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Abstract

Purpose – The purpose of this paper is to develop a maintenance decision support system (DSS) framework
using in-service lubricant data for fault diagnosis. The DSS reveals embedded patterns in the data (knowledge
discovery) and automatically quantifies the influence of lubricant parameters on the unhealthy state of the
machine using alternative classifiers. The classifiers are compared for robustness fromwhich decision-makers
select an appropriate classifier given a specific lubricant data set.
Design/methodology/approach – The DSS embeds a framework integrating cluster and principal
component analysis, for feature extraction, and eight classifiers among them extreme gradient boosting (XGB),
random forest (RF), decision trees (DT) and logistic regression (LR). A qualitative and quantitative criterion is
developed in conjunction with practitioners for comparing the classifier models.
Findings – The results show the importance of embedded knowledge, explored via a knowledge discovery
approach.Moreover, the efficacy of the embedded knowledge onmaintenance DSS is emphasized. Importantly,
the proposed framework is demonstrated as plausible for decision support due to its high accuracy and
consideration of practitioners needs.
Practical implications – The proposed framework will potentially assist maintenance managers in
accurately exploiting lubricant data formaintenance DSS, while offering insightswith reduced time and errors.
Originality/value –Advances in lubricant-based intelligent approach for fault diagnosis is seldom utilized in
practice, however, may be incorporated in the information management systems offering high predictive
accuracy. The classification models’ comparison approach, will inevitably assist the industry in selecting
amongst divergent models’ for DSS.

Keywords Lubricant condition monitoring, Maintenance decision support, Classification, Oil analysis,

Data mining, Machine health
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1. Introduction
1.1 Background
Industrial set up that use rotating, and reciprocating equipment such as engines, gearboxes
and compressors have adopted condition monitoring techniques under the condition-based
maintenance (CBM) strategy including vibrational analysis, lubricant condition monitoring
(LCM) and thermography (Wakiru et al., 2019). Condition monitoring offers significant
benefits such as reduction of maintenance costs by eliminating potential failures and
traditionally, often required equipment shutdown for inspection during operations (Zhu et al.,
2017). LCM involves in-service oil analysis and interpretation of the results which assist in
maintenance decision by indicating the condition and health of the oil and the machine being
lubricated. The performance of a lubricant is primarily influenced by its deterioration level
and further altered by the operational conditions of the equipment. Many organizations
collect hundreds of samples, analysed and manually classified by in-house analysts to
indicate whether the condition of the machine is either satisfactory or not. If the sample is
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within acceptable specifications, the equipment can remain operable using the same
lubricant. In contrast, action needs to be taken, either to improve the equipment condition, or
renew the state of the lubricant or equipment.

The process of manually classifying and evaluating the oil samples experiences several
challenges. Firstly, the manual process is time-consuming due to a considerable number of
parameters which needs to be evaluated; therefore, it is prone to human errors and delays.
Secondly, the analysts frequently have limited knowledge of the parametric behaviour of the
lubricant and operational knowledge of the equipment. Furthermore, their interpretationmay
be limited to their experience, ideas and the extent to which they can suggest changes to the
maintenance regimes. Hence, deriving useful decisions from knowledge discovery based on
manual analysis and interpreting the results of used oil data is instead sub-optimal and not
straightforward. Thirdly, besides the analysis considering univariate parametric
interpretation, the analyst’s interpretation is generally limited to a particular sample,
without considering historical data. Multiple parametric interpretations and interactions of
the parameters are rarely considered (Wakiru et al., 2017a); hence, ignoring such parametric
interactions may yield an invalid interpretation of the parametric behaviour of the lubricant
data (Kumar and Kumar, 2016). Lastly, errors in the sampling procedure may influence the
results of the used oil analysis, and if no benchmarking is done, substantial information may
go unnoticed or erroneously dismissed. For instance, a high value depicted by a parameter
like silicon may be attributed to dirt ingression to the sample due to wrong sampling
procedures. In this study, we use data mining methods to explore significant correlation and
patterns in used oil analysis data for maintenance decision support and more substantially
build classification models. As a result, the maintenance dataset can be comprehended more
intuitively, which will assist in predicting how new events like oil deterioration will act based
on the classification metric selected. In literature, selection of the most appropriate model to
use while building the expert system in the field of lubricants has been made using both
quantitative and qualitative measures by very few authors and studies, as reviewed in
Section 2.

Owing to these limitations, this research seeks to derive decision support enhancement
from the analysis of used oil analysis data. The enhancement is achieved by developing an

LCM Lubricant condition
monitoring

RF Random forest OEM Original equipment
manufacturer

CBM Condition-based
maintenance

KNN K-nearest neighbours PC Principal component

DSS Decision support
system

HFO Heavy fuel oil AU Approximately Unbiased

UOA Used oil analysis CA Cluster analysis MLP Multilayer Perceptron
DT Decision tree TBN Total base number ERT Extremely randomized

trees
LR Logistics regression RUL Remaining useful life BN Bayes network
SVM Support vector

machine
AUC Area under curve ADA AdaBoost

NN Neural network ACC Accuracy BP Bootstrap probability
XGB Extreme gradient

boosting
LB Logit Boost PLS Partial least squares

PCA Principal component
analysis

LASSO Least absolute shrinkage
and selection operator

SGBRT Stochastic gradient
boosted regression trees

RDA Regularized
discriminant
analysis

PNN Probabilistic neural
network

SIMCA Soft independent
modelling class analogy Table 1.
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integrated framework to analyse and extract knowledge from identified patterns in the data,
to enable appropriate maintenance intervention. The identified patterns are then used as
inputwhile advancing the predictivemodel for the system, where quantifying the influence of
lubricant parameters to sample classification is explored. The decision support system is
expected to offer a framework that, firstly, exposes meaningful patterns embedded in the
used oil analysis (UOA) data and their inferences towards maintenance decision support.
Secondly, identify critical lubrication parameters to consider in the fault-diagnosis of the
equipment. Thirdly, based on knowledge discovery of the lubricant data, seek to establish the
general mechanical fault causes, and lastly among others, assist in the selection of the
appropriate classification model to employ under the plant’s operational context and
practitioner’s preferences. Table 1 provides the list of abbreviations used in this study.

The remainder of the paper is organized as follows: In Section 2, we present a state-of-the-
art review of the problem, datamining techniques and classifiers. In Section 3, we give details
of the methodology the paper will follow. Next, we illustrate the results and provide a
discussion in Section 4. In Section 5, we provide managerial implications of the results.
Finally, in Section 6, we conclude the work with directions for subsequent research.

2. Review of related literature
2.1 Lubricant and functions of lubrication
The primary functions of lubricants applied in machines include removing contaminants,
reducing wear and friction, protection against corrosion and rust, and cleaning the system
being lubricated (Wakiru et al., 2019). During the use in equipment or system, the lubricant
undergoes degradation that affects its quality and performance, either losing its essential
properties such as viscosity through intrinsic (e.g. shear) or extrinsic (thermal degradation,
contamination) processes, whichmay lead to severe equipment failure. Therefore, oil analysis
is carried out to monitor the condition of the lubricant to prescribe interventions that abate
equipment failure. A comprehensive review of lubricating oil conditioning sensors and oil
parameters can be found here (Zhu et al., 2017). The analysis of the UOA results in data
generated from the equipment through predominantly statistical methods, assists in
maintenance decision support by exposing embedded knowledge in the data (Wakiru et al.,
2019). Utilizing traditional statistical methods, for instance, trend analysis, while pursuing
maintenance decision support from this type of maintenance data, cannot respond to the
demands for the analysis of the extensive data generated. These methods are unable to track
historical patterns, explain the complex phenomenon and ultimately offer prediction (Raza
et al., 2010). Hence, the application of intelligent data mining techniques, which possesses the
potential of discovering hidden and useful information from data. The primary methods
discussed in this context include correlation analysis, principal component analysis and
cluster analysis that offer data visualisation and dimension reduction in the next Section 2.2.
The classificationmodels includeDT, RF, SVM, XGB, LR, ERT, NN andKNNare discussed in
the subsequent Section 2.3.

2.2 Data visualizations and dimension reductions
Correlation analysis is a statistical technique that ascertains the strength of association
between two discrete variables which can signify a predictive association applicable in
practice. Pearson correlation method is used when both variables follow a normal
distribution, while the Spearman correlation method is used where one or both variables
are not following a normal distribution. Moreover, Spearman’s correlation coefficient
possesses merits over Pearson’s method such as, being more robust to outliers and can
equally be used when one or both variables are ordinal (Carla Bittencourt Reis et al., 2009).
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Multiple correlations represent another method based on the Pearson correlation, where a
given variable can be predicted applying a linear function of a set of other variables and used
to assess dependent variables in multiple regression analysis. Pearson correlation was
applied in the testing of lubricant wear data by Adnani et al. (2013), while multiple
correlations were used along with other methods while investigating the dependency of total
base number (TBN) and selected wear metals (Vali�s et al., 2016a, b). From studies reviewed,
the Spearman method was seldom used while the studies did not constitute the basis on
which the Pearson correlation method was selected. Notwithstanding, some authors
recognize the limitation of correlation analysis, in that it does not go further enough in looking
at data in a multivariate way. This aspect intrinsically will not highlight interactions of the
parameters; hence, the proposition of using cluster analysis by various authors discussed
next (Aggarwal, 2015).

Cluster analysis (CA) represents a statistical method that classifies several variables
(clusters) according to their similarities. Some studies utilizing clustering technique in the
lubrication field include (Vali�s et al., 2016a, b). While CA has gained widespread usage, it has
some shortcomings. For instance, it is a heuristic technique. Thus, clusters can be developed
still where theremay be no similarity patterns in the data (Discenzo et al., 2006). Moreover, the
results’ uncertainty caused by sampling error has been unevaluated, hence the use of
methods to assess the uncertainty has been fronted like the use of bootstrap analysis (Suzuki
and Shimodaira, 2006). Clustering can sometimes constitute groups based on noise in the data
originating from sampling error or even sample procedure error hence establishing reliability
challenges. Hence, due to these flaws, several authors (e.g. Balabin and Safieva, 2011; Wang
andHussin, 2009) propose PCAwhich is used for correlation aswell as dimensional reduction
and variable selection as discussed next.

Principal component analysis (PCA) is a technique that constitutes new variables
uncorrelated with each other called principal components (PCs) that are linear combinations
of the primary variables. Therefore, it reduces an extensive set of variables to a narrow set
that nonetheless contains most of the vital information in the original extensive set, which
remains a challenge while using cluster and correlation analysis. PCA has been used for
dimension reduction in diverse areas, for instance; it was used in variables reduction for CBM
model Lin et al. (2006) and in oil analysis prediction models (Jun et al., 2008). Despite the use,
PCs and variables interpretability present a challenge conventionally hence rotationmethods
like Orthogonal and oblique rotation are introduced (Tabachnick and Fidell, 2007). PCA
rotation has been used to analyse further initial PCA results to expose the pattern of loadings
in a more simplistic, conspicuous way, and enable robust understanding and interpretation.

Owing to the flaws mentioned above of each method, some authors propose an integrated
framework for exploring hidden patterns in the maintenance data. Customarily, variables
derived from the exploration are used as input to predictive models that may assist in the
maintenance decision making process. Data mining incorporates several generalized tasks,
like association rule mining, regression, clustering, classification and detection of anomalies.
One notable predictive model is a classification which classifies data according to some
predictor variables where several models may be feasibly applied in practice, as
discussed next.

2.3 Classification models
Classification is amachine learning technique used to predict a category or class membership
for data by allocating items in a collection to target class/category for each case in the data,
hence a supervised learning approach. A state of the art review of classification algorithms is
advanced (Zhang et al., 2017). Several comparative studies are advanced, such as in the
application of NN and statistical techniques Paliwal and Kumar (2009) and NN, LR and SVM
(Raza et al., 2010).
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We group the classification algorithms investigated in this work into two groups related
explicitly to LCM context. The first group includes logistics regression (LR), support vector
machine (SVM), random forest (RF) and neural network (NN)which have been used in LCMas
default classifiers. The second group includes established algorithms seldom used in the
lubrication field like K-nearest neighbours (KNN), decision trees (DTs), extreme gradient
boosting (XGB) and extremely randomized trees (ERT). In this section, we review the
mentioned binary classification techniques which the author views as accessible to
maintenance practitioners.

Support vector machine (SVM) refers to a classifier that employs linear combinations of
distinct attributes of the data to make classification decisions. It can deal with a substantial
number of features as it attempts to arrive at a globally optimized solution, hence, avoiding
overfitting (Moosavian et al., 2014). It is claimed to perform well on small training samples
that may as well be non-linear in structure. SVM can handle large feature space and offer a
right generalization property to classification, making feature selection less critical. SVM has
been used in the LCM field by (Chowdhury et al., 2016; Eitrich and Lang, 2006; Phillips et al.,
2015), and in other condition monitoring fields as discussed by Moosavian et al. (2014).

NN is an information processing model patterned on the human brain function and
structure by learning knowledge from data with known inputs and outputs. NN can be
applied as supervised learning requiring the external input of the previous knowledge about
the target and unsupervised neural network, which is self-learning as corroborated by Jardine
et al. (2006). NNhas been used in the oil analysis to classify the sample condition (Phillips et al.,
2015). The primary limitations of NN represent the lack of explanation of the model
parameters, the complexity of the training process and requirement of important training
data (Raza and Liyanage, 2009; Phillips et al., 2015).

LR represents a model that illustrates the nature of the relationship between the mean
response and one or more predictor variables which are categorical. LR has been used in
studies incorporating used oil analysis (UOA) (Caesarendra et al., 2010). All the studies the
researcher found to have manipulated selected UOA variables principally based on one or a
maximum of two categories of lubricant analysis (among wear metals, additives, dilution or
physiochemical properties). In contrast, the basis and methodology of selection of the
explanatory or dependent variables in the LR model are seldom discussed.

RFs are a class of ensemble algorithms that propagate several trees as the base estimate
and aggregate them to predict and solve classification or regression problems (Scornet, 2016).
RF is like DT, except that a collection of un-pruned decision trees is combined to provide
better classification accuracy with reduced over-fitting by averaging the result, unlike DT.
Other features of RF embody determination of variable importance measures and offering
high predictions even with training noisy data (Satishkumar and Sugumaran, 2016). RF has
been used in classification models in the UOA field (De Rivas et al., 2017).

DTs utilize a tree-like structure to divide a data set into branches and leaves while
developing the decision tree incrementally (Nasridinov et al., 2013). DT is computationally
insensitive tomissing data, uses predictor variables inapplicable to data outliers. Themethod
is adaptable to various types of datasets, while the algorithm utilizes a recursive partitioning
approach. Wakiru et al., (2018) used DT to classify oil samples while DT has likewise been
used in other predictive maintenance applications such as classifying automotive fault
conditions (Shafi et al., 2018).

XGB is a recently advanced gradient tree boosting an accurate and scalable ensemble
algorithm due to its inherent characteristics that support parallel processing, regularization
and early stopping (Xia et al., 2017). XGB classified as “black box”model, has been applied in
other condition monitoring field such as predicting the RUL of a wind turbine gearbox
(Lu et al., 2017). XGB has been applied significantly in other sectors such as manufacturing
quality control (e.g. Flath and Stein, 2018) health (e.g. Semiz et al., 2018), agro-ecosystem
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(e.g. Zhao et al., 2018) and banking (e.g. Carmona et al., 2018). The authors did not come across
an article applying XGB in UOA field.

KNN is a non-parametric algorithm that generates predictions for a sample by finding the
k nearest samples and assigning the most represented class among them using a distance
function. It is seldom utilized in LCM but was used in condition monitoring to classify
machine condition using vibration signals (Moosavian et al., 2014; Safizadeh and Latifi, 2014;
Yu, 2011).

ERT, just like RFs, are an ensemble model. In addition to sampling features at each stage
of splitting the tree, it also samples the random threshold at which to complete the splits. The
additional randomness may enhance the ability of the model to generalize (compared to RF)
and may yield better results. ERT was used along with other classifiers in power curve
modelling while monitoring the performance of offshore wind turbines, where both wind and
the turbine blade characteristics were employed (Janssens et al., 2016). Similar to XGB and
KNN, authors did not get an application of ERT in the UOA field.

The methods discussed above likewise include ensemble techniques which combine
results of multiple classifiers increasing prediction accuracy using either bagging and
boosting techniques (Aggarwal, 2015). Among the bagging is RFwhile the boosting are XGB
and ERT used in this study. Other classification algorithms include deep learning, Sparse
representation-based classification andExtreme LearningMachinewhich can be classified as
relatively new, while Gradient Boosting Decision Trees, Naı€ve Bayes and AdaBoost as
established classifiers (Zhang et al., 2017). However, we do not employ these algorithms due to
their relative unavailability as standard toolboxes, which limits access to the practitioners. A
comprehensive review of the classification algorithms such as DT, LR, NN, SVM and RF as
used in lubrication condition monitoring is presented by (Wakiru et al., 2019).

The results in this section indicate that several algorithms have significantly been used in
the UOA field such as DT, ANN and LR. At the same time, the author could not find an
application utilising KNN, XGB and ERT algorithms in the UOA field. However, a
considerable amount of literature has been published that employs binary classification of
data derived from other condition monitoring techniques as illustrated in Table 2, where the
application on vibration analysis data is illustrated as significantly utilised.

While much of the current literature on classification models, pay attention to the model
performance, they disregard critical aspects such as comparing various algorithms and
considering user preferences. However, the classification models are challenged with
overestimation attributed to the learning and prediction derived from the data. This challenge
is mitigated by validation of the model as discussed in Section 2.4, while Section 2.5 moves on
to review studies that have undertaken model comparison.

2.4 Model validation
To address model overestimation, internal validation processes like split validation, Cross-
validation and Bootstrapping method are used to evaluate the model performance using part
of the data used to train the model. Using external validation, the prediction model’s
performance is evaluated utilizing data that was unused to train the model.

Article reference Classifier Field Data used

Cerrada et al. (2016), Patel and Giri (2016) RF Machine condition Vibration signals
Muruganatham et al. (2013), Li et al. (2014) ANN Machine condition Vibration analysis
Li et al. (2014) SVM Machine condition Vibration analysis
Lazakis et al. (2018) ANN Machine condition Temperature analysis
Campora et al. (2018) ANN Machine condition Functional signals

Table 2.
Binary classification
studies under other

condition monitoring
techniques
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2.5 Model comparisons
We found a scarcity of literature that attempts to compare the effectiveness of different
classification techniques considered in this study, particularly concerning classifying UOA
data (LCM). From our review of various studies, we found various classification models
applied to the LCM field as discussed in Section 2.3 but few studies specifically under LCM
comparing the separate models used in binary classification as represented in Table 3.

However, it is important to note that a sizeable number of studies was found that have
compared the different classifiers while utilising other condition monitoring techniques data,
as seen in Table 4.

ReviewingTables 3 and 4, SVMandANNseem to be applied significantly compared to the
other classifiers in both LCM and other condition monitoring based studies. The studies
presented so far provide evidence that both classification and comparison of the algorithms in
the UOA field are not as extensively done compared to other condition monitoring
techniques. Furthermore, research on the subject has been primarily restricted to limited
comparisons of classifier’s accuracy and predictive power, as seen in Table 3.Moreover, some
aspects such as the model’s goodness of fit, efforts put in building the model and model’s
predictive power, which play a significant role in model robustness and applicability in
maintenance decision support, have been uninvestigated in the various comparative studies
(e.g. Balabin and Safieva, 2011; Phillips et al., 2015).

2.6 Insights from a review of related literature and study motivation
Due to the various strengths andweaknesses of the various datamining techniques, there is a
trend towards the use of an integrated framework as indicated in Section 2.2 and
corroborated by (Wakiru et al., 2019). An integrated framework enhances synergy from the
various individual techniques as well as seek the concurrence of various embedded data/
information patterns by developing a wholesome picture of the embedded patterns.

Classification technique is an essential aspect utilized in LCM while developing a
predictive model. Two significant themes emerge from the studies discussed so far: Firstly,
relatively few classification models have been applied to oil analysis data, while limited
studies have compared the various classification techniques, where only three studies were
found demonstrating a comparison of the classifiers while applying oil analysis data.
Additionally, the studies do not illustrate the basis of comparing the algorithms that consider
both performance and user preferences. These findings, while preliminary, suggest there is a
need to expand the classification models’ scope in application and comparison employing

Article
reference

Classifiers
compareda Parameters Criteria utilized

De Rivas
et al. (2017)

SVM and RF Total acid number Root mean square (RMSE), Mean absolute
error (MAE)

Balabin et al.
(2011)

SVM, KNN, PNN,
MLP, RDA, SIMCA,
PLS

Viscosity Classification error

Phillips et al.
(2015)

ANN, LR and SVM Iron, Sodium, Lead,
Copper, oxidation

Classification accuracy, Ease of use, Ability to
expose how changes of variables influence
classification, Consequences of
misclassification

Note(s): aRMSE, root mean square error; MAE,mean absolute error; PNN, probabilistic neural network; MLP,
multilayer perceptron; RDA, regularized discriminant analysis; SIMCA, soft independent modelling class
analogy; PLS, partial least squares

Table 3.
Binary classification
model comparison
studies -LCM related
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used oil analysis data. Secondly, relatively few selected lubricant parameters are used in the
classification model, which is not fully representative, lacks a selection basis and retains the
potential of generating biased results as also corroborated by (Sharma, 1996). Hence, to
ensure vivid representation and consideration of critical parameters, a systematic process of
selecting appropriate lubricant parameters to employ in the classification model is needed.

Consequently, there is a need for a multi-model framework integrating separate models to
check concurrence, where the output of these models may provide useful decision support
regarding the classifiers. Incorporating a balanced qualitative and quantitative criterion for
selection would greatly assist practitioners to invest in appropriate techniques. Such as
approach is so far unproposed in the literature for analysing used oil data.

The first contribution of this paper is to develop an integrated framework formaintenance
data (UOA data) analysis using various data mining techniques. Explicitly, we focus on
knowledge discovery using data visualisation and dimension reduction techniques such as
correlation, cluster analysis and PCA. The proposed approach explores the embedded,
meaningful parametric patterns in the used oil analysis data and evaluates their implications
for maintenance decision support.

The second contribution entails developing a systematic classification framework that
considers the selection of variables and application of various classifiers (both black box and
white box) for used oil analysis samples classification. Most of the present studies in the
literature (e.g. Chowdhury et al., 2016) focus on well-established classifiers without
considering the recent machine learning advancement concerning classification. Moreover,
the studies, as described in Section 2.5, utilise selected parameters as input to the models
without indicating the variables selection criteria used. The lack of a systematic criterion for
selecting optimal parameters for oil analysis compromises the optimal results because in
often cases, the interactive effects of the variables are not considered as discussed above.
However, new classifiers have been compared in different condition monitoring sectors like
vibration, but their evaluation is limited to their specific domain.

The third contribution of this paper aims to develop a scalable comparison and selection
criterion for different classification models applied to UOA data. Despite various researchers
(e.g., Phillips et al., 2015; De Rivas et al., 2017) addressing the problem of comparing classifiers

Article reference Classifiers compared Field Data used

Raza et al., (2010) ANN, SVM and LR Machine
condition

Pressure time series
signals

Samanta (2004), Yang et al. (2005),
Pandya et al. (2014), Li et al. (2014)

ANN and SVM Machine
condition

Vibration signals

Seera et al. (2017) SVM, RF and MLP Machine
condition

Vibration signals

Demetgul (2013) SVM and DT Machine
condition

Optic and pressure
signals

Cai et al. (2010) LR, ANN, SVM and KNN Machine
condition

Normal and fault
data

Shafi et al. (2018a) DT, SVM, KNN and RF Machine
condition

Normal and fault
data

Pereira et al. (2018) SVM, DT, RF, XGB and
KNN

Machine
condition

Operational data

Kumar et al. (2018) SVM, ANN, LR, RF, BN,
ADA and LB

Machine
condition

Remaining useful
life

Janssens et al. (2016) RF, ERT, SGBRT and
KNN

Machine
condition

Operational data

Table 4.
Binary classification
model comparison

studies – other
condition monitoring

techniques
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using the oil analysis data, there remains a paucity in a criterion that will help the
maintenance practitioners select the appropriate classification model(s). The selection of a
suitable classification model will incorporate the use of defined qualitative and quantitative
criteria developed in consultation with practitioners, which will help the maintenance team
select a suitable model based on the type of data they have and their expectations towards
enhancing maintenance decision making. By incorporating both quantitative and qualitative
criterion, we show a maintenance manager should balance the trade-off between
interpretability, accuracy derived by different classifiers and own preferences while
selecting an appropriate classifier algorithm as also corroborated by (Wakiru et al., 2019).

This paper aims to propose such an integrated framework to analyse maintenance data
(UOA data) using an integrated data mining formalism and to evaluate the extent to which
this integrated framework is useful for maintenance decision support using classification
models.

3. Methodology
3.1 Case study and lubricated equipment
This study employs a case study approachwhere, research data was obtained from a thermal
power plant that uses heavy fuel oil (HFO) driven medium speed engines, whose speed and a
cylinder bore of 750 rpm and 320 mm respectively, to drive generators for power generation.
This type of engines are exposed to wear challenges due to the HFO characteristics of high
sulphur content (1%) which could subsequently lead to high acidity in the engines, hence
corrosive wear on the cylinder liner, piston rings, injector pump, crankshaft and camshaft
bearings. Among other factors such as water ingression, aggravates this problem by the
formation of carbonaceous deposits within the combustion section (piston ring groove,
cooling gallery, injector pump plunger and nozzles) that can lead to engine seize and
significant wear of the components. The plant carries out routine UOA on amonth-by-month
basis as part of its preventive maintenance strategy. It maintains a database of oil analysed
and classified by the analysts in an independent laboratory. However, despite routinely
undertaking UOA, chronic wear-related failures are easily undetected in advance. At the
same time, such plants lack a systematic framework to discover equipment health knowledge
embedded in the UOA data. Moreover, while evaluating the LCM data, they seldom utilize
historical data which could offer significant insights into the preventive maintenance
strategy to be implemented. The methodology, as illustrated in Figure 1, consists of several
steps discussed in the subsequent section.

3.2 Data collection and pre-processing
This study utilizes empirical used oil analysis data that covered the period from 2011 to 2016
with 21 lubricant test parameters analysed against recommended standards (see Table 5).
The plant employs an off-line sampling strategy, where engine oil samples are drawn
monthly and taken for analysis in an independent laboratory. The data pre-processing
incorporated several steps: the first step involved integrating the data into one file to enable
analysis and inspection because the UOA sample analysis data were in separate files
representing individual sample results. With the involvement of expert consultations, the
data was cleaned in the second step, where data consistency is harmonized by inspecting the
data, expunging errors like duplicated results. During this step, missing values are dealt with,
either by disavowing the observations, performing some imputation techniques like
replacing the missing value with median or mode for continuous or categorical data,
respectively. Lastly, outliers, which represent observations that lie abnormal distance from
other values, were validated using boxplots. In this case, the invalid outliers are considered as
missing values.
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3.3 Data testing and correlation analyses
In this respect, pre-processed data were tested for normality to confirm the correct correlation
analysismethod to be used. From research, various studies conclude the Shapiro–Wilk test as
a robust normality test for all sample sizes and distribution types, for example (Razali and
Wah, 2011).

3.4 Variables selections and feature reductions
It was essential to select essential variables to be applied as an input to the classifier models,
due to a substantial number of analysed variables. Hence, a dimension reduction technique
was incorporated into the classifier model.

3.4.1 Principal component analysis. PCA was used for establishing patterns in data to
explore the similarities and dissimilarities in the data set, using correlation coefficients
between the primary variables and the PCs. These patterns indicate the extent to which the
original variables are essential in creating new variables. This is equally represented by the
factor loading plot where vectors of relatively comparable length and narrow-angle of
separation infer strong correlation. The Tabachnick and Fidell criteria were used to select the
rotation method to use, which helps in making the PCs more visible and more comfortable to
interpret.

3.4.2 Cluster analysis. Concerning analysing the data, we utilize a hierarchical clustering
technique using the average linkage method. To deal with the uncertainty, we utilize the
pv-clust method embedded in the R software to calculate two variant probability values or
p-values that is AU (approximately unbiased) and BP (bootstrap probability) for each cluster
using bootstrap resampling techniques.

3.4.3 Feature reduction.RF, PCA, least absolute shrinkage and selection operator (LASSO)
and correlation with target approaches were tested for suitability in the subject study based

Data Testing and correlation analysis
2

Classification Models
5

Model validation and performance 
comparison

6

Performance comparison
7

Data preparation and splitting
4

Variable Selection and dimension 
reduction

3

Data collection & Pre-processing
1

Viscosity 40oC Calcium Sodium Chromium Tin Total base number

Flashpoint Water Molybdenum Lead Pentane insoluble
Zinc Carbon Nickel Copper Viscosity 100oC
Silicon Iron Magnesium Vanadium Aluminium

Figure 1.
Schematic

representation of the
methodology

Table 5.
Analysed variables in
the case LCM program
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on the model predictive accuracy and predictive power (AUC) to select the appropriate
technique to be incorporated in the classifiers.

A brief discussion with the managerial implication is done for the knowledge extracted
using both PCA and CA. Admissible variables are selected using the cut-off criteria, where
these oil parameters are seen to be significant regarding uncovering the embedded
information in the specific power plant UOA data. Feature or dimension reduction will utilize
classification algorithms with the ability to automatically select important input features
with the guidance of the number of suitable features selected.

3.5 Data scoring and splitting
The data were scored by analysts evaluating each of the selected parameters against a limit
or threshold set by the Original Equipment Manufacturers (OEM) and moderated by the
power plant. The data represented 1,103 sample observations where 197 (17.9%) were scored
as 1 (PASS) and the rest as 0 (FAIL). The observed rate was attributed to the fact that score
0 included samples that were at the borderline and exhibited cautionary advice to the
maintenance team. Random split validation on training and testing data was used, where
data was split in the ratio 80:20 that is, 80% of the data were used for training themodel while
20% of the data was used in testing the model. This split validation approach was viewed to
suffice the objective of the study due to ease of modelling in most of the software and
graphical user interfaces maintenance managers can access.

3.6 Classification models and hyperparameter optimisation
The scored data for the selected variables were used to build different binary classification
models, as explained in the following section. We used R, Rapid miner and Dataiku DSS
software.

While making the RF, LR, XGB and ERT models, two standard parameters were tuned
with validation data. The first parameter is the number of classification trees to be trained to
build the ensemble of classification trees, which the range is (100, 400); the other parameter
maximum depth of individual trees rage is (1, 10). Common to LR, RF and ERT comprise the
minimum samples per leaf which range is (1, 10) and the number of features to sample which
range from 1 to the number of features in the dataset (16). Other parameters represent the
learning rate for XGB, in the range of (0.1, 0.3) and penalty parameter for LR (C or
regularization term) to the weights whose range is (0.1, 100). The DT model was built by
splitting the variables into several branches recursively until the termination and
classification are reached. With a complexity parameter (cp) of 0.01, the minimum split
was varied from 1 to 10 while the maximum range is (3, 30). When testingNN, the number of
hidden layer nodes was changed from 1 to the number of features in the dataset (16) while
maximum iterations as 200. When testing SVM, we use radial basis function (rbf),
polynomial and sigmoid kernels while tuning the penalty parameter (C) and parameter
gamma (γ). While reviewing KNN, the number of neighbours to check for each sample k
ranged {1,3,5}, while the distance used to search for the neighbours varied between Euclidian
and Manhattan. (p5 1 or 2 respectively). During the development of the models, grid search
method was utilized for algorithms that required tuning of more than one parameter.

3.7 Model validation and performance comparisons
In this study, a random split validation method was applied to all the eight estimated models,
as discussed in Section 2.4. While comparing the performances, the study utilized
quantitative (model predictive power, classification accuracy and goodness-of-fit) and
qualitative (ease of interpretability, modelling effort and significant parameter towards
classification exposure) performance measures or criteria as elaborated in the following
section. These criteria were developed in consultation with maintenance practitioners.
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(1) Model predictive power

The area under the receiver operating curve (AUC) is utilized in classification models to
indicate the predictive power of the model, hence the comparison of this parameter for the
respective model’s guides to a more efficient model for prediction, where a high AUC value
indicates superior predictive power.

(2) Classification accuracy (ACC):

Each model classifies the data during the testing phase and returns a classification table
known as a confusion table. The classification accuracy represents the proportion of the
combined number of accurate predictions, which will indicate the model accuracy.

(3) Model Goodness of fit:

Gini coefficient represents the ratio between the area between the receiver operating curve
and the diagonal line and the area of the above triangle. Gini coefficient above 60% infers a
sustainable model.

(4) Ease of interpretability:

The output from the models will also be examined on the ease and straightforwardness of the
interpretation. In this case, the model should be capable of indicating how changes in
lubricant parameters would influence the oil analysis sample classification. This aspect is
crucial tomaintenance personnel which requires the output for maintenance decision support
as relates to the UOA parameters and their effect on the machine and lubricant health
condition.

(5) Modelling effort:

This criterion will evaluate the effort required in modelling and results generation as well as
results analysis. Some models need processing the input data while others may additionally
require more effort in tuning (few or moderately more hyperparameters), adjustment,
calculations to obtain the desired output at various scales.

(6) Significant parametric exposure:

This part of the criteria seeks to check the relevance and applicability of a model to explain
the lubricant parameter’s influence on the classification of the sample. A vital variant in
maintenance decision derived from the oil analysis by practitioners.

4. Results and discussion
The following section outlines the results and discussion following the set methodology
illustrated in Figure 1.

4.1 Data testings and correlation analyses
4.1.1 Data pre-processing scoring and testing. The data pre-processing incorporated several
steps: the first step involved integrating the data into one file since each sample results was
separate. This was achieved by considering the dates and running hours of the respective
samples and where clarity was needed, expert consultations were made. The data was
cleaned in the second step, where data consistency was harmonized by inspecting the data,
and we expunged errors like duplicated results. As earlier alluded, missing values were also
investigated in this step, wheremolybdenumwaswithdrawn from the database as it had over
32% missing values. This action was taken after literature and expert consultation where it
was considered uninfluential, hence each sample eventually contained twenty parameters.
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While inspecting the data, we implemented graphical representations such as histograms and
box-plots, z-scores and benchmarking of sample results to comprehend the extent of the
outliers (how far an observation is from themean in terms of standard deviation); however, no
invalid outliers were noted. The ultimate step of data transformation included
standardization, where data was scaled because some parameters such as calcium and
water exhibited different measurement scales. Normality testing was performed, and 25% of
the data was found to follow a normal distribution, while the rest were non-parametric. Other
data collected included the type of lubricant used in the engines whose fundamental
properties included Viscosity at 40oC (135cSt), Viscosity at 100oC (14cSt), TBN (40 mg KOH/
g), Flashpoint (220oC), Viscosity index (100) and pour point (�18oC), which correlates to the
industry requirements for medium-speed engines (300–900 rpm) running on HFO. As
expected, due to the operations and potential effects as illustrated in Section 3.1, a moderately
viscous lubricant with a considerable alkaline reserve (TBN) is used.

4.1.2 Correlation analysis. Figure 2 illustrates a correlogram developed exhibiting the
correlation of the oil parameters. The significant correlations (p-value < 0.05) have respective
correlation coefficient indicated, where higher values close to 1 indicate strong correlations
while those close to 0 indicate weak correlations, and insignificant correlations are blank.

For example, the correlation between the parameters Nickel-Vanadium had a p-value of
2.2 3 10–16 < 0.05, hence significant with a Spearman’s correlation coefficient of 0.77,
signifying a positive correlation. The potential sources of vanadium and nickel in the engine
include alloy metals and heavy fuel oil contamination. Since both nickel and vanadium are
present, there is a high indication of fuel contamination (Wakiru et al., 2017a). This correlation

Figure 2.
Correlation
correlogram for
lubricant samples
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and possible insight are confirmed by the correlation of nickel and viscosity at 40oC, which is
0.68 (relatively strong). With heavy fuel oil ingression, viscosity increases; hence, one can
conclusively interpret the correlation representing fuel contamination exposed. The analysis,
interpreted along with literature and expert review, uncovers several embedded patterns in
the data that eventually assist in maintenance decision support. From this one example, it
shows two-dimensional correlation can be used in multiple ways, though time-intensive and
requiring technical insights, to discover hidden patterns in the UOA data of the plant. The
discovered pattern informs appropriate maintenance decision actions towards addressing
the causes of fuel dilution such us faulty injector pump, injector nozzles, poor atomization and
fuel condensation during idling. Contrary to this, the analysts in the industry rely on one
parameter trending, which cannot conclusively confirm the nature and severity of the
problem (Fitch, 2007).

4.2 Variable selections and dimension reduction
PCA and CAwere used to select the appropriate variables from the UOA dataset, as outlined
in the next section.

4.2.1 Principal component analysis (PCA). The optimum number of five PCs was obtained
employing the non-graphical solutions and scree test, corroborated by eigenvalues greater or
equal to 1 since the data had been standardized and the scree plot technique employed.

Oblique rotation was considered to best suit the analysis, following the Tabachnick and
Fidell criterion and the assumption that factors are correlated. A meaningful interpretable
result is provided, which identifies the variables with significant influence in constituting a
principal component. The factors or PCs representation in the factor loading ends up being
different. However, parameters grouping remain similar with better visualization, as seen in
Table 6 using 0.5 as a cut-off, after rotation. PC1 can be interpreted as flashpoint and related
contaminants in the lubricant, while PC2 as viscosity related, moreover is corroborated by the
example in the correlation analysis in Section 4.1.2. PC3 as the wear-related attributed to
being constituted by wear metals, while PC4 as alkalinity concentration of the lubricant, also
corroborated by Wakiru et al. (2017a) and PC5 as water-related. Table 6 shows the factor
loading values and the PC’s constituents after oblique rotationmethod of PCA. Using a cut-off
of 0.5 loading criteria, the parameters like viscosity at 100oC, tin, pentane insoluble and
aluminium fall outside the scope.

Despite this being visual and arbitrary, it is a crucial classification of multiple variables
extending beyond correlation analysis explained in Section 4.1.2. PCA confirms the
interaction of more than two variables in influencing a principal component which enhances
multivariate pattern recognition of the oil parameters.

Loading PC Loading PC

Flash point 0.78 1 Lead 0.71 3
Magnesium 0.73 1 Copper 0.79 3
Silicon 0.59 1 TBN 0.74 4
Sodium 0.82 1 Calcium 0.78 4
Viscosity @40oC 0.63 2 Zinc 0.81 5
Carbon/soot 0.64 2 Water 0.51 5
Nickel 0.90 2 Viscosity @ 100oC
Vanadium 0.87 2 Tin
Iron 0.71 3 Pentane Insoluble
Chromium 0.69 3 Aluminium

Table 6.
Factor loadings

alongside principal
components and

cluster constituents
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4.2.2 Cluster analysis. Cluster analysis of the twenty UOA parameters was carried out
using the hierarchical average method with the computation of the probability values for the
clusters. K-means Bootstrapping was used to determine the optimal number of clusters. In
this case, seven indices which were the highest compared to the rest, proposed three as an
optimal number of clusters, hence adopted. Figure 3 illustrates the hierarchical clustering
dendrogram, where one can visualize three clusters because three branches occur at about the
same height.

The first cluster with AU p-value of 0.99 and BP p-value of 0.4, contains TBN and calcium,
can be interpreted to depict the alkalinity of the lubricant. This deduction is further
corroborated using literature that calcium remains an ingredient of detergent and dispersant,
which are additives used in enhancing TBN in the lubricant (Kocsis et al., 2017). The second
cluster with p-values of 1 and 1 for AU and BP respectively, contains zinc, water, iron,
aluminium, sodium, flash point, magnesium, silicon, chromium, lead and copper, depicting
both wear metals and the lubricant properties. The third cluster with p-values 0.99 and 0.60
respectively, consists of viscosity at 40oC, vanadium, nickel and carbon content, might be
depicted as the fuel contamination related cluster. Oxidation due to the elevated operating
temperature of the equipment or denser contaminants like insoluble soot (carbon), water and
heavy fuel oil potentially increases the value of viscosity. Since fuel contains nickel and
vanadium as part of its ingredients as alluded by CIMAC (2011), these elements may lead to a
potentially valid reason for the increase in the viscosity especially when there is fuel
ingression in the lubricant.

To the contrary, several associations were not easy to distinguish and substantially
elucidate from the functional perspective of the represented UOAparameters. For example, in
cluster 2, the association between flash point and aluminium is depicted to be statistically
correlated, yet in the functional sphere, the two parameters do not correlate.

This combination of correlation analysis, PCA and CA findings provides some support for
the conceptual premise that infers remarkable alkaline level depletion and fuel contamination
in the lubricant. Firstly, addressing the pattern exposed between Calcium and TBN,
indicating depletion of the lubricant’s alkalinity reserve may be attributed to several factors.
Such factors range from engine status like blow-by, operational conditions like temperature
and fuel quality. The challenges of alkaline depletion can be addressed by changing the
lubricant if the depletion levels fall beyond 50% of new oil and addressing causes like fuel
ingression that increase acidity level hence adversely affect the TBN (CIMAC, 2011; Kocsis
et al., 2017). Carrying out a partially forced recharge of the engine oil to replenish the alkali
reserve of the lubricant, could offer a potential solution when the alkaline level is above 63%
of the new oil (in this case 25mgKOH/g) also corroborated by (CIMAC, 2008). Partially forced
recharge should be a short-term recommendation since there is evidence of a correlation
between additive depletion and fuel dilution as addressed in the following point. Secondly,
addressing the source of the fuel ingression to mitigate fuel contamination, includes
interventions such as repairing or servicing the injector pump and nozzle. Additionally,
routinely carrying out inspection and or rectification of leaking high-pressure fuel lines,
leaking oil/fuel heat exchangers which are potential sources of fuel dilution, would address
the problem. Finally, as a last resort when additive depletion is recurrent, change of the
lubricant to one containing higher alkaline levels, for instance, 50 mg KOH/g, in this case,
would address this problem. However, this decisionwould require consultationwith the OEM
and several compatibility tests carried to ensure non-compromise with the engine and
lubricant functionalities and performance. This combination of findings, taken collectively,
suggest that the engine optimal drain interval (to ensure optimal TBN level) and fuel
ingression should be addressed. The maintenance team can monitor the TBN levels to derive
optimal drain intervals, using techniques such as linear regression to predict the time the level
will deviate from the threshold using extrapolation. However, consideration of other factors
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such as wear levels, other lubricant parameters that interact with TBN such as sulphur level
in the fuel, specific oil consumption of the engine and operating conditions should be
considered while formulating a trade-off decision regarding the drain interval.

4.2.3 Selection of variables and feature reduction. During the selection of the critical
variables to be used in the predictivemodel, to beginwith, the exclusion criteria remain the 0.5
cut-off value for the PCA, corroborated in the literature (Bro and Smilde, 2014; Jolliffe, 2002).
Accordingly, viscosity at 100oC, tin, pentane insoluble and aluminium were eliminated.
Secondly, the cluster height on the dendrogram for the same parameters, except aluminium,
retained higher heights and thirdly, literature and expert assessment to intuitively analyse
the variables. The sixteen variables selected included viscosity at 40oC, flash point, total base
number, magnesium, calcium, zinc, silicon, sodium, water, carbon, iron, chromium, lead,
copper, nickel and vanadium.

In summary, the three approaches, correlation analysis, CA and PCA converge with
concurrences in the correlations, albeit correlation analysis demands more effort to envision
the grouped correlations.

This study incorporates a feature reduction technique while developing the classification
model. Thus, RF, PCA, LASSO and correlation with target approaches were tested for
suitability in the subject study using sixteen features. Table 7 shows classifier’s performance
utilizing the various methods.

From the exercise, RF obtained better performance in both AUC and ACC, hence selected
as suitable feature reduction technique to be incorporated while developing the classification
models.

4.3 Scoring of data
Based on the expert assessment and OEM set thresholds/limits of each parameter, the sample
was manually classified as “PASS” or “FAIL” by the analyst. However, it was observed that
the satisfactory sample rate was significantly low when compared against the samples that
were categorised as failed. The inclusion of samples that signal caution in the “FAIL”
category represents the likely cause for the difference between the two classification rates; in
this case, the parameters are at the borderline of the thresholds. It is proposed that the future
classification of sample results should embed a three-tier level, “PASS”, “CAUTION” and
“FAIL”, to address this unique situation. After consolidating the data, scaling/normalisation
of the variables was done due to the variation of the scales used. For example, values of
viscosity at 40oC of 152cSt, Calcium of 12,445ppm and silicon of 30ppm, after rescaling from a
value of 0–1, were 0.2288, 0.6704 and 0.8902 respectively. The classificationmodels were built
incorporating RF feature reduction. Hyperparameter optimisation was done as documented
in Section 3.6.

Technique Measure SVM NN LR RF DT XGB KNN ERT

RF AUC 0.951 0.951 0.942 0.997 0.961 0.989 0.936 0.947
ACC 0.929 0.900 0.900 0.976 0.957 0.971 0.900 0.905

PCA AUC 0.949 0.940 0.935 0.933 0.836 0.929 0.940 0.934
ACC 0.905 0.881 0.900 0.900 0.810 0.905 0.914 0.905

Correlation with target AUC 0.954 0.935 0.948 0.986 0.959 0.981 0.913 0.940
ACC 0.914 0.886 0.890 0.962 0.957 0.957 0.886 0.900

No reduction AUC 0.953 0.942 0.926 0.972 0.961 0.999 0.910 0.940
ACC 0.929 0.900 0.895 0.929 0.957 0.995 0.871 0.886

Table 7.
Feature reduction
techniques
performance results for
comparison
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4.4 Classification models
Table 8 illustrates the performance of the various classification models employing the case
data. Among the “white box” approaches, DT outperformed LR while among “black box”
approaches; XGB performed better followed by RF considering all the three measures.

4.4.1 Logistics regression.Themodel returned ACC of 0.8857 and AUC of 0.9464 as seen in
Table 8. Table 9 presents an overview of the LRmodel with each parameter’s coefficient, odds
ratio and p-value. The p-values indicate variables like zinc, sodium and nickel predict the
classification result significantly at a 5% level of significance. The variable coefficients
illustrate the relation an oil parameter has with the classification outcome. From the results,
the particular variable with the highest importance on the classification of the oil as “FAIL” is
sodium. The odds ratio for sodium is 0.8973, which infers that an increase of sodium by 1unit
(ppm) will decrease the odds of the oil sample outcome classification as “PASS” by 10.27%.
This finding will prompt the decision to mitigate the ingression of Silicon, for instance,
investigate to confirm proper functionality of the air filtration system, changing the air filters
and addressing the origin of dust considering the operational environment. In the long run,
the plant may engage the off-line centrifuge system to eliminate such contaminants during
the scheduled centrifuging process. A similar analysis can be followed for other oil
parameters to understand the impact selected parameters have on the oil classification, with
easy interpretability. Modelling using LR offered valuable insights into the oil parameters
relating to the classification outcome. However, the interpretation of the coefficients and odds
ratio involves moderate knowledge hence some effort required.

4.4.2 Decision tree. The model yielded a classification accuracy of 0.8905 and AUC of
0.9507. Figure 4 illustrates the schematic representation of a decision tree generated. The
nodes represent the oil parameter attributes through which, by tracing them, one can reach
the leaf nodes in the bottom of the tree, which depict the classification of the oil sample.

Interpretation of the decision rules is straightforward; for example, we classify the sample
whose UOA results are shown inTable 10 using the DT from the top node. The sample passes
the thresholds of sodium, vanadium, calcium, viscosity at 40oC. Still, it fails due to zinc
content being less than 299ppm. Hence, one can explore causes of zinc content decrease, that
include increased metal to metal contact causing depletion of anti-wear additives and anti-

Measure SVM NN LR RF DT XGB KNN ERT

AUC 0.9528 0.8149 0.9464 0.9906 0.9507 0.9993 0.9020 0.9840
ACC 0.9333 0.7905 0.8857 0.9857 0.8905 0.9905 0.8905 0.9290
Gini 0.9056 0.6298 0.8928 0.9812 0.9014 0.9986 0.8040 0.9680

Variable Coefficient Odds ratio p-value Variable Coefficient Odds ratio p-value

Intercept 1.5299 0.6899 Calcium 0.0001 1.0001 0.2984
Viscosity 40oC �0.0261 0.9742 0.1575 Water �13.3763 0.0000 0.1570
Flash point 0.0124 1.0124 0.4230 Carbon 1.1233 3.0748 0.0812
Zinc 0.0081 1.0082 0.0034 Iron 0.0200 1.0202 0.5121
Silicon 0.0256 1.0259 0.1777 Chromium �0.1362 0.8727 0.2390
Sodium �0.1084 0.8973 0.0000 Lead 0.0446 1.0456 0.6565
TBN �0.0044 0.9956 0.9007 Copper �0.0225 0.9778 0.5337
Nickel �0.0582 0.9435 0.0035 Vanadium �0.0103 0.9897 0.1128
Magnesium �0.0210 0.9793 0.1913

Table 8.
Classification model’s
comparison based on
model performance

characteristics

Table 9.
Binary LR model
summary of oil

parameters
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oxidation inhibitors, probably caused by high-temperature operations or fuel dilution on the
lubricant, hence leading to lower lubricity challenges. To address such a challenge, while
considering the patterns revealed, the sources of potential fuel dilution like injector pump
leaks or malfunctioning injector nozzle should be checked and or rectified. Replacement of
injector pump gaskets and seals would address the potential leakage cause if the pump were
in good condition. Other potential areas to address include the viscosity of the lubricant in
use, where changing to a higher viscous lubricant will reduce the metal to metal contact,
whose friction raises the oil temperature. However, with relatively few variables, caution
must be applied, as the findings might be uncomprehensive if other variables are
unconsidered.

4.4.3 Random forest. The model achieved a classification accuracy of 0.9857 and AUC of
0.9906, as shown inTable 8. Despite high accuracy and goodness of fit, themodel lacks simple
and straightforward interpretability and exposure of the effects caused by different oil
parameters in the model, making it hard to understand the embedded knowledge pattern in
the data analysed. Reviewing all the trees generated is time-intensive and unable to offer
coherency in the individual classification.

4.4.4 Neural network. The model achieved an ACC of 0.7905 and AUC of 0.8149. Building
the NN model required data pre-processing by transformation using normalization. As the
number of hidden layers decreased, the predictive accuracy of the model improved. The
model lacked a simplistic and straightforward approach to interpret the results. Moreover,
the model did not explicitly exhibit the influence of the various parameters towards the
sample classification but showed the weightings of the parameters on the plot which most of
the times is not readily retrievable while building the model.

4.4.5 Support vector machine. The model exhibits ACC of 0.9333 and AUC of 0.9528.
Visualization of the various parameters based on various kernel types like sigmoid and linear
can be shown in two-dimensional. Despite the lack of direct and straightforward
interpretation, the moderate effort shows two-dimensional interpretability of the effect of
the variables towards sample classification, while data must be transformed using
normalization.

4.4.6 Extreme gradient boost. The model exhibits ACC of 0.9905 and AUC of 0.9993.
Despite the satisfactory performance of the algorithm, interpretation of the influence of
parameters to the classification is unattainable. Nevertheless, XGB possesses the capability
of generating the variables of importance.

4.4.7 K nearest neighbour.Themodel exhibits ACC of 0.8905 andAUC of 0.9020, like SVM
and NN, it does not evaluate the importance of the variables in the classification of the
outcome.

4.4.8 Extremely randomized trees. The model exhibits ACC of 0.9290 and AUC of 0.9840
while it evaluates the importance of the variables in the classification of the outcome like RF.

RF, XGB, and ERT evaluated the importance of the variables in the classification of the
outcome; it infers sodium represents the most significant variable in the classification
followed by nickel, vanadium, calcium, viscosity and iron. Sodium sources in lubricant
include water and or coolant leaks, while nickel and vanadium are derived from alloys or
HFO. This is similarly depicted by the concurrence of LR and DT picking the same variables

Variable Value Variable Value Variable Value Variable Value

Viscosity 40oC 144 Calcium 9,859 Sodium 5.1 Chromium 0.15
Flash point 14.7 Water 0.1 TBN 34 Lead 2
Zinc 238 Carbon 0.11 Nickel 7.7 Copper 6.5
Silicon 12 Iron 12.2 Magnesium 22.6 Vanadium 12.2

Table 10.
Example of sample

results for
classification
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as the most significant oil parameter in the classification of the oil sample as “FAIL”. Further
in-depth investigation of these variables by the maintenance team could potentially reduce
the lubricant failure and enhance the life of both the machine and lubricant.

4.5 Classification models’ comparisons
From the results in Table 8, XGB attained the most substantial predictive power (AUC),
followed byRF, ERT, SVM, DT, LR, KNNandNN.High predictive power infers themodel can
accurately predict the classification of the sample hence offers an effective and efficient
diagnosis to prompt maintenance intervention. While evaluating ACC, XGB model exhibits
the highest value followed by RF, SVM, ERT, DT, KNN, LR, and NN. XGB produces a
prediction model, with stage-wise approach optimizing an arbitrary differential loss function
in the form of an ensemble of othermodels (typically decision treeswithweak prediction). The
utilization of ensemble ensures not only XGB retains high accuracy, but also it is fast and
outperforms other techniques generally. While reviewing the goodness of fit criterion using
Gini, XGB had the highest, followed by RF, ERT, SVM, DT, LR, KNN and NN. This goodness
of fit results infers themodel employingXGB is correctly specified and fits the data used. This
test reveals the discrepancy between observed values and the values expected under the
model in question, hence determines whether sample data are consistent with a hypothesised
distribution. Hence, the engineer can confirm the classification model fits the set of
observations. Overall, DT a white box technique performs comparatively well compared to
the black box techniques. Among the black-box techniques, XGB and RF exhibit better
performance. However, NN’s Gini value is at the threshold as alluded in Section 3.7.

Overall interpretability of the different classification models was with varied ease.
Regarding interpretability ease, DT had better and straightforward interpretability, followed
by LR, which requires some slight efforts to interpret the odds ratio and p-values. The
remaining models were complex to interpret. Nonetheless, RF, XGB and ERT generated the
significant variables quantitatively that may be utilised to offer interpretation insights, like the
critical variables that profoundly influence the lubricant sample to be classified as failed.
Despite offering this interpretation, no further exposition is drawn from the significant
variables.

Modelling SVM, RF, LR, XGB, KNN and ERT required moderate effort due to the number
of parameters involved in the tuning exercise, for instance, they all had more than two
hyperparameters often search grid method had to be applied. Contrary to this, DT and NN
had fewer parameters for optimisation during the tuning.

While reviewing the ease of the estimated models to expose the various lubricant
parameter’s impact or influence on the classification of the oil samples, DT and LR showed
remarkable results. DT offered traceability of respective oil parameter towards the
classification of the sample, while LR depicted the relationship of an oil parameter to the
sample classification. RF, XGB and ERT provided only the estimation of the variable’s
importance to the classification, while SVM, KNN and NN did not exhibit variables
interpretation. These classifiers are considered as “black box” which have limited ability to
explicitly expose the causal relationships between the explanatory variables or lubricant
parameters hence no probability of class memberships is available (Phillips et al., 2015). Due to
this challenge, one cannot easily obtain predictions from the model analysis save whether the
machine state and condition is okay or not (healthy/not healthy) andwhich dependent variables
are significant. However, in data sets where they return significant predictive power and
accuracy, the aspect could be traded off if the other aspects are unnecessary.

Table 11 illustrates the scores for each of the evaluatedmodel considering the researcher’s
criteria set for comparing the model’s performance. DT and LR based classification model
from this study satisfy the researcher’s established criteria, despite the moderate effort in
modelling. From the criteria set, it is worth also to note that selection of one model over the
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other ultimately has a trade-off in one or more aspects, and no single classifier algorithm
yields a more significant result for every dataset also corroborated by Tomar and Agarwal
(2013). An example of selecting LR over RF would imply a loss of 10% accuracy and 4.42%
predictive power for good and easy interpretability.

On the contrary, depending on the user preference, LR will offer better interpretability of
the impact of variables changes on the probability of the machine and lubricant condition
being healthy or not. However, in instances where performance and accuracy of the model is
the overarching objective, an ensemble algorithm XGB would offer the best alternative.
Comparison of the separate models is likely to be primarily dependent on the nature of a
specific data set, and one cannot conclude whether one model will be superior to the other
model in each data set, also corroborated by Raza et al. (2010).

5. Implications for decision support in practice
The developed decision support system under the case context offers several
recommendations following the expectations raised in Section 1.2. To begin with, the plant
and analysts need to consider broadening the current two-tier (“PASS” and “FAIL”)
classification to a three-tier level (introduce “CAUTION”) as discussed in Section 4.3. The
broad-spectrum will offer categorized intervention requirements like inspection of possible
ingression of dust via the air filtration system when Silicon is classified as “CAUTION”. On
the other hand, partially forced recharge, change of air filters and off-line centrifuging of the
lubricant could be employed when the silicon level is classified as “FAIL”. Secondly, sodium,
vanadium, calcium and nickel are exposed as critical lubricant parameters exhibiting strong
influence towards the samples being classified as failed. Addressing such exposed critical
parameters deviations will reduce lubricant related faults and failures significantly.
Furthermore, fuel dilution, water and dust (silicon) ingression into the engine are exposed
in the case context as the primarymechanical fault causes. Ultimately, the use of Decision tree
and Logistics regression model offers the most appropriate support considering both
quantitative and qualitative aspects derived from the developed criterion. In contrast, XGB
offers the most superior accuracy. However, there are additional essential implications we
derive from this study, as highlighted in the following part.

As indicated in Section 4.1.1, data integrity represents an essential facet for successful
DSS results. The challenges of missing data and consistency could be addressed by clear
procedures and protocols that define sampling frequency, sampling point and critical
parameters to be tested. A predictive approach utilising shorter oil sampling interval, in our
analysis would offer the opportunity for timely intervention, enhance maintenance planning
and scheduling (source lubricant and spares, e.g. worn bearings, injector pumps) to reduce
unplanned downtime significantly. Incorporation of on-line condition monitoring
undoubtedly offers more accuracy and benefits. Moreover, un-procedural sample handling
potentially could undermine the quality of the sample, hence negatively impact the data
integrity. The un-procedural sampling could be addressed by skills enhancement like

Criteria DT RF SVM LR NN XGB KNN ERT

Quantitative High predictive power U U U U U U U U
Data classification accuracy U U U U ✗ U U U
Model goodness of fit U U U U ✗ U U U

Qualitative Ease interpretability U ✗ ✗ U ✗ ✗ ✗ ✗
Low modelling effort ✗ ✗ ✗ ✗ U ✗ U ✗
Significant parametric exposure U ✗ ✗ U ✗ ✗ ✗ ✗

Table 11.
Classification models’
comparison employing
the researcher’s criteria

A data mining
approach for

UOA

285



training and investment on oil sampling equipment (vacuum pump, sample containers) and
testing equipment.

Moreover, setting up of appropriate procedures and installation of equipment for charging
the system with new lubricant is fundamental to ensure the quality of the lubricant in the
system, in this case, the engine, since this is a salient means that ingression of contaminants
occurs. An in-house or on-site laboratory would suffice for large-scale plants, depending on
the sampling frequency, while portable oil testing kits can be employed for immediate
interventions purposes while awaiting extensive laboratory test results. Despite the
perceived moderate cost of oil analysis tests (depending on the type and number of
parameters to be tested), plants should be able to ensure rapid sample turnaround time and
enhance in-house knowledge. Ultimately, the plant will improve their bottom-line because of
increased problem detection, which implies significant maintenance costs reduction if
implemented regularly and articulately. The installation of on-line condition monitoring
using sensors would address not only the sample and data integrity, but also ensure
continuous or significantly increased sampling/testing, accuracy and prompt decision
making. However, in such plants, caution should be taken to evaluate the cost-benefit
analysis on the predictive method to be adopted where increased sampling could offer better
economics for ageing equipment because installation of online sensors may be expensive and
require excessively more configurations.

Statistical analysis methods like trending have been utilized significantly in the industry
which offers uncomprehensive and incomplete decision support as alluded in Section 1.1.
This is attributed to the reliance of the customarily used one factor at a time analysis that
retains non-consideration of the interaction between lubricant parameters, an aspect also
corroborated by (Wakiru et al., 2017b). Methods like Correlation, CA and PCA offers more
insights to DSS. However, the use of trend analysis and Correlation can be employed as a first-
hand diagnosis analysis due to ease of application and accessibility. The mentioned
techniques are easy to learn and use because a generic code, tailor-made to the parameters
considered by distinct plants can be developed. Moreover, incorporation of a graphical user
interface (GUI) to ease interpretability and offer first-hand key insights for prompt
intervention can be advanced, as the extensive analysis (such as exhibited by correlation,
PCA and CA) which is time intense follows later.

Likewise, this study advanced a scalable framework that considers all the lubricant
parameters while selecting the relevant variables for the classification process. This
systematic selection methodology ensures that each set of datasets is evaluated, and
significantly relevant parameters are employed while developing the model. This aspect will
significantly reduce not only the time involved in modelling but also ensure comprehensive
results that factors both the historical aspect of the machine being lubricated and the
interaction characteristics of the oil parameters. An all-inclusive model developed from this
systematic variable selection offers robust, reliable classification results.

While considering the classification of the oil analysis results, this will help the
maintenance manager to discover the various factors to consider in developing a robust
model and mitigate the limitations as alluded earlier, where studies considering UOA remain
narrow in focus, dealing merely with a single or at most five oil parameters as illustrated in
Table 3, in Section 2.5. These findings contribute in several ways to our understanding of
classification algorithms as applied to UOA. In the first place, the performance of the
algorithm will depend on the feature or variable selection and reduction used, as seen in
Section 4.2.3, where it is essential to select the variables to use systematically. In the second
place, the use of white and black box classification models offers various advantages and
disadvantages separately. Moreover, the use of a hybrid approach would add value to the
maintenance engineer. However, due to various constraints expected such us time,
accessibility and skills, a selection criterion like advanced in this study would assist the
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engineer in selecting and focusing on the appropriate algorithm(s), hence, ensure the
development of expertise and user preferences are met. This selection criterion offers two
fundamental factors to consider in practice; this is qualitative and quantitative factors. In
addition to extensively used quantitative factors like model accuracy and predictive power, it
has been shown that qualitative aspects remain equally crucial while selecting the
appropriate classifier from a user perspective in terms of effort and skill, comprehensibility
and interpretability also corroborated by (Martens et al., 2011). This combination of findings
provides some support for the conceptual premise that despite the low statistical and data
mining experience as would be expected among engineers, appropriate model selection
adopting such a framework is insightful and easy to use.

6. Conclusion and future work
The primary goal of the current study was to develop an integrated framework to analyse
maintenance data (UOA data) using an integrated data mining formalism and to evaluate the
extent to which this integrated framework is useful for maintenance decision support using
classification models. The relevance of integration is supported by the current findings,
where meaningful parametric patterns were exposed while applying several data mining
techniques. The revealed patterns by correlation, PCA and CA, besides assisting in
maintenance decision support, additionally offer a more thorough understanding of the
associations. PCA was more significantly used to confirm the number of appropriate oil
parameters utilised in the binary classification models, while the study developed a
systematic classification framework. In the developed framework, pre-processing of the UOA
data scored by the analysts has been shown as a salient aspect in data preparation before use
as input in the binary classification models. The framework has demonstrated the value of
selecting essential variables to be employed in the classification models using a clearly
defined basis explicitly and tangibly. LR, XGB, KNN, ERT, RF, DT, SVM and NN models
were estimated using the same data set and validation process. The study employed the
developed model selection criterion and revealed the selection of a suitable model involves
picking one which best suits the dataset, preferences, needs and expectations and further, not
necessarily the most accurate model. The present study has advanced some way towards
enhancing the understanding and application of data mining techniques in fault diagnosis
and classification while using maintenance data, in this case, oil analysis data. These results
besides strengthening the view that performance of a model is dependent on the dataset and
the user preferences, as well offer an automated framework for evaluating lubricant samples
overcoming various challenges associated with the manual process. Such automated
frameworks generated from real-plant data are important in complementing maintenance
decision support. In our view, this offers themaintenancemanagers insight on the potential of
data mining as well as classifiers in the strategic and tactical actions related to maintenance
decision support.

One limitation of this study represents the use of one case study data in the analysis. To
address this aspect, the employment of the developed DSS framework considering used oil
analysis results from other types of equipment like gearboxes or hydraulic would constitute
part of the subsequent research. Moreover, comparing the various classifier’s dependency on
the number of classes where, as alluded in Section 4.3, three classes “Fail”, “Caution” and
“Pass” could be incorporated as the prediction variables (multinomial classification) will be
employed and a comparison to validate the dependencies performed in the future research. A
further study with more focus on the number of classes and dependencies therein is therefore
suggested. Ultimately, subsequent research would benefit from setting thresholds or weights
to the researcher’s criteria of model evaluation and selection while exploring lubricant data
from other fields which was unexplored by this study.
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