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Abstract—Over- and under-sedation are common in critically 

ill patients admitted to the Intensive Care Unit. Clinical 

assessments provide limited time resolution and are based on 

behavior rather than the brain itself. Existing brain monitors 

have been developed primarily for non-ICU settings. Here, we 

use a clinical dataset from 154 ICU patients in whom the 

Richmond Agitation-Sedation Score is assessed about every 2 

hours. We develop a recurrent neural network (RNN) model to 

discriminate between deep vs. no sedation, trained end-to-end 

from raw EEG spectrograms without any feature extraction. 

We obtain an average area under the ROC of 0.8 on 10-fold 

cross validation across patients. Our RNN is able to provide 

reliable estimates of sedation levels consistently better 

compared to a feed-forward model with simple smoothing. 

Decomposing the prediction error in terms of sedatives reveals 

that patient-specific calibration for sedatives is expected to 

further improve sedation monitoring. 

I. INTRODUCTION 

Critically ill patients in intensive care unit (ICU) are 
broadly affected by the “ICU triad”: pain, agitation and 
delirium, due to many distressing interventions such as 
invasive mechanical ventilation [1]. Continuous sedation is 
one of the techniques to alleviate the negative effects of the 
ICU triad [2]. Unfortunately, both over- and under-sedation 
are common [3]. Research has shown that inappropriate levels 
of sedation, as well as analgesia, lead to longer ICU stay, more 
adverse events and eventually poorer clinical outcomes [4]. 
Various clinical sedation assessment tools have been designed 
to monitor sedation levels in the ICU [5], including the 
Richmond Agitation-Sedation Scale (RASS) [6] and Sedation 
Agitation Scales (SAS) [7], among others. The inter-rater 
reliability and the correlation between different assessment 
tools are described in [5]. Despite having relatively high 
reliability and being easy to operate, there are several major 
disadvantages of these clinical assessment tools, including (1) 
the sedation level is only available at the point of assessment, 
thus having a low temporal resolution usually no better than 
once per hour in practice; (2) assessments are based on patient 
behaviors, which do not directly reflect the brain state; and (3) 
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the patient needs to be periodically stimulated which can 
interfere with sleep and increase discomfort.  

To overcome these disadvantages, several commercially 
available anesthesia depth and sedation monitors that track 
electroencephalogram (EEG) features has emerged as a 
physiologically-based, real-time alternative to clinical 
sedation assessments. These include the bispectral index (BIS) 
(Aspect Medical Systems, Norwood, MA, USA), Patient State 
Index (PSI) (Hospira, Lake Forest, IL, USA) and Nacrotrend 
(Monitor Technik, Bad Bramstedt, Germany), etc [8, 9]. All 
existing monitors extract various hand-crafted EEG features 
from both time and/or frequency domains, which vary from 
monitor to monitor [8]. Existing processed EEG monitors 
obtain a noisy sedation level for each EEG segment and then 
smooth them to get a stable index, where the smoothing time 
span is an extra parameter to tradeoff. Smoothing improves 
the stability of the index, but leads to long and in some cases 
(e.g. BIS) unpredictable time delays in response to changes in 
EEG; Short smoothing time span leads to faster response to 
EEG changes but is more noisy [10]. The time delay also 
creates difficulties for closed loop control and 
pharmacodynamics modeling [8, 11]. Finally, all prior 
monitors have been designed for non-ICU use, whereas the 
physiological variability due to the effects of severe illness 
and polypharmacy on brain activity makes brain monitoring 
more challenging than in the operating room environment.   

Here we develop a sedation monitoring system based on 
Gated Recurrent Units (GRU, a type of recurrent neural 
network) [12]. GRU is a nonlinear autoregressive model, 
where the hidden state at t is updated based on the last hidden 
state at t-1 and the input at t, both of which are gated. The gates 
are learned through optimization. We train GRU end-to-end 
using the EEG spectrogram as the input without any other 
hand-crafted features. GRU can utilize both long and short 
term temporal contexts by remembering important patterns 
and forgetting irrelevant patterns in the past. The utilization of 
temporal context removes the need for ad hoc smoothing, so 
that it is expected to have both stable tracking of sedation and 
fast response to neurological changes in the brain. Unlike 
existing monitors which have been tested almost exclusively 
in the surgical setting, here we optimize for use in the ICU 
setting [13, 14] 

The remainder of the paper is organized as follows. 
Section II provides details about patients, EEG processing and 
the GRU model. Section III presents a performance 
evaluation, and compares to a feed-forward model with 
smoothing. We also analyze the effect of sedative types on 
prediction error. Section IV describes the significance of this 
work as well as important limitations and future directions. 
Section V concludes the paper. This study was conducted 
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under a protocol approved by the Institutional Review Board 
of Massachusetts General Hospital. 

II. METHOD 

A. RASS as Reference Sedation Level 

The Richmond agitation-sedation scale (RASS) is one of 
the mostly used clinical sedation assessment tools in 
mechanically ventilated ICU patients. It has been validated to 
show robust inter-rater reliability [6]. It has 10 levels from -5 
to +4. Values between -5 and -1 refer to decreasing sedation 
from unarousable (-5), deep sedation (-4), moderate sedation 
(-3), light sedation (-2) to drowsy (-1). Level 0 indicates an 
alert and calm state (0). Values from +1 to +4 represent 
increasing levels of agitation. RASS scores in the ICUs in our 
study were assessed about every 2 hours by nurses, and were 
additionally assessed 1-2 daily by research staffs. 

B. Patient Selection 

The dataset consists of 195 mechanically ventilated ICU 
patients without any pre-existing neurological deficits, 
enrolled between 2014 and 2016. In the present work we 
consider only assessments with RASS –5/–4 (deeply sedated) 
vs. –1/0 (not sedated), which reduces the number of eligible 
patients to 154 who have at least one of the two levels. There 
are 1510 RASS assessments in total, where 623 assessments 
have RASS -5/-4 and 887 have -1/0. Demographic 
characteristics of the patients are shown in TABLE I. 

TABLE I.  PATIENT CHARACTERISTICS 

Characteristic 
Median (IQRa) or 

Number (Percentage) 

Age (year) 60 (51 – 75) 

Sex Female 49 (32%); Male 105 (68%) 

Race 
White 135 (88%); Black 9 (6%); 

Asian 2 (1%); Unknown 8 (5%) 

BMIb (kg/m2) 29 (23 – 35) 

Days in ICU 12 (7 – 19) 

APACHE IIc at admission 22 (15 – 28) 

Charlson comorbidity index 3 (2 – 4) 

Diagnosis at ICU admission  

Sepsis 22 (14%) 

Acute respiratory failure 92 (60%) 

Surgery 31 (20%) 

Cardiac shock, myocardial 

ischemia, or arrhythmia 
10 (6%) 

Liver or renal failure 35 (23%) 

a. interquartile range; b. body mass index; c. Acute Physiology And Chronic Health Evaluation II 

C. EEG and Preprocessing 

EEG signals were recorded using Sedline brain function 
monitors (Masimo Corporation, Irvine, CA, USA) at a 
sampling rate of 250Hz. The signals consist of 4 frontal 
channels at Fp1, Fp2, F7 and F8, and a reference channel at 
Fpz (using 10-20 system naming conventions). We 
re-reference the EEG to bipolar montage: Fp1-F7, Fp2-F8, 
Fp1-Fp2 and F7-F8 and band-pass the signal between 0.5Hz 
and 16Hz using zero-phase FIR filtering. The range of pass 

band is relatively restrictive compared to other studies [8] to 
reduce the influence of multiple noise sources from various 
machines in the ICU setting. We only evaluate the model 
using the 10min before each RASS assessment. We estimate 
EEG spectrograms using the multitaper method with the 
following parameters: window length T = 4s with 2s overlap, 
number of tapers K = 7 and spectral resolution of 2 Hz. 

For artifact removal, we remove segments with: amplitude 
larger than 500uV; standard deviation smaller than 0.2uV for 
more than 2s; or spectrum is spuriously staircase-like, defined 
by the maximum value of the convolution with a predefined 
stair-like shape is larger than a predefined threshold, which 
indicates nonphysiologic artifacts from ICU machines (e.g. 
pumps or cooling blankets). About 10% of the data is removed 
due to artifacts. 

D. Classifier Training and Testing 

In our approach there are no hand-crafted features 
extracted from the spectrogram. Instead, the raw spectrogram 
is fed directly to a 2-layer GRU with 32 hidden nodes at each 
layer and dropout rate 0.5. Each time step in each layer 
consists of four components 

 ℎ𝑡 = 𝑧𝑡ℎ𝑡−1 + (1 − 𝑧𝑡)𝑛𝑡; 

 𝑧𝑡 = sigmoid(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏ℎ𝑧); 

 𝑛𝑡 = tanh(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡(𝑊ℎ𝑛ℎ𝑡−1 + 𝑏ℎ𝑛)); 

 𝑟𝑡 = sigmoid(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏ℎ𝑟); 

where 𝑥𝑡, ℎ𝑡, 𝑟𝑡, 𝑛𝑡, 𝑧𝑡 are the input, hidden state, reset gate, 
new gate and input gate at time step t respectively; 𝑊𝑖∙ and 𝑏𝑖∙ 
are the input-to-hidden weight and bias for different gates; 𝑊ℎ∙ 
and 𝑏ℎ∙ are the hidden-to-hidden weight and bias for different 
gates. The hidden state of GRU is fed to a logistic regression 
layer for binary classification (RASS –5/–4 vs. –1/0). 

Data from different patients is randomly split into 10 folds 
with approximately equal size. Data from the same patient 
appears in either the training or testing set, never both at the 
same time. Classification performance is measured by area the 
under the receiver operator curve (AUC). Testing performance 
is obtained from each fold while trained on the other 9 folds. 
The reported result is the average AUC on the testing set from 
the 10 folds. Strict separation of training patients from testing 
patients is maintained throughout all experiments. 

E. Correcting Label Noise and Burst Suppression 

There are a few corrections to the model prediction in ICU 

setting. First, RASS assessments are sometimes recorded 

after a delay or in anticipation of a change of sedation level 

following changes in sedative infusion rate. We correct the 

RASS scores with inconsistent EEG spectrograms near a 

change in sedative infusion rate, which make up 3% of 

assessments. Second, a separate burst suppression detection 

[15] is carried out. In our case, about 3% of the RASS 

assessments are detected during EEG burst suppression. In 

this dataset we observe several patients having burst 

suppression-like EEG patterns while is still at RASS -1/0. 

Due to the noisy electrical environment in ICU, it is not clear 

if this is due to patient heterogeneity or bad electrode 

connection, thus they are excluded from the analysis. 
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III. RESULTS 

A. Performance on the Holdout Testing Patients 

As shown in Figure 1A, the average AUC across 10 folds 
in the testing set is 0.73 (SD 0.05). After correcting label noise 
and burst suppression, the testing AUC is 0.80 (SD 0.06). The 
different responses to sedatives (i.e. different EEG patterns for 
the same behvaioral state / level of sedation) is a primary 
source of the imperfect AUC value. 

 

Figure 1.  ROC curves for the training and testing patients averaged from 10 

folds. (A) Without any correction. (B) After correcting label noise and burst 

suppression. 

In Figure 2 we show examples of EEG spectrogram and 
the predicted sedation level in both RASS -5/-4 and RASS 
-1/0 cases. The initial part, about 200s (note the time unit is 
×2s), is a mixing period where the GRU model flushes the 
initial zero hidden state. This should not be an issue in 
real-time monitoring, since the mixing period only occurs at 
the beginning of each monitoring session. The trace of 
predicted sedation level is robust to noisy perturbations in the 
spectrogram, as exemplified in Figure 2B. The trace of 
sedation level is smooth due to the intrinsic recurrent structure, 
without ad hoc smoothing. 

 

Figure 2.  (A) Top: The red line indicates the sedation level given by RASS 
assessment at -5/-4; The blue line indicates the predicted sedation level, 

expressed as the probability of being RASS -1/0. Bottom: The EEG 

spectrogram from four bipolar frontal channels. The unit of x axis is ×2s. (B) 
Similar to (A), but showing an example with RASS at -1/0. 

B. Comparison with Feed-Forward Neural Network with 

Smoothing 

To further illustrate the benefit of our recurrent model for 
sedation monitoring, we treat the spectra in the spectrogram as 
independent samples and train a feed-forward neural network 
with the same number of layers and the same number of 
hidden nodes with the recurrent counterpart, GRU. For a 
feed-forward network, due to its lack of temporal context, 
sedation level estimates are noisy. We can smooth these 
estimates by averaging the trace using the most recent T 

seconds, where T is the length of the smoothing window. In 
Figure 3, we compare the performance of our RNN against the 
feed-forward network at different smoothing window lengths. 
The performance of the RNN is not affected by the length of 
smoothing window, while the performance of feed-forward 
network is improved by longer smoothing windows. However, 
the longer smoothing window introduces a longer time delay 
to sedation monitoring in terms of neurologically meaningful 
changes, which is not desirable for ICU setting. 

 

Figure 3.  The average testing AUC from 10 folds for GRU (blue) and 

Feed-forward neural network (magenta) when using smoothing windows 
with different lengths. The shaded area indicates interquantile range. 

C. The Effect of Sedative Drugs 

Many ICU patients receive continuous infusions or bolus 
doses of sedative drugs. A major reason for misclassifications 
in the current model appears to be patient-specific differences 
in EEG signatures of sedatives. To show this, in Figure 4, we 
compare the prediction error when there is no drug given, and 
when there is a certain drug or combination of a sedative and 
an opioid given to the patient. Here we only show 
combinations with more than 50 RASS assessments. 

 

Figure 4.  The prediction error (absolute difference between target and 

prediction probability) with drug and without drug in testing patients. Prop: 

propofol. Dex: dexmedetomidine. HydroM: hydromorphine. Fent: fentanyl. 
Mida: midazolam. Stars indicate significant difference (p < 0.05) using 

Kruskal-Wallis test followed by Dunn’s post-hoc test. 

Assessments where no drug is being administered show a 
relatively low prediction error. Dexmedetomidine, as well as 
its combination with hydromorphine and fentanyl, gives the 
lowest prediction error, suggesting relatively consistent brain 
responses across patients. A combination of propofol and 
hydromorphine gives larger prediction errors compared to 
several other cases, suggesting large patient-specific 
variations for this combination. Propofol and its combination 
with other opioids have relatively large prediction errors. 
Ketamine is not included in Figure 3 due to an insufficient 
number of examples to allow reliable evaluation. 
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IV. DISCUSSION 

We have developed a sedation monitoring system based on 

a recurrent neural network, trained from the EEG 

spectrograms of 154 ICU patients. This model obtains an 

average testing AUC at 0.8 without any additional feature 

extraction or smoothing. A feed-forward model followed by 

smoothing obtains lower AUC (Figure 3), where smoothing 

leads to stable estimates of sedation levels while creating a 

response delay. In contrast, the RNN model achieves both 

low-variance estimates of sedation level and short delay time. 

The ability of the GRU RNN model to learn and 

appropriately forget temporal context leads to less strict 

requirements on artifact removal. For minor perturbations, 

such as the one exemplified in Figure 2B, the model learns to 

ignore these fluctuations. Therefore, the current model should 

be more robust compared to existing sedation monitors in the 

ICU setting. However, a standardized validation protocol, 

such as [16], will be required to comprehensively validate the 

model. 

There are several limitations and future refinements needed 

for the current model. First, burst suppression is treated 

separately. Second, propofol and its combination with other 

opioids in many cases lead to relatively large prediction errors 

as shown in Figure 4. To alleviate these limitations, a 

patient-specific calibration should be used where one can 

determine a personalized drug tolerance for achieving certain 

RASS scores. Another important limitation is that we treat the 

problem as binary classification, i.e. RASS -5/-4 vs. -1/0. 

Since RASS score is ordinal, ordinal regression should be 

used to make use of all RASS scores in real scenario 

applications such as closed-loop sedation level control. 

V. CONCLUSION 

Reliable sedation monitoring in ICU patients can be 

achieved using a recurrent neural network trained end-to-end 

from EEG spectrograms. The sedation level predictions are 

stable (low variance) without ad hoc smoothing. 

Patient-specific calibration for specific responses to 

sedatives, such as propofol, is expected to further improve the 

performance of sedation monitoring. 
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