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Abstract—In Intensive Care Unit, the sedation level of
patients is usually monitored by periodically assessing the
behavioral response to stimuli. However, these clinical assess-
ments are limited due to the disruption with patients’ sleep
and the noise of observing behaviors instead of the brain
activity directly. Here we train a Gated Recurrent Unit using
the spectrogram of electroencephalography (EEG) based on
166 mechanically ventilated patients to predict the Richmond
Agitation-Sedation Score, scored as ordinal levels of -5, -4, ...
up to 0. The model is able to predict 50% accurate with an
error not larger than 1 level; and 80% accurate with an error
not larger than 2 levels on hold-out testing patients. We show
typical spectrograms in each sedation level and interpret the
results based on the visualization of the gradient with respect
to the spectrogram. Future improvements include utilizing the
EEG waveforms since waveform patterns are clinically thought
to be associated with sedation levels, as well as training patient-
specific models.
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I. INTRODUCTION

Patients in Intensive Care Unit (ICU) are usually under

continuous infusion of various sedatives and analgesia to

reduce agitation and pain. Inappropriate levels of sedation

could lead to longer ICU stay, delirium and increased

morality [1]. To monitor the level of sedation, many clinical

assessment protocols are proposed, such as the Ramsay

scale [2], Richmond Agitation-Sedation Scale (RASS) [3]

and Sedation Agitation Scales (SAS) [4]. For example, in

RASS, the nurse or clinician applies incrementally intense

stimuli to the patient and record the level on which the

patient starts to respond. These assessments are clinically

validated with relatively low inter-rater variance. On the

other hand, since the assessment needs interaction with the

patient periodically, it can disrupt patients’ circadian rhythm

and sleep. Further, the observational noise of assessing

behaviors instead of the brain activity itself makes it harder

to reflect the true brain status.

As an alternative, there are electroencephalography

(EEG)-based anesthesia depth monitors commercially avail-

able, such as bispectral index (BIS) (Aspect Medical Sys-

tems, Norwood, MA, USA), Nacrotrend (Monitor Technik,

Bad Bramstedt, Germany), and Patient State Index (PSI)

(Hospira, Lake Forest, IL, USA), etc [5]. Clinically, since

EEG is not yet commonly used in ICU, directly applying

anesthesia depth monitors to ICU patients is not thoroughly

validated [6]. Technically, these brain monitors use a two-

step approach where a noisy prediction is first made for

each EEG segment; then the noisy predictions are smoothed

to get a relatively stable score. Such technique involves a

trade-off between more/less smoothing and low/high time

resolution, which is hard to find a theoretical optimum.

We recently proposed EEG-based sedation level prediction

using Gated Recurrent Unit (GRU) [7], which can output

smooth prediction without ad hoc smoothing. The model

was trained to classify binary sedation levels, i.e. deep vs.

light, by combining several sedation levels. Here we extend

our previous work [7] to allow predicting all sedation levels

as an ordinal number.

The following sections are organized as follows. Sec-

tion II provides the demographics about patients, EEG

signal preprocessing and the model architecture. Section III

presents the results including performance evaluation and

visualization of typical spectrograms in each sedation level.

Section IV describes the important limitations and future

directions. Section V concludes the paper.

II. METHODS

A. Richmond Agitation-Sedation Scale

The Richmond agitation-sedation scale (RASS) is used

as the reference sedation level. It is a clinical sedation

assessment applicable in ICU environment [3], as shown

in Table I. It can be divided into the sedation and agitation

parts, where we only use the sedation part. The sedation part

has 6 levels from -5 to 0. The ICU nurses or researchers

assess the patients about every 2 hours.

Table I
THE SEDATION LEVELS IN RICHMOND AGITATION-SEDATION SCALE

Score Term Description

0 alert and calm spontaneously pays attention

-1 drowsy sustained awake >10s, eye to voice

-2 light sedation awake <10s, eye to voice

-3 moderate sedation movement to voice, no eye contact

-4 deep sedation no resp to voice, move to phys stimuli

-5 unarousable no resp to voice or phys stimuli
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B. Patient

The Partners Institutional Review Board approved retro-

spective analysis of the dataset without requiring additional

consent. All together there are 195 patients enrolled from

2014 to 2016. The inclusion criteria are (1) in the ICU; (2)

on mechanical ventilator; and (3) no neurological disease

such as stroke or dementia. We visually check the quality

of EEG signals and remove the bad ones. We also remove

EEG recordings without any RASS from -5 to 0 available.

Finally, we are left with EEGs from 166 patients. Table II

describes the patient demographics.

Table II
PATIENT DEMOGRAPHICS

Characteristic Value

Number of patients 166

Age, yr, median (IQR) 60 (51 – 70)

Sex, n (%Male) 112 (67.5%)

BMI, kg/m2, median (IQR) 29 (24 – 35)

Days in ICU, median (IQR) 12 (7 – 20)

CCI, median (IQR) 3 (2 – 5)

APACHE II, median (IQR) 22 (15 – 28)

Diagnosis at ICU admission, n (%)

Acute respiratory failure 104 (63%)

Liver or renal failure 38 (23%)

Surgery 35 (21%)

Sepsis 27 (16%)

Cardiac diseases 11 (7%)

C. EEG Preprocessing and Artifact Removal

The EEG signals are obtained using Masimo Sedline

brain function monitors (Masimo Corporation, Irvine, CA,

USA) with sampling frequency of 250Hz. There are 4 EEG

channels fixed to the frontal head at F7, F8, Fp1 and

Fp2 based on the 10-20 international system. The EEG

signals are re-referenced to obtain bipolar montage to reduce

artifacts: Fp1-Fp2, F7-F8, Fp1-F7 and Fp2-F8. We bandpass

the signals between 0.5Hz and 16Hz to avoid possible

artifacts from various machines in the ICU.

For each RASS assessment, we take a 10min EEG seg-

ment before the assessment and compute spectrogram using

the multitaper spectral estimation. The parameters are: K

= 7 tapers, window size T = 4s and window step 2s. We

convert the spectral power into decibels, and normalize the

spectrogram for each patient to have zero mean.

The criteria to identify segments contaminated by artifacts

are either (1) amplitude larger than 500uV; (2) spectrum

is spuriously staircase-like, as defined convolving the de-

trended spectrum with step signals and being larger than a

threshold. This is usually caused by nonphysiologic artifacts

such as cooling blankets or pumps in ICU environment.

About 10% of the data is identified as artifacts.

D. Training the Model

The EEG spectrograms are fed to Gated Recurrent Unit

(GRU) [8], a type of recurrent neural network, which is in

principle an autoregression with inputs and gates learned

using neural networks. At each time step, the model consists

of passing the information through input, hidden node, reset

gate and input gate. We stack two layers of GRUs with

hidden nodes in each layer. The output from the first layer

of GRU is dropped out at rate 0.5 to avoid overfitting, and

then fed to the second layer.

The output from the last layer of GRU is fed to an ordinal

regression layer. The ordinal regression allows to train and

predict ordinal values, which is commonly found in clinical

assessments. There are many ways to model ordinal numbers

with probabilistic interpretations, mostly by maximizing the

likelihood of falling into the intervals defined by learnable

thresholds. Here we use “ordistic regression” [9] which

generalizes the logistic regression for categorical numbers

to ordinal regression. When the number of ordinal levels is

two, it reduces to logistic regression.

We validate the model using leave-one-patient-out cross

validation, where we take a patient as the testing set in turn.

There is no common patient in either the training or testing

set to ensure its generalization ability to new patients. The

performance is pooled over the testing patients in all rounds

of the cross validation.

III. RESULTS

A. Prediction Performance

We compare the predicted RASS levels to the RASS levels

assessed by nurses on the testing patients. As shown in

Figure 1, the percentage of predictions that match exactly

with the nurses is low, with median at around 15% of all the

assessments. This can be due to (1) the EEG spectrograms

does not contain enough information; (2) the relatively high

patient heterogeneity in terms of response to sedatives; and

(3) the observational noise in these assessments. To validate

the last assumption, the accuracy of having prediction error

not larger than 1 RASS level is about 50%, which is

significantly larger than the exactly matched ones (Mann-

Whitney U p-value <0.01). We leave the validation of the

first and second assumptions to future studies. Allowing

prediction error not larger than 2 RASS levels leads to 80%

accuracy. Finally, allowing prediction error not larger than

3 RASS levels leads to close to 100% accuracy.

B. Typical EEG Spectrogram Examples

The GRU, similar to other neural networks, is hard to

interpret what information it uses to make the prediction.

On the other hand, interpretability is at the center of clinical

applications. Here we show a typical EEG spectrogram

example at each RASS level in Figure 2, Figure 3, Figure 4,

Figure 5, Figure 6 and Figure 7 respectively. We define

“typical” as having the prediction value before applying

293



no err |err|<=1 |err|<=2 |err|<=3

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (%

)

Figure 1. From left to right are the accuracies for each patient when
allowing 0, 1, 2 and 3 levels difference in RASS prediction. These results
are pooled over the testing set.

thresholds in ordinal regression at the final time step closest

to the median value in all correctly predicted examples.
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Figure 2. An example from an assessment with RASS at 0. (A) The
predicted trace of RASS levels. (B) The absolute gradient of the final RASS
with respect to the input spectrogram. For detailed explanations, see the
main text. (C) The EEG spectrogram in decibel scale. Red means high
power; blue means low power.

At the top panel of each figure, we show the predicted

trace of RASS levels. The initial part is treated as “burn-

in” period of GRU, which should not be used to interpret

the results. This is because the GRU starts with initial zero

hidden states, which are gradually washed out by the inputs.

The burn-in period can be decided by giving a constant input

and observe when the output reaches a plateau.

The middle panel shows the absolute value of the gradient

of the final RASS prediction with respect to the spectrogram.

In other words, the lighter parts indicate the important parts

of the spectrogram, if we add noise to the important parts,

the final RASS prediction would have a relatively large

change compared to adding noise to dark parts. It turns out

the import spectrogram parts are often associated with (1)

changes in the spectrogram, such as Figure 2 around 400

and 480 seconds, Figure 3 around 100 seconds and Figure 6

around 250 seconds; (2) periodically reassuring the final

RASS when the spectrogram keep similar, such as Figure 3

around 200 seconds, Figure 4 around 400 seconds, Figure 5

around 120 and 300 seconds and Figure 7 around 50, 120,

280, 380, 420 and 480 seconds.
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Figure 3. An example from an assessment with RASS at -1.
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Figure 4. An example from an assessment with RASS at -2.
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Figure 5. An example from an assessment with RASS at -3.

IV. DISCUSSION

An EEG-based sedation monitoring system is developed

based on 166 ICU patients. The use of ordinal regression

enables the model to predict the RASS as an ordinal level.

The use of recurrent neural network removes the need of ad

hoc smoothing. The accuracy while allowing for prediction

error not larger than 1 RASS level is about 50%. Allowing

prediction error not larger than 2 RASS levels leads to 80%

accuracy.
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Figure 6. An example from an assessment with RASS at -4.
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Figure 7. An example from an assessment with RASS at -5.

There are a few limitations. First, EEG spectrogram

reflects the spectral information in EEG, but does not reflects

intermittent waveform patterns, such as intermittent rhyth-

mic delta slowing or burst suppressions. These waveform

patterns are best captured by convolutional neural networks

which can be highly specialized to these patterns as well as

being invariant to its actual location in the EEG. Second,

the wide range in the box plots in Figure 1 indicates a

high amount of inter-patient heterogeneity, given various

diagnoses for ICU admission. To alleviate the heterogeneity,

training patient-specific models while still being able to

benefit from the large amount of data from other patients,

is a desirable property. Possible approaches include giving

higher weight to the patient of interest, or using transfer

learning to learn patient-specific models starting from an

overall model. Third, standardized clinical validation proto-

col should be used to validate this model in a variety of

clinical conditions as proposed in [10] in terms of clinical

sign validation, pharmacological validation, clinical utility,

cost-effectiveness, and ultimately outcome improvement.

V. CONCLUSION

As a real-time alternative to clinical sedation assess-

ments, the ordinal sedation level can be predicted from

EEG spectrogram using a combination of recurrent network

and ordinal regression. It is expected that utilizing EEG

waveform patterns and training patient-specific models can

help improve the prediction performance.
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