based adaptive
voltage scaling system for wide-voltage-range applications,” in IEEE
Access, vol. 5, pp. 15831–15838, 2017.

[9] A. F. Gomez and V. Champac, “Selection of critical paths for reliable
frequency scaling under bti-aging considering workload uncertainty and
process variations effects,” in ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 23, no. 3, p. 27, 2018.

[10] M. Ebrahimi, Z. Ghaderi, E. Bozorgzadeh, and Z. Navabi, “Path selec-
tion and sensor insertion flow for age monitoring in fpgas,” in IEEE
Design, Automation and Test in Europe (DATE), pp. 792–797, 2016.

[11] S. Sadeghi-Kohan, A. Vafaei, and Z. Navabi, “Near-optimal node
selection procedure for aging monitor placement,” in IEEE International
Symposium on On-Line Testing And Robust System Design (IOLTS),
pp. 6–11, 2018.

[12] H. Ebrahimi and H. G. Kerkhoff, “Intermittent resistance fault detection
at board level,” in IEEE Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), pp. 135–140, 2018.

[13] H. Jahanirad, “CC-SPRA: Correlation coefficients approach for signal
probability-based reliability analysis,” in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 927–939,
2019.

[14] D. Gil-Tomás, J. Gracia-Morán, J.-C. Baraza-Calvo, L.-J. Saiz-Adalid,
and P.-J. Gil-Vicente, “Injecting intermittent faults for the dependability
assessment of a fault-tolerant microcomputer system,” in IEEE Trans-
actions on Reliability, vol. 65, no. 2, pp. 648–661, 2015.

[15] Opencores, “Advanced encryption standard AES-128, available:
http://www.opencores.org/,” 2019.

!

!

