
Vol.:(0123456789)

https://doi.org/10.1007/s13194-021-00403-3

1 3

PAPER IN THE PHILOSOPHY OF THE LIFE SCIENCES

The applicability of mathematics in computational systems 
biology and its experimental relations

Miles MacLeod1

Received: 1 July 2020 / Accepted: 12 July 2021 
© The Author(s) 2021

Abstract
In 1966 Richard Levins argued that applications of mathematics to population 
biology faced various constraints which forced mathematical modelers to trade-
off at least one of realism, precision, or generality in their approach. Much tradi-
tional mathematical modeling in biology has prioritized generality and precision in 
the place of realism through strategies of idealization and simplification. This has 
at times created tensions with experimental biologists. The past 20 years however 
has seen an explosion in mathematical modeling of biological systems with the rise 
of modern computational systems biology and many new collaborations between 
modelers and experimenters. In this paper I argue that many of these collaborations 
revolve around detail-driven modeling practices which in Levins’ terms trade-off 
generality for realism and precision. These practices apply mathematics by working 
from detailed accounts of biological systems, rather than from initially idealized or 
simplified representations. This is possible by virtue of modern computation. The 
form these practices take today suggest however Levins’ constraints on mathemati-
cal application no longer apply, transforming our understanding of what is possible 
with mathematics in biology. Further the engagement with realism and the ability 
to push realistic models in new directions aligns well with the epistemological and 
methodological views of experimenters, which helps explain their increased enthusi-
asm for biological modeling.
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1  Introduction

In a paper titled ‘‘The Strategy of Model Building in Population Biology’’ Levins 
(1966) famously characterized mathematical applications to mathematical ecology 
and population biology as bound by several unavoidable constraints given biological 
complexity. No approach could maximize generality, precision and realism simul-
taneously. Levins’ theory can be used to characterize mathematical applications to 
biology historically. Many theoretical and mathematical biologists for instance have 
aspired to generality (often in the form of say fundamental theory) at the expense of 
realism through practices of idealization and simplification. As Keller (2003) docu-
ments such practices have often conflicted with the methodological and epistemo-
logical preferences of experimenters and created obstacles to interaction.

However the past 20 years has seen a rapid increase in the mathematical mod-
eling of biological systems through the advent of modern computational systems 
biology with an uptake in engagement by molecular and other biologists in inter-
disciplinary modeling with mathematically trained specialists. In the paper I pur-
sue two claims. Firstly, while there are certain continuities within modern systems 
biology with previous more traditional practices, certain practices are novel. Some 
of these practices, which I call detail-driven, use computation to facilitate a more 
brute force replication of biological systems over more subtle idealized or simplified 
representations of biological phenomena. Levins’ criteria help situate these prac-
tices relative to traditional ones in modern systems biology, and in fact can help 
us attribute divides amongst systems biologists to more basic preferences regarding 
mathematical application. However detail-driven systems biologists leverage real-
ism into methods which produce potentially novel applications of mathematics some 
of which, if they work out, would suggest that Levins’ constraints no longer hold on 
mathematical application. Generality, precision and realism can be obtainable con-
jointly with respect to particular generalizations, and preferably so. Secondly these 
detail-driven practices align better with the methodological and epistemological 
preferences of experimenters and what experimenters generally consider useful and 
viable goals for modeling. This helps explain to some extent their relative engage-
ment of experimenters with these practices, compared to those of systems biologists 
working with a more traditional approach.

To achieve these aims in the next section of the paper I give a brief introduc-
tion to the structure of contemporary systems biology. In the third section I outline 
Levins’ criteria on mathematical application, and its use in characterizing various 
practices in mathematical biology including contemporary systems biology, particu-
larly traditional idealization and simplification-driven practices, and the reactions of 
experimenters to these both historically and today. In the fourth section we look at 
detail-driven practices closely; how these are both captured by Levins’ criteria but 
also potentially move beyond them. I build our understanding here partially by rely-
ing on the results of a 4  year ethnographic study of collaborative model-building 
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practices in the field1 plus systems biologists’ own philosophical reflections on their 
practices. This ethnographic study of two labs, provided us a first-hand insight into 
the nature of these practices and how participants in the modeling process rational-
ize their activity and their involvement.

2 � The structure of modern systems biology

Modern systems biology is remarkably eclectic trying to marry under the common 
label of “systems biologist” theoretical biologists, (often formally trained in math-
ematics) committed to more traditional theoretical positions on the purpose and 
need for a well-developed biological theory, with technology-driven computer sci-
entists and engineers who see an opportunity to enter biology and make substantial 
new discoveries using new data sources. At the same time practices are diverse with 
respect to the role and scale of modeling, the role of computation and the role of col-
laboration and experiment. The field resists any easy demarcations. O’Malley and 
Dupré however describe modern systems biology as composed of two broad distinct 
streams – a systems theoretic stream and a pragmatic stream. What unites these two 
streams is a general commitment to the need to treat a biological systems as funda-
mental units of analysis and explanation rather than their individual parts. Beyond 
that however the distances can be substantial. The systems-theoretic stream is char-
acterized by historical relations to a long tradition of theoretical biology which has 
promoted various systems ideas and concepts as a means to a theoretical account of 
biological systems, as opposed to a more reductionistic account. Progenitors of these 
ideas include the cyberneticists, Bertalanffy’s general systems theory, Waddington’s 
epigenetic landscape theory, and Rashevsky and his student Rosen’s relational biol-
ogy. Pragmatic systems biologists however do not necessarily harbor any commit-
ment to the theoretical projects of the systems-theoretical systems biologists. Their 
involvement has been precipitated by the scaling up of data generation (see genom-
ics), and the affordance of modern computation, which allow this information to be 
processed into large scale models of systems.

At the same time modeling in systems biology is often divided into two general 
practices; top-down and bottom-up. Bottom-up practices work to assemble models 
of systems from the component biological parts such as metabolites or genes and by 
virtue predict and control or explain various functions of those systems. Pragmatists 
generally work in this stream. Top-down systems biology on O’Malley and Dupre’s 
view aims for a “higher” account of biological systems at the outset in terms of the 
basic laws and principles governing biological systems. Systems-theoretical biolo-
gists predominantly practice top-down systems biology. Alternatively however top-
down is also used to describe practices of reverse-engineering system structure from 
high-density data sets. Thus top-down/bottom-up is often just used to distinguish 

1  This NSF project was led by Professor Nancy Nersessian. The two labs were studied over 4  years, 
through lab observations and interviews specifically on modeling practices. Over 100 interviews were 
performed.
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practices within the more pragmatic stream, and ignore somewhat the more tradi-
tional stream.

These bottom-up/top-down and theoretic/pragmatic categorizations are neither 
perfect nor exhaustive. For instance certain systems biologists working within the 
more pragmatic mode do have an historical and theoretical legacy to draw from, 
for instance those following Savageau’s approach to metabolic modeling which is 
grounded in a something like a basic theoretical account of biological systems, one 
which can be used to guide bottom-up modeling (see e.g. Biochemical Systems The-
ory; Voit, 2000). But these distinctions do I believe track basic contrasting views on 
how mathematics can be applied to the modeling of biological systems. Levins’ cri-
teria helps locate these differences with respect to what modelers see as productive 
trade-offs to make given their goals, at least initially, in the modeling of biological 
systems.

3 � Traditional notions of mathematical applicability in systems 
biology

Levins’ Framework  Levins’ oft-cited paper on strategies of model building in popu-
lation ecology is one of the more influential attempts to position and compare math-
ematical practices. Levins’ concern is the problem of how to approach a complex 
problem in population biology involving simultaneously “genetic, physiological, and 
age heterogeneity within species of multispecies systems changing demographically 
and evolving under the fluctuating influences of other species in a heterogeneous 
environment.” (421) He argues that in such circumstances no model can maximize 
generality, precision and reality simultaneously. Hence if the goal is to achieve gen-
eral mathematical accounts (for the purposes of theory) then one of either precision 
or realism must be sacrificed in order to handle the complexity of such phenomena. 
The principal approach in this regard sacrifices realism in favour of precision and 
generality, through the use of unrealistic equations and assumptions, by setting up 
initially general equations from which precise (meaning numerically exact) results 
follow. Modelers working in this tradition never try to represent their phenomena in 
detail. Rather they start from simplified and idealized representations based on cer-
tain theoretical presuppositions and mathematical concepts in which only the most 
relevant aspects are represented, elements which generally have the capacity to rep-
resent multiple similar phenomena. In mathematical ecology the extensive work on 
Lotka-Volterra equations falls in this category. This methodology, Levins asserts, 
derives from physics. “These workers hope that their model is analogous to assump-
tions of frictionless systems or perfect gases. They expect that many of the unreal-
istic assumptions will cancel each other, that small deviations from realism result in 
small deviations in the conclusions, and that, in any case, the way in which nature 
departs from theory will suggest where further complications will be useful. Start-
ing with precision they hope to increase realism. (422)”.

Levins’ own preferred approach is to sacrifice precision to realism and general-
ity, accepting that idealized mathematics is an appropriate approach but favouring 
representations that can qualitatively represent general trends, rather than starting 
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from simplified models which capture idealized general behaviours in exact terms. 
Levin’s puts emphasis on models which thus facilitate visual analysis or can be 
understood in terms of basic inequalities. Understanding derives from tracking the 
general qualitative properties of systems, rather than mathematical manipulation or 
formal analysis.2

Levins also briefly mentions a third strategy, in which generality is sacrificed 
for realism and precision, which he ascribes to mathematical ecologists Holling 
and Watt. Such models are capable of short term predictions of complex ecologi-
cal system, employing models with numerous precise parameters fed into comput-
ers. However Levin’s expresses the view that analytically insoluble equations—ones 
insoluble in terms of readily interpretable equations—are of little use to scientists 
since they have “no meaning for us”. This would seem to suggest that Levins held 
that idealized or simplified approaches should be preferred on grounds of explana-
tion and understanding, against say expanding the Holling and Watt type- approach.3 
Normatively the most fruitful and preferable applications of mathematics, on the 
basis of these constraints, should be through working from simplified and idealized 
representations.

It is possible to associate Levins’ first strand, in which generality is strived for 
at a cost to realism through idealization and simplification, with many researchers 
in mathematical biology historically who have often had strong theoretical goals, 
including those who have played an historical role in the development of the modern 
systems theoretic stream of systems biology. Keller for instance places much his-
torical importance on Rashevsky and Turing in the history of mathematical biology. 
Levins ascribes the development of this strand of mathematical application in popu-
lation biology to physicists moving into the field. Keller likewise thinks Rashevsky 
and Turing’s approaches largely took the inspiration from the success of using ide-
alization to obtain generality in mathematical approaches in physics. Rashevsky’s 
practice can be described broadly as follows, to begin from certain theoretical or 
mathematical hypotheses (including say a principle of parsimony; Hoffman, 2013) 
which licensed or motivated simplified or idealized representations in place of hav-
ing to account for, or represent, enormous amounts of detail. In one of his early 
moves he treated cells as idealized spheres, in another neurons as simple excitatory 
and inhibitory elements, thus putting to the side an otherwise great deal of complex-
ity at the outset of the investigation. In the former case, as Keller reports, Rashevsky 
perceived that cell division might be explained in terms of ordinary physical forces 
involved in cell metabolism, licensing a reductionistic and idealized account of cells 
as spheres. Confirmation of such a mathematical account would on Rashevsky’s 
view confirm the original hypotheses and facilitate the identification of the “simplest 
possible laws of interaction” to explain a system’s behaviour (Shmailov, 2016; 67).

Historically the motivation for this approach may have come from physics but it 
has not been tied to physical explanations or physics-based explanations. Much of 

2  See Weisberg for an analysis of how Levins characterizes and limits “understanding” in this context.
3  Although Odenbaugh argues here that Levin’s was factoring in at least the limited scope of contempo-
rary computation rather than simply ruling out this approach (Odenbaugh, 2006).
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mathematical ecology for instance, such as Lotka-Volterra modeling, which Levins 
cites, does not operate with physics or chemistry as a starting point, but rather with 
its own basic hypotheses on population dynamics. Rashevsky himself moved away 
from physics later in his career without abandoning a strategy of idealization and 
simplification in his hunt for a theoretical basis for biology (Hoffman, 2013). His-
torically some systems biologists have explicitly rejected physics based accounts of 
biological systems in favour of their own systems concepts (see Rosen for instance). 
But they share the basic approach by preferencing generality (in the form of theory) 
over realism and pursuing idealized and simplified representations as the starting 
point for the mathematical investigation of biological systems. Rosen’s relational 
biology for instance operates on the basis that highly abstract mathematical concepts 
-in this case categories- can provide a fundamental account of the principles govern-
ing biological organization and physiological function independent of any particular 
physical mechanism or material realization. As such Levins’ framework provides a 
rough way at least to group a broad range of mathematical approaches historically 
in the life sciences as sharing a basic approach to mathematical application, even if 
they differ sometimes substantially in their theoretical presuppositions.

In modern systems biology  For many contemporary systems biologists – those 
working in O’Malley and Dupre’s systems-theoretic stream –the historical relation-
ships to past mathematical biologists are often direct, and modelers continue prac-
tices of trading-off realism for generality by employing idealized and simplified rep-
resentations as the starting point for mathematical work. There are obvious links 
to the inheritors of relational biology for instance, as well as others Green labels 
as taking a “global” approach (Green, 2017). These approaches draw on dynamical 
systems theory-based landscape accounts of biological systems in order to concep-
tualize and map biological processes to mathematical features of these landscapes. 
Fagan (2016) documents for instance the use of dynamical systems modeling in 
stem cell biology by Huang and others. The models she describes in those cases 
model simplified basic dynamic interactions between genes (using ordinary differ-
ential equations) producing a complicated theoretical account in terms of develop-
mental landscapes. These landscapes map developmental trajectories which repre-
sent different pluripotent states of a stem cell. The approach proceeds on the basis 
that these landscapes, defined by a minimal set of interacting agents, are instructive 
for the general behavior of stem cells without requiring full representations of entire 
genetic networks.

Various other topological, graph-theoretic or network accounts of biological 
organization in modern systems biology might in some cases be similarly under-
stood insofar as they aim at representing general properties or feature of systems by 
working from initially idealized and simplified representations of their component 
parts or structure. Krohs and Callebaut (2007) refer to a stream of cybernetic mod-
eling which they call top-down, in which researchers pursue a minimal modeling 
strategy, searching for, and basing their analysis on the “a model of the lowest possi-
ble mathematical complexity which can explain a system’s behavior” (p190). These 
models apply theories or principles from cybernetics and electrical engineering to 
do so. As in historical cases such models are constructed largely independently of 
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detailed physical properties of the systems at issue, but can be enriched once such 
models are developed through closer investigation of the system at hand. They give 
the Hodgkin-Huxley equations as historical examples. As such while the landscape 
models and these cybernetic models vary substantially in terms of their mathemati-
cal formalisms and principles, they do share a similar approach in their strategy of 
applying mathematics. Such a strategy would arguably fail if systems were not sim-
plified at the outset, particularly in terms of the ability to recognize and apply the 
relevant theoretical principles. There is an argument too that topological accounts 
can also be seen as pursuing something similar, insofar as such approaches pare 
away details and apply otherwise simplified representations of general systems 
properties (see Jones, 2014). Similarly systems biologists working on design prin-
ciples who also operate from basic minimal model accounts, based on an expecta-
tion that there is underlying simplicity (parsimony) in biological organization (see 
Gross, 2019). However in the next section I will suggest however that some of this 
work does not fit entirely well with the systems-theoretic stream on this analysis 
given the extent to which such accounts are actually derived from rich accounts and 
detailed models, and do not trade-off realism in any substantial way. Either way our 
analysis here, using Levins’ framework, provides some means here of deepening our 
account of the approach to mathematical application otherwise varied researchers 
within the systems-theoretic tradition share, despite quite different theoretical back-
grounds and motivations.

Relations to experimentation  However regardless of how many modelers could be 
said both historically and today to fit this generality/precision tradition, it in par-
ticular seems to have inspired negative reactions from experimenters and other non-
mathematical biologists. The objections Keller identifies to have characterized rela-
tions between molecular biologists and mathematicians for much of the 20th can be 
understood as specific objections the trading off of realism for generality in particu-
lar. For example in response to some of Rashevsky’s earlier work, which modeled 
cells as spheres, Keller documents how biologists rejected explicitly the value of 
fictional or idealized nature of the models. The experimenters felt essentially that 
the motivating theory behind Rashevsky’s models was too speculative given both 
the overwhelming complexity of biology and the limited current state of biological 
knowledge. Experimenters were not willing to grant any special license to math-
ematicians to hit upon the right theoretical principles certainly if the only evidence 
was the ability of a simplified representations to reproduce some general biological 
behaviors or patterns. They were not happy to accept that broadly accounting for a 
phenomena was any indication of the truth of the mathematical account. On a deeper 
level, Keller argues, these concerns also reflect disagreement over what constitutes 
a good biological explanation. Mathematical biologists have often proposed higher 
level mathematical properties of mathematical representations, based on for instance 
stability points, limit cycles or topological structures, as general accounts, in con-
trast to the experimenter’s preference for causal mechanical explanations based on 
the discovery of specific causal biological elements and their interactions (Bech-
tel & Abrahamsen, 2010). From this perspective higher-level general mathemati-
cal claims about biological phenomena are unlikely to be considered particularly 
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compelling until they can be extrapolated in terms of particular molecular elements 
and interactions. As such Turing’s, 1952 account of morphogenesis or pattern gen-
eration in terms of a generic reaction–diffusion process lacked a connection to any 
explicit mechanism biologists were familiar with, and was easy to dismiss as highly 
speculative.

Fagan (2016) points similarly to explanatory and evidential conflicts in interac-
tions between experimenters and modern systems biologists working in stem cell 
biology. She documents for instance the lack of uptake of stem cell landscape mod-
eling within the experimental stem cell community, giving three potential reasons 
for it. Firstly that the full biology of stem cells is not understood, which makes it 
hard for biologists to consider these results compelling even if the mathematicians 
feel that the mathematical result is nonetheless profound. Secondly modelers fail to 
engage with the full richness of experimental work on these systems. Thirdly the 
idealization of stem cells as gene regulatory networks is advocated for by modelers 
more or less on the basis that it produces a compelling mathematical explanation. 
Fagan believes that each of these serve as obstacles to the reception of such models 
within the experimental stem cell community and help explain why these mathemat-
ical approaches are more or less ignored even when the mathematicians themselves 
explicitly address their work to experimenters.

These responses amongst biologists historically and today bear much in charac-
ter to historical responses to mathematical ecology, Levins’ principal subject matter. 
Ecologists have objected to practices trading off realism for generality – such Lotka-
Volterra based theory -citing particularly their methodological basis in physics, and 
predominant concern with just a small set of analytical mathematical formalisms, 
instead producing models which try to capture details of particular situations (Hall, 
1988; Simberloff, 1981). As such the responses of molecular biologists to these tra-
ditional approaches in mathematical biology and elsewhere are not limited to them 
alone, and are more deeply shared than might be suggested by the limited cases I 
have presented. And while we certainly cannot say based on these few cases above 
that philosophical disagreement have been precise cause of historical lack of interac-
tion between biologists and experimenters- there are many other historical factors at 
play – it does set a framework for understanding why experimenters are engaging 
with certain practices now in systems biology more readily.

4 � Detail‑Driven Modeling and Levins’ Framework

In Levins’ characterization, as mentioned, the third category of modelers pursuing 
realism at a cost to generality is treated rather brusquely, and conflicts somewhat 
with constraints on understanding as Levins sees them. Here I want to argue that 
in the modern computational age practices pursuing realism upfront, at least at an 
initial cost to generality, have developed and expanded in novel ways Levins could 
not necessarily have anticipated, providing means to enrich and extend this category, 
and explore in depth how far apart the more traditional systems-theoretic methods 
and modern computational practices are in modern systems biology in terms of their 
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mathematical approaches. The development of this space of mathematical applica-
tion has two important consequences. Firstly, Levins’ constraints on achieving gen-
erality, precision and realism simultaneously may no longer hold, opening the way 
to much more powerful applications of mathematics but ones which may render the 
traditional approach redundant. Secondly, in this new environment the objections 
of experimenters, that modelers trade-off realism too willingly, no longer holds to 
the same degree. In fact the practices I want to bring attention to here put a priority 
on detail and rich experimental data. These practices I call detail-driven modeling 
practices.

These practices start from the position that effective application of mathemat-
ics for various purposes requires working from detailed accounts of systems (detail 
that often runs up against computational constraints). In this respect the label detail-
driven modeling can cover a number of practices in systems biology, including top-
down processes deriving from ‘omics which use rich data sets to reverse engineer 
system structure and also whole cell or whole systems modeling. These practices 
may well share a similar philosophy to that guiding the practices I describe here. 
Mainly I restrict the focus here though to a set of bottom-up modeling processes 
which often involve collaboration with experimenters. These were the target of eth-
nographic investigation, the results of which I rely on here. These practices seek 
to apply mathematics to prediction, theory generation but also to the production of 
novel information on system structure.

Detail‑driven modeling  The overarching goal which motivates many detail-driven 
practices and helps explain the original motivations for such modeling, is prediction, 
which was true also of Levins’ ecological examples. Modelers modeling biochemi-
cal networks in computational systems biology aim to provide precise mathemati-
cal predictions of large scale systems suitable for say clinical purposes in medical 
contexts (Hood et al., 2004). Systems biologists pursuing these predictive goals take 
as a starting point the belief that only from initially detailed accurate representation 
of whole systems can the variabilities and nonlinearities of biological systems be 
captured sufficiently for drawing reliable predictions particularly for the high-stakes 
purpose of medical intervention (see Voit, 2013). In this respect systems biolo-
gists are certainly motivated by a systems theoretical account of biological systems. 
Biological systems are too nonlinear or chaotic for abstract, idealized or linearized 
accounts of systems to properly account for (Voit, 2013). They are also motivated by 
the affordances of modern computation and its capacities for detailed representation. 
Models will be effective for predictive and control purposes if they can substantially 
replicate a system rather than just represent it.

To achieve this most mathematical models within the field, and certainly all the 
models we investigated in our ethnographic study, are straightforward and concen-
trate on interactions between specific biological elements by trying at least initially 
to account widely for those interactions. Modelers generally work with large num-
bers of coupled ordinary differential equations which track the concentrations or 
states of certain biochemicals and genes within a cell and how these change dynami-
cally due to reactions between them. The sequences of reactions are represented in 
terms of a pathway diagram. Based on our intensive study of practices modelers 
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almost always begin by assembling such a pathway, often themselves, out of avail-
able information from molecular biologists. This requires their own initiative pull-
ing different bits of published information together, given that molecular biologists 
are not necessarily interested in studying whole systems as opposed to local sets of 
interactions. Once a complete (or complete as possible) pathway is assembled, the 
modeler chooses how to represent the interactions amongst biochemical elements 
and there are different options available with various strengths and limits, such as 
using a fairly well accepted but not particularly mathematically analyzable Michae-
lis–Menten model in the case metabolic modeling.4 Subsequently the modeler must 
acquire information on the parameters governing the interactions, which is usually a 
difficult incomplete process. Unknown parameters need to be calculated through a 
fitting process such as simulated annealing. Once fit the model should be in theory 
capable of replicating the operations of its target biological networks, particularly in 
response to perturbations. With such a model in hand calculations can be made on 
how to best harness or control that network towards given ends.

Whereas mathematicians such as Rashevsky others might have been comfortable 
drawing on theoretical perspectives and mathematical hypotheses to limit the level 
of biological detail (or degree of biological realism) required upfront, the modelers 
we studied operate with large degrees of biological information and base their confi-
dence as much as possible on the completeness of that information. As one modeler 
described it, his modeling was governed by “a sense that its… large stuff coming 
together and there’s something influencing the other and the other thing keeping a 
check like this and unless you have everything these things are not going to work 
properly.” Systems biologists with these predictive goals do not perceive their abil-
ity to capture the phenomena as generally indicative that their models have captured 
any fundamental or underlying aspect of reality. Indeed systems biologists are often 
pragmatic with respect to the fact that models with so many degrees of freedom as 
theirs can always be made to fit a data set with enough trial and error (MacLeod & 
Nersessian, 2015). Much importance is thus placed on predictive testing and experi-
mental confirmation as result, to demonstrate that their models have some degree 
of robustness. “You do experiments in the lab and try to collect a lot of data. Then 
you go to the computer and try and make sense of this data using computer models. 
See if you can describe the system mathematically and if you are able to predict 
something. Otherwise this cycle where you have experimentation, data collection 
and computer modeling. Go back and get more data.” As systems biologists would 
see it, the elements of their models are strictly guided by the molecular record which 
documents the parts and their relations of the systems they wish to model. As one 
modelers put it to us, “ We aren’t theoretical modelers. We don’t just come up with 
ideas and then just shoot them out there and wait for people to do them.”

This preference for realism should not be interpreted in the sense that these mod-
els encompass no abstraction or idealizations. As with any model idealizations or 
simplifications are unavoidable and indeed modelers must represent interactions 
between biochemical elements in terms of a simplified accounts of their relationship 

4  Michaelis–Menten kinetics is a model describing the rate of enzymatic interactions – an enzyme facili-
tates the transformation of one biochemical compound into another (catalyzation).
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of which Michaelis–Menten representations are an option. The modelers we studied 
in general shy away from including mathematical complexity in the form of partial 
differential equations – thus assuming biochemicals in cells are well mixed—or mul-
tiscale relationships (see cardiac models as one counter-example; Gross & Green, 
2017; Carusi, 2014). Their representations of systems leave out much information. 
But the basic philosophical approach is that details should be included to the great-
est extent possible according to computational, mathematical or other constraints. In 
this respect modeling should start from an exhaustive pathway account, and choose 
representations which are as complex or accurate as the modeling will allow. Once 
assembled computational and data issues will almost invariably demand further sim-
plifications. Importantly however most modelers use the modeling process or gen-
eral experience with that process to make decisions on how to simplify the mod-
els further without losing reliability or accuracy. For example modelers often apply 
sensitivity analysis to an initially too complex model to identify the most important 
variables in a network for a given function. The model can then be for simplified 
to focus on representing these alone. As such initial detailed representations often 
guide later simplification decisions.

Indeed in our ethnographic studies modelers often bristled at the suggestion by 
experimenters that the need to simplify their models or use idealized or abstract rep-
resentation of interactions somehow demonstrated less commitment to detail than 
experimenters themselves held. As one modeler argued to us they were not making 
decisions that experimenters themselves did not themselves make. “For example, 
there’s a very famous equation that’s just called the Michaelis–menten equation. It’s 
supposed to represent… kinetics. But that is an approximation. Most biologists, you 
know, do not realize that.” [a modeler]. Systems biologists are happy to acknowl-
edge the limitations they need to build into their models, but not that they are work-
ing at a different level of detail or making different decisions than experimenters 
themselves make.

Finally detail-driven modeling is largely incompatible with the use of analytic or 
closed form equations, and does not restrict itself to equations or formulations which 
are considered to be analytically tractable. This would be at odds with the goal of 
replicating these complex systems in detail. As such no notion of understanding 
generally attaches to the ability to solve the equations in a limited or reduced form. 
Accordingly while systems biologists are fairly narrow in their preference for ODE 
equations they tend to be quite flexible and pragmatic in how they construct those 
equations interchanging and experimenting with different interaction terms with no 
obligation to ensure that these formulations adhere to a well-known mathematical 
functional form or be generally solvable. It should not be a surprise to learn that 
many systems biologists building these models come from engineering rather than 
applied mathematics or physics. Engineers are appreciated for their more pragmatic 
perspective.

As such detail-driven modeling in this sense that I have explored it here, repre-
sents a starkly different and novel approach towards the application of mathemat-
ics than that which can be ascribed to traditional generality-focused practices in the 
modeling of biological systems. Principally detailed representations of specific sys-
tems guide mathematical practices as opposed to general theoretical presuppositions, 
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where replication of systems is favored as a means of achieving predictively reliable 
models.

Detail‑driven modeling, understanding and theoretical goals  That said given the 
direction some systems biologists are trying to push detail-driven modeling it is 
possible Levins’ schema and the constraints he places on mathematical applications 
may no longer in fact hold. There are a few aspects of detail-driven practices which 
might warrant this claim.

Firstly as noted Levins suggests, albeit briefly, that “understanding” is 
unavailable to highly detailed models because the models are too complex and 
not reducible to easily interpretable mathematical forms. He asserts in fact that to 
provide understanding models need to be “general”, which he characterizes in terms 
of certain simplifications which can capture general features (430). While detail-
driven modeling is driven primarily by prediction and control goals, modelers do 
believe nonetheless they are building up certain kinds of understanding, and indeed 
that understanding contributes to their ability to refine their models and contribute 
to their ability to control systems. One modeler reported her lab PI telling her 
that building a successful predictive model “means you understood the system. 
And then you…you could make changes to it and that’s the whole purpose of the 
whole process.” This kind of understanding is, as might be imagined, governed 
by a strongly mechanistic philosophy (Green et  al., 2018), based on the idea that 
understanding consists in understanding cause and effect relations within the 
system through the agency of mathematics which helps identify those relations, 
with the caveat that as systems biologists these modellers reject monocausal linear 
accounts or explanations (Westerhoff & Kell, 2007). In fact understanding the 
properties which systems exhibit requires both mathematical language and analysis 
to comprehend. Importantly, as Brigandt (2013) shows, working from a causal-
mechanical perspective does not preclude the use of mathematical explanations 
which cite say the existence of stability points or other dynamical systems 
properties, which modelers in our study consistently do. However in contrast with 
the more traditional use of such explanations these are considered reliable and useful 
by detail-driven modelers because they emerge out of a detailed representation 
rather than from a simplified account. In other words a detail-driven mathematical 
representation can be a source of relevant mathematical properties and mathematical 
explanations. These observations suggest that more brute force modeling is not 
simply instrumental, as Levins suggests it is.

Secondly, if understanding and explanation are possible through these detail-
driven practices modeling then there are conceivable pathways to more general 
claims and indeed theoretical claims. Theoretical goals are not a principal concerns 
of many of those working on detailed models for the purposes of prediction and 
control, certainly not in the labs we studied. However, certain systems biologists 
nonetheless see pathways to theoretical generalisations based on detail-driven mod-
eling. These pathways do not abide by the constraint that realism or detail must be 
traded away at the start of investigation in order to identify or hypothesize say fun-
damental and interpretable mathematical principles. Rather, more inductively, anal-
ysis of families of detailed models can be the source of general claims. For instance 
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variability in either parameter measurement or even system structure within a popu-
lation can be represented in terms of families or ensembles of models allowing more 
robust generalizations to be drawn on say disease effective treatments (see Kuepfer 
et al., 2007). But more importantly it is possible to argue that detail-driven modeling 
is both capable of theory-generation and in fact is a preferable pathway to the gen-
eration of theory. Westerhoff and Kell advocate that a principal function of systems 
biology is to produce a general mathematical theory of biological systems based on 
mathematical laws of structure and organization that tie biological, biochemical and 
physical principles together (Westerhoff & Kell, 2007, 48). Kitano (2002) presents 
a similar viewpoint using the BCS theory of superconductivity from physics as an 
analogy for what such laws will look like. Such laws or theories will not be fun-
damental however in the physics sense, they will be “structural”. They will define 
the specific constraints that allow specific biological phenomena to manifest them-
selves given background fundamental laws and theories (see Green, 2015). These 
may take the form of design or organizational principles which themselves help 
explain aspects of system function and organization. Importantly these principles 
can be derived from network models and analysis of network structures, which hold 
generally across different types of systems. Topological accounts of network struc-
ture on this basis are reliably identifiable as significant because a class of detailed 
representations of systems exhibit the same structure. These structural theories, laws 
and principles can thus emerge from accurate large-scale computational simulation 
models, through the ability of computers themselves to recognize generalizations 
across models. Such a perspective reverses the traditional mathematical approach 
of working from theoretical insights and hypotheses. Instead theory is inferred by 
virtue of the exhaustiveness of complex models.

This approach is essentially advocated by Bromig et al. (2020). They present a 
framework for identifying design principles which relies on generating families of 
models across a parameter space, identifying ones that meet good biological and 
performance criteria, and then comparing those resulting models in order to extract 
information on optimal biological design. Parameter choices, which can represent 
different background aspects such cell architecture or protein sequences, influence 
the kinds of processes or mechanisms a network will rely on to perform a given 
function effectively. This research represents a strain of investigation of design prin-
ciples which has been operating in this vein over at least the past 10 years, applying 
computation to the wide exploration of design spaces (see Lim et al. 2013). Outside 
of design principle research Westerhoff and Kell give their own example of sum-
mation theorems (related to metabolic control analysis), which according to a per-
sonal communication they received from their discoverers was derived initially from 
numerical experiments on models (2007; 63).

As such mathematical understanding, generality and theory may not in fact lie 
outside the scope of what is possible with detailed-driven modeling, implying that 
Levins’ constraints on generalization and theory may no longer necessarily hold. 
Further one can argue that detail-driven approaches render in fact traditional prac-
tices of obtaining generalizations inferior, insofar as theoretical claims inferred 
directly from detailed predictively validated models are more reliable than starting 
from simplified or idealized representations of specific systems. Even assumptions 
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such as parsimony are not strictly necessary, if computation is capable of identify-
ing shared structures at any level of complexity. Indeed Westerhoff and Kell argue 
that although older mathematical biologists such as Turing and Prigogine were able 
through the use of “phenomenological” model with “oversimplified and unrealistic 
rate equations” to demonstrate particular emergent properties the results were not 
robust to variations in parameters or the equations. Instead, to demonstrate an emer-
gent function reliably in the function of a particular process, precision and realism 
are required through the computational replication of networks (62).

In any case, while there is potential here to challenge Levins’ conceptions on the 
limits on mathematical applicability with respect to biology, it is not necessarily 
clear at this point that either predictive goals and in turn these theoretical aims are 
generally achievable at least in the short term. One of our own lab PIs was highly 
skeptical. There are genuine question marks over whether or not mathematics can be 
effectively employed to either of these ends given the complexity and nonlinearity 
of the systems being modeled. For one thing the complexity of highly detailed non-
linear models renders them highly sensitive to even small amounts data-uncertainty, 
yet uncertainty is pervasive and somewhat intrinsic to biological data given noise 
and variability (see MacLeod, 2016). Certainly current models are rarely effective 
for predictive goals (Voit, 2014). If such models are not rigorously validated for 
such purposes, these structural theories derived from these models cannot necessar-
ily claim a stronger empirical basis. However if it is the case that detail-driven mod-
eling can produce better supported generalizations and theories, then Levins’ theory 
of trade-offs and constraints may need to be put aside. And that outcome should 
challenge traditional conceptions of how mathematical theory can and should be 
developed in biology.

Novel inferential practices  Even if these claims about the potential novelty of math-
ematical application in systems biology do not hold, detail-driven modeling in sys-
tems biology allow other novel uses of models which create a strong contrast with 
applications possible using traditional approaches and arguably beyond what Levins 
had in mind as possible for modelers pursuing realism. These practices involve the 
use of detailed mathematical models to infer elements of biological networks which 
were not previously known. These uses may in fact be dominant ones amongst mod-
elers in the field given the limits mentioned above on the uses of current models for 
predictive and theoretical goals. Certainly these are a dominant use of models made 
by members of the labs we studied and similar practices can be found across the 
field (e.g. Kuepfer et al., 2007).

Principally detailed and precise models allow modelers to identify differences or 
errors between their models and the data, and use this to infer missing information in 
an account of a system. For example in one of the cases I examined the modeler was 
tasked with producing a model of a system for which experimenters had produced a 
pathway (MacLeod & Nersessian, 2018). However when a model of that system was 
put together it proved incapable of accounting for particular dynamics of the system. 
Through computational manipulation he discovered that various pathways were over 
and underregulated (producing too little and too much output respectively). Then by 
experimenting computationally with different structural changes he was able to pose 
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the existence of an unknown biochemical element operating in the network to pro-
vide that regulation. This element was later identified by experiment.

In another case a modeler faced uncertainty about the structure of the system she 
was attempting to model (MacLeod, 2016). The system was otherwise complex and 
it was difficult to find a unique parameter fit. Regardless she was able to hypothesize 
the right structure by exploring structural alternatives across a number of increas-
ingly tighter biological conditions and a wide set of potential parameters sets using 
Monte Carlo simulation. Since only one structural alternative could meet all these 
conditions for at least some parameter sets, she hypothesized this must be the cor-
rect structure. As such even without producing an accurate model of the system she 
was able to use her ability to explore a wide-landscape of possibilities to reach a 
conclusion on the biological system. These techniques provide novel applicability 
for mathematics as means through which inferences about missing elements of our 
knowledge can be derived by exploring a landscape of possibilities. Large scale real-
istic and precise mathematical representation makes these possibilities accessible 
and comparable.

These uses apply the affordance of computation to explore a vastly wider set of 
detailed model possibilities than would be possible without either, rendering math-
ematical representations useful as discovery tools. The rigor and exhaustiveness of 
these models give them power to localize errors and identify solutions. Such uses are 
certainly novel in the context of biology, and could not easily have been anticipated 
by Levins. Arguably they represent a new understanding of what mathematics can 
achieve, which lies outside previous characterizations. Knowledge of these practices 
helps enrich our understanding of the contrast and divide between systems-theoretic 
researchers and more pragmatic researchers in systems biology. These practices 
speak to just how remote such modelers can be from any relying on any pretense to 
generality or theory to motivate their practice (those described above excepted) and 
how close their motivations can align to those of basic empirical investigators, by 
employing mathematics principally to improve and fix the information record.

To summarize then four aspects of modern detail driven practices stand-out. 
Firstly that such modelers generally begin their analysis from detailed accounts, and 
use this detail to inform decisions, often on mathematical grounds, regarding simpli-
fication. This is in contrast with the more traditional practice of working from initial 
mathematical hypotheses and mathematical concepts which can be expressed at the 
outset in terms of idealized and simplified representations. Secondly detail-driven 
modelers share a basic mechanistic philosophy which itself underwrites and sup-
ports modelers’ detail-driven approaches. Thirdly, some modelers think that detailed 
models are a source of generalizations and theory about biological systems, if not 
a more effective one. Fourthly many modelers extend these practices to encom-
pass inferential practices which improve and develop network details. Overall these 
descriptions provide a rich account of the motivations and practices governing those 
pursuing mathematical approaches within Levins third strand – practices trading-off 
generality, at the outset, in favor of realism and precision—certainly to a greater 
degree than Levins does himself, and in the process helps further our understanding 
of the different attitudes and preferences guiding both groups of systems biologists 
with respect to mathematical application.
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5 � Detail‑driven approaches and experimentation

The second claim of this paper is that detail-driven uses promote better relations 
and connections between experimenters and modelers. Systems biologists have 
and are cultivating substantial collaborations with experimenters as part now 
of routine work (Calvert & Fujimura, 2011). As one experimenter put it to us, 
including modelers on a grant application is now almost an expected practice and 
one funders certainly favor. In the labs we studied almost all the modelers had 
active experimental collaborations. I want to claim here part of the reason why 
experimenters are engaging now is that detail-driven practices (particularly infer-
ential uses) provide a more methodologically sound application of mathematics 
from an experimenter’s point of view. Here I turn back again to the ethnographic 
investigation in order to bolster this claim through experimenters’ and modelers’ 
own comments on their relationships and motivations.

Firstly and perhaps most importantly both experimenters and detail-driven 
modelers agree that details matter, and must form a starting point for any mod-
eling process. If there is no thorough well-validated understanding of a pathway 
to begin with then mathematical inferences cannot be easily trusted according 
to experimenters, as we saw in responses to Rashevsky’s attempt to model sys-
tems yet to be well-understood or investigated. We see this also in the motivations 
Fagan ascribes to experimenters who ignore or reject stem-cell modeling. These 
detail-driven models can be seen as closely tied to experimental evidence and the 
data record, indeed to depend on them, and in turn to motivate a need for collabo-
ration between experimenters and modelers. With respect to biological variabil-
ity, modelers, as mentioned, often make efforts to incorporate it in their models 
through ensemble modeling. Both groups accept that models require predictive 
validation to be taken seriously, and expressed that importance in interviews. 
In fact one modelers highlighted to us a tendency of experimenters to interpret 
detailed models as simply a summary or record of current experimental knowl-
edge, rather than as a device for generating novel prediction or understanding, a 
view which can be interpreted by modelers as putting limits on the value of mod-
els. “They [experimenters] think of [models] as something that’s… just hooked 
up to – to, you know, match figures…. “. Putting these potentially negative issues 
to the side, experimenters do recognize the fact that these models do operate at 
least at the start from a substantial record of current information.

Secondly both modelers and experimenters engaged in these detail-driven 
practices and experimenters share a basic-mechanistic philosophy and a causal-
mechanistic concept of explanation, which is not necessarily shared with mod-
elers that have strong mathematical notions of explanation (Green, 2017). This 
shared philosophy facilitates a basic shared understanding of what these detail-
driven models represent. Many modelers are using models primarily to track 
cause and effect relationships, as molecular biologists are usually characterized 
as doing. Some experimenters at least—certainly those that engage full heartedly 
in modeling—often recognize their own cognitive limitations in this respect and 
understand that detail-driven models can produce insight on causal relationships 
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they simply could not perceive on their own. As such there is a demonstrable 
power in models to bring together and represent information that is otherwise 
cognitively inaccessible. According to one experimenter.

“…. so if you were just looking at one protein that is changing one way or 
the other, in such an adaptive environment, you may actually find something 
that changes but in the overall global picture as far as disease pathology 
goes it might not be that relevant because there may be something else in 
the system that is changing to compensate for that. And so it has become 
sort of important for us to call on people like G4 [a modeler]…… to try 
to understand what are what’s happening system wide and in that way find 
changes that occur that aren’t compensated for that would be significant in 
terms of pathology.” (experimenter).

Experimenters holding these views can accept that detailed models can do 
things they simply cannot. Further because these modelers model the mechanisms 
using relatively non-abstract non-opaque mathematical formalisms it is easier for 
experimenters to perceive the content of models and how biological information 
is represented (as a mechanism) within them, e.g., in metabolic modeling every 
term in a pathway is represented in the model in terms of its cellular concentra-
tion. On Fagan’s account the complexity of stem-cell landscape modeling was one 
reason why experimenters were not engaging with such landscape models (2016). 
Sophisticated mathematical concepts and ideas do not play a strong role in these 
representations (although they might in various say parameter fitting processes). 
And while experimenters certainly do not claim to understand what modelers are 
doing to get the result the structure of the model is otherwise relatively transpar-
ent to experimenters in the way that other more idealized or theoretical math-
ematical formulations based on more sophisticated mathematical concepts may 
not be (consider categories in Rosen’s theory as an example). Each side can com-
municate on the molecular elements involved and the nature of their interactions.

“G4 likes to look at data… and I think ….he doesn’t like to look at data very 
differently from the way I like to look at data. I fill it in with biochemical 
information and he fills it in with boxes that he gets from models or papers. 
I become the person that provides them with this box to this box and there 
as a result we see an increase in inflammation. And then he takes that and 
puts it into a model and says ok this is what happens and then inserts infor-
mation about what he knows about what he knows about how these boxes 
talk to some other things that talk to inflammation.” (experimenter).

As such it is possible to identify a much better alignment between a detail-
driven modeling approach and experimenter’s own methodological and episte-
mological preconceptions about how molecular phenomena can be reliably and 
fruitfully represented. Having said that the relationships between modelers work-
ing on detail-driven models and experimenters are far from seamless. As men-
tioned while recognizing the close connection of these data-driven models to the 
data experimenters can tend to see models principally as means for accounting for 
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information or drawing it together in one place and illustrating relations that may 
not have been visible rather than as predictive engines capable of handling sig-
nificant perturbations. Indeed modelers who push the predictive capacity of their 
models while making assumptions and simplifications in the process can alienate 
their experimental collaborators. As one modeler put it. “…so, for them, it’s just 
like, you’re using your data and then, you know, you’re plugging in some numbers 
to fit the output of your model to that. And then they would not pose a lot of faith 
in those models or what they predict.” (A modeler) Experimenters have an acute 
sense of fragility of models beyond the available data and the ability of a model 
to fit that data. They anticipate new information might easily come along at any 
point. “we know how complicated the system is… one change in experimental 
condition can totally change the result” (An experimenter). In this respect experi-
menters attitudes towards the predictive goals of modelers is often skeptical.

Nonetheless experimenters do not reject that models built in this way cannot provide 
them reliable insights into the systems they study. In this regard the more inferential use 
of models to generate hypotheses about the structure of networks and their parameters 
fits very well to the kinds of objectives experimenters expressed to us for engaging with 
modelers. “…the usefulness of what she [a modeler] does is to see connections that we 
might not predict based on kind of guessing what kind of signaling molecules are con-
nected to another. In reading in the literature that this might have an influence on this 
pathway but she sees an entire set of pathways regulate that that’s useful information.” 
Modelers that tend to aim at this kind of information are appreciated. These inferential 
uses are helped by the fact that the generation of an hypothesis does not require cer-
tainty. Such hypotheses can be speculative. Experiments, as experimenters maintain, 
are always required in any case to confirm any model-based result and they will gen-
erate their own belief about a result from experiment alone, not from any particular 
claims the modelers might make. As such while experimenters do not necessarily have 
deep insight into how modelers are producing good hypotheses, using models to gener-
ate them is perceived as an effective and meaningful use of mathematics.

On this basis detail-driven modeling helps facilitate interaction and engagement 
between modelers and experimenters, and in turn helps explain why more experi-
menters are engaging in deep collaborations currently with certain systems biolo-
gists, and not others. Detail-driven modelers and experimenters share a more com-
patible outlook on what fruitful and reliable applications of mathematics in biology 
can consist in, and how to produce them, compared to systems-theoretic biologists. 
On this view there is a deep agreement on the necessity of trading off generality in 
favour of realism and precision as a basic approach to biological investigation, and 
while such applications of mathematics have traditionally lacked sufficient power to 
be of interest or use to experimenters, the situation now has substantially changed.

6 � Conclusion

In this paper, using the results of an ethnographic study,I have applied Levins’ 
analysis of mathematical application in order to further understand and explore the 
relations between different groups of moderns systems biologists in terms of their 
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mathematical practices and preferences. The result is hopefully a deeper account 
of the potential divisions between such groups and one which locates these divi-
sions with respect to views on what are the most meaningful and useful ways to 
apply mathematics to complex systems. From this analysis I have argued here for 
two claims; 1) that Levins constraints may no longer apply opening up mathemat-
ical modeling to more powerful applications than Levins could countenance; and 
2), that delving deeper into the realism-strand, and asking questions with respect 
to how “realism” is applied, reveals deeper commonalities and philosophical atti-
tudes between experimental practices and then mathematical ones than many would 
expect. Hence greater relationships between experimenters and these kinds of mod-
elers, despite a lack of shared education, is not unexpected. Having said all this 
systems biology is far from unique for applying the power of modern computation 
towards for purposes of prediction, drawing inferences or indeed generating theory. 
Things are changing fast. As such I take it to be one implication of this paper that 
our understanding of the effect of modern large scale computation on modern math-
ematical applications and their governing philosophies, and on our understanding of 
the constraints governing mathematics, still requires much further investigation.
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