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Abstract—Current trend of population ageing at global level
is accompanied by increased prevalence of chronic diseases
and higher rates of early retirement and labor market exit.
In particular, the lifestyle of office workers is characterized
by prolonged sitting and overall sedentary life, which alone
is a high risk factor for cardiometabolic diseases, obesity and
other related chronic diseases. The SmartWork unobtrusive
monitoring system allows for continuous monitoring of various
lifestyle, health, behavioural and work related parameters of
office workers targeting to empower work ability sustainability.
The large amounts of collected data in such systems are often
characterized by the presence of missing entries. This work is
an exploratory study on the potential of a Laplacian matrix
completion variant for data imputation on the multi-channel
time-series data collected with wearable or work devices in the
SmartWork system.

Index Terms—missing data, heart rate, activity tracker, office
worker, data completion

I. INTRODUCTION

Unobtrusive monitoring of daily activities and physiological
signs has started to be deployed at large especially for older
adults, being empowered by technology availability on one
side (e.g. decreasing prices of wearable devices) and the
society needs with respect to prolonged active and healthy
life years of citizens. The societal needs are driven by the
global trend of ageing of the population, which is severely
challenging the health and pension systems, especially in
Europe. As people get older, health chronic condition preva-
lence increases, resulting in high rates of early retirement
and labour market exit, especially for people aged 55-64 [1].
A wide range of ambient assistive technologies have been
tested and are currently piloted at large scale in smart homes,
supporting home health monitoring of elderly people (over
65 years old) for their independent living, but in most cases
such solutions are either too focused (e.g. disease specific)
or not available/transferable (e.g. home embedded sensing
technologies) at the workplace or on the move to support
professionally active ageing.
On the technology side, the interconnected systems forming
body area networks (e.g. activity tracker along with smart
phone applications) in connection with increased bandwidth
of wireless communication (e.g. 5G mobile network) and the

exponential expansion of the Internet of Things (IoT) makes
it possible to easily transfer and store large volumes of data.

Accounting for both, societal needs and technological ad-
vances, SmartWork project aims to build a Worker-Centric
AI System for work ability sustainability, by integrating un-
obtrusive sensing and modelling of the worker state with
a suite of innovative services for context and worker-aware
adaptive work support [2]. Work ability is directly linked to the
functional abilities and cognitive capacity of the worker, which
are continuously assessed by unobtrusively and pervasively
monitoring the health, behavioral, cognitive and emotional
status of the office worker. The lifestyle of office workers is
characterized by prolonged sitting and overall sedentary life,
which alone is a high risk factor for cardiometabolic diseases,
obesity and other related chronic diseases (e.g. diabetes)
especially at older ages, as low physical activity is associated
with increased morbidity and premature mortality [3]. The
exploitation of the large volumes of person-generated health
data (PGHD) in SmartWork, collected by personal wearable
devices (e.g. Fitbit activity tracker) and work devices (e.g.
smart mouse), together with advanced processing tools to
interpret the data and implement decision support systems
on various personal and work life dimensions (e.g. health,
lifestyle, work flexibility) is a prerequisite in order to prolong
the healthy and active life years of office workers.//

When it comes to big data, it is important to ensure reliable
collection and transmission, along with making the processes
more efficient to facilitate real-time analysis and optimized
storage [4]. Collection of dense time-series (e.g. heart rate
data acquired using an activity tracker) is often characterized
by the presence of missing entries, which may impact on the
value of data for the application and end users. Furthermore,
efficient transmission and storage may even require lossy data
compression (irreversible) on the edge (e.g. sensing or mobile
device) or before the long-term storage, followed by recovery
of intentionally removed data on the server side or whenever
the complete time-series data is needed for further analysis.
Sparse modelling and optimization tools, such as low-rank
matrix completion, facilitate the sparse non-uniform sampling
of monitored processes, allowing the recovery of corrupted,
missing or intentionally removed entries [5], [6].
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on various time-series data collected with wearable or work
devices in the SmartWork unobtrusive monitoring system [2].
The usage of the proposed algorithm for big data is investi-
gated by considering variable matrix size and by comparing
the results to other imputation approaches. The remaining
of the paper is organized as follows: section II presents the
proposed Laplacian matrix completion method for multidi-
mensional data; section III presents the experimental study
performed; and section IV discusses the results and concludes
this study.

II. LAPLACIAN MATRIX COMPLETION FOR
MULTIDIMENSIONAL DATA

This section presents an efficient Laplacian matrix comple-
tion adaptation scheme for multi-channel data modelling. We
assume that a sparse matrix M ∈ Rn×m represents the avail-
able observations from a multi-channel sampled process S. For
a given number of estimations of the process P we denote the
pth estimation as cpk , p ∈ [1, 2, · · · , w], k ∈ [1, 2, · · · , kc]
is the channel index, kc is the number of channels. To
take advantage of the aforementioned properties we formulate
square or near square matrices by partitioning and stacking
process into matrix S ∈ Rn×m where w = n ·m. For a two
channel sampled process we would have the following matrix.

S =



c11
c(n+1)1 . . . c(m(n−1)+1)1

c12
c(n+1)2 . . . c(m(n−1)+1)2

c21
c(n+2)1 . . . c(m(n−1)+2)1

c22 c(n+2)2 . . . c(m(n−1)+2)2
...

...
. . .

...
cn1

c(2n)1 . . . c(m·n)1

cn2
c(2n)2 . . . c(m·n)2


(1)

We also denote Ssisj the element S located at si row and sj
column. The equivalent vector r can be expressed as

r = [c11
c12

c21
c22
· · · c(m·n)1 c(m·n)2 ] (2)

where the rth observation can be expressed as

r = (p− 1)nc + k (3)

p is the pth observation of P , nc the number of channels
and k the kth channel. Then Ω is the subset of indices of the
sampled process that are assumed to be known. The reshaping
dictates the translation of the known entries of timeseries so
that Ssisj , (si, sj) ∈ EΩ is the set of known entries of the
reshaped matrix S.

U =

{
1 (si, sj) ∈ EΩ

0 otherwise
(4)

Any data recovery approach aims to efficiently recover
missing entries generating an estimation very close to the
ground-truth.

Candes et al. [7] established a low-rank sparse matrix S can
be perfectly recovered solving the nuclear norm optimization
problem

minimize τ‖X‖∗ s.t. [X]ij = [S]ij (5)

TABLE I: Summary of Notations

a,a and A Scalar, vector and matrix variables
[A]ij Matrix element at the i-th row and j-th column

IN N ×N identity matrix
0N×K N ×K matrix with zeros

cpk pth estimation of the kth channel
Ω Set containing matrix positions

of observed entries
‖ · ‖∗, ‖ · ‖F Nuclear and Frobenius norms of matrix

◦ Element-wise (Hadamard) matrix product
SVT Singular Value Thresholding with threshold t
{x} Fractional part of x
bxc Integer part of x

where (i, j) ∈ EΩ, X∗ is the nuclear norm of the optimization
variable X and τ is a weighting parameter depending on
the matrix rank. In order to minimize (5) singular value
thresholding Dτ [8] can be employed.

In our multi-channel setting we require to establish con-
straints taking advantage of the local coherence [9]. Two
entries ri and rj of r are generated from the same channel
k if

pi +
k

nc
=
ri + nc
nc

and pj +
k

nc
=
rj + nc
nc

(6)

Subsequently, we formulate the generalized adjacency matrix
A ∈ Rm×m so that the estimation of a missing entry from
channel k is inversely proportional to the temporal distance
between the estimated value and known values of the same
channel.

AΩ =


1 i ∈ Ω, j = i

|i− j| i 6∈ Ω,
{
i+nc

nc

}
=
{
j+nc

nc

}
, j ∈ Nk(i) : Ω

0 otherwise

(7)

The term {
i+ nc
nc

}
=

{
j + nc
nc

}
(8)

ensures that i and j are indices of r generated from the same
channel and {x} denotes the fractional part of x. We also
denote Nk(i) : Ω as set of k nearest neighbors of i in Ω. and
D ∈ Rw,w as the diagonal matrix [D]ii = |N(i)| where N(i)
is the row-wise sum of the i-th row of AΩ. Then the Laplacian
matrix L is defined as

L = I−D−1A (9)

To establish the temporal smoothness constraint near the
missing component xi, i 6∈ Ω of the time-series x and the
weighted mean of the available nearest neighbours of the same
channel we employ the following constraint:

‖Lvec(X)‖22 =
∑
i

∥∥∥∥∥∥xi −
∑

j∈Nk(i):Ω

Di,i −Aij

Di,i
xj

∥∥∥∥∥∥
2

2

(10)

Finally, the optimization problem can be formulated as:

min
X

1

2
‖U ◦ (X− S)‖+ τ ‖X‖∗ + µ ‖Lvec(X)‖22 (11)

where the first term minimizes the error between the known
values and the estimated, the second term imposes low rank



Fig. 1: Heart rate measurements from 2019-05-06 to 2019-05-11

to the recovered matrix and the last term moves the estimated
value ”near” to the weighted average of the k-nearest known
entries neighbours. The parameter µ is the regularization
parameter of the Laplacian and ‖.‖F is the Frobenius norm.
Equation (11) can be efficiently minimized using alternating
direction method of multipliers (ADMM) on the splitting
version of the equivalent augmented Lagrangian [10], [11] also
presented in [6], [9]

III. EXPERIMENTAL STUDY

A. Dataset description and simulation setup

In total 57114 heart rate measurements and equal number
of step measurements were collected with a FitBit activity
tracker for a period of five consecutive days leading to the
formulation of a 334 × 342 near-square matrix adopting the
multi-channel setup described in (1). In order for the validation
process to be realized in a robust manner for providing reliable
comparisons across different methods, a Missing Completely
At Random (MCAR) approach was employed. Thus, missing
entries were generated so that their percentage over the total
samples ranges from 5% to 50%. For each distinct level on
the percentage scale of missing values, 20 permutations were
generated for ensuring the construct validity of our employed
methods. Figure 2 depicts the distribution of singular values
for each singular component. The number of k = 100 singular
values were observed to sum up at least 95% of the nuclear
norm (X∗) of the examined matrix. In particular, two setups
are examined: a) a single channel setup using as input only HR
data and b) a multichannel setup, using both HR measurements
and steps aligned for the same time interval.

B. Multidimensional Data Completion Results

1) Single channel case: We compared Laplacian matrix
completion (LMC) with classical matrix completion (MC),
k-nearest neighbours imputation (KNN) [12] and missForest
(MF) [13]. Figure 4 presents the reconstruction error for
different levels of missing entries as a mean value of 20
permutations for each level demonstrating that LMC appears to
demonstrate the lowest error using the Normalized Root Mean
Square Error (NRMSE) [14]. Figure 5 presents the distribution
of reconstruction error across all permutations revealing that
all methods demonstrate similarly small deviation.

Fig. 2: Steps taken from 2019-05-06 to 2019-05-11

(a) (b)

Fig. 3: a) Singular values as a function of singular component index
b) Sum of singular values as a function of singular component index

2) Multi channel case: Likewise compared Laplacian ma-
trix completion (LMC) with classical matrix completion (MC),
k-nearest neighbours imputation (KNN) [12] and missForest
(MF) [13]. Figure 6 presents the reconstruction error for
different levels of missing entries as a mean value of 20
permutations for each level demonstrating that LMC appears to
demonstrate the lowest error. Figure 7 presents the distribution
of reconstruction error across all permutations. It is important
to highlight what KNN yields very low reconstruction accu-
racy due to the matrix format containing both channels in
nearby positions. Evaluation of KNN accuracy can be better
revealed in single channel case where the reconstruction results
of KNN are worse but yet close to MF and MC.

Fig. 4: Reconstruction error as a function of level of missing entries
for the single channel case



Fig. 5: Distribution of reconstruction error as a function of level of
missing entries for the single channel case

Fig. 6: Reconstruction error as a function of level of missing entries
for the multi-channel case

IV. DISCUSSION AND CONCLUSION

The current study only focused on the MCAR problem,
although it has been observed that the collection of hetero-
geneous data sets (multi-channel) in SmartWork is also by
block missing data. Taking into account the nature of data (e.g.
health related), in such cases only alternative channel data is
used, when available, to complete the parameter specific time-
series (e.g. HR is collected both by the activity tracker and by
the smart mouse). This work is an exploratory study on the

Fig. 7: Distribution of reconstruction error as a function of level of
missing entries for the multi-channel case

potential of a Laplacian matrix completion variant for data
imputation on multi-channel time-series data collected with
an activity tracker in the SmartWork unobtrusive monitoring
system. We investigated the scenario where the formed matri-
ces exhibit low-rank properties with missing entries ranging
from 5% to 50%. The proposed approach was compared with
classical matrix completion, KNN and missForest imputation
methods, demonstrating the lowest error.
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