2017 19th International Symposium on Computer Architecture and Digital Systems (CADS)

Novel Algorithm and Architectures for High-Speed
Low-Power ConText-Based Steganography

Somayeh Timarchi

Department of Electrical
Engineering
Shahid Beheshti University
Tehran, Iran

s_timarchi@sbu.ac.ir

Abstract - Least Significant Bit (LSB) insertion method is a
popular type of steganographic algorithms in spatial domain.
Nevertheless, in this approach essential measures should be
considered to enhance the both visual quality and security
properties. ConText is a revised version of LSB method to hide
secret information in image carrier with enhanced visual
imperceptibility. This paper introduces a novel algorithm based
on ConText, called the Modified ConText (MCT). The proposed
algorithm is based on using a threshold level to compare pixels in
a sub-block which leads to faster and power efficient
implementation. We strengthen the ConText algorithm which
can embed data in a more noisy-like area to increase security and
visual quality. Moreover, a high-speed hardware implementation
of the MCT algorithm is also presented by employing faster
comparisons. In addition to assigning threshold value that can
lead to a more efficient architecture, the pre-computation low-
power technique is also employed to reduce power consumption.
The proposed architecture is synthesized by the ISE tool and
implemented on a Spartan-3 FPGA device. The results imply that
the proposed architecture outperforms the system frequency, the
usage of FPGA resources, and power consumption by
approximately 7%, 30%, and 64%, respectively.

Index Terms - Steganography; LSB insertion; FPGA-based
implementation; Pre-computation technique; Low-power design;

I. INTRODUCTION

In today’s communications, protecting important
information from unauthorized accesses and modifications is
absolutely necessary [1]. There are various techniques to
fulfill this desire including cryptography and steganography.
While cryptography encodes and protects the content of data,
steganography attempts to conceal the existence of data [2].
With the emergence of digital signal processing,
steganography has been spread and emphasized in the digital
domain. Even though all types of data, including image, video
and text, can be used in steganography as cover (carrier)
media, the digital image has been commonly utilized as the
cover in steganographic systems [1, 3].

Steganography employs a wide range of techniques in order to
hide important data in the cover media. One of the well-
known approaches is to directly insert the data into the least
significant bit. In this technique, the data are embedded in one
or several least significant bit(s) of the image pixels. There are
many articles about the spatial domain steganography in the

978-1-5386-4379-2/17/$31.0002017 IEEE

Masoud Abbasi Alaei

Department of Electrical Engineering,
Mathematics and Computer Science
University of Twente
Enschede, Netherlands

m.abbasialaci@utwente.nl

Hossein koushkbaghi

Department of Electrical
Engineering
Shahid Beheshti University
Tehran, Iran

h.kooshkbaghi@mail.sbu.ac.ir

literature which are elaborated in the following. Potdar et al.
[4] used a method to produce a fingerprinted secret sharing
steganography in order to resist against the cropping attack.
Wang and his colleagues [5] offered a technique, in which the
differences between the secret-embedded and original images
are totally indistinguishable by human eyes. It also avoids
falling off the boundary issue by utilizing the pixel value
differencing method. Chan and Cheng [6] suggested a LSB
technique based on optimal pixel adjustment. Lou and Liu [7]
proposed a method that employs variable-size secret data and
redundant Gaussian noise, in order to resist against the
common-cover-carrier attack. In [8], an algorithm was
presented on the basis of searching for regions with a great
diversity of the gray-scale levels by dividing the image into
some blocks and sub-blocks, and comparing the pixel values
of the sub-blocks.

Although numerous steganographic techniques and algorithms
have been published in many articles, the hardware
implementation has not been adequately remarked till now. A
few hardware implementations of LSB steganography have
been presented since the last decade [10-18]. It is worthwhile
to state that hardware implementation provides some benefits
such as the capability of interacting with the client through the
user interface, as well as some other advantages including the
high speed and portability. FPGA-based implementation of
steganographic algorithms seems to be an interesting option
since its capacity for parallel processing could allow multi-
channel processing [10]. FPGAs are reconfigurable, flexible
and physically secure devices with high computational
capabilities and offer a fast design cycle [10, 15].

In this paper, a new algorithm as well as hardware
implementations is presented. In the proposed algorithm
(called the Modified ConText, or shortly MCT), a threshold
value is considered to specify the range of differences
between two adjacent pixels in a 2x2 sub-block. So, a high-
quality stego-image is attained. Moreover, the threshold
assignment leads to a more efficient hardware implementation.
A developed version of the MCT is also explores in order to
achieve a higher quality stego-image with lower area and
power consumption for hardware realization. Finally, two
high-speed and low-power architectures are explored for
MCT.

SHELL CONTROL

Mux8tol

RST — ConText
L | InfoOutput
CLK 1 c8 M Info
<« M1l
Information(7-0) m12 SGet
| m— L e
M21
- Output(7-0)
L w2z >
M31
so m32 SHide
s1 m33 ——
S2
S3
DIN s4
[— S5
S6
— S7
s8 Cont8(7-0)
—>

Fig.2. FPGA-based structure of the context algorithm in more detail [12].

The rest of this paper is organized as follows. In Section II,
the ConText algorithm [8] and its hardware implementation
[12] are described. In Section III, the novel ConText-based
algorithm is developed and the advantages of the proposed
algorithm are discussed. Two versions of MCT
implementation are introduced in Section IV. Section V
presents the simulation results and the statistical analysis of
steganographic algorithms as well as the comparison
between different hardware implementations. Finally, the
paper is concluded in the last section.

II. ConText algorithm and its hardware implementation

The ConText algorithm analyzes the image in the spatial
domain and looks for an area with a greater diversity of
gray-scale levels in order to embed the data. The steps of
the ConText algorithms, shown in Fig. 1 are as follows [8]:
1) The cover image is divided into 3x3 blocks without
overlapping

2) The 3x3 block is divided into four sub-blocks

3) If there are at least three different gray-scale levels in
each sub-block as there is in the 3%3 block of Fig. 1, the
block will be considered as a valid sub-block.

4) The LSB of the central pixel of the 3%3 block will be
embedded, if the four sub-blocks are valid. After
embedding the data bits, the validity of the four sub-blocks
will be verified. If some sub-blocks are invalid, the data bit
will not be inserted.

m32| 45| 66 (w90 | 41|174| 94| 74| 1

w4l | 10 | 168 [@10| 1 | 22 (140| 21| O 32 45 45 66

W30 | 88| 0 Jmas 245| 2 (122 21|45 s | 10 10 | 168

LU D]
10| 75| 112W11| 78 |178) 32 | 45 | 33

68 | 122|168 15| 95 (154 | 88 | 62

197|179/ 148 |114 13 | 245 |132{217

4] 71]182] o | & | o1

0| 99|224|56| 10| 85| 45 |105| 0 4 10 10 168

20| 12| 132|200 82| 12 | 30 | 88 | 14 30 88 88 0

Fig.1. ConText algorithm. a) Dividing the cover image into 3x3 blocks. b)
Dividing 33 block into four sub-blocks [8].

In the rest of this section, it is attempted to provide a
general view for the hardware structure of the ConText
algorithm. Fig. 2 presents the architecture, including the
inputs and outputs and internal blocks. As shown in the
figure, this architecture has four blocks: shell control, MUX
8 to 1, Reg bank, and ConText block [12].

The shell control block is used to control the process of
embedding the data in the cover image. It operates as a
finite-state machine. The MUX 8-to-1 is an 8-to-1
multiplexer that selects the information bit which requires to
be hidden in the LSB of the pixel. The Reg bank stores 9
pixel values of the 3x3 block. Finally, the ConText block is
the main part of the architecture, which performs the
process of dividing the cover image into 3x3 blocks and
2x2 sub-blocks. The main computations are performed in
this block and the most demanding operations refer to the
comparisons made between the four values of the 2x2 sub-
blocks.

III. PROPOSED MODIFIED CONTEXT (MCT)
ALGORITHM

The proposed MCT algorithm is explored in this section.
The proposed algorithm is based on the ConText algorithm
with some modifications. The modifications have been
organized in order to achieve a better quality of the output
stego-image. Besides, the proposed hardware
implementation outperforms the power consumption and the
area occupation. The steps of the proposed five-step MCT
algorithm are as follows:

1) The cover image is divided into 3x3 blocks without
overlapping.

2) The 3x3 block is divided into four sub-blocks.

3) If there are, at least, three gray-scale levels in each
sub-block, with level differences higher than the
desired threshold level (J), the sub-block will be
considered as a valid sub-block.

4) The LSB of the central pixel of 3x3 block will be
embedded, if its four sub-blocks are valid.

5) After insertion, the validity of the four sub-blocks
will be verified. If there are less than three

different gray-scale levels considering the value 6,

the data bit will not be inserted.
Generally, the new modification comprises employing a
threshold level (3). In order to verify the validity of the four
sub-blocks, the differences must be higher than §. Using
threshold wvalues leads to reduction in steganography
capacity. This might be more distinguishable, for instance,
when cover image has plain texture with a lower variety of
grayscale levels. The Choice of proper threshold level will
be studied in more detail in the next section. To have a clear
understanding of the proposed algorithm, we give the
following example .
Example: Let's assume the 3%3 block with nine values
depicted in Fig. 3. Based on the ConText algorithm, the data
bit can be inserted in the central pixel (186), but the block is
not a noisy region, and is actually a smooth one. In order to
increase the security of the conventional ConText
algorithm, a threshold level, like 7 could be considered in
the proposed MCT algorithm. By this assumption, the data
bit will not be inserted because the difference between two
adjacent values in the 2x2 sub-block is less than 7.

190 | 189 | 190 190 | 189 189 | 190
187 | 186 186 | 187
187 | 186 | 187 9
187 | 186 186 | 187
190 | 189 | 190 190 | 189 189 | 190

Fig. 3. Values of nine pixels in the 3%3 block (left) and four 2x2 sub-blocks
(right)

To reduce the area overhead and achieve a fast

implementation, the fifth step of the proposed algorithm

could be eliminated. So that the four-step version of MCT

be paid. On the other hand, choosing lower threshold value
helps to achieve higher capacity, but stego-image quality as
well as hardware implementation results will be degraded
(slightly in speed and power consumption).

According to synthesis results, to achieve
simultaneously =~ reasonable results of hardware
implementation and steganographic capacity, 6 = 3 is
chosen in this work. However, if designing priority is speed
and steganographic capacity is less important, higher
threshold levels can be selected.

In the rest of the paper we assume the four-step version
of MCT algorithm (ignoring the fifth step) for
implementation and comparison. Because of eliminating the
validation step after insertion in the five-step version of
MCT, less area and delay are achieved compared to the
five-step version of the MCT block.

IV. High speed and low power Hardware Realization for
MCT

In this section we proposed two versions of hardware
implementations for MCT algorithm (MCT-sl and MCT-
s2). Both of them have their advantageous and
disadvantageous. Higher speed, lower power consumption
in conjunction with less usage of FPGA resources are the
advantageous of the second implementation. On the other
hand, the first one is more accurate, in cost of losing speed
and power. The two structures will be discussed in the
following.

The general structure of the MCT algorithm is
explained. Fig. 4 depicts the general architecture of
proposed MCT-S1 and MCT-S2 in details. According to
this figure, the proposed structure contains four blocks,
which are similar to the blocks offered in [12].

algorithm is formed. This modification has a drawback as Information Mux8tol
well. In fact, by eliminating the final step, the validity of the —L
four sub-blocks will not be verified. As a result, after the 50 —Output
insertion, some sub-blocks might become invalid, or in P_in - 2 > SHide
other words, some pixels values could fall below the RST 9 ConText — Cont
threshold level (). However, this issue can be ignored, ‘i & 52
because a significant quality of the stego-image higher than — S
the conventional ConText algorithm is obtained. On the
other hand, without final verification performed after I
inserting data bit, the difference between two adjacent L Ch
pixels is an issue. Therefore, the aforementioned issue is] SHELL CONTROL
not a serious predicament. -
It is essential to study the impacts of different threshold (

levels on the performance of the proposed algorithm and
hardware implementation. Decision on an appropriate value
used for ¢ needs to be made based on speed and power
dissipation of the hardware implementation as well as
capacity and cover image complexity. High threshold
levels, for example 0 = 7, lead to a higher PSNR (Peak
Signal-to-Noise Ratio) and consequently a higher stego-
image quality, along with a more efficient hardware
implementation, i.e. higher speed and less power
consumption. However, the cost of capacity reduction will

Fig. 4. The proposed MCT general structure in more details.

Fig. 5 shows the ConText block structure of the
proposed MCT algorithm. M11, M12... M33 are nine input
pixels. Output, Cont, and SHide are the output signals,
which are similar to the ConText structure. Four
comparators are needed to compare pixels in 2x2 sub
blocks.

Predictor Unit

A(6)

- A(G-3)—

- B(5-3)—>

inl

3-bit equal
in2 Comparator
en

out

Fig.7. The proposed low-power equal comparator block of MCT-S2 structure employing the pre-computation technique.

Fig. 6 illustrates the comparator block in more details.
This block is composed of four threshold-based
comparators. A, B, C and D are the four pixel values of the
2x2 sub-blocks. Threshold-based comparator determines
whether the difference of two pixels is above the threshold
level (0) or not. In this paper a threshold-based comparator
is designed which is called MCT-S1.1t is more accurate in
making a comparison of two pixels compared to MCT-S2
but less efficient in speed and power consumption. The rest
of this section explains the proposed architectures.

comparator

M1 A(7.0) ConText
[m—— -
Ml2E— B(7-0)
M21 C— C(7-0)
M22 ‘ D(7-0)
comparator
A(7-0)
MI3— B(7-0) | T Output
C(7-0)
M23— D(7-0)
— Cont
comparator [L
A(7-0, .
B§7-0; > SHide
M3l — C(7-0)
M32 D(7-0)
comparator
A(7-0)
=~ B(7-0)
L—{C(7-0)
M33 —— D(7-0)

| —
M22(7-1)&Info
Fig. 5. Structure of ConText block of the proposed MCT-S1 and MCT-
S2 architectures.

In the second implementation algorithm called MCT-S2
considerable alterations have been employed in the
threshold-based comparator blocks. Instead of calculating
the difference between the two adjacent pixels in a sub-
block and comparing with threshold level, an alternative
approach has been opted, explained as follows:

In this approach, according to the value of J, some bits
are ignored to speed up the comparison. Although this
method cannot meet all of the states, it can fulfil our goal of
fast and power efficient implementation. For 6 = 3, we
ignore 2 LSBs bits and compare the remaining ones. Three
LSBs and four LSBs bits can be ignored for 6 = 7 and J =
15, respectively. Let's assume 6 = 3. In order to evaluate the

differences between two pixels in a sub-block, two LSBs of
two pixels are neglected. Then, the rest of bits (i.e., 6
MSBs) are compared together.

A m=> | Threshold-based
B mm»> - Comparator §E‘ }

C mm» | Threshold-based
DE—— Comparator

A mm> | Threshold-based | ||
C mm»> | Comparator

B mm» | Threshold-based
D m» | Comparator

A = Threshold-based
D mm»> | Comparator

B mm»>—————| Threshold-based % |::

C m»> | Comparator

Fig. 6. The proposed comparator block of MCT-S1 and MCT-S2
architectures depicted in Fig. 5.

This approach leads to higher speed, less usage of FPGA
resources and less power consumption. Comparing the
results of proposed structure with other existing efficient
one, illustrates that the improvement in speed and power
consumption are remarkable. On the other hand, this
strategy, fails in many cases. It is considered that some 2x2
blocks are valid, while they are not. In fact, the MCT-S2 is
an appropriate implementation of the MCT algorithm.
However, if efficient architecture is the first priority and
accuracy comes second, it can be an ideal choice.

The proposed MCT-S2 architecture also employs a pre-
computation technique in order to reduce the dynamic
power consumption even more. In fact, the idea behind the
pre-computation method is to selectively compute some
logic outputs and make use of them for lowering the internal
switching activity [15]. Based on the pre-computed values,
the threshold-based comparator block can be either enabled
or disabled. In the proposed structure, this technique is
applied to the threshold-based comparators. By employing
this technique, it is possible to use a smaller comparator.

The Threshold-based comparator block in the proposed
structure (Fig. 6) consists of a predictor unit shown in Fig. 7
(0 = 3). Two MSBs of the input operands are employed to
predict the comparison results. According to the truth table

of predictor unit, only in 4 out of 16 states, the predictor
output is zero, which enables the equal comparator block. In
the remaining states, the result is produced during
prediction phase. Using pre-computation technique makes a
significant reduction in power consumption as discussed in
the next section.

In the following, we first explore the first hardware
implementation of the MCT algorithm called MCT-S1
which needs to compromise between accuracy and
hardware efficiency. The only difference is in employing
the strategy for comparing pixels in 2x2 sub-blocks. In the
second approach, we use straightforward method to
compare pixels (i.e. subtract two pixels and then compare
the result with ¢). It may look very time consuming, but by
combining subtraction and comparison operations, the
results will be improved.

V. SIMULATION AND COMPARISON

The results of the proposed MCT hardware implementations
are presented in this section. The experimental findings can
be divided into two major categories: the evaluation results
of the proposed algorithms, and the experimental results of
the proposed hardware implementations. Two experiments
are carried out to evaluate the performance of the proposed
algorithms, in terms of the embedding capacity and stego-
image quality.

Four 512x512 gray-scale images are chosen as the
cover images, as displayed in Fig. 8. Finally, the
experimental results of hardware implementation are
presented in order to demonstrate that the proposed
architectures can perform more efficiently than the most
efficient existing ones.

F jg

m -

<)

Fig. 8. Cover images. a) Cameraman b) jet plane ¢) Lena d) Mandrill.

As mentioned earlier in this section, two criteria are
chosen in order to evaluate the proposed algorithms
(embedding capacity and PSNR). Fig. 9 illustrates the
effects of several values of 6 on the embedding capacity for
the proposed MCT algorithm. This figure depicts that a
lower value of & would lead to a higher capacity.

35000 32768 32768

32768 32768

30000

25000

20000

15000

CAPACITY

10000

5000

test image

—— [16] —4— [12] =— E- [17] =—d— [10] MCT (6=3)

Fig.9. Embedding capacity of the steganography algorithms versus test

images.

The second criterion for examining the performance of
the proposed algorithms is the peak signal-to-noise ratio
(PSNR). The results of comparing the proposed algorithms
with the algorithms presented in [10, 12, 16, 17], are
depicted in Fig. 10.

75

70.2
70 1
™~ B 63.4
x 65 ~: i 62
E [3¥) 1
v
* 60 o
59,75 ’
58.85 E
- 58.26 57.83
50,24 50.24 50.24 5024
S0 5097 5047 il ¥l
0 1 2 3 4 5
test image
—e— [16] —h— [12] 17] —— [10] —— MCT (8=3)

Fig. 10. Comparison of PSNR versus test images.
e Experimental results of hardware implementation

At first, the proposed architecture was modeled at the
register transfer level by using the VHDL. The functional
testing and simulation were performed using ModelSim 6.5.
Additionally, ISE 14.2 was chosen to synthesize, map, and
route on the Spartan-3 device family.

The results of the hardware implementations are shown in
Table 1. This table exhibits the FPGA results of the
architecture based on the MCT-SI and MCT-S2
architectures along with four efficient ones.

Table I also illustrates power consumption values
obtained by Xilinx tools. Total on-chip power (static design
+ dynamic design) contains power dissipated on-chip from
any supply source. Static power is the power when the
device is configured and there is no switching activity.
Dynamic power is the average power from logic utilization
and switching activity. Significant impact of pre-
computation technique on power consumption can be
observed form Table I.

TABLE.I. RESULTS OF IMPLEMENTATION ON FPGA SPARTAN 3

26] | 221 [271 [20] MCT-S1(3=3)

Clock (MHZ) 140 95 125 167
Number of slice Flip Flops 76 93 62 45
Number of 4-input LUTs 92 124 76 50
Number of occupied slices 82 110 74 64
Total on-chip power (W) 0.245 0.187 0.195 0.121 0.067

VI. CONCLUSION

In this paper, a novel algorithm (i.e., MCT) was proposed
based on the ConText algorithm along with two hardware
implementations. The algorithm employs a threshold value
for deciding on the embedding process. The proposed
algorithm enhances the quality of the stego-image by
improving the PSNR criterion. Besides, the proposed
approaches lead to a more efficient hardware
implementation. The proposed architecture for the four-step
MCT algorithm utilizes fewer resources than the most
efficient existing steganographic architectures. Besides, the
system frequency is improved. Employing a threshold value
causes to ignoring some bits in the comparison stage and
reducing the area occupation by half. Moreover, in order to
decreasing the power consumption, the pre-computation
technique was utilized by controlling the enable pin of the
main part of computations for some inputs. The proposed
MCT-S2 architecture outperforms the system frequency of
the most efficient architecture by approximately 7% and
reduces the usage of resources and power consumption by
30% and 64%, respectively.

REFERENCES

[1] Cheddad, A., “Digital image steganography: Survey and
analysis of current methods” Signal Processing, vol. 90, pp.
727-752, 2010.

[2] Jung, K. and Yoo, K., “Data hiding method using image
interpolation”, Computer Standards & Interfaces, vol. 31, no.
2, pp. 465-470, 2009.

[3] Liu, C. and Liao, S., “High-performance JPEG
steganography using complementary embedding strategy”,
Pattern Recognition, vol. 41, no. 2, pp. 2945-2955, 2008.

[4] Potdar, V.M., Han, S. and Chang, E., “Fingerprinted
secret sharing steganography for robustness against image
cropping attacks”, Proceedings of IEEE Third International
Conference on Industrial Informatics (INDIN), Perth,
Australia, pp. 717-724, 2005.

[5] Wang et al., “A high quality steganographic method with
pixel-value differencing and modulus function”, Journal of
Systems and Software, vol. 81, no. 1, pp. 150-158, 2008.

[6] Chan, C.K., Cheng, L.M., “Hiding data in images by
simple LSB substitution”, Pattern Recognition, vol. 37, no. 3,
pp. 469-474, 2004.

[7] Lou, D.C., Liu, J.L., “Steganographic method for secure
communications”, Computers and Security, pp. 449-460,
2002.

[8] Herrera-Moro, Dulce R., Raul Rodriguez-Colin, and
Claudia Feregrino-Uribe, “Adaptive Steganography based on
textures” In Electronics, Communications and Computers,
17th International Conference on, pp. 34-34. IEEE, 2007.

[9] Luo, W., Huang, F., & Huang, J. (2010). Edge adaptive
image steganography based on LSB matching revisited.
Information Forensics and Security, IEEE Transactions on,
5(2),201-214.

[10] Laces, P., Antonio, W., & Garcia-Hernandez, J. J. (2015,
June). FPGA implementation of a low complexity
steganographic system for digital images. In Computer and
Information Science (ICIS), 2015 IEEE/ACIS 14th
International Conference on (pp. 319-324). IEEE.

[11] Kait, V. S., & Chauhan, B. (2015, April). BPCS
steganography for data security using FPGA implementation.
In Communications and Signal Processing (ICCSP), 2015
International Conference on (pp. 1887-1891). IEEE.

[12] Gomez-Hernandez, E., Feregrino-Uribe, C., and
Cumplido, R., “FPGA Hardware Architecture of the
Steganographic ConText Technique” 18th International
Conference on Electronics, Communications and Computers
IEEE, pp. 123-128, 2008.

[13] Hala A. F., and Magdy, S., “Design and Implementation
of a Secret Key Steganographic Micro Architecture
Employing FPGA”, Asia and South Pacific Design
Automation Conference (ASP-DAC*04), 2004.

[14] Amirtharajan, R., Balaguru, R., Ganesan, V., “Design
and analysis of Prototype Hardware for Secret sharing using
2-D Image Processing”, International Journal of Computer
Applications, Vol. 4, No. 4, pp. 0975-8887, 2010.

[15] Mahmoudpour,S., and Mirzakuchaki, S., “Hardware
Architecture for a message Hiding Algorithm with novel
Randomizer”, International journal of Computer Application,
Vol. 37, No. 7, pp. 46-53, 2012.

[16] Sundararaman, R., “Stego System on Chip with LFSR
based Information Hiding Approach,” International Journal of
Computer Applications, vol. 18, 2011.

[17] Mohd, B. J., Abed, S., Al-Hayajneh, T., and Alouneh,
S., "FPGA hardware of the LSB steganography method,"
International Conference on Computer, Information and
Telecommunication Systems (CITS), pp. 1-4, 2012.

[18] Bhunia, Swarup, and Saibal Mukhopadhyay. Low-
power variation-tolerant design in nanometer silicon.
Springer, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

